
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JAIME ANDRÉS RIASCOS SALAS

Do I have a third arm? Towards a
Supernumerary Motor Imagery

Brain-Computer Interface in Virtual
Reality

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Dante Augusto Barone Couto

Porto Alegre
March 2019



CIP — CATALOGING-IN-PUBLICATION

Riascos Salas, Jaime Andrés

Do I have a third arm? Towards a Supernumerary Motor Im-
agery Brain-Computer Interface in Virtual Reality / Jaime Andrés
Riascos Salas. – Porto Alegre: PPGC da UFRGS, 2019.

85 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Dante Augusto Barone Couto.

1. Brain-Computer Interface. 2. Virtual Reality. 3. Rubber
Hand Illusion. 4. Cognitive Load. 5. Electroencephalography.
I. Barone Couto, Dante Augusto. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitor: Profª. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretor do Instituto de Informática: Prof. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Ni usted ni yo necesitamos presentación:
tenemos tres cosas en común: esta tierra, la vida y la muerte.

En eso somos semejantes, casi amigos.
Al menos, hay que vivir con esa ilusión de amistad

que es básica para la soliradidad humana.”
— GONZALO ARANGO

“...Yo digo que no hay quien crezca
más allá de lo que vale

—y el tonto que no lo sabe
es el que en zancos se arresta.

Y digo que el que se presta
para peón del veneno

es doble tonto y no quiero
ser bailarín de su fiesta...”

— SILVIO RODRIGUEZ

“...Levanta tu espada de la dignidad y sapiencia
carga tus derechos, dispara tu fusil de conciencia

ya que es la ignorancia la que hace a los pueblos pobres
y los hombres de rodillas son mas rodillas que hombres...”

— CANSERBERO

“If I have seen farther than others,
it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON
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lado, que la legión más noble de ángeles te cubra y que la gracia divina te acompañe siempre.

A las Mesdames Borba, que me ofrecieron, desde su propia visión y experiencia, lo
mejor de cada una de ellas; desde la comprensión fraternal, la altura intelectual y el conocimiento,
hasta la fuerza innata del ser uno mismo. Fueron fuente innagotable de inspiración y lucha, de
sincero afecto y alegría sinfín. Las llevo conmigo en mis más bonitos pensamientos y recuerdos
de esta tierra sureña.

Special thanks to FAURGS/Petrobras by my master degree studentship inside the An-
nelida research project (8147-7). Moreover, I would like to thanks to Dr. Lewis Chuang, from
the Max Planck Institute for Biological Cybernetics, who gave me the opportunity of doing an
internship in his lab. This internship was funded by the SFB TRR-161 (Work package C03).



ABSTRACT

Brain-Computer Interface (BCI) opened the possibility of communicating the human with sys-
tems and devices using brain signals. This area has inspired researchers to develop several
applications such as medical rehabilitation of disabled people, robotic prostheses, games, and
assisted virtual reality (VR) scenarios. In effect, VR is currently employed to improve the BCI’s
reliability through realistic and natural training and feedback. Motor imagery Brain-Computer
Interface (MI-BCI) is a paradigm widely used for controlling external devices by imagining
bodily movements. So far, nevertheless, MI-BCI has only used embodied limbs for the imag-
inary tasks, even though that psychology has conclusively demonstrated the existence of body
transfer illusions (rubber hand illusion).Thus, this thesis studies and explores the inclusion of
an imaginary third arm as a part of the control commands for MI-BCI while comparing the ef-
fectiveness of using the conventional arrows and fixation cross as training step (Graz condition)
against a first-person view of a human-like avatar performing the corresponding task (Hands
condition). Both conditions made in a VR scenario. Ten healthy subjects participated in a two-
session experiment involving open-close hand tasks (including a third arm that comes out from
the chest). The EEG analysis shows a strong power decrease in the sensory-motor areas for
the third arm task in both conditions. Furthermore, the offline classification results show that a
third arm can be effectively used as a control command (accuracy > 0.62%). Likewise, Hands
condition (67%) outperforms Graz condition (63%) significantly, suggesting that the realistic
scenario can reduce the abstractness of the third arm and improve the performance, however,
this condition induces a cognitive load. Finally, with this thesis, a door is open towards the cre-
ation of a supernumerary MI-BCI system with the inclusion of non-embodied motor imagery
tasks.

Keywords: Brain-Computer Interface. Virtual Reality. Rubber Hand Illusion. Cognitive Load.
Electroencephalography.



Eu tenho um terceiro braço? Em direção a interfaces supranumerárias
cérebro-computador de imaginação motora em realidade virtual.

RESUMO

As interfaces cérebro-computador (BCI) abriu a possibilidade de comunicar ao hómem com
sistemas e dispositivos usando sinais cerebrais. Essa area tem inspirado pesquisadores a de-
senvolver várias applicações, como reabilitação médica de pessoas com deficiência, próteses
robóticas, jogos e cenarios assitivos em Realidade Virtual (VR). De fato, VR está atualmente
sendo empregada para melhorar a confiabilidade do BCI por meio de treinamentos e feedback
realisticos e naturais. Imaginação motora Interface cérebro-computador (MI-BCI) é um pa-
radigma amplamente utilizado para controlar dispositivos externos, imaginando movimentos
corporais. Até agora, no entanto, o MI-BCI usou apenas membros incorporados para as tare-
fas imaginárias, mesmo que a psicologia tenha demonstrado conclusivamente a existência de
ilusões de transferência do corpo (ilusão mão de borracha). Assim, esta tese estuda e explora
a inclusão de um terceiro braço imaginário como parte dos comandos de controle do MI-BCI,
comparando a eficácia do uso das setas convencionais e da cruz de fixação como etapa de trei-
namento (condição Graz) contra uma visão em primeira pessoa de um avatar semelhante ao
humano executando a tarefa correspondente (condição Hands). Ambas condições feitas num
cenário de VR. Dez indivíduos saudáveis participaram de um experimento de duas sessões en-
volvendo tarefas de mão aberta. A análise do EEG mostra uma forte queda de potência nas
áreas sensório-motoras para a tarefa do terceiro braço em ambas as condições. Além disso, os
resultados da classificação off-line mostram que um terceiro braço pode ser efetivamente usado
como um comando de controle (accuracia > 0.62%) Da mesma forma, a condição Hands (67%)
supera significativamente a condição Graz (63%), sugerindo que o cenário realista pode reduzir
a abstração do terceiro braço e melhorar o perfomance, no entanto, esta condição induz uma
carga cognitiva. Finalmente, com esta tese, abre-se uma porta para a criação de um sistema
MI-BCI supranumerário com a inclusão de tarefas de imaginação motora não incorporadas.

