
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CARLO SULZBACH SARTORI

The Pickup and Delivery Problem with
Time Windows: Algorithms, Instances, and

Solutions

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Luciana Salete Buriol

Porto Alegre
March 2019

CIP — CATALOGING-IN-PUBLICATION

Sartori, Carlo Sulzbach

The Pickup and Delivery Problem with Time Windows: Algo-
rithms, Instances, and Solutions / Carlo Sulzbach Sartori. – Porto
Alegre: PPGC da UFRGS, 2019.

101 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Luciana Salete Buriol.

1. Pickup and delivery. 2. Time windows. 3. Metaheuristic.
4. Mathematical programming. 5. Instance generation. I. Buriol,
Luciana Salete. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“It is a mistake to think you can solve any major problems just with potatoes.”

— DOUGLAS ADAMNS. LIFE, THE UNIVERSE AND EVERYTHING.

ACKNOWLEDGEMENT

First, I would like to thank my advisor, Luciana Buriol, for all the support in more

than four years of work. Everything she has taught me contributed to my growth both

personally and professionally. Besides, I truly appreciate her kindness, patience, and

optimism in moments of nothing but despair.

I thank my father, Jacir Sartori, for the unconditional support and opportunities

he provided throughout my entire life – not to mention the multiple advice in my earliest

moments of doubt. In the same way, I own a lot of this thesis to my beloved girlfriend,

Tainara Silva, who has helped, supported, and cheered me on countless occasions.

The journey was certainly easier to endure thanks to my friends from the Scout

Movement. There are many of course, but a special mention goes to Ariel, Azulado, Bia,

Dé, Guto, Orlando, Raquel, and Romeu. They are basically my second family. In addi-

tion, I thank my hard-to-meet friends from high school, who despite the lack of meetings

have accompanied me during this period as well.

The whole laboratory 207 deserves a special acknowledgment. It was really re-

warding to be part of the group and meet numerous incredible colleagues. Risking to

forget someone, I mention some members: Alberto, Alex, Artur, Gabriel, Henrique,

Marcelo, Tadeu, Toni, Victoria, and Wesley. An additional thanks to professor Marcus

Ritt, who has taught me about optimization and research in many ways. In this academic

context, I thank many other colleagues I have met at INF-UFRGS, who certainly have

contributed in some way to my development.

I appreciate the valuable comments and notes regarding this thesis provided by

professors Marcus Ritt, Olinto Araújo, and Thibaut Vidal. They were taken into consid-

eration in this final version of the complete text.

At last, I would like to acknowledge the financial support of CNPq (Conselho Na-

cional de Desenvolvimento Científico e Tecnológico), and INF-UFRGS for the available

infrastructure and support to conduct my research.

ABSTRACT

This work considers the Pickup and Delivery Problem with Time Windows. It is a hard

combinatorial optimization problem that generalizes a number of vehicle routing problem

and finds applications in courier and dial-a-ride services. The objective is to construct a

good set of vehicle routes to service transportation requests from pickup to delivery loca-

tions while respecting vehicle capacity and service time constraints. To tackle the prob-

lem, we propose a hybrid method combining heuristic components with a mathematical

programming formulation – a technique typically referred to as matheuristic. Further-

more, a method to generate instances for the problem based on open data and realistic

travel times is provided. A new set of benchmarks is proposed considering the new gen-

eration procedure. Computational experiments demonstrate that the proposed method

works well on a standard benchmark set of instances for which it found a number of new

best-known solutions. On the other hand, results for the new set of instances are in dis-

agreement with the observations for the standard benchmarks and demonstrate relevant

differences between the two testbeds. The work presents a series of analyses and dis-

cussions regarding the experiments, main components, and variations of the matheuristic

algorithm.

Keywords: Pickup and delivery. Time windows. Metaheuristic. Mathematical program-

ming. Instance generation.

O Problema de Coleta e Entrega com Janelas de Tempo: Algoritmos, Instâncias, e

Soluções

RESUMO

Este trabalho estuda o Problema de Coleta e Entrega com Janelas de Tempo. Trata-se de

um difícil problema de otimização combinatória que generaliza problemas de roteamento

de veículos, possuindo aplicações em serviços de entrega e transporte de passageiros.

O objetivo é definir o melhor conjunto de rotas de veículos que atendam requisições de

transporte entre locais de coleta e entrega, respeitando ao mesmo tempo a capacidade dos

veículos e as restrições de tempos de serviço. Para resolver o problema, nós propomos

um método híbrido combinando componentes heurísticos com programação matemática

– uma técnica geralmente chamada de matheurística. Além disso, uma metodologia para

gerar instâncias do problema que são baseadas em dados abertos e tempos de viagem reais

é proposta. Um novo conjunto de testes foi gerado baseado nesta proposta. Experimentos

computacionais demonstraram que o algoritmo proposto é capaz de obter bons resultados

no conjunto padrão de testes da literatura, para o qual novas soluções também foram

encontradas. Por outro lado, os resultados para o novo conjunto de instâncias diferem

dos observados para o conjunto padrão e demonstram diferenças relevantes entre os dois

conjuntos de teste. O trabalho apresenta Uma série de análises e discussões a respeito dos

experimentos, principais componentes, e variações do algoritmo híbrido proposto.

Palavras-chave: Coleta e entrega. Janelas de tempo. Metaheurística. Programação ma-

temática. Geração de instâncias.

LIST OF FIGURES

Figure 2.1 Example of a PDPTW instance and solution...17

Figure 4.1 Example of request insertion. ..31

Figure 5.1 Example of three instances proposed by Li and Lim (2003).........................42
Figure 5.2 Example of four instances generated...51

Figure 6.1 Comparison between the time spent on each major component by the
matheuristic...57

Figure 6.2 Graphical statistics of AGES performance. ...59
Figure 6.3 Comparison of the time spent on major components in the new instances. ..66
Figure 6.4 Statistics of AGES in the new instances. ...67
Figure 6.5 Analysis of differences in the pool sizes in the two instance sets.68

LIST OF TABLES

Table 5.1 Summary of the Li and Lim (2003) instances...41
Table 5.2 Summary of the Ropke and Cordeau (2009) instances.43
Table 5.3 Summary of characteristics of the new instances..50

Table 6.1 Tuned parameters and their respective values. ..53
Table 6.2 Algorithms used in the experiments. ...54
Table 6.3 Results of the component analysis per instance size.......................................56
Table 6.4 Statistical test comparing the algorithms in the standard instances56
Table 6.5 Performance of the original AGES with modified parameters........................58
Table 6.6 Metrics about the algorithms...60
Table 6.7 Comparison with methods from the literature...61
Table 6.8 Comparison of best solutions found..62
Table 6.9 Comparison considering the instances for exact methods...............................63
Table 6.10 Results of the four algorithms over the new instances.65
Table 6.11 Statistical test comparing the algorithms in the new instances65
Table 6.12 Average solution and route sizes ...69

Table A.1 Results of algorithm A1 for the Li and Lim instances with 100 locations.....79
Table A.2 Results of algorithm A1 for the Li and Lim instances with 200 locations.....80
Table A.3 Results of algorithm A1 for the Li and Lim instances with 400 locations.....81
Table A.4 Results of algorithm A1 for the Li and Lim instances with 600 locations.....82
Table A.5 Results of algorithm A1 for the Li and Lim instances with 800 locations.....83
Table A.6 Results of algorithm A1 for the Li and Lim instances with 1000 locations...84

Table B.1 Results of algorithm A1 (average) for the instances for exact methods.85

Table C.1 Results of algorithm A1 for the new proposed instances in sizes 100,
200, and 400 ..86

Table C.2 Results of algorithm A1 for the new proposed instances in sizes 600,
800, and 1000 ..87

Table C.3 Results of algorithm A1 for the new proposed instances in sizes 1500,
2000, and 2500 ..88

Table C.4 Results of algorithm A1 for the new proposed instances in sizes 3000,
4000, and 5000 ..89

Table D.1 Detailed characteristics of the new instances with 100 locations...................90
Table D.2 Detailed characteristics of the new instances with 200 locations...................91
Table D.3 Detailed characteristics of the new instances with 400 locations...................92
Table D.4 Detailed characteristics of the new instances with 600 locations...................93
Table D.5 Detailed characteristics of the new instances with 800 locations...................94
Table D.6 Detailed characteristics of the new instances with 1000 locations.................95
Table D.7 Detailed characteristics of the new instances with 1500 locations.................96
Table D.8 Detailed characteristics of the new instances with 2000 locations.................97
Table D.9 Detailed characteristics of the new instances with 2500 locations.................98
Table D.10 Detailed characteristics of the new instances with 3000 locations...............99
Table D.11 Detailed characteristics of the new instances with 4000 locations.............100
Table D.12 Detailed characteristics of the new instances with 5000 locations.............101

LIST OF ABBREVIATIONS AND ACRONYMS

AGES Adaptive Guided Ejection Search

CPLEX IBM ILOG CPLEX Optimization Studio

CO Combinatorial Optimization

CVRP Capacitated Vehicle Routing Problem

DARP Dial-a-Ride Problem

ILS Iterated Local Search

LAHC Late Acceptance Hill-Climbing

LNS Large Neighborhood Search

MILP Mixed Integer Linear Programming

MP Mathematical Programming

OR Operations Research

OSM Open Street Maps

OSRM Open Source Routing Machine

PDPTW Pickup and Delivery Problem with Time Windows

SP Set Partitioning

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

CONTENTS

1 INTRODUCTION...12
1.1 Vehicle Routing Problems ..12
1.2 Motivation..14
1.3 Research Objectives and Contributions..15
1.4 Overview ..15
2 PROBLEM DESCRIPTION..16
2.1 Instance Information ..16
2.2 Constraints and Objective Function ...16
2.3 Mathematical Programming Formulation ...18
3 RELATED WORK ...20
3.1 Metaheuristics for Combinatorial Optimization Problems20
3.1.1 Iterated Local Search ...20
3.1.2 Large Neighborhood Search ..22
3.1.3 Matheuristics..23
3.2 Methods for the Pickup and Delivery Problem with Time Windows.................24
3.2.1 Heuristic Methods..25
3.2.2 Exact Methods ...27
3.2.3 Matheuristic Methods ..28

4 A MATHEURISTIC APPROACH ..30
4.1 Greedy Solution Constructor...31
4.2 Adaptive Guided Ejection Search ...32
4.3 Large Neighborhood Search ..34
4.3.1 Removal Heuristics ..34
4.3.1.1 Shaw Removal ..35
4.3.1.2 Random Removal..36
4.3.1.3 Worst Removal..36
4.3.2 Insertion by Regret Heuristic ...36
4.4 Set Partitioning Formulation ...37
4.5 Solution Acceptance..38
4.6 Perturbation ..39
4.7 Efficient Computations...39
5 INSTANCES OF THE PROBLEM...41
5.1 Standard Instances ...41
5.2 Instances for Exact Solution Methods...43
5.3 A Proposal to Generate New Instances ...43
5.3.1 Obtaining Addresses and Travel Times ...44
5.3.2 Method for Barcelona, Berlin, and Porto Alegre Instances45
5.3.2.1 Selecting Locations...45
5.3.2.2 Pairing Locations ..46
5.3.2.3 Times and Scheduling Horizons ...47
5.3.2.4 Demands ...47
5.3.3 Method for Taxis of New York Instances ..48
5.3.3.1 Selecting Requests and Depots ...48
5.3.3.2 Times and Scheduling Horizons ...48
5.3.3.3 Demands ...49
5.3.4 Discussion of the New Benchmarks ..49

6 COMPUTATIONAL EXPERIMENTS...52
6.1 Environment and Configurations ..52
6.2 Parameter Tuning ...52
6.3 Statistical Tests and Component Analysis ..54
6.3.1 Analysis of the Adaptive Guided Ejection Search...57
6.3.2 Analysis of the Mathematical Programming Component......................................59
6.4 Comparison with other Methods...60
6.5 Extended Experiments..64
6.5.1 Analysis of Components Applied to the New Instances..66
6.6 Final Considerations...68
7 CONCLUSIONS AND FUTURE WORK..71
REFERENCES...73
APPENDIX A — DETAILED RESULTS FOR THE STANDARD INSTANCES ..79
APPENDIX B — DETAILED RESULTS FOR THE EXACT INSTANCES...........85
APPENDIX C — DETAILED RESULTS FOR THE NEW INSTANCES...............86
APPENDIX D — CHARACTERISTICS OF THE NEW INSTANCES90

12

1 INTRODUCTION

According to Rodrigue, Comtois and Slack (2016), the growth of urban areas has

increased the complexity of logistics of the land-based distribution of products. As a

matter of fact, road networks are the dominant transport infrastructure of several countries

and serve as the primary mode for freight transportation. For instance, in the United

States of America, the Bureau of Transportation Statistics (2017) estimates that 63% of

all freight transportation is performed by road. In the European Union, the European

Commission (2016) estimates 49% for the same scenario. In Brazil, the Confederação

Nacional do Transporte (2017) estimates 61%.

In order to cope with large logistic networks, researchers from many fields have

contributed to reduce the overall cost and improve the quality of transportation services.

One such field is Operations Research (OR), which applies analytical methods to find

the best solutions to a problem, subject to side constraints. A well-known transportation

model in OR is the Vehicle Routing Problem (VRP), first studied 60 years ago by Dantzig

and Ramser (1959). The objective is to build optimal vehicle routes to supply geograph-

ically distributed customers, a recurrent problem of economic importance in modern so-

ciety. In fact, the VRP is an active research topic, and several variants exist to model

practical scenarios as presented by Toth and Vigo (2014).

The focus of this work is a variant called Pickup and Delivery Problem with Time

Windows, which is constrained by vehicle capacity, time windows, and precedence rela-

tions between pickup and delivery pairs. In the following Section 1.1 the overall class

of VRP problems is introduced, and variants are described. The motivations of this the-

sis are presented in Section 1.2. A list of the main research contributions is provided in

Section 1.3. At last, an overview of the entire work is given in Section 1.4.

1.1 Vehicle Routing Problems

One of the fundamental problems in the VRP literature is the well-known Travel-

ling Salesman Problem (TSP). In the TSP, a salesman has to visit a number of cities and

return to its departure location. The decision version of the problem asks whether there

exists a tour that visits all cities exactly once traveling a distance no longer than a parame-

ter D. The problem was provenNP-Complete by Karp (1972). The optimization version

is a NP-Hard problem which tries to find the minimum distance Hamiltonian cycle.

13

A generalization of the TSP is the VRP, in which multiple tours have to be con-

structed to visit all requests, generally due to side constraints that would be otherwise

violated. Laporte (2007) defines a classical VRP as the Capacitated Vehicle Routing

Problem (CVRP) – from the seminal work by Dantzig and Ramser (1959). In this variant,

a set of customer demands has to be serviced by vehicle routes, which start and end at an

origin depot. Each customer request has an associated demand of goods to be supplied by

a vehicle, and each vehicle has a maximum capacity to carry goods from the depot, which

should never be exceeded. The distance between customer locations is typically referred

to as cost, and the cost of a route is the sum of all the costs to travel from one location to

the other in that route. The objective of the problem is to find the set of routes attending

all requests exactly once, such that the total cost of the routes is minimized.

Schrage (1981) studied the Vehicle Routing Problem with Time Windows (VRPTW),

which is a generalization of the CVRP. In addition to the demand, each request has an as-

sociated time interval that indicates the earliest and latest time service can start – this

interval is typically called time window. Every location has a service duration indicating

how much time the service requires. There is also a cost and time associated with travel-

ling between each pair of locations. Other constraints follow as in the CVRP. A common

objective function is to search for routes that minimize, in lexicographic order, the number

of vehicles used and the total cost of the routes (BRÄYSY; GENDREAU, 2005).

The variation studied in this work is a generalization of the VRPTW called Pickup

and Delivery Problem with Time Windows (PDPTW), first presented by Dumas, Desrosiers

and Soumis (1991). In this scenario, goods are transported between customer locations,

rather than from the depot to the customers as in the CVRP and VRPTW. A customer

request is a pair of locations: a pickup and a delivery. Vehicles must transport goods from

the pickup to the corresponding delivery, respecting vehicle capacities and time windows

of each location. A common objective is the same as the VRPTW, minimize first the

number of vehicles used, and then the total cost of the routes.

All the referred variations of the VRP, namely, the CVRP, VRPTW, and PDPTW,

are NP-Hard optimization problems because they contain the TSP as a particular case.

In other words, there is no known polynomial time algorithm capable of solving those

problems, unless P = NP . Nonetheless, the TSP can already be solved to optimality for

cases with thousands of locations (APPLEGATE et al., 2006), and the CVRP for cases

with hundreds of requests (PECIN et al., 2017). Despite these results, the most common

solution methods in the literature of VRPs are still heuristic-based techniques.

14

1.2 Motivation

The PDPTW generalizes many practical scenarios. Applications of the model in-

clude product delivery and collection (LAPORTE, 2007), courier services (SHEN et al.,

1995), dial-a-ride problems (WILSON; WEISSBERG; HAUSER, 1976), airline schedul-

ing and bus routing (NANRY; BARNES, 2000), and ship routing (CHRISTIANSEN et

al., 2007). Future trends may include the routing of autonomous vehicles, such as the

trucks of Embark1 recently tested in the United States of America.

Following the number of applications, the PDPTW is a good model to optimize

and improve certain aspects of the previously mentioned use of road transportation. These

improvements can have a significant impact on both companies and customers. For exam-

ple, according to Rodrigue, Comtois and Slack (2016), the transportation cost can account

for up to 10% of the total cost of a product. Hasle, Lie and Quak (2007) note that vehicle

routing tools are typically described as offering savings of 5%-30%, although even cost

reductions of 2% are substantial considering the amount of volumes transported.

Moreover, the International Energy Agency (2018) has reported that road trans-

portation is responsible for almost 19% of the CO2 emissions worldwide. Piecyk and

McKinnon (2010) had forecast that one factor to help reduce the carbon footprints of road

transportation services by 2020 would be the use of computerized routing systems, due to

the usual objectives employed in routing to reduce fleet usage and minimize travel times,

and the modest investment and risk carried for companies to apply such systems.

Additionally, both delays and unnecessary waiting times can be avoided by better

scheduling the order of visits, leading to increased customer satisfaction. Other benefits

of computerized solution methods for the PDPTW and VRP-type problems, reviewed by

Sutcliffe and Board (1991) include automatic routing with less interference of people and

better and faster-produced routes.

Other than the possible benefits of the PDPTW and VRPs, it is our interest to study

the computational aspects of solving these models. The PDPTW is still a hard problem to

be solved optimally even for a few hundred requests. Hence, our focus is on improving

heuristic solution methods for the problem. Furthermore, we want to provide analyses of

specific heuristic components and study how they behave in different scenarios, extending

previous works from the literature. There is also a lack of realistic testing scenarios (e.g.,

instances) for the PDPTW we want to address.

1Embark R©: Self-Driving Semi Trucks, <https://embarktrucks.com/>, last accessed 03-02-2019.

https://embarktrucks.com/

15

1.3 Research Objectives and Contributions

The main objectives of this work are to extend and improve the current state-of-

the-art metaheuristic methods for the PDPTW. To that end, we propose a hybrid meta-

heuristic algorithm integrated with a Mathematical Programming (MP) component. This

combination is often referred to as a matheuristic (MANIEZZO; STÜTZLE; VOSS, 2009).

The MP module is a Set Partitioning (SP) formulation of the PDPTW, while other meta-

heuristic modules are based on previous works from the PDPTW literature. A preliminary

study about the proposed matheuristic was published at the IX International Conference

on Computational Logistics (SARTORI; BURIOL, 2018).

Through computational experiments, we analyze the performance of the compo-

nents and of the whole matheuristic in the context of the PDPTW. The results are also

used in statistical tests that demonstrate improvements over previous works from the lit-

erature. Additionally, as a result of our method, a number of new best solutions have been

found for the standard benchmark instance set of the problem.

Furthermore, we propose a method to generate new instances for the PDPTW and

other VRP variants as well. The aim is to build instances with real-world data on locations

and travel times. A set composed of 300 new instances was generated according to the

new method. All the data used is freely available. In addition, we provide an open source

software tool to generate new instances as a way to foster reproducibility and contribute

to the VRP community.

1.4 Overview

The thesis is organized as follows. In Chapter 2 the problem is described, and a

mathematical formulation is provided. Related works are reviewed in Chapter 3, consid-

ering the metaheuristics used in this work, as well as the main methods proposed to solve

the PDPTW. The proposed algorithm is described in Chapter 4. In Chapter 5 we describe

the current instances of the problem and a method to generate realistic instances. Chapter

6 provides analysis of the computational experiments and results. The work is concluded

in Chapter 7.

16

2 PROBLEM DESCRIPTION

The purpose of this chapter is to present a detailed description of the Pickup and

Delivery Problem with Time Windows. In Section 2.1 we describe an instance of the

problem, while in Section 2.2 constraints and solution evaluation are defined. A Mixed

Integer Linear Programming (MILP) formulation is presented in Section 2.3.

2.1 Instance Information

An instance of the PDPTW is defined on a directed graph G = (V,A), where

V = {0, 1, . . . , 2n} is the set of all 2n + 1 vertices, and A the set of all arcs connecting

pairs of vertices. Define subset P = {1, . . . , n} as the set of n pickup locations, and

subset D = {n + 1, . . . , 2n} as the set of n corresponding delivery locations (pickup i

is associated to delivery n + i). Let vertex 0 be the depot where routes start and end.

Then, V = P ∪ D ∪ {0}. Additionally, for each arc (i, j) ∈ A, i, j ∈ V , there is an

associated cost cij and time tij to travel from vertex i to j. It is assumed that travel times

are non-negative and respect the triangular inequality tik ≤ tij + tjk, ∀ i, j, k ∈ V .

In the PDPTW, a request is a unique pair (p, n + p), p ∈ P, n + p ∈ D, and

products have to be transported from p to n + p. Moreover, each vertex i ∈ V has

an associated time window [ei, li], where ei and li are the time limits to start service at

location i. The duration of service at location i is denoted by si, and the demand is denoted

by qi. For pickup locations, the demand is of qp ≥ 0 products to be collected, whereas the

corresponding delivery location has demand of qn+p = −qp goods to be delivered.

By definition, all routes start at time zero, and it is assumed that e0 = 0. Besides,

every route has a maximum total time of l0 = H , the scheduling horizon. The demand

and service time of the depot are q0 = 0 and s0 = 0. A fleet K of homogeneous vehicles

is available at the depot, and each vehicle can transport up to Cap unities of goods.

2.2 Constraints and Objective Function

A solution to the PDPTW is a set of routes s = {r1, . . . , rm}. Each route r ∈ s is

a sequence of locations to be visited by a vehicle, denoted as r = (v0, v1, . . . , vh, vh+1),

where vk ∈ P ∪D, k = 1, . . . , h, and v0 = vh+1 = 0 the depot. The cost of a route r is the

17

sum of the costs of all arcs connecting vertices in r, denoted by C(r) =
∑h

i=0 cvivi+1
. The

cost of a solution s is the sum of all the costs of its routes, denoted by C(s) =
∑

r∈sC(r).

Figure 2.1 presents an example of a PDPTW instance and a feasible solution.

The time window constraints allow a vehicle to arrive at location i ∈ V before ei

and wait to operate, but a vehicle cannot arrive later than li. Even though a vehicle may

perform as many consecutive pickups as necessary, it must respect the maximum capacity

constraint. Therefore if a vehicle is full, it must perform a delivery before another pickup

operation. Furthermore, each p ∈ P must be visited before n + p, and by the same vehi-

cle. These are the precedence and pairing constraints, respectively. At last, all customer

locations in P ∪D have to be visited exactly once.

Figure 2.1: Example of a PDPTW instance and solution. (a) An instance with 8 locations,
their time windows [min, max] and demands. Pickup location with demand +a is asso-
ciated with delivery −a. Travel times and costs are unitary. There is no service duration.
The square node is the depot; (b) A solution to the PDPTW where each node label is
the exact time a vehicle leaves the location, and each arc label is the load carried by that
vehicle. Note that load d reaches its destination in time 4, but it has to wait until time 5 to
unload, due to the time window constraint in −d.

[1, 4] +a

[2, 5] +b

[3, 6]−b

[2, 7]−a

[1, 2] +c

[2, 3] −c

[5, 7]−d

[4, 5]+d

a

a+ b

b

c

(a) A PDPTW instance.

1

2

4

3

1

2

5

3

a

a+ b

b

c d

(b) A feasible solution.

Source: The Author.

The objective function of the PDPTW is to minimize the number of vehicles used

and the total cost of the routes. These objectives are evaluated in the lexicographic order

presented in Function (2.1).

f(s) = (|s| , C(s)) (2.1)

The first term is the number of routes, whereas the second term is the sum of the cost

of all routes in solution s. For instance, the solution s in Figure 2.1(b) would have the

evaluation f(s) = (2 , 10), because there are two routes and 10 arcs of unitary cost.