Palavras-chave: Interface Cérebro-Máquina, Realidade Virtual, Ilusão Mão de Borracha, Carga
Cognitiva, Eletroencefalografia.
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1 INTRODUCTION

1.1 Scope

This master thesis focuses on Brain-Computer Interface (BCI), mainly, towards the de-
velopment of a Motor Imagery (MI) BCI system that includes an imaginary third arm as a con-
trol command. In order to explore the influence of the third arm approach in the BCI system,
this work uses two training conditions in Virtual Reality (VR): the traditional Graz paradigm
and a realistic human-like avatar. For both conditions, this thesis comprises an exploration of
the feature extraction and classification methods, cognitive load measures, and a spectral EEG
analysis.

1.2 Motivation

Brain-Computer Interface is the technology that translates the brain signal into an output
command for controlling machines (a complete definition can be found in the next chapter). It
has recently been a hot topic in research due to two aspects: a) Rehabilitation and interaction,
opening countless opportunities for impaired people and alternative user interfaces; and b) BCI
pipeline, which includes several research areas such as Signal Processing, Pattern Recognition,
Machine Learning, Human Factors, Psychology, among others.

Indeed, the importance of this emergent area can be visualized by the creation and ex-
ecution of the research project “BNCI Horizon 2020: The Future of Brain-Neural Computer
Interaction” by the European Commission (EC). This project comprises 12 European partners
with a solid background in BCI. Its primary goal is to make a road-map and sketch up the future
of BCI for the next ten years or more [Graz 2015].

Meanwhile, in Brazil, efforts in such directions have been made through the National In-
stitute for Brain-Machine Interfaces (INCEMAQ) supported by the National Institutes Program
of Science and Technology of the National Council for Scientific and Technological Devel-
opment CNPq/MCT [AASDAP 2016]. Its main aim is to establish and increase the scientific
research in BCI, involving around 16 Universities from 9 states of the country. Unfortunately,
the research on BCI in the Rio Grande do Sul state is still beginning, and there is not an estab-
lished research group working in this area [CNPq 2016]. For this reason, it is essential that the
Federal University of Rio Grande do Sul (UFRGS), and its Institute of Informatics begins for-
mally with BCI research. Therefore, this work is addressed to contribute inside BCI research,
exploring the importance of a supernumerary BCI system, which could be used as a control
interface for an exoskeleton or a customized avatar in a VR application.

1.3 Problem Statement

Despite BCI being a promissory and useful technology, there are still several challenges
to be faced. Chavarriaga et al. [Chavarriaga et al. 2017] discuss concrete research avenues
and guidelines to overcome common pitfalls in BCI. That work is the outcome of a meeting
held at the workshop "What’s wrong with us? Roadblocks and pitfalls in designing BCI appli-



15

cations." They summarize four main topics that influence any closed-loop BCI system: a)End
Users; b)Feedback and user training; c)Signal processing and decoding; d)Performance metrics
and reporting. Meanwhile, in this document three categories are highlighted which represent
challenges inside BCI:

• Hardware challenges: The reliability of the recording devices assures the successfulness
of the BCI application. Such devices should have high transfer rates and signal-to-noise-
ratio (SNR) so that the recorded signal can be accurate and relevant to the phenomena
to be studied. Likewise, the measurement system should be as less invasive and portable
as possible in order to guarantee the safety and comfort of the user. Unfortunately, the
development of equipment that reach these requirements is often expensive [Abdulkader,
Atia and Mostafa 2015].

• Software challenges: The software development for BCI application is the core of the
research activities. Because it includes different stages such as signal processing, ex-
tracting and classification of features. Here, the challenge is to keep the enough relevant
information to identify and subsequently classify the mental state of the user, taking into
account that the noise could come from both the electronic device (line noise) or artifacts
(brain activity unrelated to the stimulus). Moreover, the software should have short time
processing and high accuracy rates in the classification in order to give a right and fast
feedback to the user [Lotte 2014].

• Application challenges: The design of the application or interface that the user will
use should follow several criteria based on human factors and usability. Indeed, Lotte et
al. [Lotte et al. 2018] recently highlighted the importance of thinking on the psychological
factors (cognitive load, user modeling, etc.) of the user during the application. In effect,
the training task should include critical feedback so that the user can easily understand the
action to be executed and improving thus its performance. However, it is currently hard
to choose the right feedback presentation, and it should be a motivating and engaging
environment, besides natural and realistic.

This thesis addresses the application and software challenges. In the first one, the thesis
proposes the inclusion of a imaginary third arm, as a control command, in a Motor Imagery
Brain-Computer Interface (MI-BCI) system. Such approach is evaluated using two training
conditions in VR: traditional arrows and cross fixation (Graz), and a human-like avatar. Fur-
thermore, this thesis uses a framework to explore and evaluate the feature extraction and classi-
fication steps of the proposed application in both training conditions.