18

2.3 Mathematical Programming Formulation

In addition to the information of Sections 2.1 and 2.2, we need to define decision

variables to correctly formulate the PDPTW. The presented notation and formulation are

based on those of Ropke and Cordeau (2009) for the same problem. Furthermore, we

duplicate the depot to simplify the formulation, defining an origin depot 0, from where

routes start, and a destination depot 2n + 1, where all routes end. Hence, we redefine

V = P ∪D ∪ {0, 2n+ 1}, with P and D the set of pickups and deliveries respectively.

Let xijk be a binary decision variable that assumes value 1 when vehicle k ∈ K

travels from location i ∈ V to location j ∈ V , and 0 otherwise. Define real variables Bik

to be the moment in time vehicle k ∈ K starts service at location i ∈ V , and variablesQik

the amount of load being carried by vehicle k ∈ K when leaving location i ∈ V . Then,

the PDPTW can be formulated by the following MILP.

minimize
∑
i∈V

∑
j∈V

∑
k∈K

cijxijk (2.2)

subject to ∑
k∈K

∑
j∈V

xijk = 1 ∀ i ∈ P (2.3)

∑
j∈V

xijk −
∑
j∈V

x(n+i)jk = 0 ∀ i ∈ P, k ∈ K (2.4)

∑
j∈V

xjik −
∑
j∈V

xijk = 0 ∀ i ∈ P ∪D, k ∈ K (2.5)

∑
j∈V

x0jk = 1 ∀ k ∈ K (2.6)

∑
i∈V

xi(2n+1)k = 1 ∀ k ∈ K (2.7)

Bjk ≥ Bik + tij + si −M(1− xijk) ∀ i, j ∈ V, k ∈ K (2.8)

Qjk ≥ Qik + qj −M(1− xijk) ∀ i, j ∈ V, k ∈ K (2.9)

B(n+i)k ≥ Bik + ti(n+i) + si ∀ i ∈ V, k ∈ K (2.10)

ei ≤ Bik ≤ li ∀ i ∈ V, k ∈ K (2.11)

max{0, qi} ≤ Qik ≤ min{Cap,Cap + qi} ∀ i ∈ V, k ∈ K (2.12)

xijk ∈ {0, 1} ∀ i, j ∈ V, k ∈ K (2.13)

19

The objective function in Equation (2.2) is to minimize the sum of the travelled

arcs in the input graph G. Note that the lexicographic objective function of Section 2.2

can be modeled by assigning a large constant weight to the arcs leaving the initial depot,

that is, c0j ∀j ∈ V \{2n+1}. Constraints (2.3) guarantee that all requests will be serviced

exactly once. The pairing condition is guaranteed by constraints (2.4) so that the vehicle

that operates at the pickup location is the same to operate at the corresponding delivery.

Flow conservation constraints are stated in constraints (2.5), that is, the vehicle k which

arrives at a location i, must be the same that leaves that same location. Constraints (2.6)

and (2.7) define that all vehicles must leave the origin depot and reach the destination

depot – this has no impact on solution cost, as long as the cost to travel directly from the

origin to the destination depot is zero, that is, c0(2n+1) = 0.

Consistency of both time and load variables is guaranteed by constraints (2.8)

and (2.9), respectively. A large constant M is needed to make such constraints linear,

although the value of M can be tightened as proposed by Ropke, Cordeau and Laporte

(2007). The so-called precedence constraints are stated in constraints (2.10) by forc-

ing that the time to visit a delivery location must be greater than that to visit the corre-

sponding pickup location. Start of service within the limits of time windows is assured

by constraints (2.11), and capacity constraints of the vehicles are guaranteed by con-

straints (2.12). At last, constraints (2.13) define the boundary for the value of x binary

variables.

20

3 RELATED WORK

In this chapter, we present the scientific literature related to this thesis. Since our

proposed method is a hybrid metaheuristic, our focus in this review will be in metaheuris-

tic approaches and related topics. In Section 3.1, we present an overview of the methods

for Combinatorial Optimization (CO) problems used in this work. The main approaches

for the PDPTW are discussed in Section 3.2, both exact and heuristic.

3.1 Metaheuristics for Combinatorial Optimization Problems

In general terms, metaheuristics are solution methods used to explore a possibly

huge search space of a CO problem, using specific strategies to avoid or overcome the

traps of local optimal solutions. The primary advantage to the use of metaheuristics is

their easy definition and good performance in exploring the search space of NP-Hard

problems, providing short execution times and good quality solutions.

A multitude of metaheuristics has been proposed over the years to tackle mainly

CO problems arising in OR, engineering, and sciences. Among these methods, we re-

view three of them which are used in this work. The first is Iterated Local Search, the

second is Large Neighborhood Search, and the third is the so-called Matheuristic. For a

wider overview of metaheuristics and related topics, the reader is referred to the book of

Gendreau and Potvin (2010).

3.1.1 Iterated Local Search

The Iterated Local Search (ILS) metaheuristic is a stochastic local search method

applied to solve hard combinatorial optimization problems. In a nutshell, the idea is to

sequentially reach local optimal solutions and use a perturbation scheme to escape local

optima, but keeping a certain amount of information from previously found solutions. Its

concept is somewhat related to the Random Restart method, but in this case, a solution

is created from scratch when a local optimum is found, which means it does not keep

information from one iteration to the next. Furthermore, according to Lourenço, Martin

and Stützle (2010), ILS is able to outperform Random Restart methods in most cases.

In order to design an ILS method, four modules are required as presented in Al-

21

gorithm 1. The first is an initial solution generator, in line 1 of the algorithm, which

creates an initial solution s. The second module is the local search, which is responsible

for improving a given solution in lines 2 and 5, returning a new solution. In line 4 of

the algorithm, a perturbation in the current solution is performed to escape a local opti-

mum and diversify the search. At last, the fourth component is in line 6, the acceptance

criterion, which chooses to accept the current solution, or a previous one to continue the

search. Lines 7-9 update the best solution found s∗ if it has been improved.

Algorithm 1 Iterated Local Search
1: s← initial_solution()
2: s, s∗ ← local_search(s)
3: repeat
4: s′ ← perturbation(s)
5: s′ ← local_search(s′)
6: s← accept(s∗, s, s′)
7: if f(s) is better than f(s∗) then
8: s∗ ← s
9: end if

10: until stopping criterion is met
11: return s∗

Lourenço, Martin and Stützle (2010) note some facts about the main modules. For

instance, the solution constructor can be any of a multitude of methods such as greedy

constructive algorithm, or a completely random solution generator. The authors demon-

strate that in short execution times, using a greedy constructor provides better results, but

for longer periods, a random start may reach the same solution quality. Moreover, the

local search has not to be an actual local search, in fact, a common practice in recent

research is the use of other metaheuristics as the local search module. Some examples

include the use of Iterated Tabu Search (CORDEAU; MAISCHBERGER, 2012) and It-

erated Variable Neighborhood Descent (SUBRAMANIAN; UCHOA; OCHI, 2013). De-

spite its actual strategy and implementation, the so-called local search component should

be able to reach a local optimum in the search space from a given starting solution.

The perturbation mechanism, on the other hand, has to disrupt the solution just

enough for it to move from the current basin of attraction, but not so much as to lose

the actual characteristics of the solution; otherwise the method falls back to a simple

random restart heuristic. Additionally, the local search should not be able to easily undo

the perturbation effect, as to avoid returning to the previous solution. At last, the criterion

for accepting solutions can also be one from many, such as always taking the best solution

22

or the current solution, although the former focuses too much on intensification and the

latter on diversification. Other options are to combine strategies and use an acceptance

based on previous solutions, number of iterations, or parameter.

Applications of ILS include the TSP (MERZ; HUHSE, 2008), the Quadratic As-

signement Problem (STÜTZLE, 2006), the Permutation Flowshop Problem (RUIZ; STÜT-

ZLE, 2007), and the Bin Packing Problem with Conflicts (CAPUA et al., 2018). Partic-

ularly for VRPs, there are applications for the VRP with Heterogenous fleet (PENNA et

al., 2017), the VRP with cross-docking (MORAIS; MATEUS; NORONHA, 2014), and

for a class of VRPs (SUBRAMANIAN; UCHOA; OCHI, 2013).

3.1.2 Large Neighborhood Search

The Large Neighborhood Search (LNS) metaheuristic was first proposed by Shaw

(1998) in the context of VRPs. Its underlying idea is to perform large modifications in

a solution in order to direct the search in the solution space, as opposed to local search

methods that only change small portions of a solution at a time. Alternative names for

LNS are Ruin and Repair and Ruin and Recreate.

According to Pisinger and Ropke (2010) an LNS method is defined implicitly

by two components. The first one is a destroy method, which takes a solution as input

and removes part of its elements. A destroy method is usually stochastic so that at each

iteration of the metaheuristic, different elements are removed, even if the same solution

is used. The second component is the repair method, that takes a previously destroyed

solution and repairs it by reinserting elements, creating a new full solution, possibly better

than the best found and in a whole new area of the search space.

Algorithm 2 outlines the pseudocode of LNS. It takes as input an initial feasible

solution s, which is used to initialize the best-found solution s∗ in line 1. Then, the

metaheuristic iteratively applies a number of operations (lines 2–9), until a given stopping

condition is met. In line 3, the current solution s is destroyed, that is, it has some elements

removed creating a partial solution s′. The solution s′ is repaired in line 4, which means

that removed elements are reinserted. A solution between s and the new s′ is chosen to

guide the search in the next iteration according to some criteria in line 5, while the best

solution found s∗ is updated if improved in line 7.

Comparing Algorithms 1 and 2, it is possible to note that ILS and LNS have some

similarities, at least when it comes to their simplified pseudocodes. However, their prac-

23

Algorithm 2 Large Neighborhood Search
Input: A feasible initial solution s

1: s∗ ← s
2: repeat
3: s′ ← destroy(s)
4: s′ ← repair(s′)
5: s← accept(s, s′)
6: if f(s) is better than f(s∗) then
7: s∗ ← s
8: end if
9: until stopping criterion is met

10: return s∗

tical implementations can present a lot of differences. The ILS is commonly used with

local search methods that modify few elements of the solutions, while LNS disrupts lots of

elements from the solution. Nevertheless, the methods can be combined, as it is proposed

in this thesis, to provide an even better performing algorithm.

The main applications of LNS have been for VRPs as the metaheuristic can easily

remove and reinsert many requests at once, which for many variants of routing problems

performs much better than small modifications. Examples are the seminal work of Shaw

(1998), the application in the context of VRPTW (BENT; HENTENRYCK, 2004) and

also for the PDPTW (BENT; HENTENRYCK, 2006; ROPKE; PISINGER, 2006; CUR-

TOIS et al., 2017) – the latter will be described in the next section.

3.1.3 Matheuristics

In the scientific literature, the hybridization of metaheuristics and MP is often

called matheuristic (BOSCHETTI et al., 2009; MANIEZZO; STÜTZLE; VOSS, 2009).

According to Boschetti et al. (2009) matheuristics can be used in many fields such as op-

timization, simulation, and process control. The goal is to exploit characteristics from the

mathematical models of the problems while constraining the search space and execution

time in a heuristic manner, in order to achieve good quality solutions.

A survey on matheuristics for general CO problems is presented by Ball (2011),

which also includes a classification of methods according to how the MP component is

embedded in the algorithm. A total of four classes are discriminated. The first class is

on decomposition approaches, which break down a problem in sequences of subprob-

lems that are solved to optimality employing a mathematical model. The second class

24

is composed of improvement methods that integrate MP in the metaheuristic to improve

solutions found by the heuristic, similar to a local search component. The third class

comprises matheuristic techniques that generate approximate near-optimal solutions by

prematurely stopping an exact search, such as branch and bound. The fourth class is on

methods that solve a relaxation of the original model to build a feasible solution.

Archetti and Speranza (2014) surveyed the main matheuristic approaches applied

specifically to routing problems. The authors follow a similar classification to Ball (2011)

by discriminating in three types: decomposition, improvement, and branch and price or

column generation-based approaches. The method proposed in this thesis fits the de-

scription of the improvement class, because as detailed in Chapter 4, the MP component

is integrated into the search and used to improve the current solution at each iteration,

which is precisely the definition of Archetti and Speranza (2014).

Among matheuristic approaches for VRPs there are applications to the Pollution-

Routing Problem (KRAMER et al., 2015), Dial-a-Ride Problem (PARRAGH; SCHMID,

2013), Home Health Care Problem (ALLAOUA et al., 2013), and a class of VRPs (SUB-

RAMANIAN; UCHOA; OCHI, 2013). Other applications include the High School Time-

tabling Problem (DORNELES; ARAÚJO; BURIOL, 2014), the Nurse Rostering Problem

(DELLA CROCE; SALASSA, 2014), the Bin Packing Problem with Conflicts (CAPUA

et al., 2018), and Ship Routing (HOMSI et al., 2018), which is closely related to VRPs.

3.2 Methods for the Pickup and Delivery Problem with Time Windows

Due to the large solution space and hard time window, capacity, and precedence

constraints of the PDPTW, the main methods for finding solutions to the problem are

metaheuristics. Even though there are exact approaches able to solve tightly constrained

instances with up to 500 requests, for more general cases they are still unable to find

optimal or even feasible solutions. In this section, we will review the main methods for

the PDPTW and some related topics.

One related topic is the Dial-a-Ride Problem (DARP), which is a similar problem

to the PDPTW. In fact, the DARP is often referred to as a PDPTW of human perspective,

because passengers rather than products are transported by vehicles from pickup to drop

off locations. The main applications of the DARP are the transportation of disabled and

elderly people. To account for customer satisfaction, the DARP has additional constraints

to limit the riding period of each passenger. Nonetheless, the literature of the DARP and of

25

the PDPTW for heuristic search methods is somewhat divergent, particularly because the

DARP does not usually aim at minimizing the number of vehicles, whereas the PDPTW

does, and this can effectively change the design of heuristic algorithms.

The DARP has been more explore than the PDPTW in the literature, arguably due

to its social applicability. For a survey on the DARP, the reader is referred to the work of

Doerner and Salazar-González (2014). For further information on solution methods for

Pickup and Delivery problems for the transportation of goods, including the PDPTW and

other variants, the reader is referred to the survey of Battarra, Cordeau and Iori (2014).

Furthermore, problems in industrial and tramp shipping have similarities to the

PDPTW. Typically these problems extend the PDPTW with additional characteristics of

the shipping industry that may include heterogeneous fleet, multiple depots, flexible cargo

size, and multiple time windows. The work of Christiansen et al. (2013) reviewed some

shipping problems related to the PDPTW.

3.2.1 Heuristic Methods

One of the first metaheuristics to solve the multi-vehicle PDPTW is due to Nanry

and Barnes (2000). The authors proposed a Reactive Tabu Search using three basic neigh-

borhood movements in the local search: i) moving a request from one route to another;

ii) swapping a request between two routes; iii) relocating a request within its route. The

method allowed infeasible solutions to be used during the search procedure. The data set

for experiments was based on instances of the VRPTW proposed by Solomon (1987).

Li and Lim (2003) developed a Tabu-embedded Simulated Annealing with Restarts

approach to solve the PDPTW. The method used the same neighborhoods defined by

Nanry and Barnes (2000) within the embedded tabu search. In order to evaluate their

metaheuristic, the authors performed experiments using two sets of instances: the one of

Nanry and Barnes (2000), and another that they proposed based on the VRPTW instances

of Solomon (1987) and Gehring and Homberger (2001). The latter set of instances has

become the standard benchmark set for the PDPTW, which has not been fully solved yet.

Its instances and solutions are currently kept by the SINTEF (2008) website.

Bent and Hentenryck (2006) applied a Two-stage Hybrid Algorithm to solve the

PDPTW. In the first stage, a Simulated Annealing is responsible for minimizing the num-

ber of routes by employing a modified objective function that favors an uneven distribu-

tion of requests among the routes – the strategy is to create longer and shorter routes, so

26

that the procedure could eventually remove the shorter ones. The second stage minimizes

the travel distance using a Large Neighborhood Search (LNS), which is solved through a

branch-and-bound. This proposed method was able to produce a series of new solutions

for the Li and Lim (2003) benchmark set.

Another two-phase algorithm was proposed by Ropke and Pisinger (2006), based

entirely on LNS. The two phases of the method are the same procedure, and the differ-

ence between them relies only on the weights used in the objective function. The overall

idea is to remove a number of requests at once and reinsert them so that the solution

space is explored using large movements. In the first stage, the goal is to minimize the

number of routes by completely removing one route at a time and trying to reinsert the

unrouted requests in the remaining routes. The second stage is responsible for distance

minimization, by iteratively removing and reinserting a number of requests. To remove

and reinsert requests Ropke and Pisinger (2006) propose a series of operations, which are

chosen at each iteration of the algorithm based on how well they have performed during

its execution. The strategy is called Adaptive Large Neighborhood Search (ALNS), and

it was effective to find good solutions for the standard benchmark set (LI; LIM, 2003).

A variant of the PDPTW in which only vehicle minimization was taken into ac-

count was studied by Nagata and Kobayashi (2010a). To solve this problem, the authors

proposed the Guided Ejection Search (GES) that is based on a simple idea of removing

a random route at each iteration and trying to reinsert its requests into the other routes,

possibly ejecting some more requests to perform the insertion. Their results were suc-

cessful in reducing the number of vehicles of standard PDPTW instances, but the method

did not account for travel distances. On the other hand, Nagata and Kobayashi (2010b)

developed a Memetic Algorithm Using Selective Route Exchange Crossover that uses the

GES to reduce the number of vehicles, and improves the travel distance with the memetic

algorithm. The method was able to find good solutions for the standard benchmark set.

Curtois et al. (2017) presented a hybrid metaheuristic that can be considered the

current state-of-the-art for the PDPTW. In their work, the authors created an adaptive

mechanism to improve the search of the GES heuristic, a modification they named Adap-

tive Guided Ejection Search (AGES). The final algorithm is an iterative combination of an

AGES phase, an LNS phase and a local search phase with four neighborhood strategies.

Overall, the algorithm presents two stages that are iterated many times, instead of a single

execution of each phase as in Bent and Hentenryck (2006), Ropke and Pisinger (2006), a

strategy that intensifies the search and is able to take advantage of previous information

27

in both stages. The results demonstrated a major reduction on the number of vehicles and

costs. Indeed the algorithm was able to improve a large number of solutions from Li and

Lim (2003) benchmark instances.

3.2.2 Exact Methods

Dumas, Desrosiers and Soumis (1991) developed one of the first branch and price

methods applied to the PDPTW. Due to the computational limitations, however, the al-

gorithm was only able to solve instances tightly constrained by demand, with up to 55

requests. Savelsbergh and Sol (1998) also developed a branch and price method and were

able to solve less constrained instances with up to 50 requests.

A branch and cut approach was proposed by Lu and Dessouky (2004) for a PDPTW

with multiple depots and heterogeneous vehicles. The authors used a two-index compact

formulation and valid inequalities to strengthen the formulation. Instances with up to 25

requests and 5 vehicles were solved to optimality. Ropke, Cordeau and Laporte (2007)

developed another branch and cut for the classical PDPTW based on a two-index formu-

lation, and introduced valid inequalities to improve the performance. They also extend

the models to solve the DARP. Instances with up to 70 requests for the PDPTW and 96

requests for the DARP were solved to optimality.

Ropke and Cordeau (2009) proposed the use of a branch and cut and price method

to solve the PDPTW. The method uses column generation to solve the relaxation of a

set partitioning formulation in order to compute lower bounds, and considers two pricing

subproblems. A new set of harder instances was proposed to evaluate exact methods for

the problem. The authors compared two relaxations of the problem and demonstrated

that the method was able to outperform the previous one by Ropke, Cordeau and Laporte

(2007). Moreover, the branch and cut and price method solved to optimality eight tightly

constrained instances with 100 requests and three with 500 requests from the standard

benchmark set (LI; LIM, 2003).

The current state-of-the-art exact solution method for the PDPTW was proposed

by Baldacci, Bartolini and Mingozzi (2011). The method is based on a strengthened set

partitioning formulation, and it was tested using two objective functions. All instances

from the Ropke and Cordeau (2009) set, except one, were solved to optimality. The

method solved six tightly constrained instances with 100 requests from the Li and Lim

(2003) set in addition to the ones solved by Ropke and Cordeau (2009).

28

A compact two-index MILP formulation was proposed by Furtado, Munari and

Morabito (2017). The authors experimentally demonstrated that their new formulation is

able to provide tighter lower bounds when compared to the compact formulations pre-

sented by Ropke and Cordeau (2009) and Lu and Dessouky (2004). Nonetheless, the

model was only tested with instances of up to 75 requests, and it is still an open question

whether valid inequalities exist to strengthen the formulation.

3.2.3 Matheuristic Methods

Some works in the literature applied matheuristic methods to the PDPTW and its

variants. We review four works that are related to this thesis in terms of methods employed

and problems solved.

Koning (2011) applied a column generation approach to the PDPTW with dis-

turbances. The generation of new columns in the pricing problem was done through a

Simulated Annealing metaheuristic, which employed evolutionary strategies to mutate

sequences of requests. The algorithm was tested with the Li and Lim (2003) instances,

and provided a few new best solutions. However, its performance was mostly limited to

instances with 200 requests due to research decisions.

For the DARP, Parragh and Schmid (2013) applied a matheuristic that generated

routes employing an LNS algorithm and used a Set Covering Formulation to recombine

a set of previously created routes. However, due to the use of Set Covering, the method

required a procedure to make solutions feasible, since the model allowed some requests

to be visited more than once in the same solution, rendering it infeasible.

Homsi et al. (2018) proposed a matheuristic to a variant of the PDPTW in the

context of Industrial and Tramp Ship Routing. The method applied a Unified Hybrid

Genetic Search with an intensification phase that uses a Set Partitioning formulation to

recombine routes from previous solutions. The authors showed that the addition of the

MP component significantly improved the results and that the method was able to find

solutions close to the optimal.

To the best of our knowledge, the only other work applied to the particular PDPTW

that is studied in this work is our initial study (SARTORI; BURIOL, 2018). In this pre-

liminary work, we have combined the Set Partitioning component to the AGES and LNS.

A tuning procedure was performed to verify the best set of parameters, which demon-

strated that the MP phase produced statistically better results. Hence, it was worth the

29

extra overhead. Additionally, it was verified that the MP component was able to replace a

local search phase successfully. This thesis extends these preliminary results.

Even though the algorithm proposed in this thesis may at first appear similar to

the works of Parragh and Schmid (2013) and Homsi et al. (2018), there are significant

differences between these methods that motivate our research. For example, the heuristic

components that the algorithms use are different, especially comparing our proposal to

the one of Homsi et al. (2018). The hybrid method of Parragh and Schmid (2013) also

uses LNS, but our method uses the AGES and Set Partitioning, instead of Set Covering.

The objective function of the PDPTW studied in this thesis differs from the other two

methods, because it tries to minimize the number of vehicles, whereas the other two do

not seek this goal.

30

4 A MATHEURISTIC APPROACH

In this chapter, we describe the proposed matheuristic approach for the PDPTW.

The method is structured as an Iterated Local Search and uses components from the lit-

erature including the Adaptive Guided Ejection Search (CURTOIS et al., 2017) and the

Large Neighborhood Search (ROPKE; PISINGER, 2006). Indeed, the matheuristic ex-

tends the current state-of-the-art hybrid heuristic by Curtois et al. (2017). The choice

of the ILS framework to guide the algorithm was straightforward due to the streamlined

components embedded within their hybrid method.

Algorithm 3 describes the overall structure of the matheuristic. There are several

parameters besides the input instance I – each defined within its stage in the algorithm. In

line 1, solution s is assigned an initial solution by the procedure in Section 4.1. There is a

pool of routes, denoted as P , which is used by the mathematical programming component

in line 7, as detailed in Section 4.4. The pool is initialized in line 2, with routes from

solution s. Variables iter and count keep the total number of iterations and the number of

iterations without improvement, respectively. The best solution found is denoted by s∗.

Algorithm 3 Matheuristic
Input: PDPTW Instance I; perturbation size ZM and bias µ; AGES parameters MA, ZA;

LNS parameters ML, L, bmin, bmax, ω, kmin, kmax
1: s← initial_solution()
2: P ← initialize_pool(s)
3: iter, count← 0
4: repeat
5: s← AGES(s,MA, ZA, µ) . reduce number of routes
6: s← LNS(s,ML, L, bmin, bmax, ω, kmin, kmax) . reduce cost
7: sM ← SP(s,P) . recombine routes
8: s← accept_solution(s, sM , iter, count)
9: s← perturb(s, ZM , µ)

10: until stopping condition

Lines 4–11 are iterated until a given stopping condition is met. Every iteration

is composed of a local search, a solution acceptance, and a perturbation according to

the ILS framework. The local search is a combination of three stages. First, an AGES

phase to reduce the number of vehicles, described in Section 4.2. Then, an LNS phase

to minimize the total cost, as outlined in Section 4.3. The third stage, in line 7, is the

MP component that solves a Set Partitioning (SP) formulation of the PDPTW over the

pool P to recombine routes of previous solutions in search for an improving solution sM .

31

The solution s to continue the search is chosen according to an acceptance criterion based

on the number of iterations iter and count, as per Section 4.5. In line 10, the accepted

solution s may be perturbed to avoid local minimum traps according to Section 4.6.