1.4 Objectives and Approach

The main objective of this thesis is to investigate the possibility of including an imagi-
nary third arm inside an MI-BCI system. In order to reach this aim, the next specific tasks are
proposed:

1. Review the state-of-art of methods, approaches and theoretical terms inside BCI.
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2. Create two training scenarios in Virtual Reality.

3. Record EEG data in a BCI paradigm.

4. Create a methodological framework to study and explore the window time and frequency
bands in three different classifiers.

5. Analyse the EEG patterns associated with Motor Imagery activity.

6. Evaluate the performance of the classifiers for separating the imaginary third arm from
the other imaginary task and resting.

7. Compare the EEG activity and classification performance in the two training conditions.

8. Study the user’s cognitive load caused by the proposed training conditions.

1.5 Contributions

In addition to the dataset and codes that go to be available online, the scientific contri-
butions of this thesis can be sumarized as follow:

1. EEG patterns of motor imagery activity (ERD/ERS) were found when the users per-
formed an imagery task of a hand movement of a third arm emerging from the chest.

2. Such imaginary third hand was successfully classified from other imaginary tasks (left and
right hand), and resting state, advancing the findings reported by Bashford and Mehring
[Bashford and Mehring 2016].

3. The results (see Table 2.1) suggest that the classification distinguishes the third arm from
the left hand and the resting state conditions with higher accuracy rates than it does from
the right hand. This seems to be related to handedness.

4. The thesis goes further than the previous findings done by Skola and Liarnokapis [Skola
and Liarokapis 2018] because all comparisons were made in VR, eliminating the bias that
there exist when the realistic human-like VR scene is compared against the Graz parading
made in a monitor-based presentation.

1.6 Thesis Outline

This document has the follow structure for the remaining chapters:

• Chapter 2 summarizes the basic concepts concerning to Electroencephalography (EEG)
and Brain-Computer Interface (BCI), as well as Virtual Reality (VR) technology, cogni-
tive load and body transfer illusion.

• Chapter 3 deals with discussion of the related works regarding Motor Imagery Brain-
Computer Interface, BCI applications that use VR scenarios and how BCI have been used
to study the third arm illusion.
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• Chapter 4 describes the materials and procedures used for recording the EEG as well as
the methods employed for the offline analysis.

• Chapter 5 presents the results obtained from the offline analysis of the EEG data.

• Chapter 6 also presents the results of the exploratory study of the features and classifiers
used for the BCI loop.

• Chapter 7 describes the cognitive load studies and the questionnaire answers.

• Chapter 8 sums up the final remarks, limitations, contributions and future works that can
be done.
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2 BACKGROUND

This chapter introduces the concepts, methods, and terminology necessary to understand
the rest of the document and the thesis’s contributions.

2.1 Electroencephalography

The human brain is an outstanding system. Our understanding of how it works has
inspired scientists and engineers to create machines [Fiorini 2017]. In effect, neurons -the
fundamental units in the brain- use both chemical and electrical signals for transmitting infor-
mation [Morrison 2018]; a typical neuron has three fundamental parts: soma (or cell body),
axon and dendrites. In the soma, the nucleus and most of the neuron’s organelles are placed.
The axon is a “wire" that transports the electrical signals (known as action potentials) to other
cells; its extension could reach long distances, i.e., from the spinal cord to the muscle cells in
the feet. Finally, the dendrites are a densely ramified extension of the soma; they are responsi-
ble for receiving signals from other neurons. The connection between neurons for transmitting
information is called a synapse [Reece 2016]. The figure 2.1 shows a simplified version of a
neuron with the mentioned parts.

Figure 2.1 – A simplified version of the neuron with its fundamental parts

Source: https://goo.gl/t298dC

The electrical activity of a resting neuron is around -70 millivolts (mV), depending on
the interaction with other neurons, it could be more or less negative [Morrison 2018]. The con-
tributors of these measurable signals could be [Cognition and Unit 2009]: 1) Action potentials
traveling along the axons; 2) currents through the synaptic connections, and 3) dendrite’s cur-
rents from synapses to the soma. The currents produced by a vast number of neurons reach the
scalp surface creating voltage differences that can be measured using electrodes placed on the
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skin surface of the head. This technique is known as Electroencephalography (EEG) [Bronzino
1970]. Hans Berger, a German psychiatrist, made the first attempts for recording EEG in hu-
mans in 1924 [EK and LC 2016].

2.1.1 10-20 international system

The brain has been divided into several regions to facilitate its study and discovering
main functions associated with the corresponding brain area. Furthermore, the brain is separated
by two hemispheres (left and right) [Morrison 2018]. The figure 2.2 shows the main brain
divisions (Frontal, Temporal, Parietal and Occipital lobe); and the two hemispheres (Left and
Right).

Figure 2.2 – Brain regions from two views.

Source: [Lim et al. 2018]

Such division is an essential key for consolidating a standardized system for EEG elec-
trode placement. In effect, the International Federation of Societies for Electroencephalography
and Clinical Neurophysiology created the 10-20 system [The Ten Twenty Electrode System: In-
ternational Federation of Societies for Electroencephalography and Clinical Neurophysiology
1961]. It consists of an array of electrodes whose positions follow specific anatomical land-
marks on the head. Each electrode is separated by 10% and 20% distances. The figure 2.3
shows the 10-20 system and in each electrode of this array, the primary function associated
with the brain area. An interesting aspect regarding this system is its nomenclature, the letter
comes mainly from the brain lobes (excepting the central part), and the number from the hemi-
sphere (odd numbers for left and even for right), e.g., an electrode located at the temporal lobe
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and left hemisphere is named as T3; whereas, one at frontal lobe and right hemisphere is as F4.
The electrodes on the central axis of the head take the letter "z" as the number.

Figure 2.3 – 10-20 electrode position with some of its main brain function for each electrode.

Source: adapted from https://goo.gl/iA59Qx

2.1.2 Brain neural oscillations

The EEG signals are characterized by its neural oscillations rhythms that can be dived
into five bands or spectrums that are used to study some cognitive states [Abo-Zahhad Sabah
Mohammed Ahmed 2015, Herrmann et al. 2016]:

• Gamma [γ]: These fast waves (more than 30Hz up to 200Hz) are usually studied during
conscious perception. Typically, studying these signals is hard due to the high amount
of artifacts caused by the muscle movements and its low voltage amplitude (< 2µV ).
Gamma oscillations are related to attention information processing, working and long-
term memory. Also, gamma rhythms have played an important role in psychiatric disor-
ders such as epilepsy, schizophrenia and Alzheimer’s disease [Amo et al. 2017,Herrmann
and Demiralp 2005].
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• Beta [β ]: beta oscillations range between 12 and 30 Hz, although it is common to divide
the band into low beta (12 to 20Hz) and high beta (20 to 30hz). The modulation of
this electrical activity has mainly been associated with motor and cognitive processes,
decision making and sensorimotor interaction. These rhythms are primordially found at
frontal and central regions. Beta waves have an amplitude of < 2µV [Kropotov 2016,
Neuper and Pfurtscheller 2001].

• Alpha [α]: alpha oscillations can be observed during sensory stimulation, in a frequency
range from 8 to 12Hz. Alpha rhythms play a fundamental role for cognitive processing,
attention, inhibition (self-regulation), and psychological factors such as cognitive load
and task engagement, as well as an indicator of general intelligence (g factor). The alpha
rhythms are frequently found at parietal and frontal lobes with an amplitude of 10 and
20µV [Bazanova and Vernon 2014, Malik and Amin 2017].

• Theta [θ ]: theta waves are associated with daydreaming, memory processes, and sleep.
Since the Hippo-campus (a region responsible for memory functions) exhibits theta oscil-
lations for communicating with the frontal cortex, theta rhythms are involved in memory
encoding and retrieval. Interesting, if the user is not performing any attention or cog-
nitive activity, the exhibition of theta oscillations can be related to brain disorders, de-
pression, and stress. Whereas, theta waves present benefits in creativity, relaxation and
intuition [Herrmann et al. 2016, Abhang, Gawali and Mehrotra 2016]. Theta signals are
found in a frequency range of 4-8 Hz with an amplitude of < 100µV .

• Delta [δ ]: delta oscillations characterize to be a high-amplitude (75 to 200µV ) waves
with less than 4Hz. These brain signals are associated with deep sleep stages and cortical
plasticity. Also, delta rhythms play an important role in event-related studies because the
P300 (peak amplitude after 300ms the stimuli onset) are mainly composed of delta and
theta oscillations [Harmony 2013, Guntekin and Basar 2016].

Figure 2.4 shows the frequency bands described above. This thesis mainly works with
beta and alpha oscillations.

2.1.3 EEG applications

Since that EEG is a "window" regarding the mental state of the user (either human or
animal) and the ongoing processes of the brain during the performing of an activity, it has been
widely used in several applications such as:

• Clinical applications: the EEG data is used in medical applications, namely, the diagnosis
of neurophysiological disorders such as epilepsy, dementia, autism; head injuries such as
brain tumor and strokes; finally, sleep disorders and anesthesia monitoring in surgical
interventions (for an extensive review see [Siuly, Li and Zhang 2016]).
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Figure 2.4 – Frequency bands. a) raw signal; b) Gamma (30-100+ Hz); c) Beta (12-30 Hz); d) Alpha
(8-12 Hz); e) Theta (4-7 Hz); f) Delta (0-4 Hz).

Source: https://goo.gl/TfMQ9o

• Psychology and neuroscience: It is evident the link between neuroscience and psychology
with EEG. This technique has been widely used for understanding brain functions such
as memory, emotion, perception, vision, motor imagery, language among others. Exper-
imental approaches such as EEG have been fundamental for brain research due to the
possibility of monitoring real-time brain activity in front of different situations [Dickter
2014].

• Brain-Computer Interface: EEG, in comparison of other recording techniques, is non-
invasive, portable and relatively cheap. These features enable the use of electrical brain
activity for communicating and controlling external systems (computers, robotic prosthe-
sis, games). This application is known as Brain-Computer Interface (BCI). The next part
of this thesis focuses on BCI.

2.2 Brain-Computer Interface

Throughout the last decades, human beings have sought different alternatives to com-
municate with machines or systems. In this context, Brain-Computer Interface (BCI) plays an
important role, motivated by overcoming the difficulties experienced by impaired people [Neu-
per and Pfurtscheller 2010] or, just by developing a non-mechanical user interaction for robotic
prostheses, games and assisted virtual reality (VR) scenarios [Gert et al. 2011] [Brunner et al.
2011]. BCI is the technology that enables a bodiless communication with machines or devices;



23

this is done using the translation of brain signals elicited during a specific task into command
outputs.

Depending on the nature of such task, BCI is divided into passive, active and reactive
[Zander and Kothe 2011]: passive systems use signals that arise without voluntary control; it
is used fundamentally to asses mental states and enhancing the human-computer interaction
[Zander et al. 2010]; active BCI works with the self-induced brain activity produced by the
user, independently of external events; such activity is used as a control signal [Zander et al.
2010]; and, finally, reactive task relies on the signals elicited by the reaction to external stimuli,
these signals could be used for controlling an application too [Donchin, Spencer and Wijesinghe
2000]. Furthermore, BCI has two modes of operation: synchronous, where a cue is shown to
the user for enhancing the elicit of brain signals to control the device; asynchronous, no cue
stimulus is presented and the user has to generate the mental state for himself to control the
device. This thesis studies an active and synchronous BCI system.

A typical structure of a BCI system consist of five main stages: signal acquisition, signal
processing, feature extraction, classification, and feedback application.