In each iteration, the routes of the local minimum solution s returned by the LNS

phase are added to the pool of routes P . Therefore, the approach is arguably related to

column generation techniques. Furthermore, after every addition of new columns, the

model is solved. In case no column is added to P , the model is not solved.

4.1 Greedy Solution Constructor

A simple greedy insertion heuristic creates an initial solution for the matheuristic.

The heuristic is based on the procedure of Solomon (1987) and similar to the one by Li

and Lim (2003). The insertion heuristic starts from an empty solution and builds feasible

PDPTW routes one at a time. Hence it is a sequential route construction algorithm.

Initially, the heuristic selects a request to initialize an empty route r. The selection

is based on two criteria. All unrouted requests u = (p, n + p), p ∈ P that have earliest

start of time window ep at the pickup location p are chosen. Then, among the previ-

ously selected requests, the one that minimizes the cost c0p, from the depot to the pickup

location, is taken. In case of ties, the request with largest pickup index p is selected.

Once a route r has been initialized, other requests are iteratevely inserted into r,

one at a time, at the position that minimizes the insertion cost (see Equation 4.1 below).

Recall that a request u = (p, n + p) is a pair, thus two positions are required to insert

a single request, one for p and another for n + p. Figure 4.1 depicts the insertion of

a request u = (p, n + p) in a route r. Denote by (i, j) the position to insert p between

adjacent locations i and j in route r. Similarly, denote by (k, l) the position to insert n+p.

Figure 4.1: Example of the insertion of request (p, n + p) in route r. Pickup location p
is inserted between locations i and j, while delivery location n + p is inserted between
k and l. Dotted arcs represent removed paths. Coiled arcs represent possibly long paths
with multiple visits. The square is the depot, and circles are customer locations.

i j k l

p n+ p

cij ckl

cip cpj ck(n+p) c(n+p)l

32

The total insertion costCu of request u = (p, n+p) using positions (i, j) and (k, l)

in route r is computed according to Equation 4.1 below. Costs of the form cij were defined

in Chapter 2 as the cost of traveling from location i to j.

Cu = cip + cpj + ck(n+p) + c(n+p)l − cij − ckl (4.1)

Therefore, at each iteration of the request insertion phase, the request and insertion

positions that minimize Cu are chosen. Note that k is allowed to be p, because a delivery

may happen immediately after its pickup. In this case, k = p, l = j and the total insertion

cost is slightly modified to simply Cu = cip + cp(n+p) + c(n+p)j − cij .

The request insertion phase in route r continues until there are no more feasible

insertions. In such a case, another route is initialized and the insertions repeated. New

routes are created as long as there are unrouted requests and no empty route is generated.

Indeed, no limit was imposed on the maximum number of routes generated by the greedy

heuristic. Hence, if the procedure is not able to produce a feasible solution, the instance

contains at least one request that violates time window or capacity constraints.

4.2 Adaptive Guided Ejection Search

The AGES (CURTOIS et al., 2017) is a heuristic component solely responsible for

vehicle minimization. To search for solutions with fewer routes, it applies an aggressive

approach that removes an entire route r from the current solution, and then reinserts the

requests from r into the remaining routes. Algorithm 4 describes the AGES.

The procedure is iterated (lines 1 – 17) for a maximum number of perturba-

tions MA. First, a random route r is removed from solution s in lines 2–3. The removal

of route r creates a partial solution s′. In line 4, all requests that belong to r are inserted

into a stack E, for last-in-first-out (LIFO) ordering (NAGATA; KOBAYASHI, 2010a).

Penalty counters ρ[u] for each request u are initialized in line 5.

Next, a request uin is removed from the stack to be reinserted into s′. A ran-

dom feasible insertion position is selected for uin by selecting a random route and se-

lecting a position using reservoir sampling. If there is no available position, the penalty

counter ρ[uin] is increased and a number k of requests are ejected from the partial solu-

tion. First, the procedure tries to insert uin considering the ejection of a single request

(k = 1). In case there is still no insertion position available, the method considers the

33

ejection of k = 2 requests. The heuristic strategy used for ejection is based on the penalty

counter ρ. For k = 1, the request u that minimizes ρ[u] is ejected, while for k = 2, re-

quests u and v that minimize ρ[u] + ρ[v] are ejected and inserted in E – u and v belong to

the same route. The underlying idea is to remove requests that are easier to reinsert later,

as opposed to requests with large penalties that should remain where they currently are.

After the corresponding ejections, the current solution s′ is perturbed by the procedure

described in Section 4.6.

Algorithm 4 Adaptive Guided Ejection Search
Input: Feasible solution s; Maximum perturbations MA; Perturbation size ZA; Perturba-

tion bias b
1: while maximum number of perturbations MA is not reached do
2: r ← random_route(s)
3: s′ ← remove_route(s, r)
4: E ← initialize_stack(r)
5: ρ[u]← 1, for every request u
6: while maximum number of perturbations MA is not reached and E 6= ∅ do
7: uin ← remove_request(E) . with LIFO ordering
8: if there is a feasible insertion of uin in s′ then
9: s′ ← insert_request(uin, s′) . in a random position

10: else
11: ρ[uin]← ρ[uin] + 1
12: s′ ← eject_and_insert(uin, s′, E) . eject k = {1, 2} requests

from s′ that minimize the
penalty ρ

13: s′ ← perturb(s′, ZA, b)
14: end if
15: end while
16: if E = ∅ then s← s′ end if
17: end while
18: return s

The stopping criterion is based on the total number of perturbations executed.

Every time a perturbation is performed in line 12 of the procedure, a counter is increased.

On the other hand, whenever the number of unrouted requests decreases below a previous

minimum value, the counter is reset. In line 16, and every time the AGES procedure

is used during the search in Algorithm 3, the counter is also reset. This is the adaptive

mechanism introduced by Curtois et al. (2017) that allows the AGES to run for as long as

it seems to make progress, but to terminate quickly otherwise.

In line 16, if stack E is empty, it means a route was successfully removed from

solution s and that s′ is now a full feasible solution. Therefore, the current solution s is

updated and the whole process is repeated.

34

4.3 Large Neighborhood Search

The primary objective of the LNS is to reduce the solution cost, although it can

reduce the number of routes in some cases as well. The applied LNS is based on the

works of Ropke and Pisinger (2006) and Curtois et al. (2017). The overall structure is

described in Algorithm 5.

In every iteration of the LNS, a removal heuristic h (Section 4.3.1) is selected at

random according to a set of weights ω (line 3). A number b of requests are removed

from the current solution s by the selected strategy, which generates a partial solution s′

in line 4 of the algorithm. The number b is selected at random from U [bmin, bmax] in each

iteration of the LNS. Then, in line 5, requests are inserted back into s′ using the k-regret

heuristic (Section 4.3.2), where k is selected from U [kmin, kmax]. If all requests have been

reinserted, solution s′ is accepted according to a Late Acceptance Hill Climbing (LAHC)

(BURKE; BYKOV, 2008) strategy with list size L as proposed by Curtois et al. (2017).

In case some requests were not reinserted, solution s′ is restored to its initial state. The

method is repeated for a maximum number of iterations without improvement ML.

Algorithm 5 Large Neighborhood Search
Input: Feasible solution s; Maximum iterations ML; LAHC list size L; Weight set ω;

Values bmin, bmax, kmin, kmax
1: repeat
2: s′ ← remove_requests(s, b, h)
3: s′ ← reinsert_requests(s′, b, k)
4: s← accept_solution(s, s′, L)
5: until maximum number of iterations ML without improvement
6: return s∗ . The best solution found

4.3.1 Removal Heuristics

Three removal heuristics are employed in the LNS as in the work of Ropke and

Pisinger (2006). They are the Shaw Removal Heuristic, Random Removal Heuristic, and

the Worst Removal Heuristic. A set ω = {ωs, ωr, ωw} holds the weights used in the

selection of the Shaw, Random, and Worst heuristic, respectively. A heuristic h is selected

with probability ωh/(ωs + ωr + ωw).

35

4.3.1.1 Shaw Removal

The underlying idea of the Shaw Removal heuristic is the fact that one should

remove requests that are related in order to reinsert them more easily afterward. A re-

latedness measure is employed in the selection of requests to be removed. The measure

takes into consideration spatial, temporal and demand information of the requests. Given

two requests u = (p, n + p), v = (q, n + q), p, q ∈ P , the relatedness R(u, v) between

them is computed by Equation 4.2.

R(u, v) = α(tpq + tn+p,n+q) + β(|Bp −Bq|+ |Bn+p −Bn+q|) + γ(|qp − qq|) (4.2)

Lower values of R(u, v) indicate a greater relationship between the requests. The

term weighted by α is the spatial term and considers how spatially close are the requests u

and v. Temporal relation is weighted by β and considers the time each request is serviced

in the current solution – variables Bi are the exact time service starts at location i as

defined in Chapter 2. The term weighted by γ is the demand relation. These weights were

fixed to α = 9, β = 3, and γ = 2 as per Ropke and Pisinger (2006).

Algorithm 6 describes the Shaw Removal. In line 1, a seed request u1 is selected

at random from the solution s. Then, removal operations are iterated in lines 3 – 9, until b

requests have been removed. In line 4, a request u2 is selected at random from the set

of removed requests U . A list of routed requests L is defined in line 5. A position o in

this list is selected in line 6 with a randomization criterion yλ (explained in the following

paragraph). Then, in line 7, the request u3 with o-th lowest relation value R(u2, u3) with

regards to u2 is taken using a linear time selection algorithm (CORMEN et al., 2009).

Algorithm 6 Shaw Removal Heuristic
Input: Solution s, number of requests to remove b

1: u1 ← random_request(s)
2: U ← u1 ∪ U
3: while |U | < b do
4: u2 ← random_request(U)
5: L ← list of requests u ∈ s | u /∈ U
6: o← yλ|L|, where y is a random number from U [0, 1)
7: select request u3 ∈ L such that R(u2, u3) is the o-th lowest relation value
8: U ← u3 ∪ U
9: end while

10: s← remove_requests(s, U)
11: return s

36

The randomization criterion used in line 6 of the algorithm generates a number at

random y and uses a parameter denoted by λ. Whenever λ = 1 the selection is completely

random, although the value has been fixed as λ = 6 to favor elements with a stronger

relationship. In line 8, the selected request is added to set U . In line 10, all requests in U

are removed from s.

4.3.1.2 Random Removal

The random removal selects a number b of requests to remove independently at

random. Ropke and Pisinger (2006) highlight that the Random Removal is basically a

Shaw Removal heuristic in which the parameter λ = 1. In the concrete implementation,

a separate heuristic is available for performance purposes.

Unlike the Shaw Removal, the Random Removal does not consider any infor-

mation or relation about the removed requests. Nonetheless, its effectiveness cannot be

underestimated. In fact, it is a component that can diversify the search.

4.3.1.3 Worst Removal

A different strategy is to consider requests that seem to be placed in the wrong

location. In the notation of Ropke and Pisinger (2006), denote by f−u(s) the cost of solu-

tion s when request u has been removed. Then, denote the cost of request u in solution s

by cost(u, s) = f(s)− f−u(s). The Worst Removal heuristic removes the b requests that

contribute the most to the cost of solution s. In other words, it selects those requests that

maximize cost(u, s). Note that f−u(s) can be computed by Equation 4.1.

The implementation of the heuristic is similar to the Shaw Removal. However,

the difference is that list L is sorted in decreasing order of cost(u, s), ∀u ∈ L. In this

manner, requests with larger values of cost(u, s) are the ones with a higher probability of

selection. There is a randomized component yλ as well to avoid deterministic selection.

4.3.2 Insertion by Regret Heuristic

In the repair phase of the LNS, the b requests previously removed are reinserted

into the partial solution s′. To reinsert requests, the k-regret heuristic proposed by Ropke

and Pisinger (2006) is employed. It performs a lookahead when selecting requests to

reinsert. One of the objectives is to choose requests that can only be inserted in a few

locations in the current solution s′, and thus need to be reinserted first.

37

The k-regret heuristic works as follows. Denote by f+u,r(s) the insertion cost

of u in the best position in route r ∈ s. Consider that routes are ordered in such a

way that r = i is the route where u is inserted with i-th lowest cost. In other words,

insertion costs are f+u,1(s) ≤ f+u,2(s) ≤ · · · ≤ f+u,|s|(s). Costs f+u,r(s) are computed

by Equation 4.1. Whenever a request u cannot be inserted in a route j, we set insertion

costs as f+u,j(s) = · · · = f+u,|s|(s) = ∞. Then, at each iteration of the regret heuristic,

a request u from the set of unrouted requests U is selected for reinsertion according to

Equation 4.3.

max
u∈U
{

k∑
j=1

(f+u,j(s)− f+u,1(s))} (4.3)

The selected request u is always inserted in its best position with cost f+u,1(s).

The maximized term is the so-called regret value. Indeed, this value is a quantification

of the potential risk of not inserting a request at its best insertion position in the current

iteration. Note that requests that can only be inserted in one route will have a much larger

regret value. Hence, they are selected before other requests that have more options.

The parameter k in a k-regret heuristic is the size of the lookahead. For instance,

when k = 1 the heuristic is a simple greedy insertion (as in Section 4.1). For k ≥ 2, the

heuristic considers further moves to better choose a request to insert. When k = |s|, all

routes in s are considered. In our implementation, at every iteration of the LNS phase, a

value k is selected from U [kmin, kmax].

In the concrete implementation, we compute all the insertions of each unrouted

request u ∈ U and keep the results in memory. Every time a request is chosen to be

inserted in a route r (according to Equation 4.3), we update the insertion cost of all the

remaining unrouted requests in U for the particular route r. For all the other routes, the

insertions remain the same of previous iterations and do not need to be computed again.

4.4 Set Partitioning Formulation

Balinski and Quandt (1964) presented an Integer Linear Programming model to

formulate VRPs using a Set Partitioning formulation. The same model can be used in

our context. Let R define the set of all feasible routes of the PDPTW. There are binary

values λir associated with each route r ∈ R, such that λir = 1 if route r services cus-

tomer i ∈ P ∪ D, and λir = 0 otherwise. The term C(r) is the total cost of route r, as

defined in Chapter 2.

38

Furthermore, there are binary decision variables yr that assume value 1 when route

r ∈ R is used in the optimal solution, and 0 otherwise. Then, the SP model for the

PDPTW can be written as follows.

minimize
∑
r∈R

yrC(r) (4.4)

subject to ∑
r∈R

λiryr = 1 ∀ i ∈ P (4.5)

yr ∈ {0, 1} ∀ r ∈ R (4.6)

The size of set R is, however, exponential in the instance size. To overcome the

cardinality problem, it is common to use external methods to generate a subset of the

routes, so that solving the model is tractable. In our approach, the pool of routes P acts

as the set R, but with a smaller size. At every iteration of the matheuristic, routes of the

local minimum solution s returned by the LNS phase are added to the pool.

The SP model is solved in line 7 and returns a solution sM , for which necessarily

f(sM) ≤ f(s∗). Solution s∗ is the best found during the search. This is certain because

no routes are removed from the set P during the search. Thus, the routes of s∗ are still

available. Besides, in the implementation of our matheuristic, we used warm start to

improve the efficiency of the MP component by setting s∗ as the initial solution.

In computational terms, the set P is a hash map in which the key is the set of

requests serviced by the given route. If two routes r1 and r2 service the same requests,

regardless of their order, and C(r1) < C(r2), then only route r1 is maintained due to its

reduced cost. This keeps memory usage low without any side effects.

4.5 Solution Acceptance

In the matheuristic, whenever the SP phase generates a new solution sM that is bet-

ter than the current best, i.e., f(sM) < f(s∗), sM is readily accepted. On the other hand,

the local minimum s′ of the LNS phase is accepted with probability 1 − (count/iter).

Otherwise, solution s∗ is taken to continue the search in the next iteration of the algo-

rithm. Therefore, our matheuristic focuses on intensification in the start, but gradually

shifts to diversification to avoid getting trapped in local minima. In case solution sM is

not accepted, the chosen solution s is perturbed by the mechanism in Section 4.6.

39

4.6 Perturbation

A perturbation mechanism is used in the overall matheuristic and within the AGES

heuristic. The perturbation is a modification of the random request shift movement ap-

plied by previous works (NAGATA; KOBAYASHI, 2010a; CURTOIS et al., 2017). In the

original movement, a random request is selected to be shifted from its route to another

route taken at random in the current solution.

Instead of selecting the destination completely at random, the perturbation applied

in this work uses a so-called bias µ. The bias works in the following way. A request u

is randomly selected from the current solution s and removed from it entirely. Then, a

route r ∈ s is randomly chosen to receive u. From all possible insertions of u in r, a set

of µ% of them is taken at random and the best position is selected for the insertion. In

case µ < 100% there is a bias towards better insertions, but not necessarily the best over-

all, which maintains the desired diversification in a perturbation mechanism. Whenever

there is no feasible insertion for u, the shift is not performed. The concrete implementa-

tion of the perturbation is similar to the greedy reinsertion with blinks of Christiaens and

Vanden Berghe (2016), although we have used the strategy in a perturbation mechanism

rather than in an improvement procedure.

For the matheuristic, a maximum number of ZM shifts is performed, while in the

AGES the maximum is denoted by ZA. There is a difference because in the AGES the

perturbation should not be too large. Although, in both cases, the same bias µ is used.

4.7 Efficient Computations

The AGES, LNS, and the perturbation mechanism, all require the evaluation of

movements within a certain neighborhood in the search space. In particular, they perform

removals and insertions of requests and always keep solution feasibility. We discuss in

this section the techniques used to perform these computations efficiently.

To evaluate how much a movement impacts the solution cost, we compute the

differences using Equation 4.1 previously defined. That is, whenever a request is removed

or inserted in a route, we compute solely the modification incurred by this movement, i.e.,

the removal and insertion of a few arcs. Note this evaluation can be performed in O(1),

or constant time.

40

On the other hand, problems that consider time window constraints pose a diffi-

culty for the solution methods because insertions in a route modify the service time of

all subsequent locations, which may cause the solution to become infeasible. The naive

approach is to check all the locations that come after the inserted one, but this has com-

plexityO(n). When tackling large instances and using heuristic components that perform

many of such tests, this simple approach will not provide good performance.

Savelsbergh (1992) proposed a technique to perform the feasibility check with

regards to time windows in constant time complexity, that is, O(1). The method is called

Forward Time Slacks, because it considers the slack in time of the requests to follow.

Basically, it defines a value Fi, ∀i ∈ V , which is the maximum amount of time service at

location i can be shifted in time to keep solution feasibility.

Given a route r = (v0, v1, . . . , vh, vh+1) the forward time slack of each node in

the sequence is computed according to Equations 4.7-4.8 below. Variables Bi where

defined in Chapter 2 as the time service starts at location i. Value wi is the waiting time

at location i, that is, the difference between the time bi a vehicle arrives at i, and the

actual start of the service Bi, because a vehicle may arrive before ei and wait. Hence, it is

computed as wi = Bi − bi.

Fvh+1
= lvh+1

−Bvh+1
(4.7)

Fvk = min{lvk −Bvk , Fvk+1
}+ wvk , ∀k = 1, . . . , h (4.8)

Therefore, whenever inserting a location in a route, we have to check if the shift

in time created by the insertion is not greater than the slack of the location immediately

after. In the case of the PDPTW, we perform the check for both the pickup location and

the delivery location. Besides, we need to account for the fact that the shift created for the

pickup location affects the delivery location as well because it comes necessarily before

the delivery. These tests can be performed in O(1) time given a location for the request.

However, we need to recompute the forward time slacks whenever a route is modified in

O(n) time, which is worth it because the search performs a considerable number of time

window feasibility tests.

41

5 INSTANCES OF THE PROBLEM

The purpose of this chapter is to describe the instances of the PDPTW used in the

experiments of this thesis (Chapter 6). In Section 5.1, we detail the standard benchmark

set of instances for the PDPTW that is currently used to compare methods in the litera-

ture. To further explore the problem, we present a method to generate instances based on

realistic information in Section 5.3. A new benchmark set for the PDPTW is proposed

based on this method.

5.1 Standard Instances

Li and Lim (2003) proposed the standard set of benchmark instances for the

PDPTW. There are 354 instances with sizes of 100, 200, 400, 600, 800, and 1000 lo-

cations. Most instances have not been solved to optimality yet. The SINTEF (2008)

website keeps the whole set and its corresponding best-known solutions.

Every instance is classified in one of three classes according to the distribution of

its locations. The clustered (C) instances have places grouped in specific regions to simu-

late urban agglomerations. The random (R) instances have locations simply distributed at

random. In the random-clustered (RC) instances, locations are partially random and par-

tially clustered. Each distribution class is further separated according to the time windows

and planning horizon. Instances of type 1 (C1, R1, RC1) have short planning horizon and

time windows, whereas those of type 2 (C2, R2, RC2) have long planning horizon and

time windows. For all instances, travel times and arc costs are computed by the Euclidean

distance with double precision.

Table 5.1: Summary of the Li and Lim (2003) instances.

Number of Instances by Type

Inst. Size C1 C2 R1 R2 RC1 RC2 Total
100 9 8 12 11 8 8 56
200 10 10 10 10 10 10 60
400 10 10 10 10 10 10 60
600 10 10 10 10 10 10 60
800 10 10 10 10 10 10 60
1000 10 10 10 10 10 8 58
Total 59 58 62 61 58 56 354

Source: The Author.

42

Table 5.1 presents a summary of the number of instances per particular group as

described. In Figure 5.1, a sample of three instances is depicted, one for each distribu-

tion (C, R, RC) in the two-dimensional Cartesian plane.

Figure 5.1: Example of three instances proposed by Li and Lim (2003). Red circles are
pickup locations. Blue triangles are delivery locations. The black square is the depot.

●

●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Instance with 200 (C) locations.

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

(b) Instance with 200 (R) locations.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

(c) Instance with 200 (RC) locations.

Source: The Author.

To create the instances, Li and Lim (2003) used VRPTW instances proposed by

Solomon (1987) and Gehring and Homberger (2001). In fact, the only attribute that dif-

fers VRPTW and PDPTW instances are the pairing constraints. To pair locations, the

authors first solved each VRPTW instance using a heuristic algorithm. Then, locations

that appeared in the same route of the VRPTW solution were randomly paired. These

pairs correspond to the pickup-delivery pairs in the PDPTW instance.

43

On the one hand, the procedure generates instances with a particular structure,

because the pickup and delivery are well arranged on the same route. Ropke (2005)

mentions that the process may not generate realistic pickup-delivery relations as well.

On the other hand, the works in the literature seem to agree that the Li and Lim (2003)

instances are hard to solve, which is probably the reason the set is widely used. Only a

few of these instances have been solved to optimality.

5.2 Instances for Exact Solution Methods

Ropke and Cordeau (2009) proposed a different set of instances especially to test

exact methods for the PDPTW. The locations in these instances were selected uniformly

at random over the [0, 50]x[0, 50] square in the 2D plane. Travel times and arc costs are

computed as the Euclidean distance. By definition, the cost of using a vehicle is 104.

There are four groups of instances. Each group differs from the others due to the

capacity Cap of the vehicles or due to the width W of the time windows. All instances

have the same scheduling horizon H = 600 time units. Requests were created by ran-

domly pairing locations to create pickup-delivery pairs. Each instance group contains ten

instances with 30 up to 75 requests. Most of these instances have already been solved to

optimality. Table 5.2 below summarizes this particular set.

Table 5.2: Summary of the Ropke and Cordeau (2009) instances.

Group Cap W
AA 15 60
BB 20 60
CC 15 120
DD 20 120

Source: The Author.

5.3 A Proposal to Generate New Instances

A difficulty faced by many researchers in the VRP community is the lack of free

available realistic benchmark instances. In order to compare methods, researchers have

to rely on artificially generated instances. Typically locations are generated at random

in a two-dimensional Cartesian plane in a particular distribution. Besides, distances are

computed as the Euclidean or Manhattan distance, which provide strictly symmetrical

cost matrices that fail to represent realistic scenarios.

44

The lack of instances based on real information motivated us to develop a method

to create new instances for the PDPTW. These instances use real-world coordinates and

travel times obtained from open data and software. Hence, we make the new benchmarks

free available1. An open source tool was built to generate the instances2.

The instances were generated within cities to avoid long travel times. In this way,

all routes can be performed under a single working day of at most eight hours. The cities

we have chosen are Barcelona (Spain), Berlin (Germany), New York City (United States

of America), and Porto Alegre (Brazil). The reasoning behind the choice of Barcelona

is due to its several one-way streets that provide large asymmetrical cost matrices (on

average, 70% of the arcs). Opposed to that, Berlin is more symmetrical (on average, more

than 50% of the arcs are symmetrical). Porto Alegre is our town, and it is currently in

the process of innovation inspired by the city of Barcelona, a fact that motivated us to

choose this location because of the possible future applications. At last, New York City

has a particular dataset aggregated by Donovan and Work (2016), detailed in the following

section, which provides complete information for PDPTW contexts.

Following, in Section 5.3.1 the strategies to select locations for customer requests

is described. The particular method for Barcelona, Berlin, and Porto Alegre instances

is presented in Section 5.3.2. There is an alternative procedure for the New York City

instances in Section 5.3.3.

5.3.1 Obtaining Addresses and Travel Times

The locations in the new method are selected from a pre-defined pool, rather than

randomly generated. The pool is a list L of geographic coordinates in an area of interest

(e.g., country, state, or city). In this work, we use two datasets publicly available to create

the pool of locations. One is from the OpenAddresses (2017), which keeps addresses for

a number of cities and countries around the world. The second is from the dataset by

Donovan and Work (2016) that includes pickup and dropoff coordinates for taxi services

in New York City – in addition to other information (see Section 5.3.3).

Note that selecting locations from list L provides an approximation of urban dis-

tributions. Indeed, densely populated regions have more addresses, and the probability of

choosing an address from L that belongs to a populated area is larger. Although, this is

not a perfect estimation, because it depends on the input data available.

1Instances available at <https://github.com/cssartori/pdptw-instances/>.
2Open Source Instance Generator available at <https://github.com/cssartori/ovig>.

https://github.com/cssartori/pdptw-instances/
https://github.com/cssartori/ovig

45

Furthermore, the use of geographic locations allows the computation of realistic

travel times. In all instances, we employ the Open Source Routing Machine (OSRM) tool

by Luxen and Vetter (2011) to compute travel times. The OSRM implements state-of-

the-art shortest path algorithms that provide realistic results. Moreover, OSRM supports

data from the OpenStreetMap (2017) project (OSM). An advantage of the OSRM is the

possibility to use the information on speed limits per road, traffic directions, and road lim-

itations to compute travel times. Travel times respect the triangluar inequality (Chapter 2)

because OSRM always computes the fastest (shortest time) path between locations.

In all instances, travel times, time windows, service durations, and the scheduling

horizon, are measured in minutes. Similar to instances of the TSPLib (REINELT, 1991)

and the CVRPLib (UCHOA et al., 2017), we decided to use only integer values for arc

weights. Hence, when computing the travel times in minutes, the values are rounded up.

We decided not to differentiate arc costs and travel times, thus they are the same.

5.3.2 Method for Barcelona, Berlin, and Porto Alegre Instances

First, we describe the process to generate instances using the OpenAddresses

(2017) locations dataset. The list L contains 129,460 sites for the city of Barcelona,

371,265 for Berlin, and 33,688 for Porto Alegre. Even though our instances are generated

with information from these three particular cities, the method can be generalized to any

other city or area as long as there are addresses available to them.

5.3.2.1 Selecting Locations

The PDPTW instances have 2n + 1 locations. There are 2n customer locations

and one depot. The 2n locations are paired to form a total of n requests (pickup-delivery

pairs). Next, we describe how the 2n locations and the depot are selected from list L. All

locations are unique, and cannot be selected twice.

There are three distributions for the locations, analogous to the Li and Lim (2003)

instances. In the clustered (C) instances, locations are selected from L in a way that

creates clusters, similar to Uchoa et al. (2017). A set A of seed locations is selected

at random, where the size of A is taken from U [3, 8]. Then, the remaining (2n − |A|)

locations are selected according to the probability distribution in Equation 5.1, which

favors the selection of requests that are closer to the seed locations to create the actual

46

clusters. The probability of selecting coordinate x ∈ L is denoted by prob(x).

prob(x) =
∑
a∈A

exp(−hav(x, a)d), (5.1)

where hav(x, a) is the haversine distance between coordinates x and a. This approxi-

mates the great-circle distance from x to a in the surface of the Earth (seen as a sphere).

We opted for the haversine distance approximation in the selection stage, because other-

wise we would have to compute the actual distance between all coordinates in L, which is

potentially large. Moreover, this approach provides a clusterization that is independent of

streets and obstacles. The parameter d controls the density of clusters. Its value is chosen

randomly from U [0.6, 1.6]. Larger values of d generate denser clusters.

For random (R) instances, locations are randomly selected from list L. In the

random-clustered (RC) instances, a number d2nhe of locations are chosen to be clustered,

and the remaining d2n(1− h)e are random. The value of h is taken from U [0.4, 0.6].

At last, the depot can be selected in two ways. In the first, a random location is

simply selected fromL to place the depot. The second type is the centered depot, in which

the center of the rectangle containing all 2n locations is computed, and the location in L

that minimizes the haversine distance to the center is selected to host the depot.

5.3.2.2 Pairing Locations

In the previous section, all 2n customer locations were selected from the list of

locations L. However, the PDPTW requires pickup-delivery pairs. Hence, in this section,

we describe how the 2n locations are paired to create n pickup-delivery pairs.

In the literature, there are two basic approaches to pair locations. For example, Li

and Lim (2003) paired locations that appeared in the solution of a VRPTW (Section 5.1).

On the other hand, Savelsbergh and Sol (1998), Ropke and Cordeau (2009) paired loca-

tions in the input graph completely at random. In our generation, the pairs are created

according to the distribution of locations in the instance.

For the R and RC instances, pairs are defined by selecting two locations at random,

one for the pickup and another for the delivery. Therefore, there is no particular structure

regarding pickup-delivery pairs in these instances. On the other hand, for the C instances,

locations are paired within their cluster. Initially, clusters are computed by a k-means

algorithm, where k is the number |A| of seed locations. Then, a procedure is applied

to guarantee that all clusters have an even number of locations (call them even-clusters).

47

Otherwise, it is not possible to pair locations completely. The procedure selects the largest

odd-cluster z1, and location x1 ∈ z1 that minimizes the haversine distance to the center

of another odd-cluster z2. The location x1 is then moved to cluster z2. The process is

repeated until there are only even-clusters. Then, locations are randomly paired within

their clusters. This strategy provides a degree of locality to the requests because both the

pickup and the delivery belong to the same, or closeby neighborhoods.

5.3.2.3 Times and Scheduling Horizons

The scheduling horizonH is one of 240 minutes or 480 minutes, which is compat-

ible with a working day on most countries. For service durations, we have decided to fix

a single value for the whole instance. The duration is selected from 5, 10, or 15 minutes.

At last, a time width W is chosen from 60 or 120 minutes to generate the time windows.

The time windows are computed as follows. Given a time window width W and a

request (p, n+p), p ∈ P , we genereate the centerwcp of the time window of p according to

a uniform distribution considering the minimum and maximum time a vehicle can arrive

at p in a feasible solution U [t0p, H − tp(n+p) − t(n+p)0 − sp − s(n+p)]. Then, the window

[ep, lp] in p is computed as ep = wcp −W/2 and lp = wcp +W/2. For the corresponding

delivery location n + p, the time window can be generated in two ways. The first is

computed with e(n+p) = ep + tp(n+p) + sp and l(n+p) = e(n+p) + W , thus there is an

overlap between the time windows of p and n+p. The second way, however, is computed

without any overlap of time windows as ep = lp + tp(n+p) + sp and l(n+p) = e(n+p) +W .

The latter is used to simulate cases in which the pickup can be performed early and the

delivery only later. At most 10% of the requests receive non-overlapping time windows.

Additonal 5% to 15% of the requests do not receive time windows, in other words, these

requests have the time window [0, H] in the pickup and the delivery location. Under no

circumstance, a time window can have e < 0 or l > H .

5.3.2.4 Demands

The demands are generated based on the maximum capacity of the vehicles Cap.

For each request, the demand is selected uniformly from U [10, 0.6 ·Cap]. The maximum

capacity Cap is one of 100 or 300 units of goods.

48

5.3.3 Method for Taxis of New York Instances

A different strategy is used to generate instances based on the data of Taxi trips in

New York City by Donovan and Work (2016). The information available is the most com-

plete we could obtain to create realistic PDPTW instances from open data. For example,

each taxi trip contains the exact pickup and dropoff location (requests), the number of peo-

ple riding the taxi (demand), and the precise time of pickup and dropoff (time windows).

Therefore, our procedure makes use of all the information to create the instances, instead

of generating demands, time windows, or pairs at random. Travel times are computed by

the OSRM tool in minutes as well.

5.3.3.1 Selecting Requests and Depots

Instead of a list of locations L, the New York City data provides a list of requests

(paired locations). Thus, the selection of requests is performed by randomly choosing

n requests from that list. Hence, the pickup-delivery pairs are defined by the input data

rather than the method. In this way, the placement of locations in the space is defined by

how the pickups and deliveries were distributed in the real application.

The process to select the depot is similar to the one in Section 5.3.2. For random

depots, the location is simply chosen at random (from both pickup and delivery locations

in the set of requests). In the case of central depots, the location that is closest to the

center of the rectangle formed by the 2n locations is taken. Note that in both cases, when

selecting the depot, the concept of request is ignored and only locations are considered.

5.3.3.2 Times and Scheduling Horizons

The scheduling horizon H is equally one of 240 or 480 minutes. Service times, on

the other hand, are fixed in 2 minutes as an upper bound on the amount of time a passenger

takes to get in and off a vehicle.

Time windows are computed according to the clock time of the pickup and dropoff

reported in (DONOVAN; WORK, 2016). These times are used as the center wcp of the

time window in the same way to the previous section (instead of generating the center

randomly). Hence, for a request (p, n + p), p ∈ P and center wcp for p, the time win-

dow is computed by [wcp − W/2, wcp + W/2]. For the delivery n + p, it is computed

through [wc(n+p) −W/2, wc(n+p) +W/2]. In this manner, we try to keep as much of the

49

original information as possible when generating the instances. Widths W are fixed by

instance and chosen from 30, 60, and 120 minutes. The tighter 30 minutes time windows

were introduced because in this context it is reasonable to assume that requests should be

attended as close as possible to their original center.

5.3.3.3 Demands

For demands, the input reports the number of passengers in each taxi ride, which

we use as the demand of each request. The maximum capacity of all vehicles is fixed in

Cap = 6 passengers. This limit was chosen because it is the largest number of passengers

in a single ride in the (DONOVAN; WORK, 2016) data. Once again, this is a rough

estimation in a way to try to exploit the most out of the information.

5.3.4 Discussion of the New Benchmarks

The new set of instances is intended to provide benchmarks for the PDPTW that

mimic certain characteristics of real scenarios. These instances have been generated dif-

ferently to those of the standard set (LI; LIM, 2003), thus the set can provide a distinct

testbed for analysis of solution methods. In addition, we have generated larger instances

for the PDPTW to attest the scalability of techniques applied to the problem.

The proposed instances are grouped in sizes of 100, 200, 400, 600, 800, 1000,

1500, 2000, 2500, 3000, 4000, and 5000 locations. For each one of these sizes, we cre-

ated 25 instances, in a total of 300 benchmarks. In the generation process, we tried to

maintain a balanced number of instances for each possible configuration (e.g., city, dis-

tribution, horizon, time window, capacity, depots). In this way, the final set has instances

with diversified characteristics.

Table 5.3 presents a summary of the number of instances generated for each size

and attribute. The information may be interpreted as follows. For instances with 100

locations, there are 6 located in Barcelona, 7 in Berlin, 5 in New York City, and 7 in Porto

Alegre. Furthermore, among all the 25 instances, 7 have locations clustered, 11 random,

and 7 random-clustered. Note that there are always 5 instances in New York City, and they

are classified as randomly distributed. The three remaining cities are evenly distributed

in the other 20 instances per size. Appendix D details all the 300 instances and their

characteristics.

50

Table 5.3: Summary of characteristics of the new instances. Total number of instances
created per configuration. Acronyms BAR, BER, NYC, and POA, stand for Barcelona,

Berlin, New York City, and Porto Alegre, respectively.
Cities Distributions Horizons Time Windows Capacities Depots

Size BAR BER NYC POA C R RC 240 480 30 60 120 6 100 300 cent. rand.
100 6 7 5 7 7 11 7 12 13 1 14 10 5 10 10 12 13
200 7 6 5 7 7 11 7 14 11 2 11 12 5 9 11 12 13
400 7 7 5 6 7 12 6 12 13 2 11 12 5 10 10 13 12
600 7 6 5 7 7 12 6 12 13 2 12 11 5 11 9 13 12
800 7 6 5 7 6 12 7 13 12 2 10 13 5 11 9 11 14
1000 6 7 5 7 6 12 7 12 13 3 11 11 5 10 10 13 12
1500 7 7 5 6 7 12 6 13 12 2 13 10 5 9 11 13 12
2000 7 7 5 6 7 12 6 13 12 1 12 12 5 10 10 13 12
2500 6 7 5 7 6 12 7 11 14 2 13 10 5 11 9 11 14
3000 7 7 5 6 6 12 7 12 13 1 13 11 5 11 9 14 11
4000 6 7 5 7 7 12 6 13 12 2 13 10 5 10 10 14 11
5000 6 7 5 7 7 11 7 13 12 1 12 12 5 10 10 12 13
Total 79 81 60 80 80 141 79 150 150 21 145 134 60 122 118 151 149

Source: The Author.

Figure 5.2 depicts four examples of the new benchmarks, one for each city. It is

possible to verify that the distributions have selected locations in an expected manner.

One could argue that locations do not necessarily appear in areas of the cities where it

would be expected a larger number of deliveries (e.g., city centers, or industrial areas).

The reason is simply that this is not information available in the input data. Although,

areas with more addresses in list L do tend to have more locations selected. For example,

the majority of requests in the New York City instances are located in Manhattan, where

most addresses for the city are. However, a few outliers exist in other popular locations in

New York City such as the John F. Kennedy Airport.

To the best of our knowledge, no previous work proposed similar instances for

the PDPTW. There are earlier works in the literature that introduced instances based on

real applications for the CVRP, such as the large instances proposed by Arnold, Gendreau

and Sörensen (2017), in which the authors were able to extract a distribution of locations

for certain regions in Belgium. However, the procedure depends on data provided by

logistic operators, which is not readily available in many cases due to legal or contractual

reasons. Indeed, our motivation was to propose a method and benchmarks that could be

done solely with the best open data available.

In the next chapter, both the standard and the new benchmarks are used to verify

the performance of our proposed matheuristic. Besides, initial upper bounds to the new

instances are found throughout these experiments.

51

Figure 5.2: Example of four instances generated. Red circles are pickup locations. Blue
triangles are delivery locations. The black square is the depot.

(a) Barcelona with 200 (R) locations. (b) Berlin with 200 (C) locations.

(c) New York City with 100 (R) locations. (d) Porto Alegre with 200 (RC) locations.

Source: The Author3.

3Through the GPSVisualizer tool, by Adam Schneider: <https://www.gpsvisualizer.com/>,

https://www.gpsvisualizer.com/

52

6 COMPUTATIONAL EXPERIMENTS

In this chapter, we present the computational experiments to attest the performance

of the proposed matheuristic. In Section 6.1, the computational environment and general

configurations for the experiments are detailed. The selection of parameters for the al-

gorithm is reported in Section 6.2. The contributions of each component are analyzed in

Section 6.3. A comparison with the current state-of-the-art metaheuristics is discussed in

Section 6.4. Section 6.5 presents the findings related to the new benchmark instances for

the PDPTW. Additionally, the results in this chapter are available online1.

6.1 Environment and Configurations

The experiments were implemented in C++ and compiled with g++ version 7.3

and optimization flag -O3. For the mathematical programming component, CPLEX ver-

sion 12.6 was used. The computational environment was equipped with an Intel i7 930

processor running at 2.8 GHz, four physical cores, 12 GB of RAM, and the operational

system Ubuntu 18.04 LTS. All experiments were executed in single thread mode.

The stopping criterion in our experiments is running time. The condition is based

on the total number of locations of the instances. For sizes 100, 200, 400, 600, 800,

and 1000, the maximum running time was 5, 15, 15, 30, 60, and 60 minutes, respectively.

These times were used to better compare with the algorithm of Curtois et al. (2017), which

uses the same criterion. In the case of the new instances, all those with more than 1000

locations were executed with a timeout of 60 minutes. The MP component was allowed

one minute execution time per call in the matheuristic.

6.2 Parameter Tuning

The proposed matheuristic has a number of parameters values that need to be se-

lected. To that end, we employed an automatic algorithm configuration tool called irace

to tune the parameters. The procedure applies statistical tests to decide the best perfor-

mant combination of values for all parameters over a training benchmark set. For the

training set, we used a randomly selected sample from the Li and Lim (2003) instances.

1Online repository with complete and detailed results: <https://github.com/cssartori/math-pdptw/>

https://github.com/cssartori/math-pdptw/

53

Table 6.1 presents for each parameter its notation and description, the range of

its possible values, and the value reported in the best configuration by irace. A total

of 2000 executions of the algorithm were allowed, while the remaining settings of irace

were the default. The value n stands for the number of requests in the PDPTW instance,

that is, some parameters are proportions related to the size of the instance.

One question that arises when proposing an improvement based matheuristic is

whether the MP component provides a significant refinement. There are two ways to

verify this hypothesis. First, one may compare the solution quality of the algorithm with

and without the MP component. Although, it might be that the performance of the MP

phase is related to other parameters of the heuristic. A second option is to execute a

parameter tuning to verify at the same time which is the best configuration, and whether

it is worth the additional overhead of the MP phase. In this work, we perform both tests.

The first in Section 6.3, and the second in this section. This is the reason we have allowed

irace to decide on the use of the SP phase.

Table 6.1: Tuned parameters and their respective values.

Notation Description Range Best
sp use SP model {true,false} true
ZM Matheuristic perturbation size [0.0, 1.0] · n 0.83 · n
µ Perturbation bias [0.20,0.80] 0.57
MA AGES maximum number of perturbations [2, 6] · 103 4 · 103
ZA AGES perturbation size [0.0, 1.0] · n 0.15 · n
ML LNS maximum number of iterations [500,1500] 971
L LAHC acceptance list size [1000,2000] 1539
bmin LNS minimum removal size [1,5] 2
bmax LNS maximum removal size [0.10, 0.40] · n 0.20 · n

{ωs, ωr, ωw} LNS weights for heuristic selection [0,10] {6,3,1}
kmin LNS mininum k-regret size [1,6] 1
kmax LNS maximum k-regret size [1,6] 4

Source: The Author.

The sp parameter was set to true, which means that irace considered the MP

phase of the matheuristic worth using. The remaining configurations are in accordance

with the expected values. For instance, parameter ZA takes a small portion of the re-

quests, and it is smaller than parameter ZM as previously discussed. The bias µ was

assigned a value smaller than 1.0, as expected for a disruptive operation. The LNS pa-

rameters ML and L are in accordance to previous works in the literature (CURTOIS et

al., 2017; SARTORI; BURIOL, 2018). The values of bmin and bmax are smaller than of

Ropke and Pisinger (2006) but the implementation is different as well, thus these values

54

are acceptable. The weights ω show that the Shaw heuristic should be performed more

frequently, followed by the random removal, while the least frequent should be the worst

removal heuristic, due to its limited usage. Parameter kmin indicates that it is worth the

use of the greedy reinsertion heuristic (1-regret) in the LNS.

For all of the experimental results to follow, we have made use of the parameter

values reported in Table 6.1, unless otherwise stated.

6.3 Statistical Tests and Component Analysis

To strengthen our study, we perform statistical tests and component analysis to

verify whether our additional MP component and modified perturbation mechanism are

significant. Furthermore, we discuss the behavior and performance of the components.

The analysis of components is conducted with a one-factor-at-a-time method. For

each test, we change one element of the matheuristic to verify its contributions to the

overall algorithm. The procedure produces four algorithms out of the main heuristic.

Table 6.2 presents the difference in components to each one of the four algorithms. The

SP term denotes the MP component. The original AGES algorithm as proposed by Curtois

et al. (2017) is referred to as AGESa, while our modification as AGESb. The importance

of the LNS component was demonstrated by Curtois et al. (2017), hence we have not

performed this analysis.

Table 6.2: Algorithms used in the experiments.

Algorithm SP AGESa AGESb
A1 • - •
A2 • • -
A3 - - •
A4 - • -

Source: The Author.

For simplicity, we named the algorithms A1, A2, A3, and A4. The matheuristic

proposed in this thesis is Algorithm A1, which makes use of the SP and AGESb com-

ponents. Algorithm A2 is the matheuristic that uses the original AGESa. Algorithms A3

and A4 do not use the SP component. The difference is that A3 uses the modified AGESb,

while A4 uses the original AGESa. In that way, we can test the independent performance

of both the MP and the modified AGES to guarantee they are relevant.

55

In the case of A2 and A4 that use AGESa with the original perturbation mecha-

nism, we have set the parameters of the AGESa using the results of the tunning procedure

of our preliminary work (SARTORI; BURIOL, 2018) to make fair comparisons. There-

fore, the AGESa has MA = 1, 000, 000 maximum perturbations, and ZA = 100 random

shifts or swaps of requests, using a probability pshift = 0.58 to perform a random shift.

The swap movement selects two requests at random from two different routes and ex-

changes their routes, inserting each request at its best position in the other route.

Table 6.3 presents the results of each algorithm per instance size in a single run.

Due to the large size of the standard set, we ran each algorithm once for each one of

the 354 instances following the analysis of Birattari (2004). The table reports the ac-

cumulated sum of the results for each instance size – this is the standard approach to

summarize results in the literature of the PDPTW. In each row, the accumulated number

of vehicles (Veh.) and total cost (Cost) are presented. Detailed results for every instance

in the Li and Lim (2003) set are available in Appendix A and in the online repository.

The four algorithms found the same solutions for instances of size 100 – which are

the best-known solutions of the 100 locations set. For the remaining sizes, the simplified

comparison of the accumulated values demonstrates that algorithm A1 was able to outper-

form the others in most cases. The sole exception was on instances of size 600, in which

algorithm A2 was able to find two fewer vehicles. Nevertheless, the simplified analysis

shows small differences between the solutions, particularly for the number of routes, that

differ by at most six in absolute terms (A2 and A3 for size 600). Indeed, one could even

argue that the performance of the four algorithms is similar.

However, if we investigate the number of times each algorithm found the best so-

lution among the four methods, we can note substantial differences in their performances.

For example, A1 was able to find 85 solutions better than the others, while the second-best

performant algorithm, A2, found only 44. Furthermore, A4, which does not use any of

the modifications proposed, presents the worst performance of the four algorithms.

In addition to the previous analysis, we have performed a pairwise Wilcoxon

signed-rank statistical test to compare the solution quality of the methods. Table 6.4

presents the p-values of the pairwise statistical test. In the comparison of two algorithms

Ai and Aj (i, j ∈ {1, 2, 3, 4}), the null hypothesis is that Ai and Aj do not present dif-

ferent solutions, whereas the alternative hypothesis is that Ai > Aj, in other words, the

solutions of Ai are statistically greater than those of Aj – for a minimization problem, it

means Ai is worse than Aj.

56Table 6.3: Results of the component analysis per instance size. Bold results are the best solutions found.

A1 A2 A3 A4

Inst. Veh. Cost Veh. Cost Veh. Cost Veh. Cost
100 402 58,059.55 402 58,059.55 402 58,059.55 402 58,059.55
200 601 184,899.04 601 185,499.00 601 185,598.65 601 185,351.09
400 1139 442,438.04 1142 445,740.67 1141 442,345.00 1141 447,196.24
600 1641 914,106.45 1639 920,605.83 1645 915,765.46 1642 918,475.22
800 2135 1,506,254.99 2135 1,526,631.67 2135 1,510,845.99 2136 1,535,762.44

1000 2606 2,208,991.52 2606 2,221,614.67 2607 2,222,585.11 2609 2,223,193.65
Best 85 44 39 18

Source: The Author.

Table 6.4: Pairwise Wilcoxon signed-rank test comparing the four algorithms in the standard instances.

A1 A2 A3

A2 0.00169 - -

A3 < 0.00001 0.31112 -

A4 < 0.00001 0.00087 0.06888

Source: The Author.

57

The following analysis of Table 6.4 is done considering a significance level of 0.01.

It is possible to consider A1 statistically better than A2, A3, and A4. The simple addition

of the MP phase in A2 also presents a significant improvement over A4. However, using

only AGESb in A3 and only SP in A2 does not provide relevant differences. Furthermore,

the modification in AGESb alone does not incur in significant improvements over AGESa.

The conclusion is that combining the SP and AGESb provides better solutions

when compared to the other three algorithms. The next sections discuss the characteristics

of A1 that contribute to improved performance.

6.3.1 Analysis of the Adaptive Guided Ejection Search

Figure 6.1 depicts the average percentual time spent by each one of the three main

components in algorithms A1 and A2 – AGES, LNS, and SP phase. The AGESa (A2)

requires more time than AGESb (A1). The former spends an average of 70% of the time

in all instance sizes, whereas the latter spends an average of 45% of the time. A side effect

of this difference is the amount of time spent by the remaining components.

Figure 6.1: Comparison between the time spent on each component of the matheuristic
when using the biased (A1) and the original (A2) perturbation within the AGES.

 0.2%
64.4%

35.3%

 1.9%
51.6%

46.5%

 1.5%
40.7%

57.7%

 2.0%
47.8%

50.1%

 2.5%
54.7%

42.7%

 1.1%
58.2%

40.7%

 0.1%
24.2%

75.7%

 0.2%
20.6%

79.1%

 0.2%
18.3%

81.5%

 1.0%
28.0%

71.0%

 0.8%
35.3%

63.8%

 0.5%
40.6%

58.9%

A
1

A
2

0 25 50 75

100

200

400

600

800

1000

100

200

400

600

800

1000

Time (%)

In
st

an
ce

 s
iz

e component

SP

LNS

AGES

Source: The Author.