2.2.1 Signal acquisition

BCI relies on the brain signals recorded from the user to decode the mental states into
output commands. Thus, several techniques have been used in order to collect this data; they
differ mainly in aspects such as kind of variable (electrical, magnetic, metabolic), temporal and
spatial resolution, the level of invasiveness and its portability. Table 2.1 shows the most repre-
sentative recording methods inside the BCI literature [Nicolas-Alonso and Gomez-Gil 2012]:

Table 2.1 – The most representative data recording techniques for BCI.
Recording method Activity measured Temporal resolution Spatial resolution Risk Portability

Electroencephalography (EEG) Electrical ∼0.05s ∼10mm Non-invasive Portable
Electrocorticography (ECoG) Electrical ∼0.003s ∼1mm Invasive Portable

Magnetoencephalography (MEG) Magnetic ∼0.05s ∼5mm Non-invasive Non-portable
Functional Magnetic Resonance Imaging (fMRI) Metabolic ∼1s ∼1mm Non-invasive Non-portable

Source: adapated from [Nicolas-Alonso and Gomez-Gil 2012]

This thesis works with EEG as a recording method; therefore, the next sections focus on
this technique.

2.2.2 Signal processing

Usually, the EEG data has artifacts from the eye or muscle movement, heartbeat or line
noise (frequency 60hz). In order to enhance the signal-to-noise ratio (proportion of useful sig-
nal over noisy signal) of the brain signal, several digital processing techniques are employed,
namely, digital filters such as Finite Impulse Response (FIR) and Infinite Impulse Response
(IIR) filters, or sub-sampling frequency methods as well as re-reference signals (spatial meth-
ods) or normalization [Bashashati et al. 2007]. Likewise, statistical approaches can be used
for cleaning the data such as Independent Component Analysis (ICA) or Principal Component
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Analysis (PCA). Although these methods are also used as feature extraction and dimensional
reduction technique.

2.2.3 Feature extraction

This step aims to transform the filtered EEG data into a structure of small elements (fea-
tures) that retain the meaningful information of the brain activity, i.e., removing the irrelevant
data meanwhile the most representative is retained. This step is fundamental for BCI because
EEG signals are high-dimensional data so reducing the original dimension into a feature space
can enhance the classification [Nicolas-Alonso and Gomez-Gil 2012]. There are three main
sorts of information to be extracted from the EEG data [Lotte 2014]: a) spatial data, which
describes the place of the headset where the signal activity occurred; b) spectral data, which de-
scribes the power of some specific frequency bands; and c) temporal data, which consist of the
variation of signal values over time. The most relevant methods for feature extraction are Com-
mon Spatial Patterns (CSP), Fast Fourier Transform (FFT), Band Powers(BP), Power Spectral
Density (PSD), Wavelet Decomposition (WD), among others [Ramadan and Vasilakos 2017].

2.2.4 Classification

The feature vector (obtained in the previous step) is the input to the classifier in order to
assign a class to a set of features that allows identifying the mental state of the user. Initially,
a set of labeled observation is used to create a classification model. Subsequently, the model
is used to classify new data. The most common classification algorithms are linear classifiers,
neural networks, Bayesian classifiers, and nearest neighbor classifier [Lotte et al. 2007]. One
indicator of the BCI’s successfulness relies on the accuracy of the classifiers used, so the choice
of the classification technique should be based on the feature type and number of mental states
(classes).

2.2.5 Feedback application

In a closed-loop BCI system (known as online BCI), the feedback application is respon-
sible for giving the user a notion of how well he or she is performing the mental task. Such
applications could be a speller program, a robotic prosthesis, a game or merely a loading bar
showing the user’s performance. The application uses the outcome from the classifier to per-
form the specific task or event associated with the user’s mental state. Meanwhile, in an offline
BCI, the users do not directly control anything, the brain activity is recorded for subsequent
analysis, but they are receiving a stimulus that helps to elicit the brain activities in order to
increase the classification performance [Nicolas-Alonso and Gomez-Gil 2012]. Furthermore,
the feedback/stimulus continuously sends markers to BCI’s data recordings in order to label
specific points in the experiment, mainly when a stimulus is presented [Siuly, Li and Zhang
2016].

The choice of the feature extraction method depends strictly on the neuromechanism
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used by the BCI. The next section describes the typical neurophysiological patterns used for
creating BCI.

2.2.6 Neurophysiological patterns for BCI

The brain can produce different neurophysiological patterns as the result of cognitive
responses. These patterns are characterized by their latency (time-locked), voltage amplitude
(phase-locked) and spatiotemporal distribution to internal or external stimuli and cognitive re-
sponses of the brain. The choice of the neurophysiological phenomena depends entirely on
the task to be performed by the BCI system. Indeed, it is a crucial decision because the BCI
pipeline would be designed in function of that. BCI systems are classified as either exogenous
or endogenous in function of the control signal (neurophysiological patterns) to be used. Such
distinction is explained [Siuly, Li and Zhang 2016, Wikidot 2008]:

2.2.6.1 Exogenous BCI

Exogenous BCI is based on the neuron activity elicited by an external stimulus, which
could be either visual or auditory [Ramadan and Vasilakos 2017]. In effect, this represents its
main advantage because the users do not require extensive training to elicit the control signals
and recording this activity only one EEG channel is enough. Two types of brain activity are the
most known in exogenous BCI: visual evoked potentials (VEPs) and P300 evoked potentials.

VEPs are characterized by the signal modulation in the visual cortex elicited by a visual
stimulus. The amplitude of the signal increases as much as the stimulus is closer to the central
visual field [Wang et al. 2006]. For BCI, steady-state VEPs (SSVEPs) are mainly used because
their amplitude and phase over remain nearly constant over long time [Ramadan and Vasilakos
2017]. SSVEPs uses high frequencies (> 6Hz) stimulus to elicit brain responses at the same
frequency (harmonics and subharmonics), mainly in the occipital-parietal regions. BCI based
on SSVEPs uses the subject’s eye-gaze to a target for identifying the user’s intentions.