58

Note that in A1, the LNS phase spends an average of 53% of the total time. In

A2, LNS spends only 28%. Therefore, the LNS in A1 can improve the total cost further,

which is one of the main features of the algorithm that can find many new solutions with

a reduced total cost, but not with fewer vehicles. Analoguous, the SP formulation is able

to spend more time trying to recombine previously visited routes – a detailed analysis of

the MP phase is provided in Section 6.3.2.

Arguably the difference between AGESa and AGESb could be caused by the pa-

rameters chosen for AGESa. However, our experiments have shown that simply reducing

the parameters of AGESa in the same manner as AGESb does not provide better solutions.

Table 6.5 compares a new algorithm, A5, to A1 and A2. Algorithm A5 uses AGESa but

with the parameters of AGESb (A1). The results demonstrate that A5 is not competitive

with the other two algorithms. In our experiments, reducing the maximum number of

perturbations for AGESa consistently produced poor results.

Table 6.5: Performance of the original AGES with modified parameters.

A1 A2 A5

Inst. #V Cost #V Cost #V Cost
100 402 58,059.55 402 58,059.55 402 58,059.55
200 601 184,899.04 601 185,499.00 606 181,715.87
400 1139 442,438.04 1142 445,740.67 1163 419,814.14
600 1641 914,106.45 1639 920,605.83 1674 849,971.38
800 2135 1,506,254.99 2135 1,526,631.67 2189 1,399,484.54

1000 2606 2,208,991.52 2606 2,221,614.67 2680 2,066,081.53

Source: The Author.

An unexpected outcome of the AGES performance was observed by verifying the

total number of times the component improved the solution. In other words, how many

times was it able to reduce the number of vehicles? The answer is depicted in Figure 6.2.

In a few cases (about 5%) the AGES was not able to reduce the number of vehicles. But

in the majority of the instances (nearly 60%), the AGES was able to reduce the number of

vehicles only once. At most, it reduced four and five times for A1 and A2, respectively.

Note that these are the number of times a call to AGES reduced the routes by at least one

and not the total number of vehicles removed by the component.

The behavior of the AGES was unexpected because it is called in every iteration of

the algorithm. The average number of iterations range from 100 (for size 1000) up to 600

(for size 200) – for more information on the number of iterations, see Table 6.6 below.

From these hundreds of iterations, at most in five of them the AGES is able to reduce the

number of routes, a small percentage for such a time consuming component.

59

Figure 6.2: Graphical statistics on the number of times the AGES reduced the number of
vehicles for algorithms A1 and A2.

23

202

101

24

4
19

219

84

20
9 3

A1 A2

0 1 2 3 4 5 0 1 2 3 4 5

0

50

100

150

200

250

Number of reductions

N
um

be
r

of
 In

st
an

ce
s

Source: The Author.

In consideration of that, the algorithms could be optimized to halt the use of AGES

after a number of reductions. For example, we could set the condition to three reductions

as per Figure 6.2 and risk losing solution quality in at most 12 instances (for A2). How-

ever, it would not change much the results, since the cases that reduce at most one or two

times would not benefit from this optimization. Alternatively, we could allow AGES to

reduce at most once, albeit this would incur a significant loss in solution quality. Despite

the referred problems, our main question is whether this behavior is inherent to the AGES,

or inherent to the instance set. The topic is discussed further in Section 6.5 in the context

of the new benchmark instances.

6.3.2 Analysis of the Mathematical Programming Component

The SP phase recombines routes added to the pool P . In fact, the mathematical

formulation depends directly on the size of set P , because a small set does not provide

enough routes to improve the current solution, while a large pool may impact on the

total execution time. From the graphics in Figure 6.1, it is possible to note that in our

matheuristic the SP phase does not use more than 3% of the maximum running time. The

previous results indicated the relevance of using the SP model, but did not contribute to

understand its behavior and performance.

60

In Table 6.6 we investigate some statistics about the use of the SP formulation.

For each one of the four algorithms, we present the total number of iterations (Iter.), the

number of times SP was able to improve the solution quality (SPI), and the final size of

the pool of routes (|P|). Note that A3 and A4 do not have columns related to the SP phase,

because they do not use it.

Table 6.6: Metrics about the four tested algorithms.

A1 A2 A3 A4

Inst. Iter. SPI |P| Iter. SPI |P| Iter. Iter.
100 33,399 1 1,161 12,056 0 1,095 34,534 12,294
200 39,597 95 13,179 16,560 40 5,930 40,801 17,000
400 14,162 331 24,576 6,880 211 11,859 14,200 6,984
600 10,781 520 45,715 6,983 359 25,331 10,825 7,005
800 9,842 756 59,222 8,267 586 39,891 10,065 8,366
1000 6,032 724 50,935 4,990 581 35,052 6,088 5,047

Source: The Author.

There is a clear difference in the pool size |P| when comparing algorithms A1

and A2, particularly for instances with more than 200 locations. The pool size and number

of iterations are consistently larger for A1 when compared to A2. In fact, there is a

correlation with the number of improvements of the SP model, which is also greater for

A1. These metrics indicate that the reduction in the AGES time and the increased pool

size for the SP formulation are the reasons for the good performance of algorithm A1.

Note that the number of iterations for A3 and A4 are greater than for A1 and A2,

respectively. This is expected because in A3 and A4 there is no SP phase, which can cause

overhead to the execution of the algorithm.

6.4 Comparison with other Methods

In this section, we compare the results of the matheuristic (A1) with the current

state-of-the-art methods in the literature of the PDPTW. These methods are the Guided

Ejection Search of Nagata and Kobayashi (2010a) denoted as GES, and the hybrid algo-

rithm of Curtois et al. (2017) denoted as CLSQL.

It is usually hard to compare with other methods due to the lack of complete re-

sults, or homogeneous computational environments. On the one hand, the GES heuristic

was only applied to the minimization of vehicles, and final solution costs were not re-

ported. Further, the GES was run five times for each instance with a maximum running

61

time of 10 minutes per run in an AMD Opteron 2.6 GHz processor – both average and

best results were reported. Due to the limited article length, the authors only reported

accumulated values for the vehicles, which is hard to use in detailed comparisons. The

hybrid algorithm of CLSQL, on the other hand, was run only once per instance, but com-

plete results are available. Therefore, we were able to perform more tests to compare the

two algorithms. The computer environment of CLSQL was an Intel Xeon CPU E5-1620

running at 3.5 GHz, and the running times are the same used in this thesis.

For our algorithm, A1, we have run it a total of ten times for instances contain-

ing 100, 200, 400, and 600 locations, and five times for 800 and 1000. The average results

obtained are referred to as A1avg. Table 6.7 details the average results of GES in 5 runs,

the results for a single execution of CLSQL, our results in a single execution (A1), and our

average results in multiple runs (A1avg). Columns are the same as in previous sections.

Table 6.7: Comparison of A1 with other methods from the literature.
GES CLSQL A1 A1avg

Inst. Veh. Cost Veh. Cost Veh. Cost Veh. Cost
100 - - 402 58,163.27 402 58,059.55 402.0 58,059.55
200 601.2 - 601 186,158.61 601 184,899.04 600.9 185,307.83
400 1140.0 - 1142 447,627.43 1139 442,438.04 1140.7 444,680.53
600 1641.8 - 1643 935,948.36 1641 914,106.45 1643.5 909,991.24
800 2147.4 - 2146 1,551,495.36 2135 1,506,254.99 2134.8 1,506,048.14
1000 2624.8 - 2634 2,310,830.27 2606 2,208,991.52 2605.4 2,218,717.76

Source: The Author.

The average results A1avg demonstrate that the method is stable for instances of

size 100 because in all ten runs the results reported are the same. For other instance sizes,

the matheuristic A1avg was able to find solutions with fewer vehicles than the GES and

CLSQL for sizes 200, 800, and 1000. Furthermore, the average cost of our solutions is

smaller than the reported results of CLSQL in all cases.

Note that in comparison to the GES, our method uses more execution time (in

the same way as CLSQL). Therefore, it is reasonable that our approach was able to find

solutions with fewer vehicles, particularly for the larger instances. However, the GES

is not concerned in reducing the total cost of the solution, and all of its running time is

dedicated to the minimization of vehicles. The impact of considering the minimization of

the cost is likely to incur the need for extra execution time of an algorithm.

In comparison with the single run A1, our method has found an accumulated num-

ber of vehicles smaller than that of CLSQL for all sizes larger than 200 locations. The total

cost of A1, on the other hand, was smaller in all instance sizes when compared to CLSQL.

62

Although our algorithm was based on CLSQL, the proposed modifications have provided

improvements over the previous method, according to these results. Since Curtois et al.

(2017) made their results completely available, we were able to compare A1 and CLSQL

in each instance separately. The results reveal that A1 was able to find 187 (52%) solu-

tions better than the single run of CLSQL, and found 106 (30%) solutions that matched the

results. In 61 instances A1 was not able to outperform CLSQL. A Wilcoxon signed-rank

test comparing CLSQL > A1 provides a result of p < 0.00001.

Additionally, we compare our results to the best-known solutions (BKS) reported

at the SINTEF (2008) website2. It is, however, hard to compare purely with the reported

BKS, because they are from various methods, many of them from proprietary software or

unpublished works. Hence, for many of these methods, there is no information available

on how the solutions were obtained, or how much time was actually required. Table 6.8

presents the best results reported by the GES among the five runs (GES*), the best results

of CLSQL in multiple runs of 60 minutes each (CLSQL*), and the best results of A1 over

the ten or five executions (A1*).

Table 6.8: Comparison between best solutions of BKS, GES, CLSQL, and A1.

BKS GES* CLSQL* A1*

Inst. #V Cost #V Cost #V Cost #V Cost
100 402 58,059.55 - - 402 58,059.55 402 58,059.55
200 600 183,793.43 601 - 600 185,103.31 600 184,170.41
400 1130 440,053.34 1139 - 1137 437,879.65 1135 437,606.91
600 1621 900,410.27 1636 - 1637 906,202.65 1635 892,626.37
800 2109 1,506,529.54 2135 - 2129 1,511,357.67 2126 1,490,103.15
1000 2570 2,210,857.15 2613 - 2598 2,210,000.72 2596 2,198,716.33

Source: The Author.

When compared to the current BKS, none of the algorithms was able to match

the results – except for instances with 100 locations. Both CLSQL and A1 were able to

match the number of vehicles in instances with 200 locations, but not the total cost. For

the remaining sizes, our method A1 differs from the BKS by 5 vehicles (400 locations) up

to 26 vehicles (1000 locations) in total. Yet, if we analyze instances separately, the largest

difference is 3 vehicles in instance LC1_10_3. In other words, despite the improvements

in our method, it was not able to match the overall BKS. Although, to the best of our

knowledge, there is no published work in the literature currently able to match them.

To better verify the behavior of our method, we present the results of algorithm

A1 over the instances proposed by Ropke and Cordeau (2009) for exact solution methods.
2According to the solutions published until 08 February 2019.

63

The set, described in Chapter 5, is grouped in four types in a total of 40 instances with 30

up to 75 requests. Baldacci, Bartolini and Mingozzi (2011) solved 39 of these instances

to optimality. We denote their method by the acronym BBM.

Table 6.9 presents a summary of the results over these instances. Column BBM

presents the average time required by the exact method of Baldacci, Bartolini and Min-

gozzi (2011) to solve the instances of a given group, in seconds. Algorithm A1 was run 10

times for each instance with 300 seconds of execution time. The column gap(%) presents

the percentual deviation between the average solution s1 found by A1 and the best solu-

tion sb (usually optimal) found by BBM, and it is computed as gap(%) = 100(s1−sb)/sb.

The detailed results are available in Appendix B.

Table 6.9: Comparison considering the instances for exact methods.

BBM A1avg

Inst. t(s) gap(%) t(s)
AA 721 0.01 300
BBa 157 0.01 300
CC 1,534 0.02 300
DD 9,465 1.85 300

a: Solution BB75 not solved to optimality with gap of 0.1%.

Source: The Authors.

In terms of solution quality, A1 reached solutions close to the optimal, on average.

The largest average gap was 1.85%, due to instance group DD that contains an instance for

which our method was not able to match the number of vehicles in all runs, hence a larger

gap value. Nonetheless, for the other three groups, the deviation was close to 0.01%,

which demonstrates that A1 finds high-quality solutions for these instances as well.

As for execution time, it is hard to compare A1 and BBM, due to the different

computing power and characteristics of the algorithms. Indeed, an exact algorithm is

likely to need more execution time on average to reach optimal solutions. The results

in Table 6.9 suggest that A1 was able to obtain good quality solutions in less time when

compared to the exact method of BBM, except for set BB, in which case their method

was able to prove the optimality of all instances in a short amount of time. Although we

have not properly evaluated it, A1 is likely to be able to reach similar solutions for these

sets in less than 300 seconds.

64

6.5 Extended Experiments

The objective of this section is two-fold. First, we want to perform further experi-

ments to confirm that the behavior verified in the Li and Lim (2003) instances is the same

in other types of instances. Second, we aim to provide initial experiments for the new set

of instances proposed in Chapter 5, including upper bounds for the solutions.

The experiments compare the four algorithms A1, A2, A3, and A4 using the pa-

rameters of Section 6.2. Due to the new large instances, we had to limit the size of the

AGESb perturbation in A1 and A3 as ZA = max{150, 0.15 · n}, and of the number of

removed requests in the LNS for all algorithms bmax = max{150, 0.20 · n} – Ropke

and Pisinger (2006) employed a similar strategy in the context of the LNS. Table 6.10

presents the results in the same manner as in the previous sections. For each instance size,

we present the accumulated sum of the number of vehicles (Veh.) for all the 25 instances

of that size, as well as the total cost (Cost). Note that the costs are all integer values

because the arc costs in the new set of instances are all integers. The maximum running

times are 5, 15, 15, and 30 minutes for instances with 100, 200, 400, and 600 locations,

respectively, and 60 minutes for all the other sizes. Detailed results of algorithm A1 for

the new instances are available at Appendix C and in the online repository.

Different from the results for the Li and Lim (2003) instances, algorithm A1 was

not the best performant of the four. In fact, A2 is the algorithm that obtained the best per-

formance. It found the best-accumulated results in 8 out of 12 size groups. For sizes 100

and 400, A1 and A4 obtained the best performance, respectively. For sizes 4000 and 5000,

A2 and A4, and A1 and A3 reached the same solution – the MP component did not affect

these two groups of instances due to the limited computation time.

Moreover, the number of best solutions reached by the algorithms differs from the

previous results. Algorithm A2 has the highest score, with 71, followed by A4 with 46

best results. Note that in the Li and Lim (2003) instances, A4 had the worst performance

of the four algorithms. Algorithm A1 could find only 24 best solutions, whereas A3 has

the worst performance, with 19 best results. Similarly to the analysis of the standard

benchmark set, we have performed a pairwise Wilcoxon signed-rank test to compare the

four algorithms. Table 6.11 presents the resulting p-values of the test. In a significance

level of 0.01, we can confirm that A2 found better solutions than all the other algorithms

and that both A2 and A4 outperformed A1 and A3 in terms of solution quality. Besides,

we cannot assert that A1 and A3 are statistically different.

65

Table 6.10: Results of the four algorithms over the new instances. Bold results are the best solutions found.

A1 A2 A3 A4

Inst. Veh. Cost Veh. Cost Veh. Cost Veh. Cost
100 164 25,388 165 25,579 164 25,445 165 25,588
200 339 46,218 337 46,587 339 46,220 337 46,600
400 593 85,352 589 86,193 592 85,184 589 85,887
600 854 121,755 840 122,130 852 121,409 843 121,978
800 1167 162,907 1150 163,341 1167 162,673 1154 163,261

1000 1431 224,966 1401 226,228 1436 224,682 1406 226,152
1500 2160 301,794 2115 303,478 2155 302,410 2118 304,564
2000 2963 414,447 2924 425,343 2964 415,520 2928 426,507
2500 3270 502,309 3201 506,436 3271 502,976 3201 506,488
3000 4355 598,966 4276 625,072 4357 597,676 4278 623,979
4000 5991 834,365 5944 866,430 5991 834,365 5944 866,430
5000 6864 1,069,925 6802 1,089,677 6864 1,069,925 6802 1,089,677
Best 24 71 19 46

Source: The Author.

Table 6.11: Pairwise Wilcoxon signed-rank test comparing the four algorithms in the new instances.

A2 A4 A1
A4 0.00383 - -
A1 < 0.00001 < 0.00001 -
A3 < 0.00001 < 0.00001 0.43540

Source: The Author.

66

6.5.1 Analysis of Components Applied to the New Instances

The evidence presents some disagreement with the results in Section 6.3. How-

ever, if we investigate further the reasons for these differences, it is possible to note spe-

cific characteristics that contributed to them. For example, Figure 6.3 depicts the per-

centual time spent on the three major components of the matheurisitic. When compared

to the percentual times in Figure 6.1, it is possible to note a significant difference in the

time spent by each phase of the algorithm.

Figure 6.3: Comparison of the time spent on the three major components in the context
of the new instances by algorithms A1 and A2. Numeric labels were removed for

improved visualization.

A
1

A
2

0 25 50 75

100

200

400

600

800

1000

1500

2000

2500

3000

4000

5000

100

200

400

600

800

1000

1500

2000

2500

3000

4000

5000

Time (%)

In
st

an
ce

 s
iz

e component

SP

LNS

AGES

Source: The Author.

The behavior of the AGESb (A1) is still the same when compared to AGESa (A2),

the former requires less computation time than the latter. Although, this appears to have

a negative impact on solution quality because the total number of vehicles found by A1 is

consistently greater than for A2 or A4. Indeed, spending more time to reduce the number

of vehicles is more effective in the new instances than trying to balance vehicle and cost

minimization, which worked well for the standard instances. In addition, the number

of times AGES was able to reduce the number of vehicles is similar to what had been

observed in the Li and Lim (2003) instances. Figure 6.4 presents the number of times A1

67

and A2 reduced the number of vehicles. In most cases, 84% for A1 and 74% for A2, the

AGES was able to reduce at most twice the number of vehicles. Hence, the optimizations

discussed in Section 6.3 could be tested, because the results analyzed here indicate that

the behavior is inherent to the AGES applied.

Figure 6.4: Statistics for the number of times AGES was able to reduce the number of
vehicles in the context of the new instances.

2

176

76

31

10
3 2 2

136

88

49

18
6 1

A1 A2

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0

50

100

150

200

Number of reductions

N
um

be
r

of
 In

st
an

ce
s

Source: The Author.

In the case of the SP model, there is a more significant discrepancy. For the Li

and Lim (2003) instances, algorithm A1 spent an average of 2% of the overall time in the

SP model, while in the new instances it spent an average of 18%. In the particular case

of 400 locations, A1 spent 55% of the time in the model. Similarly, algorithm A2 spent

an average of 0.5% in the standard instances, but in the new set, it spent an average of 4%,

with a peak of 14% in instances with 400 locations as well. Further, the scaling of the MP

component was quite limited, because, within the stopping conditions used, it was able to

have a substantial effect only up to instances with 2000 locations.

The additional time required by the SP model can be explained by the number

of routes in the pool P . The average size of the pool for the new instances (denoted

as Po(NI)) grows faster than for the Li and Lim (2003) instances (denoted as Po(LL)).

Figure 6.5 depicts the proportion between the average sizes Po(NI) and Po(LL) for each

one of the six basic instance sizes and for algorithms A1 and A2. For example, in instances

with 400 locations A1 had a pool for the new instance twice the size for the standard

instances. The difference is even larger for instances with 100 locations, in which case A1

had Po(NI) 10 times larger than Po(LL). Algorithm A2 had an analogous behavior, in

68

some cases with even larger proportions than A1, but the effects of a larger pool were not

so prominent than for A1, which allowed A2 to outperform its counterpart A4 as well.

Figure 6.5: Analysis of the proportions between the average pool size in the new
instance set Po(NI) and in the standard set Po(LL) for algorithms A1 and A2 in the six

basic instance sizes.

●

●

●

● ●
●

10.34

 3.48

 2.11

 1.52 1.58 1.49

●

●

●

●

●

●

 7.92

 4.16

 2.54

 1.85

 1.47
 1.26

A1 A2

100 200 400 600 800 1000100 200 400 600 800 1000 100 200 400 600 800 1000100 200 400 600 800 1000

1

2

4

6

8

10

Instance Size

P
o(

N
I)

 /
P

o(
LL

)

Source: The Author.

6.6 Final Considerations

A possible explanation to the observed results is that the Li and Lim (2003) in-

stances have a particular structure because of how they were generated, whereas the new

benchmarks only have a structure in the clustered cases. One may argue that in the stan-

dard instances the search is confined to a certain region of the space of locations that lead

to a reduction in the diversity of routes generated by the LNS phase and a consequent

reduction in the pool of routes. This may be the case because the paired nodes originally

69

belonged to a VRPTW route, which is unlike to have large detours. On the other hand, in

the new benchmarks, the pairs may be located far apart in the cities, and large detours are

necessary to compute feasible solutions in such cases.

The existence of large detours in the solutions decreases the total number of re-

quests serviced in each route and consequently increases the total number of routes in the

solution. Table 6.12 presents the average number of requests per route (Avg. Req.) and

the average number of routes (Avg. Rou.) in the BKS solutions of the Li and Lim (2003)

and new instances. These results support the previous claim.

Table 6.12: Average number of requests per route and number of routes in solutions of
the standard and new benchmark set of instances

Li and Lim (2003) New Instances

Inst. Avg. Req. Avg. Rou. Avg. Req. Avg. Rou.
100 22.17 7.18 21.14 6.56
200 31.46 10.00 20.71 13.40
400 35.94 18.76 23.31 23.56
600 39.06 27.02 23.92 33.60
800 40.55 35.58 24.19 45.92

1000 41.76 44.31 26.12 55.92

Source: The Author.

Note that the Avg. Req. is always smaller for the new instances than for the Li and

Lim (2003), whereas the Avg. Rou. is greater for the new instances than for the standard

set, except for size 100. This confirms that more routes are required to service all requests

in the new instances, which may be one reason for the larger pool of routes since at every

iteration more routes will be added to the pool. A large number of smaller routes poses

difficulties for the SP formulation, requiring more time to be solved. Therefore, it may be

the case that the new instances are harder solely for the proposed matheuristic, but more

experiments are required to validate this hypothesis.

Nevertheless, for the standard instances, a less aggressive AGES approach (AGESb

in A1 and A3) was enough to reach a similar number of vehicles when compared to a more

aggressive strategy (AGESa in A2 and A4). Instead, in the new instances, spending more

time in the vehicle minimization phase does lead to significantly better results. Although

we were not able to explore these topics further to reach stronger conclusions, the results

present an initial base to raise the question of whether the two sets of instances indepen-

dently provide a good discriminating factor for solution methods.

70

In summary, it appears that algorithm A1 was unintentionally tailored for the Li

and Lim (2003). Sörensen (2015) has argued that some methods in metaheuristic research

end up optimized for the standard benchmark set at hand. In fact, our research focused

entirely on the Li and Lim (2003) instances. Once the algorithms were fully implemented

and tested, we proceeded to perform analyses with the new instances. The reason, as

previously noted, was because the standard set was the only set available with numerous

instances and previous works to compare the solutions.

In spite of that, the MP component still proved to be useful in the new instances.

Algorithm A2 was the second best performant method in the Li and Lim (2003) instances

and the first in the new set. When compared to the current state-of-the-art method for

the PDPTW (CLSQL) A2 found 162 improved solutions and had 107 ties, which is a

good performance nonetheless. Hence, we may conclude that algorithm A2 had the best

performance over all the 654 benchmarks.

71

7 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a matheuristic algorithm to solve the PDPTW.

The method combines previous techniques from the literature with a mathematical pro-

gramming component in an Iterated Local Search framework. The method uses a mod-

ified Adaptive Guided Ejection Search (CURTOIS et al., 2017) to reduce the number

of vehicles, whereas to minimize the cost it uses Large Neighborhood Search (ROPKE;

PISINGER, 2006) and a Set Partitioning formulation to recombine previously generated

routes in search of an improved solution. Computational experiments over a standard

benchmark set of instances demonstrate that the proposed matheuristic can improve on

previous methods in terms of solution quality.

Component analysis and statistical test suggest that the mathematical program-

ming component is significant in providing high-quality solutions. The solutions found

when using the MP phase had a smaller cost than the algorithm without the component.

The proposed modified perturbation mechanism applied to the AGES combined with the

MP phase produced the best results to the standard instance set (LI; LIM, 2003) in our

analysis. Our research found a total of 62 new best solutions.

Furthermore, a new set of instances for the PDPTW was proposed. The new in-

stances were generated by a method that uses publicly available data for customer loca-

tions and travel times. Besides, we have introduced larger instances to test the scalability

of solution methods in cases with more than 1000 locations. Although, the computational

results of the proposed matheuristic over the new benchmarks presented some disagree-

ment with the experiments with the standard set. The modified AGES proved less signifi-

cant in the new benchmarks. The cause is possibly the differences in the characteristics of

the two sets. In addition, the SP phase used larger portions of the execution time, probably

due to the larger size of the pool of routes.