In the other hand, P300 evoked potentials are brain responses (positive peaks) elicited
around 300 ms after the onset of infrequent stimulus. Despite that the P300 does not necessarily
require user training, the user could get used to the oddball stimuli, and it has been demonstrated
that the less frequent the stimulus the much larger the amplitude of the peaks [Polich, Ellerson
and Cohen 1996]. The typical application of SSVEPs and P300 in BCI are the speller systems,
where a display shows a matrix of letters, numbers or symbols that represent commands, and
the users fixate to the desired target so that the BCI system, after a signal processing, can decode
their intention [Zhao, Li and Li 2015, Mugler et al. 2010].

2.2.6.2 Endogenous BCI

Contrary to exogenous BCI, endogenous BCI uses self-regulation brain rhythms without
following any external stimuli. One of the control signal most used in this type of BCI system is
the sensorimotor rhythms. These oscillations are characterized by temporal, spectral and spatial
changes in the Mu (7-12 Hz) and Beta bands (13-30 Hz) at the sensorimotor cortex (see the mid-
dle of figure 2.5) [Leeb et al. 2006]. The cortical rhythms are identified by two type of activity:
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the attenuation (event-related desynchronization, ERD) or the enhancement (event-related syn-
chronization, ERS) of the power on these bands [Graimann and Pfurtscheller 2006] in relation
to the baseline activity. Such modulation could be generated by sensory stimulation, processing
cognitive information regarding the production of motor behavior, and mental imagery of motor
actions (motor imagery) [Pfurtscheller and Neuper 2001] .

Motor imagery (MI) consists of the mental rehearsal of a motor action without actually
perform any movement. This mental simulation actives the same cortical areas that the real
movements do [Jeannerod 1995]. Figure 2.5 describes the time–frequency representation of
ERS/ERD patterns at right hemisphere and left hemisphere for right hand and foot motor im-
agery (top and bottom respectively) over time. The hands movement presents a strong ERD
activity at C3 while ERS is prominent at Cz, both in mu and beta bands. In the other side,
the foot movement shows a weaker ERS activity at C3, whereas at Cz and C4 there is a syn-
chronization at lower beta and alpha (around 10 Hz) bands simultaneously with a desynchro-
nization in mu band. Motor imagery is an essential concept inside BCI because the users, with
training, can voluntary elicit the sensorimotor patterns to be used as a control signal in a BCI
system [Pfurtscheller and Neuper 2001].

Despite MI being a fundamental constructor of any healthy person, i.e., that all humans
could have the capacity of imagining and planning motor activities, some people could face
limitations to perform imaginary activities. In such vein, several questionnaires were made in
order to subjectively assess the individual ability for imagining motor tasks such as the Vivid-
ness of Movement Imagery Questionnaire (VMIQ) [Roberts et al. 2008] or Movement Imagery
Questionnaire (MIQ) [Atienza, Balaguer and Garcia-Merita 1994]. The MIQ-3, a recent ver-
sion of the MIQ, and in different of the VMIQ, assesses three kinds of imagery: internal visual
imagery, external visual imagery, and kinesthetic imagery [Williams et al. 2012]. This survey
is a 12-item questionnaire to asses the capacity to image four simple movements: a knee lift,
jump, arm movement, and waist bend. The MIQ-3 demonstrated excellent psychometric prop-
erties, internal reliability, and predictive validity. Therefore, this thesis uses an adaptation of the
MIQ-3 questionnaire to the Portuguese language [Mendes et al. 2016] before the experiment in
order to asses the user’s ability to perform the imaginary task (see Appendix A).

Finally, the ERD/ERS maps presented in the Figure 2.5 can be produced in different
ways, mainly using the Band Power (BP) method, Hilbert transformation, Inter-trial variance
method, and Event-related spectral perturbation (ERSP) [Pfurtscheller and Silva 1999]. This
thesis uses the last method to study the ERD/ERS signals. The ERSP [Makeig 1993, Grand-
champ and Delorme 2011] is a generalization of the ERD/ERS activity, which measures the
dynamic power changes of the EEG frequency bands relatives to a stimuli onset. Its computa-
tion consist in calculate the average power spectrum across the trials for sliding time windows
around at time t (namely event-related spectrum, ers). So the ers for a specific frequency f and
time point t is defined as follows:

ers( f , t) =
1
n

n

∑
k=1
|Fk( f , t)|2 (2.1)

Where n is the number of trials, Fk( f , t) is the spectral estimation of k− th trial at fre-
quency f and time t. The spectral estimation can be computed using either fast Fourier trans-
form or Wavelet transform [Grandchamp and Delorme 2011]. ERSP measures the changes of
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the ERS/ERD activity as a function of the baseline, so each ers value at each time-frequency
point per frequency band is divided by the average spectral power of the pre-stimulus baseline
(µB( f )) at the same frequency. Thus, the log-transformed ERSP is derived by:

ERSPlog( f , t) = 10log10(
ers( f , t)
µB( f )

) (2.2)

Thus, it is possible to obtain information regarding how synchronized the response is
in comparison with the baseline at the same frequency. ERSP positive values represent ERS
activity, whereas negative values ERD. This thesis uses ERSP to measure the ERD/ERS activity
evoked by mental imagery tasks.

Figure 2.5 – Time-frequency maps (ERD/ERS) of the sensorymotor electrodes (C3, C4, Cz) during
motor imagery tasks (rigth hand and foot).