The experimental results, nevertheless, have raised questions that we were not

able to explore in this thesis. For example, it has been observed that the AGES was

able to reduce the number of vehicles only a limited number of times for all instances

tested. Is this behavior inherent to the heuristic? No previous works had analyzed this,

even though the GES had been successfully applied to the VRPTW as well (NAGATA;

BRÄYSY, 2009). Additionally, could stopping the use of AGES after a given threshold

on the number of reductions be able to improve the results significantly?

72

To prevent the SP phase of waisting too much execution time, further improve-

ments can be considered. For example, a better pool management, by considering the

removal of subset routes, i.e., if the requests visited by a route r1 form a proper subset of

another route r2, but C(r1) > C(r2), we may remove the shorter route r1. Another option

is to use an aging mechanism to remove routes from the pool that are not used after a

number of iterations. At last, it may be more efficient to use a specific procedure to solve

the SP instead of a generic mathematical programming solver.

In the context of the benchmarks tests, is it possible that the procedure used to

generate the Li and Lim (2003) instances influences the solution methods applied to solve

them? In our experiments, the use of a less time-consuming AGES was able to find a

similar number of vehicles for the standard instances when compared to a more time-

consuming version of the same component. But for the new set, spending more time on

the vehicle minimization phase was a better strategy to find high-quality solutions.

Besides, the new instances provided a much larger number of routes to the pool

of the MP component, whereas the standard instances provided a smaller pool, indicating

that the former has a greater diversity of routes than the latter. Even though the SP formu-

lation requires a certain amount of routes in the pool to work well, a larger pool impacted

on the performance of the algorithm, especially when coupled with the modified and less

aggressive AGES. It appears that there are characteristics in the current standard instances

which lead to the observed behavior in contrast to the new benchmarks.

Additional experiments are certainly required to answer these questions, in partic-

ular referring to the differences between the two instance sets. The analyses should be

used to understand better if the new instances have characteristics that motivate their use

along the current instances to differentiate new solution methods. In other words, do the

new benchmarks have good discriminating power for solution methods of the PDPTW?

At last, we note that the new instances may provide interesting cases for analyses

such as the structure of the PDPTW solutions, particularly in the context of the cities. For

example, we have noted that solutions for the instances in New York City used the least

amount of vehicles due to the high concentration of requests in Manhattan. On the other

hand, solutions in Berlin had the largest number of vehicles in 7 out of the 12 sizes. In

the 5 remaining sizes, Porto Alegre had the largest number of routes. The solutions in

these two cities also have the two largest total number of vehicles. Is there any particular

characteristic that could lead to these results? Are they related to the generation of the

instances, or do the locations have an impact on these observations?

73

REFERENCES

ALLAOUA, H. et al. A matheuristic approach for solving a home health care problem.
Electronic Notes in Discrete Mathematics, v. 41, p. 471 – 478, 2013.

APPLEGATE, D. L. et al. The traveling salesman problem: a computational study.
[S.l.]: Princeton university press, 2006.

ARCHETTI, C.; SPERANZA, M. G. A survey on matheuristics for routing problems.
EURO Journal on Computational Optimization, Springer, v. 2, n. 4, p. 223–246,
2014.

ARNOLD, F.; GENDREAU, M.; SÖRENSEN, K. Efficiently Solving Very Large
Scale Routing Problems. [S.l.]: CIRRELT, Centre interuniversitaire de recherche sur les
réseaux d’entreprise, 2017.

BALDACCI, R.; BARTOLINI, E.; MINGOZZI, A. An exact algorithm for the pickup
and delivery problem with time windows. Operations research, INFORMS, v. 59, n. 2,
p. 414–426, 2011.

BALINSKI, M. L.; QUANDT, R. E. On an integer program for a delivery problem.
Operations Research, INFORMS, v. 12, n. 2, p. 300–304, 1964.

BALL, M. O. Heuristics based on mathematical programming. Surveys in Operations
Research and Management Science, Elsevier, v. 16, n. 1, p. 21–38, 2011.

BATTARRA, M.; CORDEAU, J.-F.; IORI, M. Chapter 6: pickup-and-delivery problems
for goods transportation. In: Vehicle Routing: Problems, Methods, and Applications,
Second Edition. [S.l.]: SIAM, 2014. p. 161–191.

BENT, R.; HENTENRYCK, P. V. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transportation Science, INFORMS, v. 38, n. 4, p.
515–530, 2004.

BENT, R.; HENTENRYCK, P. V. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research,
Elsevier, v. 33, n. 4, p. 875–893, 2006.

BIRATTARI, M. On the Estimation of the Expected Performance of a Metaheuristic
on a Class of Instances. [S.l.], 2004. Technical Report TR/IRIDIA/2004-01, IRIDIA,
Université Libre de Bruxelles.

BOSCHETTI, M. A. et al. Matheuristics: Optimization, simulation and control. In:
BLESA, M. J. et al. (Ed.). Hybrid Metaheuristics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009. p. 171–177.

BRÄYSY, O.; GENDREAU, M. Vehicle routing problem with time windows, part i:
Route construction and local search algorithms. Transportation science, INFORMS,
v. 39, n. 1, p. 104–118, 2005.

BUREAU OF TRANSPORTATION STATISTICS. Freight Facts and Figures. 2017.
Data available online at <https://www.bts.gov/sites/bts.dot.gov/files/docs/FFF_2017.
pdf>, page 35, last accessed 2017-11-14.

https://www.bts.gov/sites/bts.dot.gov/files/docs/FFF_2017.pdf
https://www.bts.gov/sites/bts.dot.gov/files/docs/FFF_2017.pdf

74

BURKE, E. K.; BYKOV, Y. A late acceptance strategy in hill-climbing for exam
timetabling problems. In: PATAT 2008 Conference, Montreal, Canada. [S.l.: s.n.],
2008.

CAPUA, R. et al. A study on exponential-size neighborhoods for the bin packing
problem with conflicts. Journal of Heuristics, Springer, v. 24, n. 4, p. 667–695, 2018.

CHRISTIAENS, J.; Vanden Berghe, G. A fresh ruin & recreate implementation for
the capacitated vehicle routing problem. [S.l.], 2016. Technical Report. Katholieke
Universiteit Leuven.

CHRISTIANSEN, M. et al. Chapter 4 maritime transportation. In: BARNHART, C.;
LAPORTE, G. (Ed.). Transportation. [S.l.]: Elsevier, 2007, (Handbooks in Operations
Research and Management Science, v. 14). p. 189 – 284.

CHRISTIANSEN, M. et al. Ship routing and scheduling in the new millennium.
European Journal of Operational Research, v. 228, n. 3, p. 467 – 483, 2013. ISSN
0377-2217.

CONFEDERAÇÃO NACIONAL DO TRANSPORTE. Boletim Estatístico
CNT: Junho. 2017. Data available online at <http://www.cnt.org.br/Boletim/
boletim-estatistico-cnt>, last accessed 2017-11-14.

CORDEAU, J.-F.; MAISCHBERGER, M. A parallel iterated tabu search heuristic for
vehicle routing problems. Computers & Operations Research, Elsevier, v. 39, n. 9, p.
2033–2050, 2012.

CORMEN, T. H. et al. Introduction to algorithms. [S.l.]: MIT press, 2009.

CURTOIS, T. et al. Large neighbourhood search with adaptive guided ejection search for
the pickup and delivery problem with time windows. EURO Journal on Transportation
and Logistics, Springer, p. 1–42, 2017.

DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. Management
science, INFORMS, v. 6, n. 1, p. 80–91, 1959.

DELLA CROCE, F.; SALASSA, F. A variable neighborhood search based matheuristic
for nurse rostering problems. Annals of Operations Research, v. 218, n. 1, p. 185–199,
Jul 2014.

DOERNER, K. F.; SALAZAR-GONZÁLEZ, J.-J. Chapter 7: Pickup-and-delivery
problems for people transportation. In: Vehicle Routing: Problems, Methods, and
Applications, Second Edition. [S.l.]: SIAM, 2014. p. 193–212.

DONOVAN, B.; WORK, D. New York City Trip Data (2010 to 2013). University of
Illinois at Urbana-Champaign, 2016. Available from Internet: <https://doi.org/10.13012/
J8PN93H8>.

DORNELES Árton P.; ARAÚJO, O. C. de; BURIOL, L. S. A fix-and-optimize heuristic
for the high school timetabling problem. Computers & Operations Research, v. 52, p.
29 – 38, 2014.

http://www.cnt.org.br/Boletim/boletim-estatistico-cnt
http://www.cnt.org.br/Boletim/boletim-estatistico-cnt
https://doi.org/10.13012/J8PN93H8
https://doi.org/10.13012/J8PN93H8

75

DUMAS, Y.; DESROSIERS, J.; SOUMIS, F. The pickup and delivery problem with time
windows. European Journal of Operational Research, Elsevier, v. 54, n. 1, p. 7–22,
1991.

EUROPEAN COMMISSION. Statistical Pocketbook 2016: EU Transport in Figures.
2016. Data available online at <https://ec.europa.eu/transport/sites/transport/files/
pocketbook2016.pdf>, page 19, last accessed 2017-11-14.

FURTADO, M. G. S.; MUNARI, P.; MORABITO, R. Pickup and delivery problem with
time windows: a new compact two-index formulation. Operations Research Letters,
Elsevier, v. 45, n. 4, p. 334–341, 2017.

GEHRING, H.; HOMBERGER, J. A parallel two-phase metaheuristic for routing
problems with time-windows. Asia Pacific Journal of Operational Research, National
University of Singapore, v. 18, n. 1, p. 35–48, 2001.

GENDREAU, M.; POTVIN, J.-Y. Handbook of metaheuristics. [S.l.]: Springer, 2010.

HASLE, G.; LIE, K.-A.; QUAK, E. Geometric Modelling, Numerical Simulation, and
Optimization - Applied Mathematics at SINTEF. [S.l.]: Springer Science & Business
Media, 2007.

HOMSI, G. et al. Industrial and tramp ship routing problems: Closing the gap for
real-scale instances. arXiv preprint arXiv:1809.10584, 2018.

INTERNATIONAL ENERGY AGENCY. CO2 emissions from fuel com-
bustion overview. 2018. Data available online at <https://webstore.iea.org/
co2-emissions-from-fuel-combustion-2018-overview>, last accessed 2018-10-22.

KARP, R. M. Reducibility among combinatorial problems. In: . Proceedings of a
symposium on the Complexity of Computer Computations. Boston, MA: Springer
US, 1972. p. 85–103.

KONING, D. Using column generation for the pickup and delivery problem with
disturbances. Dissertation (Master) — Universiteit Utrecht, 2011. 29 pages. MSc in
Computer Science.

KRAMER, R. et al. A matheuristic approach for the pollution-routing problem.
European Journal of Operational Research, Elsevier, v. 243, n. 2, p. 523–539, 2015.

LAPORTE, G. What you should know about the vehicle routing problem. Naval
Research Logistics (NRL), Wiley Online Library, v. 54, n. 8, p. 811–819, 2007.

LI, H.; LIM, A. A metaheuristic for the pickup and delivery problem with time windows.
International Journal on Artificial Intelligence Tools, v. 12, n. 02, p. 173–186, 2003.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search: Framework
and applications. In: GENDREAU, M.; POTVIN, J.-Y. (Ed.). Handbook of
Metaheuristics. Boston, MA: Springer US, 2010. p. 363–397.

LU, Q.; DESSOUKY, M. An exact algorithm for the multiple vehicle pickup and delivery
problem. Transportation Science, INFORMS, v. 38, n. 4, p. 503–514, 2004.

https://ec.europa.eu/transport/sites/transport/files/pocketbook2016.pdf
https://ec.europa.eu/transport/sites/transport/files/pocketbook2016.pdf
https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018-overview
https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018-overview

76

LUXEN, D.; VETTER, C. Real-time routing with openstreetmap data. In: Proceedings
of the 19th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. New York, NY, USA: ACM, 2011. (GIS ’11), p.
513–516.

MANIEZZO, V.; STÜTZLE, T.; VOSS, S. Matheuristics: Hybridizing Metaheuristics
and Mathematical Programming. [S.l.]: Springer US, 2009. (Annals of Information
Systems).

MERZ, P.; HUHSE, J. An iterated local search approach for finding provably good
solutions for very large tsp instances. In: SPRINGER. International Conference on
Parallel Problem Solving from Nature. [S.l.], 2008. p. 929–939.

MORAIS, V. W.; MATEUS, G. R.; NORONHA, T. F. Iterated local search heuristics for
the vehicle routing problem with cross-docking. Expert Systems with Applications,
Elsevier, v. 41, n. 16, p. 7495–7506, 2014.

NAGATA, Y.; BRÄYSY, O. A powerful route minimization heuristic for the vehicle
routing problem with time windows. Operations Research Letters, Elsevier, v. 37, n. 5,
p. 333–338, 2009.

NAGATA, Y.; KOBAYASHI, S. Guided ejection search for the pickup and delivery
problem with time windows. In: SPRINGER. European Conference on Evolutionary
Computation in Combinatorial Optimization. [S.l.], 2010. p. 202–213.

NAGATA, Y.; KOBAYASHI, S. A memetic algorithm for the pickup and delivery
problem with time windows using selective route exchange crossover. In: SPRINGER.
International Conference on Parallel Problem Solving from Nature. [S.l.], 2010. p.
536–545.

NANRY, W. P.; BARNES, J. W. Solving the pickup and delivery problem with time
windows using reactive tabu search. Transportation Research Part B: Methodological,
Elsevier, v. 34, n. 2, p. 107–121, 2000.

OpenAddresses. The free and open global address collection. 2017. <https:
//openaddresses.io/>.

OpenStreetMap. OSM contributors. Planet dump retrieved from
https://planet.osm.org . 2017. <https://www.openstreetmap.org>.

PARRAGH, S. N.; SCHMID, V. Hybrid column generation and large neighborhood
search for the dial-a-ride problem. Computers & Operations Research, v. 40, n. 1, p.
490 – 497, 2013.

PECIN, D. et al. Improved branch-cut-and-price for capacitated vehicle routing.
Mathematical Programming Computation, Springer, v. 9, n. 1, p. 61–100, 2017.

PENNA, P. H. V. et al. A hybrid heuristic for a broad class of vehicle routing problems
with heterogeneous fleet. Annals of Operations Research, Springer, p. 1–70, 2017.

PIECYK, M. I.; MCKINNON, A. C. Forecasting the carbon footprint of road freight
transport in 2020. International Journal of Production Economics, Elsevier, v. 128,
n. 1, p. 31–42, 2010.

https://openaddresses.io/
https://openaddresses.io/
 https://www.openstreetmap.org

77

PISINGER, D.; ROPKE, S. Large neighborhood search. In: Handbook of
metaheuristics. [S.l.]: Springer, 2010. p. 399–419.

REINELT, G. Tsplib—a traveling salesman problem library. ORSA journal on
computing, INFORMS, v. 3, n. 4, p. 376–384, 1991.

RODRIGUE, J.-P.; COMTOIS, C.; SLACK, B. The geography of transport systems.
[S.l.]: Taylor & Francis, 2016.

ROPKE, S. Heuristic and exact algorithms for vehicle routing problems. Thesis
(PhD) — University of Copenhagen, 2005. 256 pages. PhD in Computer Science.

ROPKE, S.; CORDEAU, J.-F. Branch-and-cut-and-price for the pickup and delivery
problem with time windows. Transportation Science, INFORMS, v. 43, n. 3, p.
267–286, 2009.

ROPKE, S.; CORDEAU, J.-F.; LAPORTE, G. Models and branch-and-cut algorithms
for pickup and delivery problems with time windows. Networks, Wiley Online Library,
v. 49, n. 4, p. 258–272, 2007.

ROPKE, S.; PISINGER, D. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, INFORMS,
v. 40, n. 4, p. 455–472, 2006.

RUIZ, R.; STÜTZLE, T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research, Elsevier, v. 177, n. 3, p. 2033–2049, 2007.

SARTORI, C. S.; BURIOL, L. S. A matheuristic approach to the pickup and delivery
problem with time windows. In: CERULLI, R.; RAICONI, A.; VOSS, S. (Ed.).
Computational Logistics. Cham: Springer International Publishing, 2018. p. 253–267.

SAVELSBERGH, M.; SOL, M. Drive: Dynamic routing of independent vehicles.
Operations Research, INFORMS, v. 46, n. 4, p. 474–490, 1998.

SAVELSBERGH, M. W. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, INFORMS, v. 4, n. 2, p. 146–154, 1992.

SCHRAGE, L. Formulation and structure of more complex/realistic routing and
scheduling problems. Networks, Wiley Online Library, v. 11, n. 2, p. 229–232, 1981.

SHAW, P. Using constraint programming and local search methods to solve vehicle
routing problems. In: SPRINGER. International conference on principles and
practice of constraint programming. [S.l.], 1998. p. 417–431.

SHEN, Y. et al. A computer assistant for vehicle dispatching with learning capabilities.
Annals of operations research, Springer, v. 61, n. 1, p. 189–211, 1995.

SINTEF. Li & Lim Benchmark Instances. 2008. Available online at <https:
//www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/>, last accessed 2017-11-15.

SOLOMON, M. M. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, INFORMS, v. 35, n. 2, p. 254–265,
1987.

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/

78

SÖRENSEN, K. Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, Wiley Online Library, v. 22, n. 1, p. 3–18, 2015.

STÜTZLE, T. Iterated local search for the quadratic assignment problem. European
Journal of Operational Research, Elsevier, v. 174, n. 3, p. 1519–1539, 2006.

SUBRAMANIAN, A.; UCHOA, E.; OCHI, L. S. A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research, Elsevier, v. 40, n. 10, p.
2519–2531, 2013.

SUTCLIFFE, C.; BOARD, J. The ex-ante benefits of solving vehicle-routeing problems.
Journal of the Operational Research Society, Taylor & Francis, v. 42, n. 2, p. 135–143,
1991.

TOTH, P.; VIGO, D. Vehicle routing: problems, methods, and applications. [S.l.]:
SIAM, 2014.

UCHOA, E. et al. New benchmark instances for the capacitated vehicle routing problem.
European Journal of Operational Research, Elsevier, v. 257, n. 3, p. 845–858, 2017.

WILSON, N. H.; WEISSBERG, R. W.; HAUSER, J. Advanced dial-a-ride algorithms
research project. [S.l.], 1976.

79

APPENDIX A — DETAILED RESULTS FOR THE STANDARD INSTANCES

Table A.1: Results of algorithm A1 for the Li and Lim instances with 100 locations.

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
lc101 10 828.94 5 lr104 9 1013.39 5 lrc101 14 1708.80 5
lc102 10 828.94 5 lr105 14 1377.11 5 lrc102 12 1558.07 5
lc103 9 1035.35 5 lr106 12 1252.62 5 lrc103 11 1258.74 5
lc104 9 860.01 5 lr107 10 1111.31 5 lrc104 10 1128.40 5
lc105 10 828.94 5 lr108 9 968.97 5 lrc105 13 1637.62 5
lc106 10 828.94 5 lr109 11 1208.96 5 lrc106 11 1424.73 5
lc107 10 828.94 5 lr110 10 1159.35 5 lrc107 11 1230.14 5
lc108 10 826.44 5 lr111 10 1108.90 5 lrc108 10 1147.43 5
lc109 9 1000.60 5 lr112 9 1003.77 5 lrc201 4 1406.94 5
lc201 3 591.56 5 lr201 4 1253.23 5 lrc202 3 1374.27 5
lc202 3 591.56 5 lr202 3 1197.67 5 lrc203 3 1089.07 5
lc203 3 591.17 5 lr203 3 949.40 5 lrc204 3 818.66 5
lc204 3 590.60 5 lr204 2 849.05 5 lrc205 4 1302.20 5
lc205 3 588.88 5 lr205 3 1054.02 5 lrc206 3 1159.03 5
lc206 3 588.49 5 lr206 3 931.63 5 lrc207 3 1062.05 5
lc207 3 588.29 5 lr207 2 903.06 5 lrc208 3 852.76 5
lc208 3 588.32 5 lr208 2 734.85 5
lr101 19 1650.80 5 lr209 3 930.59 5
lr102 17 1487.57 5 lr210 3 964.22 5
lr103 13 1292.68 5 lr211 2 911.52 5

80

Table A.2: Results of algorithm A1 for the Li and Lim instances with 200 locations

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
LC1_2_1 20 2704.57 15 LR1_2_1 20 4819.12 15 LRC1_2_1 19 3606.06 15
LC1_2_2 19 2764.56 15 LR1_2_2 17 4621.21 15 LRC1_2_2 15 3671.02 15
LC1_2_3 17 3133.75 15 LR1_2_3 14 4402.38 15 LRC1_2_3 13 3161.75 15
LC1_2_4 17 2693.41 15 LR1_2_4 10 3027.50 15 LRC1_2_4 10 2631.82 15
LC1_2_5 20 2702.05 15 LR1_2_5 16 4760.18 15 LRC1_2_5 16 3715.81 15
LC1_2_6 20 2701.04 15 LR1_2_6 13 4826.74 15 LRC1_2_6 16 3572.16 15
LC1_2_7 20 2701.04 15 LR1_2_7 12 3543.36 15 LRC1_2_7 14 3697.71 15
LC1_2_8 19 3404.95 15 LR1_2_8 9 2759.32 15 LRC1_2_8 13 3390.10 15
LC1_2_9 18 2724.24 15 LR1_2_9 14 4343.86 15 LRC1_2_9 13 3184.14 15

LC1_2_10 17 2942.13 15 LR1_2_10 11 3700.06 15 LRC1_2_10 12 2950.59 15
LC2_2_1 6 1931.44 15 LR2_2_1 5 4073.10 15 LRC2_2_1 6 3620.80 15
LC2_2_2 6 1881.40 15 LR2_2_2 4 3796.00 15 LRC2_2_2 5 3184.23 15
LC2_2_3 6 1844.33 15 LR2_2_3 4 3098.36 15 LRC2_2_3 4 3115.20 15
LC2_2_4 6 1767.12 15 LR2_2_4 3 2486.00 15 LRC2_2_4 3 2858.70 15
LC2_2_5 6 1891.21 15 LR2_2_5 4 3438.39 15 LRC2_2_5 5 2776.93 15
LC2_2_6 6 1857.78 15 LR2_2_6 3 4861.14 15 LRC2_2_6 5 2707.96 15
LC2_2_7 6 1850.13 15 LR2_2_7 3 3116.09 15 LRC2_2_7 4 3019.81 15
LC2_2_8 6 1824.34 15 LR2_2_8 2 2529.49 15 LRC2_2_8 4 2399.89 15
LC2_2_9 6 1854.21 15 LR2_2_9 3 4422.09 15 LRC2_2_9 4 2208.49 15

LC2_2_10 6 1817.45 15 LR2_2_10 3 3274.96 15 LRC2_2_10 3 2535.37 15

81

Table A.3: Results of algorithm A1 for the Li and Lim instances with 400 locations

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
LC1_4_1 40 7152.06 15 LR1_4_1 40 10639.75 15 LRC1_4_1 36 9124.52 15
LC1_4_2 38 8007.79 15 LR1_4_2 31 9975.40 15 LRC1_4_2 31 8346.06 15
LC1_4_3 32 8741.18 15 LR1_4_3 22 9473.37 15 LRC1_4_3 24 7821.28 15
LC1_4_4 30 6912.73 15 LR1_4_4 16 6916.62 15 LRC1_4_4 19 5803.31 15
LC1_4_5 40 7150.00 15 LR1_4_5 28 11937.96 15 LRC1_4_5 32 8919.46 15
LC1_4_6 40 7154.02 15 LR1_4_6 24 9823.12 15 LRC1_4_6 30 8545.23 15
LC1_4_7 40 7149.43 15 LR1_4_7 19 8472.73 15 LRC1_4_7 28 8252.91 15
LC1_4_8 39 7111.16 15 LR1_4_8 14 6196.66 15 LRC1_4_8 26 7958.76 15
LC1_4_9 36 7451.20 15 LR1_4_9 24 9884.27 15 LRC1_4_9 25 8296.01 15

LC1_4_10 35 7634.68 15 LR1_4_10 20 8474.78 15 LRC1_4_10 23 7348.49 15
LC2_4_1 12 4116.33 15 LR2_4_1 8 9726.88 15 LRC2_4_1 12 7454.14 15
LC2_4_2 12 4144.29 15 LR2_4_2 7 9946.91 15 LRC2_4_2 10 7539.93 15
LC2_4_3 12 4414.39 15 LR2_4_3 6 8393.55 15 LRC2_4_3 8 6570.81 15
LC2_4_4 12 4038.00 15 LR2_4_4 4 7297.57 15 LRC2_4_4 5 5309.88 15
LC2_4_5 12 4030.63 15 LR2_4_5 6 11246.73 15 LRC2_4_5 10 8549.23 15
LC2_4_6 12 3900.29 15 LR2_4_6 5 9379.17 15 LRC2_4_6 9 7600.84 15
LC2_4_7 12 3962.51 15 LR2_4_7 5 7568.45 15 LRC2_4_7 8 7453.36 15
LC2_4_8 12 3844.45 15 LR2_4_8 4 5579.67 15 LRC2_4_8 7 6762.81 15
LC2_4_9 12 4188.93 15 LR2_4_9 6 8017.25 15 LRC2_4_9 6 6884.11 15