Source: adapted from [Leeb et al. 2006]

More technical details about the methods and functions used in this thesis for the offline
BCI system can be found in the chapter 4.
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2.3 Virtual reality

Recently, immersive technologies have played an essential role in science, mainly in
Human-Computer Interaction (HCI), where the user can experience alternative ways of com-
municating with machines. Among these technologies, Virtual Reality (VR) is one of the most
promising technology, giving the users a sensation of full immersion in virtual world envi-
ronments. VR creates a visual, auditory, and sometimes haptical, simulated experience of the
physical world using a Head-Mounted display (HMD). This apparatus has an in-built high-
definition screen in front of the eyes and several inertial sensors for tracking head movements
to give the sensation of a first view. The primary objective behind this technology is to offer a
sensory vividness of the virtual environment as closely as possible of a real one [Bohil, Alicea
and Biocca 2011]. Figure 2.6 shows a traditional set-up of a VR experiment.

Figure 2.6 – Virtual reality set-up. a) the user wearing the HMD; b) an overview of the full VR scene;
c) user’s view in the VR world.

Source: adapted from [Pan et al. 2016]

Many applications have been made using VR, from health-care for rehabilitation and
training [Schultheis and Rizzo 2001], up to education, data visualization and serious games
[Gamito et al. 2017, Donalek et al. 2014]. Likewise, VR represents a powerful tool with
graphical possibilities to improve the BCI feedback presentation. VR has successfully been used
in different BCI scenarios. A. Lecuyer. et. al [Lecuyer et al. 2008] discuss some applications
done using BCI in VR, namely MindBalance [Lalor et al. 2005], Simulation of wheelchair
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control [Leeb et al. 2007], and ’use the force’ [Lotte, Renard and Lécuyer 2008]. These studies,
as the authors highlighted, show the successfulness of VR using BCI. The next chapter discusses
related works associated to the use of VR in BCI systems. This thesis uses a VR scenario for
the training BCI. Chapter 4 details the experimental setup of the VR environment.

2.4 Body transfer illusion

Figure 2.7 – Rubber Hand Illusion (RHI) experiment. Left: experiment setup before the stimulus.
Right: Both rubber hand and real hand are stroked synchronously and the user has the illusion of the
rubber hand is part of the body.

Source: https://goo.gl/SJvutb

The human body is seen as the boundary between the external world and ourselves. One
important concept in psychology is the sense of body ownership that human beings have, i.e.
the usual experience that "my body" belongs to me [Gallagher 2000, Ferri et al. 2013]. Such
experience relies on a multisensory integration of visual, touch and proprioception (body parts
position) information.

However, an interesting experiment has captured the attention of the scientific commu-
nity, mainly psychologists and neuroscientists. Botvinick and Cohen [Botvinick and Cohen
1998] found that subjects, after synchronous visual-tactile stimulation of a rubber hand and
their hand, can feel the illusion of such artificial as part of the user’s body. Figure 2.7 shows the
setup of the experiment, the so-called Rubber Hand Illusion (RHI). Since then, RHI has widely
been studied for researchers using different approaches such as a robotic hand [Romano et al.
2015], BCI system [Perez-Marcos, Slater and Sanchez-Vives 2009], and VR scenario [Slater
et al. 2008]. Indeed, VR is seen as a powerful tool to create a body illusion if appropriate
multisensory correlations are provided [Slater et al. 2008].

This thesis aims to create a body transfer illusion, like the RHI, using a third arm in VR
in order to study the implementation of a supernumerary BCI system.
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2.5 Cognitive load

Finally, an important concept related to how hard the task is for the user is described
in this section. Cognitive load describes the mental resources used by a human operator for
performing a particular task [Sweller 2011]. In effect, Working Memory (WM) is responsible
for briefly maintaining sensory information and processing it in order to perform cognitive tasks
(making decisions, reading, making logical operations) [Cowan 2008]. Since that Working
Memory Capacity (WMC) is limited, the amount of information to be processed can affect the
user’s performance; therefore, it is mandatory to include the cognitive load in the development
of task or interfaces.

Several researchers have suggested different approaches to measure the cognitive load.
They can be divided into subjective and objective measures [Charles and Nixon 2019].

2.5.1 Subjective measures

The most typical subjective technique to measure cognitive load is the NASA-TLX (Task
Load Index) [Hart and Stavenland 1988], which provides a six-dimensional rate of workload to
finally obtain an overall workload. These dimensions consist of different factors about complet-
ing a task. NASA-TLX is composed for the next rating scale questions:

• How much mental and perceptual activity was required? (Mental demands).

• How much was physical activity required? (Physical demands).

• How much time pressure occurred? (Temporal demands).

• How successful do you think you were in accomplishing the goals of the task set by the
experimenter? (Performance).

• How hard did you have to work –mentally and physically- to accomplish your level of
performance? (Effort).

• How insecure, discouraged, irritated, stressed versus secure, content and relaxed did you
feel during the tasks? (Frustration level).

Moreover, a binary selection between demands (which demand was more important?).
Even though the NASA-TLX yields a useful summary about the complexity level of the tasks for
the users, it cannot give ongoing information about the current state of the user performing the
task; Also, the limitation of NASA is that only can be made once per task. Even so, Hart [Hart
2006] points out that the NASA-TLX is very useful to evaluate the interface design. Besides,
task metrics can also be used to assess the cognitive load. Reaction Time (RT) and Error Rates
(ER) are two common variables for evaluating the user’s performance. Thus, as longer RT and
higher ER, a higher cognitive load is experimented by the user [Charles and Nixon 2019].
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2.5.2 Objective measures

In the other hand, objective measures use sensors for monitoring the cognitive load.
Electrodermal activity (EDA), eye movements and pupil size, heart rate variability, and EEG are
the most used measurement methods [Charles and Nixon 2019]. Using EEG, several researchers
have reported that alpha, beta and theta activity is related to cognitive load in several tasks
demands [Antonenko et al. 2010]. In effect, Alan Gevins and Michael E. Smith [Smith et al.
2001] found that the power changes of θ at frontal mid-line sites and α at parietal sites are
related to the task load associated to the mental effort required for task performance. Thus, they
proposed Task Load index in order to have an objective measure of the cognitive load produced
by a specific task.