LC2_4_10 12 3828.44 15 LR2_4_10 5 8343.99 15 LRC2_4_10 6 5669.56 15

82

Table A.4: Results of algorithm A1 for the Li and Lim instances with 600 locations

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
LC1_6_1 60 14095.64 30 LR1_6_1 59 22821.65 30 LRC1_6_1 52 18477.83 30
LC1_6_2 57 15048.16 30 LR1_6_2 45 20143.98 30 LRC1_6_2 43 16804.68 30
LC1_6_3 50 14688.89 30 LR1_6_3 37 17870.86 30 LRC1_6_3 36 13993.18 30
LC1_6_4 48 13330.50 30 LR1_6_4 28 13214.00 30 LRC1_6_4 25 10819.45 30
LC1_6_5 60 14086.30 30 LR1_6_5 38 22921.67 30 LRC1_6_5 46 16969.48 30
LC1_6_6 60 14090.79 30 LR1_6_6 32 21175.64 30 LRC1_6_6 42 17594.33 30
LC1_6_7 60 14083.76 30 LR1_6_7 25 17212.16 30 LRC1_6_7 38 16207.71 30
LC1_6_8 58 14880.70 30 LR1_6_8 18 12388.53 30 LRC1_6_8 33 15598.22 30
LC1_6_9 54 14600.28 30 LR1_6_9 31 21986.08 30 LRC1_6_9 34 15238.43 30

LC1_6_10 52 15823.95 30 LR1_6_10 26 19590.20 30 LRC1_6_10 30 14165.75 30
LC2_6_1 19 7977.98 30 LR2_6_1 11 21835.20 30 LRC2_6_1 16 16293.38 30
LC2_6_2 18 10325.34 30 LR2_6_2 9 24389.57 30 LRC2_6_2 13 17306.40 30
LC2_6_3 18 7436.50 30 LR2_6_3 7 20220.59 30 LRC2_6_3 10 12527.86 30
LC2_6_4 17 7926.49 30 LR2_6_4 6 12345.37 30 LRC2_6_4 7 10191.51 30
LC2_6_5 19 8047.37 30 LR2_6_5 9 22169.67 30 LRC2_6_5 13 14907.19 30
LC2_6_6 18 9480.48 30 LR2_6_6 7 21298.88 30 LRC2_6_6 12 16639.47 30
LC2_6_7 19 7997.96 30 LR2_6_7 6 16652.09 30 LRC2_6_7 10 16494.21 30
LC2_6_8 18 7579.93 30 LR2_6_8 5 12299.29 30 LRC2_6_8 9 15399.61 30
LC2_6_9 18 8959.66 30 LR2_6_9 8 21459.78 30 LRC2_6_9 9 15696.09 30

LC2_6_10 18 7479.38 30 LR2_6_10 7 18709.55 30 LRC2_6_10 8 14136.85 30

83

Table A.5: Results of algorithm A1 for the Li and Lim instances with 800 locations

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
LC1_8_1 80 25184.38 60 LR1_8_1 80 39291.32 60 LRC1_8_1 66 32299.70 60
LC1_8_2 77 26910.98 60 LR1_8_2 59 34123.36 60 LRC1_8_2 56 27940.22 60
LC1_8_3 64 26280.66 60 LR1_8_3 44 29624.24 60 LRC1_8_3 48 24450.06 60
LC1_8_4 60 23048.00 60 LR1_8_4 25 21239.28 60 LRC1_8_4 34 18240.98 60
LC1_8_5 80 25211.22 60 LR1_8_5 49 39526.16 60 LRC1_8_5 58 31512.41 60
LC1_8_6 80 25164.25 60 LR1_8_6 39 36778.66 60 LRC1_8_6 55 28633.52 60
LC1_8_7 80 25158.38 60 LR1_8_7 30 28256.44 60 LRC1_8_7 51 28354.98 60
LC1_8_8 78 25348.45 60 LR1_8_8 20 20754.01 60 LRC1_8_8 45 27110.23 60
LC1_8_9 73 25986.22 60 LR1_8_9 41 38009.90 60 LRC1_8_9 45 25144.11 60

LC1_8_10 70 26866.55 60 LR1_8_10 31 30676.35 60 LRC1_8_10 40 24494.47 60
LC2_8_1 24 11687.06 60 LR2_8_1 15 36029.50 60 LRC2_8_1 20 23119.30 60
LC2_8_2 24 13939.09 60 LR2_8_2 12 33295.11 60 LRC2_8_2 17 22620.74 60
LC2_8_3 25 12452.19 60 LR2_8_3 9 28683.95 60 LRC2_8_3 15 18149.95 60
LC2_8_4 24 12289.19 60 LR2_8_4 7 20413.49 60 LRC2_8_4 11 15353.86 60
LC2_8_5 25 12329.80 60 LR2_8_5 11 39241.12 60 LRC2_8_5 16 25200.13 60
LC2_8_6 24 12777.52 60 LR2_8_6 9 33075.07 60 LRC2_8_6 15 27484.83 60
LC2_8_7 25 11854.44 60 LR2_8_7 7 30453.51 60 LRC2_8_7 14 25742.09 60
LC2_8_8 24 11454.33 60 LR2_8_8 5 20062.84 60 LRC2_8_8 12 21756.80 60
LC2_8_9 24 11629.41 60 LR2_8_9 10 32524.30 60 LRC2_8_9 11 22672.77 60

LC2_8_10 24 11574.90 60 LR2_8_10 9 31439.75 60 LRC2_8_10 9 35328.46 60

84

Table A.6: Results of algorithm A1 for the Li and Lim instances with 1000 locations

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
LC1_10_1 100 42488.66 60 LR1_10_1 100 56744.91 60 LRC1_10_1 82 49231.54 60
LC1_10_2 94 44836.37 60 LR1_10_2 80 49377.63 60 LRC1_10_2 72 44992.82 60
LC1_10_3 82 42299.99 60 LR1_10_3 54 42719.26 60 LRC1_10_3 53 35855.32 60
LC1_10_4 74 38793.09 60 LR1_10_4 28 31455.61 60 LRC1_10_4 40 27530.32 60
LC1_10_5 100 42477.41 60 LR1_10_5 60 60748.39 60 LRC1_10_5 73 50122.41 60
LC1_10_6 101 42838.39 60 LR1_10_6 49 49771.43 60 LRC1_10_6 68 44575.32 60
LC1_10_7 100 42854.99 60 LR1_10_7 36 39832.31 60 LRC1_10_7 61 41371.73 60
LC1_10_8 98 42949.56 60 LR1_10_8 26 29767.75 60 LRC1_10_8 56 41351.90 60
LC1_10_9 91 44481.12 60 LR1_10_9 49 53369.24 60 LRC1_10_9 54 39876.82 60

LC1_10_10 88 42790.86 60 LR1_10_10 39 46468.72 60 LRC1_10_10 49 36544.29 60
LC2_10_1 30 16879.24 60 LR2_10_1 18 59306.65 60 LRC2_10_1 22 34890.32 60
LC2_10_2 31 19092.08 60 LR2_10_2 14 59836.95 60 LRC2_10_2 20 33450.55 60
LC2_10_3 30 17732.50 60 LR2_10_3 11 43760.22 60 LRC2_10_3 16 28988.73 60
LC2_10_4 29 18465.46 60 LR2_10_4 8 30227.24 60 LRC2_10_4 11 24579.99 60
LC2_10_5 31 17137.53 60 LR2_10_5 14 53837.14 60 LRC2_10_5 17 36298.78 60
LC2_10_6 31 17194.08 60 LR2_10_6 11 52235.00 60 LRC2_10_6 17 31071.38 60
LC2_10_7 31 19185.26 60 LR2_10_7 9 41765.65 60 LRC2_10_7 16 33723.56 60
LC2_10_8 30 17015.03 60 LR2_10_8 7 28847.48 60 LRC2_10_10 11 35761.59 60
LC2_10_9 31 17550.38 60 LR2_10_9 12 56798.61 60

LC2_10_10 30 16581.15 60 LR2_10_10 11 48260.81 60

85

APPENDIX B — DETAILED RESULTS FOR THE EXACT INSTANCES

Table B.1: Results of algorithm A1 (average) for the instances for exact methods.

Instance Cost Gap(%) Time (min.) Instance Cost Gap(%) Time (min.)
AA30 31119.1 0.00 5 CC30 31087.8 0.00 5
AA35 31299.8 0.00 5 CC35 31230.6 0.00 5
AA40 31515.9 0.00 5 CC40 31359.1 0.00 5
AA45 31759.9 0.00 5 CC45 31509.1 0.00 5
AA50 41775.0 0.00 5 CC50 41690.4 0.01 5
AA55 41907.8 0.00 5 CC55 41841.3 0.01 5
AA60 42140.7 0.00 5 CC60 42017.8 0.02 5
AA65 42253.4 0.01 5 CC65 42179.9 0.04 5
AA70 42482.1 0.07 5 CC70 52221.6 0.04 5
AA75 52473.7 0.02 5 CC75 52382.8 0.05 5
BB30 31086.3 0.00 5 DD30 21133.3 0.00 5
BB35 31281.2 0.00 5 DD35 31216.4 0.02 5
BB40 31493.4 0.00 5 DD40 31354.0 0.01 5
BB45 41555.1 0.00 5 DD45 31484.0 0.00 5
BB50 41701.3 0.00 5 DD50 31601.3 0.00 5
BB55 41885.7 0.00 5 DD55 31746.7 0.01 5
BB60 62420.5 0.00 5 DD60 37952.9 18.35 5
BB65 62639.2 0.00 5 DD65 42127.3 0.05 5
BB70 62978.8 0.04 5 DD70 42226.3 0.03 5
BB75 63166.4 0.06 5 DD75 42381.0 0.05 5

86APPENDIX C — DETAILED RESULTS FOR THE NEW INSTANCES
Table C.1: Results of algorithm A1 for the new proposed instances in sizes 100, 200, and 400

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
bar-n100-1 6 735 5 bar-n200-1 22 1839 15 bar-n400-1 32 3123 15
bar-n100-2 5 556 5 bar-n200-2 23 2078 15 bar-n400-2 30 2775 15
bar-n100-3 6 746 5 bar-n200-3 9 1564 15 bar-n400-3 11 2573 15
bar-n100-4 12 1160 5 bar-n200-4 13 841 15 bar-n400-4 18 1786 15
bar-n100-5 6 838 5 bar-n200-5 5 858 15 bar-n400-5 41 3402 15
bar-n100-6 3 788 5 bar-n200-6 9 863 15 bar-n400-6 21 2986 15
ber-n100-1 13 1857 5 bar-n200-7 12 1772 15 bar-n400-7 12 2987 15
ber-n100-2 6 1491 5 ber-n200-1 28 3189 15 ber-n400-1 34 5633 15
ber-n100-3 3 713 5 ber-n200-2 12 3292 15 ber-n400-2 35 5595 15
ber-n100-4 3 494 5 ber-n200-3 9 899 15 ber-n400-3 43 3552 15
ber-n100-5 5 944 5 ber-n200-4 5 1089 15 ber-n400-4 19 2217 15
ber-n100-6 14 2147 5 ber-n200-5 27 3944 15 ber-n400-5 27 5714 15
ber-n100-7 7 1935 5 ber-n200-6 10 3002 15 ber-n400-6 19 6358 15
nyc-n100-1 6 635 5 nyc-n200-1 7 943 15 ber-n400-7 20 6513 15
nyc-n100-2 4 567 5 nyc-n200-2 8 1104 15 nyc-n400-1 13 1977 15
nyc-n100-3 3 492 5 nyc-n200-3 7 1030 15 nyc-n400-2 14 1975 15
nyc-n100-4 2 556 5 nyc-n200-4 4 1042 15 nyc-n400-3 7 1861 15
nyc-n100-5 2 671 5 nyc-n200-5 5 1193 15 nyc-n400-4 7 1982 15
poa-n100-1 12 1590 5 poa-n200-1 25 2433 15 nyc-n400-5 7 1922 15
poa-n100-2 15 1539 5 poa-n200-2 13 2361 15 poa-n400-1 25 4550 15
poa-n100-3 10 1301 5 poa-n200-3 22 1851 15 poa-n400-2 42 3109 15
poa-n100-4 7 1668 5 poa-n200-4 10 1164 15 poa-n400-3 40 2844 15
poa-n100-5 6 624 5 poa-n200-5 15 2323 15 poa-n400-4 19 2187 15
poa-n100-6 3 562 5 poa-n200-6 28 3081 15 poa-n400-5 15 2303 15
poa-n100-7 5 779 5 poa-n200-7 11 2463 15 poa-n400-6 42 5428 15

87

Table C.2: Results of algorithm A1 for the new proposed instances in sizes 600, 800, and 1000

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
bar-n600-1 43 3746 30 bar-n800-1 80 5658 60 bar-n1000-1 54 7940 60
bar-n600-2 24 3947 30 bar-n800-2 31 5115 60 bar-n1000-2 38 3416 60
bar-n600-3 24 3931 30 bar-n800-3 23 5864 60 bar-n1000-3 89 4849 60
bar-n600-4 53 2880 30 bar-n800-4 25 2791 60 bar-n1000-4 19 3466 60
bar-n600-5 13 2631 30 bar-n800-5 81 6099 60 bar-n1000-5 27 6161 60
bar-n600-6 33 4952 30 bar-n800-6 82 6535 60 bar-n1000-6 28 6744 60
bar-n600-7 33 4888 30 bar-n800-7 31 5582 60 ber-n1000-1 89 15067 60
ber-n600-1 49 7699 30 ber-n800-1 59 5386 60 ber-n1000-2 118 16591 60
ber-n600-2 32 3882 30 ber-n800-2 63 6404 60 ber-n1000-3 53 13462 60
ber-n600-3 29 3987 30 ber-n800-3 18 3698 60 ber-n1000-4 56 14520 60
ber-n600-4 76 11120 30 ber-n800-4 108 16125 60 ber-n1000-5 111 15389 60
ber-n600-5 34 8567 30 ber-n800-5 35 10966 60 ber-n1000-6 155 18969 60
ber-n600-6 38 10371 30 ber-n800-6 49 13245 60 ber-n1000-7 74 17597 60
nyc-n600-1 21 3012 30 nyc-n800-1 23 3140 60 nyc-n1000-1 28 4101 60
nyc-n600-2 19 2713 30 nyc-n800-2 27 3744 60 nyc-n1000-2 33 4837 60
nyc-n600-3 20 2728 30 nyc-n800-3 28 3760 60 nyc-n1000-3 34 4558 60
nyc-n600-4 9 2526 30 nyc-n800-4 12 3194 60 nyc-n1000-4 18 4875 60
nyc-n600-5 11 2946 30 nyc-n800-5 14 3703 60 nyc-n1000-5 18 4280 60
poa-n600-1 55 6257 30 poa-n800-1 60 9570 60 poa-n1000-1 31 8277 60
poa-n600-2 27 5271 30 poa-n800-2 73 8087 60 poa-n1000-2 48 10702 60
poa-n600-3 24 2220 30 poa-n800-3 50 9846 60 poa-n1000-3 69 5570 60
poa-n600-4 27 3153 30 poa-n800-4 46 7991 60 poa-n1000-4 23 4598 60
poa-n600-5 20 2586 30 poa-n800-5 73 4269 60 poa-n1000-5 48 5822 60
poa-n600-6 77 8059 30 poa-n800-6 38 4130 60 poa-n1000-6 95 11514 60
poa-n600-7 63 7683 30 poa-n800-7 38 8005 60 poa-n1000-7 75 11661 60

88

Table C.3: Results of algorithm A1 for the new proposed instances in sizes 1500, 2000, and 2500

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
bar-n1500-1 77 9088 60 bar-n2000-1 99 11800 60 bar-n2500-1 81 10075 60
bar-n1500-2 63 11782 60 bar-n2000-2 99 11730 60 bar-n2500-2 123 15032 60
bar-n1500-3 95 6009 60 bar-n2000-3 146 13212 60 bar-n2500-3 66 15411 60
bar-n1500-4 62 5023 60 bar-n2000-4 75 11666 60 bar-n2500-4 67 15435 60
bar-n1500-5 76 9577 60 bar-n2000-5 77 12915 60 bar-n2500-5 131 23474 60
bar-n1500-6 161 12949 60 bar-n2000-6 176 9479 60 bar-n2500-6 102 17882 60
bar-n1500-7 41 10025 60 bar-n2000-7 69 9365 60 ber-n2500-1 207 33094 60
ber-n1500-1 174 23759 60 ber-n2000-1 76 13002 60 ber-n2500-2 142 37802 60
ber-n1500-2 69 8628 60 ber-n2000-2 280 32583 60 ber-n2500-3 248 18483 60
ber-n1500-3 71 9209 60 ber-n2000-3 167 26951 60 ber-n2500-4 181 16019 60
ber-n1500-4 37 8729 60 ber-n2000-4 252 35823 60 ber-n2500-5 262 21441 60
ber-n1500-5 181 25548 60 ber-n2000-5 143 32097 60 ber-n2500-6 306 44048 60
ber-n1500-6 99 21151 60 ber-n2000-6 115 29785 60 ber-n2500-7 177 40220 60
ber-n1500-7 101 21683 60 ber-n2000-7 139 30034 60 nyc-n2500-1 71 10264 60
nyc-n1500-1 47 6784 60 nyc-n2000-1 56 7750 60 nyc-n2500-2 79 9369 60
nyc-n1500-2 52 6535 60 nyc-n2000-2 59 7225 60 nyc-n2500-3 37 8983 60
nyc-n1500-3 47 6109 60 nyc-n2000-3 33 9153 60 nyc-n2500-4 46 12253 60
nyc-n1500-4 28 7279 60 nyc-n2000-4 29 7333 60 nyc-n2500-5 47 11308 60
nyc-n1500-5 23 5846 60 nyc-n2000-5 36 9166 60 poa-n2500-1 301 29790 60
poa-n1500-1 145 17392 60 poa-n2000-1 236 22850 60 poa-n2500-2 162 23972 60
poa-n1500-2 203 23869 60 poa-n2000-2 161 16678 60 poa-n2500-3 83 22680 60
poa-n1500-3 69 15099 60 poa-n2000-3 129 9451 60 poa-n2500-4 84 23413 60
poa-n1500-4 64 6591 60 poa-n2000-4 146 12605 60 poa-n2500-5 74 19303 60
poa-n1500-5 33 6237 60 poa-n2000-5 99 12835 60 poa-n2500-6 109 11324 60
poa-n1500-6 142 16893 60 poa-n2000-6 66 18959 60 poa-n2500-7 84 11234 60

89

Table C.4: Results of algorithm A1 for the new proposed instances in sizes 3000, 4000, and 5000

Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.) Instance Veh. Cost Time (min.)
bar-n3000-1 160 22887 60 bar-n4000-1 158 26524 60 bar-n5000-1 236 23468 60
bar-n3000-2 151 21966 60 bar-n4000-2 108 22376 60 bar-n5000-2 96 15261 60
bar-n3000-3 59 10422 60 bar-n4000-3 104 24011 60 bar-n5000-3 266 38306 60
bar-n3000-4 261 27374 60 bar-n4000-4 160 14441 60 bar-n5000-4 601 50344 60
bar-n3000-5 164 21003 60 bar-n4000-5 158 13538 60 bar-n5000-5 421 49060 60
bar-n3000-6 86 19433 60 bar-n4000-6 157 26454 60 bar-n5000-6 271 39249 60
bar-n3000-7 81 19930 60 ber-n4000-1 577 73677 60 ber-n5000-1 767 103564 60
ber-n3000-1 303 38127 60 ber-n4000-2 416 29743 60 ber-n5000-2 412 71613 60
ber-n3000-2 224 34497 60 ber-n4000-3 139 21317 60 ber-n5000-3 185 63113 60
ber-n3000-3 197 38845 60 ber-n4000-4 181 18695 60 ber-n5000-4 324 77936 60
ber-n3000-4 240 22502 60 ber-n4000-5 149 23923 60 ber-n5000-5 498 31456 60
ber-n3000-5 137 17138 60 ber-n4000-6 324 56965 60 ber-n5000-6 167 21786 60
ber-n3000-6 100 14274 60 ber-n4000-7 156 49730 60 ber-n5000-7 420 74166 60
ber-n3000-7 471 59538 60 nyc-n4000-1 138 15468 60 nyc-n5000-1 131 17546 60
nyc-n3000-1 80 10596 60 nyc-n4000-2 113 14704 60 nyc-n5000-2 149 19879 60
nyc-n3000-2 84 10828 60 nyc-n4000-3 127 15264 60 nyc-n5000-3 74 24742 60
nyc-n3000-3 46 12075 60 nyc-n4000-4 64 17435 60 nyc-n5000-4 88 20945 60
nyc-n3000-4 53 12966 60 nyc-n4000-5 71 16335 60 nyc-n5000-5 81 18101 60
nyc-n3000-5 45 11638 60 poa-n4000-1 517 60472 60 poa-n5000-1 297 65602 60
poa-n3000-1 388 40771 60 poa-n4000-2 513 59115 60 poa-n5000-2 152 44567 60
poa-n3000-2 172 28167 60 poa-n4000-3 196 23772 60 poa-n5000-3 289 62040 60
poa-n3000-3 293 20039 60 poa-n4000-4 379 49664 60 poa-n5000-4 225 28593 60
poa-n3000-4 153 22207 60 poa-n4000-5 404 54647 60 poa-n5000-5 372 38020 60
poa-n3000-5 198 28035 60 poa-n4000-6 543 65615 60 poa-n5000-6 115 24700 60
poa-n3000-6 209 33708 60 poa-n4000-7 139 40480 60 poa-n5000-7 227 45868 60

90APPENDIX D — CHARACTERISTICS OF THE NEW INSTANCES

Table D.1: Detailed characteristics of the new instances with 100 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n100-1 100 Barcelona random-cluster 7 1.5 240 120 5 300 random
bar-n100-2 100 Barcelona cluster 7 1.2 480 120 15 100 random
bar-n100-3 100 Barcelona random - - 240 120 5 300 central
bar-n100-4 100 Barcelona random - - 240 60 15 300 random
bar-n100-5 100 Barcelona random - - 480 120 15 100 random
bar-n100-6 100 Barcelona random - - 480 120 5 300 random
ber-n100-1 100 Berlin random-cluster 3 0.8 240 60 10 300 random
ber-n100-2 100 Berlin random-cluster 4 1.1 480 120 10 100 random
ber-n100-3 100 Berlin cluster 7 1.0 480 120 5 100 central
ber-n100-4 100 Berlin cluster 3 1.6 480 120 5 300 random
ber-n100-5 100 Berlin cluster 3 0.8 480 60 10 100 random
ber-n100-6 100 Berlin random - - 240 60 10 300 central
ber-n100-7 100 Berlin random - - 480 60 5 100 central
nyc-n100-1 100 New-York random - - 240 30 2 6 central
nyc-n100-2 100 New-York random - - 240 60 2 6 central
nyc-n100-3 100 New-York random - - 240 60 2 6 random
nyc-n100-4 100 New-York random - - 480 120 2 6 central
nyc-n100-5 100 New-York random - - 480 60 2 6 random
poa-n100-1 100 Porto-Alegre random-cluster 6 1.6 240 60 10 100 central
poa-n100-2 100 Porto-Alegre random-cluster 4 1.3 240 60 15 300 central
poa-n100-3 100 Porto-Alegre random-cluster 7 1.5 240 60 10 300 random
poa-n100-4 100 Porto-Alegre random-cluster 8 0.9 480 60 15 100 random
poa-n100-5 100 Porto-Alegre cluster 5 1.0 240 60 5 300 central
poa-n100-6 100 Porto-Alegre cluster 3 1.1 480 120 5 100 central
poa-n100-7 100 Porto-Alegre cluster 6 1.5 480 60 15 100 central

91

Table D.2: Detailed characteristics of the new instances with 200 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n200-1 200 Barcelona random-cluster 7 1.0 240 60 15 100 random
bar-n200-2 200 Barcelona random-cluster 7 1.5 240 60 15 300 random
bar-n200-3 200 Barcelona random-cluster 3 1.5 480 60 10 100 random
bar-n200-4 200 Barcelona cluster 4 0.9 240 120 10 300 central
bar-n200-5 200 Barcelona cluster 3 0.9 480 120 5 100 central
bar-n200-6 200 Barcelona cluster 3 1.3 480 120 15 100 random
bar-n200-7 200 Barcelona random - - 480 60 15 300 central
ber-n200-1 200 Berlin random-cluster 6 1.5 240 120 15 300 central
ber-n200-2 200 Berlin random-cluster 8 1.2 480 60 10 300 central
ber-n200-3 200 Berlin cluster 6 1.2 240 120 5 300 central
ber-n200-4 200 Berlin cluster 5 1.5 480 120 5 300 central
ber-n200-5 200 Berlin random - - 240 60 10 300 central
ber-n200-6 200 Berlin random - - 480 120 5 100 central
nyc-n200-1 200 New-York random - - 240 120 2 6 random
nyc-n200-2 200 New-York random - - 240 30 2 6 central
nyc-n200-3 200 New-York random - - 240 60 2 6 random
nyc-n200-4 200 New-York random - - 480 120 2 6 random
nyc-n200-5 200 New-York random - - 480 30 2 6 central
poa-n200-1 200 Porto-Alegre random-cluster 3 0.8 240 60 15 300 random
poa-n200-2 200 Porto-Alegre random-cluster 4 1.1 480 120 15 100 random
poa-n200-3 200 Porto-Alegre cluster 6 1.1 240 120 15 100 random
poa-n200-4 200 Porto-Alegre cluster 7 1.0 240 60 5 300 random
poa-n200-5 200 Porto-Alegre random - - 240 120 5 300 central
poa-n200-6 200 Porto-Alegre random - - 240 60 15 100 random
poa-n200-7 200 Porto-Alegre random - - 480 60 10 100 random

92

Table D.3: Detailed characteristics of the new instances with 400 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n400-1 400 Barcelona random-cluster 5 0.7 240 120 10 100 random
bar-n400-2 400 Barcelona random-cluster 3 1.0 240 120 10 300 random
bar-n400-3 400 Barcelona random-cluster 8 0.9 480 60 5 100 central
bar-n400-4 400 Barcelona cluster 3 1.0 240 60 5 100 random
bar-n400-5 400 Barcelona random - - 240 120 15 100 random
bar-n400-6 400 Barcelona random - - 480 120 15 300 central
bar-n400-7 400 Barcelona random - - 480 60 5 300 central
ber-n400-1 400 Berlin random-cluster 3 1.0 240 120 5 100 random
ber-n400-2 400 Berlin random-cluster 5 1.0 240 120 5 300 random
ber-n400-3 400 Berlin cluster 4 1.6 240 60 15 100 random
ber-n400-4 400 Berlin cluster 3 1.1 480 60 15 100 central
ber-n400-5 400 Berlin random - - 480 120 15 300 central
ber-n400-6 400 Berlin random - - 480 60 5 100 central
ber-n400-7 400 Berlin random - - 480 60 5 300 central
nyc-n400-1 400 New-York random - - 240 30 2 6 central
nyc-n400-2 400 New-York random - - 240 30 2 6 random
nyc-n400-3 400 New-York random - - 480 120 2 6 central
nyc-n400-4 400 New-York random - - 480 60 2 6 central
nyc-n400-5 400 New-York random - - 480 60 2 6 random
poa-n400-1 400 Porto-Alegre random-cluster 4 1.0 480 120 15 300 central
poa-n400-2 400 Porto-Alegre cluster 3 0.7 240 120 15 100 random
poa-n400-3 400 Porto-Alegre cluster 5 1.3 240 120 15 300 random
poa-n400-4 400 Porto-Alegre cluster 7 1.2 480 60 15 100 central
poa-n400-5 400 Porto-Alegre cluster 4 1.1 480 60 10 300 central
poa-n400-6 400 Porto-Alegre random - - 240 120 10 300 random

93

Table D.4: Detailed characteristics of the new instances with 600 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n600-1 600 Barcelona random-cluster 5 1.1 240 120 10 300 central
bar-n600-2 600 Barcelona random-cluster 8 0.9 480 120 10 100 central
bar-n600-3 600 Barcelona random-cluster 4 1.4 480 120 10 300 central
bar-n600-4 600 Barcelona cluster 8 1.3 240 60 15 300 random
bar-n600-5 600 Barcelona cluster 4 1.2 480 60 5 300 central
bar-n600-6 600 Barcelona random - - 480 60 15 100 random
bar-n600-7 600 Barcelona random - - 480 60 15 300 central
ber-n600-1 600 Berlin random-cluster 7 0.8 240 120 5 100 random
ber-n600-2 600 Berlin cluster 3 1.4 240 60 5 100 random
ber-n600-3 600 Berlin cluster 4 1.4 480 60 15 100 random
ber-n600-4 600 Berlin random - - 240 60 10 300 random
ber-n600-5 600 Berlin random - - 480 120 10 100 central
ber-n600-6 600 Berlin random - - 480 60 10 100 random
nyc-n600-1 600 New-York random - - 240 30 2 6 central
nyc-n600-2 600 New-York random - - 240 30 2 6 random
nyc-n600-3 600 New-York random - - 240 60 2 6 random
nyc-n600-4 600 New-York random - - 480 120 2 6 central
nyc-n600-5 600 New-York random - - 480 60 2 6 random
poa-n600-1 600 Porto-Alegre random-cluster 6 0.8 240 120 10 300 central
poa-n600-2 600 Porto-Alegre random-cluster 4 0.9 480 120 10 100 central
poa-n600-3 600 Porto-Alegre cluster 4 1.5 240 120 5 300 central
poa-n600-4 600 Porto-Alegre cluster 7 0.9 480 120 15 100 central
poa-n600-5 600 Porto-Alegre cluster 6 1.2 480 60 10 300 central
poa-n600-6 600 Porto-Alegre random - - 240 120 15 100 random
poa-n600-7 600 Porto-Alegre random - - 240 60 10 100 random

94

Table D.5: Detailed characteristics of the new instances with 800 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n800-1 800 Barcelona random-cluster 3 1.4 240 60 15 300 central
bar-n800-2 800 Barcelona random-cluster 6 0.7 480 120 10 100 central
bar-n800-3 800 Barcelona random-cluster 3 0.8 480 60 5 100 random
bar-n800-4 800 Barcelona cluster 4 1.6 480 120 10 100 central
bar-n800-5 800 Barcelona random - - 240 120 15 100 central
bar-n800-6 800 Barcelona random - - 240 120 15 300 random
bar-n800-7 800 Barcelona random - - 480 120 10 100 random
ber-n800-1 800 Berlin cluster 4 1.5 240 120 10 100 central
ber-n800-2 800 Berlin cluster 5 0.7 240 120 10 300 random
ber-n800-3 800 Berlin cluster 8 1.2 480 120 5 100 random
ber-n800-4 800 Berlin random - - 240 60 10 300 random
ber-n800-5 800 Berlin random - - 480 120 5 100 central
ber-n800-6 800 Berlin random - - 480 60 10 100 random
nyc-n800-1 800 New-York random - - 240 120 2 6 random
nyc-n800-2 800 New-York random - - 240 30 2 6 central
nyc-n800-3 800 New-York random - - 240 30 2 6 random
nyc-n800-4 800 New-York random - - 480 120 2 6 central
nyc-n800-5 800 New-York random - - 480 60 2 6 random
poa-n800-1 800 Porto-Alegre random-cluster 7 1.5 240 60 5 300 central
poa-n800-2 800 Porto-Alegre random-cluster 5 1.0 240 60 10 300 random
poa-n800-3 800 Porto-Alegre random-cluster 3 1.5 480 60 15 100 central
poa-n800-4 800 Porto-Alegre random-cluster 8 1.4 480 60 15 300 random
poa-n800-5 800 Porto-Alegre cluster 7 1.2 240 120 15 300 central
poa-n800-6 800 Porto-Alegre cluster 5 0.9 240 60 5 300 random
poa-n800-7 800 Porto-Alegre random - - 480 120 10 100 random

95

Table D.6: Detailed characteristics of the new instances with 1000 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n1000-1 1000 Barcelona random-cluster 7 1.3 480 60 15 300 random
bar-n1000-2 1000 Barcelona cluster 4 1.3 240 120 5 100 central
bar-n1000-3 1000 Barcelona cluster 7 1.1 240 60 15 100 central
bar-n1000-4 1000 Barcelona cluster 5 1.0 480 120 5 300 random
bar-n1000-5 1000 Barcelona random - - 480 120 5 100 central
bar-n1000-6 1000 Barcelona random - - 480 60 5 300 random
ber-n1000-1 1000 Berlin random-cluster 3 0.9 240 120 5 100 central
ber-n1000-2 1000 Berlin random-cluster 5 0.8 240 60 10 300 random
ber-n1000-3 1000 Berlin random-cluster 6 1.0 480 120 10 300 random
ber-n1000-4 1000 Berlin random-cluster 5 1.3 480 60 10 300 random
ber-n1000-5 1000 Berlin random - - 240 120 10 300 random
ber-n1000-6 1000 Berlin random - - 240 60 15 100 central
ber-n1000-7 1000 Berlin random - - 480 60 15 300 random
nyc-n1000-1 1000 New-York random - - 240 120 2 6 central
nyc-n1000-2 1000 New-York random - - 240 30 2 6 central
nyc-n1000-3 1000 New-York random - - 240 30 2 6 random
nyc-n1000-4 1000 New-York random - - 480 30 2 6 random
nyc-n1000-5 1000 New-York random - - 480 60 2 6 central
poa-n1000-1 1000 Porto-Alegre random-cluster 7 1.3 480 120 5 300 random
poa-n1000-2 1000 Porto-Alegre random-cluster 7 1.5 480 60 10 100 central
poa-n1000-3 1000 Porto-Alegre cluster 4 0.6 240 120 10 100 central
poa-n1000-4 1000 Porto-Alegre cluster 5 1.1 480 120 5 100 central
poa-n1000-5 1000 Porto-Alegre cluster 5 0.9 480 60 15 300 random
poa-n1000-6 1000 Porto-Alegre random - - 240 120 10 100 central
poa-n1000-7 1000 Porto-Alegre random - - 240 60 5 100 central

96

Table D.7: Detailed characteristics of the new instances with 1500 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n1500-1 1500 Barcelona random-cluster 6 1.2 240 60 5 300 random
bar-n1500-2 1500 Barcelona random-cluster 3 1.1 480 60 10 100 random
bar-n1500-3 1500 Barcelona cluster 5 1.2 240 60 10 300 central
bar-n1500-4 1500 Barcelona cluster 3 1.2 480 120 15 300 central
bar-n1500-5 1500 Barcelona random - - 240 120 5 100 random
bar-n1500-6 1500 Barcelona random - - 240 60 15 300 central
bar-n1500-7 1500 Barcelona random - - 480 60 5 300 central
ber-n1500-1 1500 Berlin random-cluster 5 0.9 240 120 10 100 random
ber-n1500-2 1500 Berlin cluster 7 1.6 480 120 15 100 random
ber-n1500-3 1500 Berlin cluster 3 1.5 480 60 15 100 random
ber-n1500-4 1500 Berlin cluster 7 0.7 480 60 5 300 central
ber-n1500-5 1500 Berlin random - - 240 60 10 300 central
ber-n1500-6 1500 Berlin random - - 480 120 15 100 central
ber-n1500-7 1500 Berlin random - - 480 120 15 300 central
nyc-n1500-1 1500 New-York random - - 240 120 2 6 central
nyc-n1500-2 1500 New-York random - - 240 30 2 6 central
nyc-n1500-3 1500 New-York random - - 240 60 2 6 central
nyc-n1500-4 1500 New-York random - - 480 30 2 6 random
nyc-n1500-5 1500 New-York random - - 480 60 2 6 random
poa-n1500-1 1500 Porto-Alegre random-cluster 4 0.8 240 120 10 100 random
poa-n1500-2 1500 Porto-Alegre random-cluster 3 0.6 240 60 15 100 random
poa-n1500-3 1500 Porto-Alegre random-cluster 5 1.1 480 120 10 100 random
poa-n1500-4 1500 Porto-Alegre cluster 5 1.0 240 60 5 300 random
poa-n1500-5 1500 Porto-Alegre cluster 6 0.7 480 60 5 300 central
poa-n1500-6 1500 Porto-Alegre random - - 240 120 10 300 central

97

Table D.8: Detailed characteristics of the new instances with 2000 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n2000-1 2000 Barcelona random-cluster 7 1.2 240 120 5 100 central
bar-n2000-2 2000 Barcelona random-cluster 5 1.3 240 120 5 100 random
bar-n2000-3 2000 Barcelona random-cluster 8 1.6 240 120 10 300 central
bar-n2000-4 2000 Barcelona random-cluster 5 1.4 480 120 10 300 central
bar-n2000-5 2000 Barcelona random-cluster 4 1.6 480 60 10 300 central
bar-n2000-6 2000 Barcelona cluster 6 1.4 240 60 15 300 central
bar-n2000-7 2000 Barcelona cluster 7 0.7 480 60 10 300 random
ber-n2000-1 2000 Berlin cluster 3 0.8 480 60 10 300 random
ber-n2000-2 2000 Berlin random - - 240 120 15 100 central
ber-n2000-3 2000 Berlin random - - 240 120 5 100 random
ber-n2000-4 2000 Berlin random - - 240 60 10 100 random
ber-n2000-5 2000 Berlin random - - 480 120 15 100 random
ber-n2000-6 2000 Berlin random - - 480 60 10 100 random
ber-n2000-7 2000 Berlin random - - 480 60 15 300 central
nyc-n2000-1 2000 New-York random - - 240 60 2 6 central
nyc-n2000-2 2000 New-York random - - 240 60 2 6 random
nyc-n2000-3 2000 New-York random - - 480 120 2 6 central
nyc-n2000-4 2000 New-York random - - 480 120 2 6 random
nyc-n2000-5 2000 New-York random - - 480 30 2 6 central
poa-n2000-1 2000 Porto-Alegre random-cluster 6 1.1 240 120 15 100 central
poa-n2000-2 2000 Porto-Alegre cluster 7 1.0 240 120 10 100 random
poa-n2000-3 2000 Porto-Alegre cluster 7 1.2 240 120 10 300 central
poa-n2000-4 2000 Porto-Alegre cluster 3 1.1 240 60 10 100 random
poa-n2000-5 2000 Porto-Alegre cluster 7 0.6 480 60 15 300 central
poa-n2000-6 2000 Porto-Alegre random - - 480 60 5 300 random

98

Table D.9: Detailed characteristics of the new instances with 2500 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n2500-1 2500 Barcelona cluster 8 1.0 480 60 10 100 central
bar-n2500-2 2500 Barcelona random - - 240 120 5 300 random
bar-n2500-3 2500 Barcelona random - - 480 120 5 100 central
bar-n2500-4 2500 Barcelona random - - 480 120 5 100 random
bar-n2500-5 2500 Barcelona random - - 480 60 15 100 central
bar-n2500-6 2500 Barcelona random - - 480 60 10 100 random
ber-n2500-1 2500 Berlin random-cluster 3 0.9 240 60 5 300 random
ber-n2500-2 2500 Berlin random-cluster 3 0.8 480 60 10 100 central
ber-n2500-3 2500 Berlin cluster 7 0.9 240 120 15 300 central
ber-n2500-4 2500 Berlin cluster 7 1.3 240 120 10 300 random
ber-n2500-5 2500 Berlin cluster 3 1.4 240 60 15 300 central
ber-n2500-6 2500 Berlin random - - 240 120 10 300 random
ber-n2500-7 2500 Berlin random - - 480 60 15 300 random
nyc-n2500-1 2500 New-York random - - 240 60 2 6 central
nyc-n2500-2 2500 New-York random - - 240 60 2 6 random
nyc-n2500-3 2500 New-York random - - 480 120 2 6 random
nyc-n2500-4 2500 New-York random - - 480 30 2 6 central
nyc-n2500-5 2500 New-York random - - 480 30 2 6 random
poa-n2500-1 2500 Porto-Alegre random-cluster 8 0.9 240 120 15 100 central
poa-n2500-2 2500 Porto-Alegre random-cluster 4 1.4 240 120 5 300 random
poa-n2500-3 2500 Porto-Alegre random-cluster 5 1.2 480 120 5 100 random
poa-n2500-4 2500 Porto-Alegre random-cluster 8 1.3 480 60 5 100 central
poa-n2500-5 2500 Porto-Alegre random-cluster 3 0.8 480 60 5 100 random
poa-n2500-6 2500 Porto-Alegre cluster 4 1.5 240 60 5 300 random
poa-n2500-7 2500 Porto-Alegre cluster 6 1.4 480 60 10 100 central

99

Table D.10: Detailed characteristics of the new instances with 3000 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n3000-1 3000 Barcelona random-cluster 3 0.9 480 120 15 100 random
bar-n3000-2 3000 Barcelona random-cluster 6 1.5 480 60 15 300 central
bar-n3000-3 3000 Barcelona cluster 8 1.1 480 120 5 300 random
bar-n3000-4 3000 Barcelona random - - 240 60 10 100 random
bar-n3000-5 3000 Barcelona random - - 240 60 5 300 central
bar-n3000-6 3000 Barcelona random - - 480 60 5 100 random
bar-n3000-7 3000 Barcelona random - - 480 60 5 300 random
ber-n3000-1 3000 Berlin random-cluster 8 1.3 240 120 10 100 central
ber-n3000-2 3000 Berlin random-cluster 4 1.0 240 120 5 300 central
ber-n3000-3 3000 Berlin random-cluster 4 1.5 480 120 15 300 central
ber-n3000-4 3000 Berlin cluster 8 0.7 240 60 10 300 central
ber-n3000-5 3000 Berlin cluster 6 1.6 480 120 15 100 random
ber-n3000-6 3000 Berlin cluster 6 1.4 480 60 10 300 central
ber-n3000-7 3000 Berlin random - - 240 60 15 100 central
nyc-n3000-1 3000 New-York random - - 240 120 2 6 central
nyc-n3000-2 3000 New-York random - - 240 60 2 6 random
nyc-n3000-3 3000 New-York random - - 480 120 2 6 random
nyc-n3000-4 3000 New-York random - - 480 30 2 6 central
nyc-n3000-5 3000 New-York random - - 480 60 2 6 central
poa-n3000-1 3000 Porto-Alegre random-cluster 4 1.4 240 60 15 100 central
poa-n3000-2 3000 Porto-Alegre random-cluster 5 1.3 480 120 15 100 random
poa-n3000-3 3000 Porto-Alegre cluster 4 1.1 240 120 15 100 central
poa-n3000-4 3000 Porto-Alegre cluster 3 0.6 480 60 15 100 random
poa-n3000-5 3000 Porto-Alegre random - - 240 120 5 100 random
poa-n3000-6 3000 Porto-Alegre random - - 240 60 5 300 central

100

Table D.11: Detailed characteristics of the new instances with 4000 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n4000-1 4000 Barcelona random-cluster 3 0.7 480 120 10 100 random
bar-n4000-2 4000 Barcelona random-cluster 7 1.5 480 120 5 300 central
bar-n4000-3 4000 Barcelona random-cluster 3 1.0 480 60 5 100 central
bar-n4000-4 4000 Barcelona cluster 3 1.4 240 60 5 100 central
bar-n4000-5 4000 Barcelona cluster 8 1.0 240 60 5 300 central
bar-n4000-6 4000 Barcelona random - - 480 120 10 100 central
ber-n4000-1 4000 Berlin random-cluster 6 1.0 240 60 15 300 central
ber-n4000-2 4000 Berlin cluster 3 1.6 240 60 15 300 random
ber-n4000-3 4000 Berlin cluster 3 1.2 480 120 10 100 random
ber-n4000-4 4000 Berlin cluster 3 1.3 480 120 15 300 central
ber-n4000-5 4000 Berlin cluster 6 0.8 480 60 10 100 central
ber-n4000-6 4000 Berlin random - - 240 120 5 100 central
ber-n4000-7 4000 Berlin random - - 480 120 5 300 random
nyc-n4000-1 4000 New-York random - - 240 30 2 6 central
nyc-n4000-2 4000 New-York random - - 240 60 2 6 central
nyc-n4000-3 4000 New-York random - - 240 60 2 6 random
nyc-n4000-4 4000 New-York random - - 480 120 2 6 central
nyc-n4000-5 4000 New-York random - - 480 30 2 6 random
poa-n4000-1 4000 Porto-Alegre random-cluster 5 1.5 240 60 15 100 central
poa-n4000-2 4000 Porto-Alegre random-cluster 5 1.5 240 60 15 300 random
poa-n4000-3 4000 Porto-Alegre cluster 5 0.9 480 60 15 300 random
poa-n4000-4 4000 Porto-Alegre random - - 240 120 10 300 random
poa-n4000-5 4000 Porto-Alegre random - - 240 60 10 100 random
poa-n4000-6 4000 Porto-Alegre random - - 240 60 15 300 central
poa-n4000-7 4000 Porto-Alegre random - - 480 120 5 100 random

101

Table D.12: Detailed characteristics of the new instances with 5000 locations

Name Size City Distribution Clusters Density Horizon Time Windows Service Time Capacities Depot
bar-n5000-1 5000 Barcelona cluster 3 0.8 240 60 5 100 random
bar-n5000-2 5000 Barcelona cluster 5 1.6 480 120 5 100 random
bar-n5000-3 5000 Barcelona random - - 240 120 5 100 central
bar-n5000-4 5000 Barcelona random - - 240 60 15 100 random
bar-n5000-5 5000 Barcelona random - - 240 60 10 300 central
bar-n5000-6 5000 Barcelona random - - 240 60 5 300 random
ber-n5000-1 5000 Berlin random-cluster 3 1.2 240 120 15 100 central
ber-n5000-2 5000 Berlin random-cluster 5 1.2 240 60 5 100 random
ber-n5000-3 5000 Berlin random-cluster 8 0.6 480 120 5 100 random
ber-n5000-4 5000 Berlin random-cluster 3 0.6 480 120 15 300 central
ber-n5000-5 5000 Berlin cluster 6 1.6 240 60 15 300 random
ber-n5000-6 5000 Berlin cluster 5 1.3 480 120 10 300 central
ber-n5000-7 5000 Berlin random - - 240 60 5 300 central
nyc-n5000-1 5000 New-York random - - 240 120 2 6 random
nyc-n5000-2 5000 New-York random - - 240 60 2 6 central
nyc-n5000-3 5000 New-York random - - 480 120 2 6 random
nyc-n5000-4 5000 New-York random - - 480 30 2 6 random
nyc-n5000-5 5000 New-York random - - 480 60 2 6 central
poa-n5000-1 5000 Porto-Alegre random-cluster 7 1.4 480 120 15 100 central
poa-n5000-2 5000 Porto-Alegre random-cluster 7 1.2 480 120 5 100 random
poa-n5000-3 5000 Porto-Alegre random-cluster 3 1.4 480 120 15 300 central
poa-n5000-4 5000 Porto-Alegre cluster 7 1.3 240 60 5 100 random
poa-n5000-5 5000 Porto-Alegre cluster 8 1.1 240 60 10 300 central
poa-n5000-6 5000 Porto-Alegre cluster 7 1.3 480 60 5 300 random
poa-n5000-7 5000 Porto-Alegre random - - 480 120 10 300 central

	Acknowledgement
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Vehicle Routing Problems
	1.2 Motivation
	1.3 Research Objectives and Contributions
	1.4 Overview

	2 Problem Description
	2.1 Instance Information
	2.2 Constraints and Objective Function
	2.3 Mathematical Programming Formulation

	3 Related Work
	3.1 Metaheuristics for Combinatorial Optimization Problems
	3.1.1 Iterated Local Search
	3.1.2 Large Neighborhood Search
	3.1.3 Matheuristics

	3.2 Methods for the Pickup and Delivery Problem with Time Windows
	3.2.1 Heuristic Methods
	3.2.2 Exact Methods
	3.2.3 Matheuristic Methods

	4 A Matheuristic Approach
	4.1 Greedy Solution Constructor
	4.2 Adaptive Guided Ejection Search
	4.3 Large Neighborhood Search
	4.3.1 Removal Heuristics
	4.3.1.1 Shaw Removal
	4.3.1.2 Random Removal
	4.3.1.3 Worst Removal

	4.3.2 Insertion by Regret Heuristic

	4.4 Set Partitioning Formulation
	4.5 Solution Acceptance
	4.6 Perturbation
	4.7 Efficient Computations

	5 Instances of the Problem
	5.1 Standard Instances
	5.2 Instances for Exact Solution Methods
	5.3 A Proposal to Generate New Instances
	5.3.1 Obtaining Addresses and Travel Times
	5.3.2 Method for Barcelona, Berlin, and Porto Alegre Instances
	5.3.2.1 Selecting Locations
	5.3.2.2 Pairing Locations
	5.3.2.3 Times and Scheduling Horizons
	5.3.2.4 Demands

	5.3.3 Method for Taxis of New York Instances
	5.3.3.1 Selecting Requests and Depots
	5.3.3.2 Times and Scheduling Horizons
	5.3.3.3 Demands

	5.3.4 Discussion of the New Benchmarks

	6 Computational Experiments
	6.1 Environment and Configurations
	6.2 Parameter Tuning
	6.3 Statistical Tests and Component Analysis
	6.3.1 Analysis of the Adaptive Guided Ejection Search
	6.3.2 Analysis of the Mathematical Programming Component

	6.4 Comparison with other Methods
	6.5 Extended Experiments
	6.5.1 Analysis of Components Applied to the New Instances

	6.6 Final Considerations

	7 Conclusions and Future Work
	References
	Appendix A — Detailed Results for the Standard Instances
	Appendix B — Detailed Results for the Exact Instances
	Appendix C — Detailed Results for the New Instances
	Appendix D — Characteristics of the New Instances