This thesis uses the Task Load Index proposed by Smith and Gevins for monitoring the
ongoing cognitive load during the different mental imagery task. Besides,following the work
done by Felton and colleagues [Felton et al. 2012], NASA-TLX (see Appendix C) is used for
assessing the cognitive load of the training setup.
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3 RELATED WORK

This chapter introduces related works that were fundamental in the conception of this
thesis. Mainly, these works are grouped following the three topics of this work and their relation
with BCI: Motor Imagery, Virtual Reality, and Rubber-Hand Illusion.

3.1 Motor Imagery Brain-Computer Interface

Since the activation patterns of imaginary body movements involves both brain regions
(sensory and motor areas) and neural mechanisms similar to the executed movement [Jean-
nerod 1995], the Motor Imagery BCI (MI-BCI) has been widely used and explored method
for communication and controlling of devices using the electrical brain signals (EEG) [Wol-
paw et al. 2002]. MI-BCI employs the amplitude changes voluntarily elicited by the mental
representation of physical motor actions (ERD/ERS). These patterns have been successfully
used for studying the neural mechanisms associated with motor actions, as well as a feature
for classification in motor-related BCI systems [Pfurtscheller and Neuper 2001, Wolpaw et al.
2002, Gert et al. 2011, Neuper et al. 2003]. BCI plays an important role in HCI due to its
countless applications; ranging from clinical implementations, supporting the rehabilitation of
motor-impairment patients [Neuper et al. 2003], up to controlling mobile robots and games [Bi,
Fan and Liu 2013, Gert et al. 2011].

However, despite BCI being a promising and useful application, there are still several
challenges to be addressed. Chavarriaga et al. [Chavarriaga et al. 2017] discuss concrete re-
search avenues and guidelines to overcome common pitfalls in BCI. Their paper is the outcome
of a meeting held at the workshop “What’s wrong with us? Roadblocks and pitfalls in design-
ing BCI applications”. They summarize four main topics that influence any closed-loop BCI
system: a) End Users; b) Feedback and user training; c) Signal processing and decoding; and
d) Performance metrics and reporting.

The fast growth of machine learning and unsupervised systems (i.e. deep learning)
have supported the signal processing of EEG data and consequently, BCI systems [Lotte et
al. 2018]. As BCI is a relatively new research area, establishing metrics to objectively asses
BCI systems (e.g., classification accuracy plus usability) is still a task to be done. Potential user
identification is a mandatory step to design suitable BCI applications. However, this requires
additional resources and developments of wearable recording equipment. Finally, the training
and feedback should consider human factors and include the user inside the BCI loop through a
more realistic, natural and intuitive training and feedback. This thesis focuses on two of theses
avenues: Feedback and user training, and Signal processing and decoding.

For the first one, researchers, along the years, have widely used the Graz BCI feedback
and training paradigm for MI-BCI applications [Pfurtscheller and Neuper 2001]. In this stan-
dard, subjects have to imagine either right or left-hand movement following an arrow cue and
watch a horizontal bar as feedback that is extended based on the classifier’s accuracy. Like-
wise, different feedback presentation has been proposed following the same paradigm such as
a falling ball [Blankertz et al. 2007], visual cursor and auditory feedback based on the subject’s
sensorimotor rhythms [Nijboer et al. 2008], and tactile feedback in the corresponding arm clas-
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sified [Chatterjee et al. 2007]. Usually, all of these applications are computer screen-based, and
the feedback does not congruently represent the imaginary task (motor imagery) [Alimardani,
Nishio and Ishiguro 2018]. Here, VR techniques address these limitations, using realistic and
motivated feedback applications. The next section discusses VR approaches in BCI.

Meanwhile, in the literature, comparisons and reviews of the different feature extraction
methods and classifiers for MI-BCI have been performed. Firstly, Lotte [Lotte 2014] made
a signal processing tutorial for recognizing mental states, suggesting that spectral and spatial
information is commonly used for feature extraction in MI-BCI, mainly the band power of
specific frequency rhythms and Common-Spatial Patterns (CSP). Moreover, Chaudhari and
Galiyawala [Chaudhari and Galiyawala 2017] as well as Lotte and colleagues [Lotte et al.
2007], made a systematic review of classifiers for BCI systems, showing that in MI-BCI, Sup-
port Vector Machine (SVM) and Linear Discriminant Analysis (LDA) are the most used linear
classifiers, meanwhile, K-Nearest Neighbor (KNN) and Artificial Neural Networks (ANNs) are
widely used in multiclass classification. In another hand, Resalat and Saba [Resalat and Saba
2016] studied several methods for extracting features in MI-BCI systems using LDA as the
classifier. They found that spectral methods and Auto-Regressive (AR) have higher accuracy
rates. However, they only used one classifier, which could be insufficient for concluding the
best technique. In another side, Bashashati et al. [Bashashati et al. 2015] explored the accuracy
of several classifiers for a specific feature extraction method (CSP), showing that Logistic Re-
gression (LR) and ANNs obtained higher accuracies. However, the authors emphasized that the
best combination of classifier, feature and model parameters should be selected for each subject
since that BCI is an user-dependent system. In such vein, this thesis proposes to create a frame-
work for comparing different frequency bands and time windows for extracting spatial features
(CSP), and several classifiers (SVM, KNN, LDA) in order to choose the best combination of
features and classifier for each user per task. Chapter 4 gives a detailed explanation with the
technical details of each method used.

3.2 Virtual Reality and Brain-Computer Interface

Virtual Reality is a powerful tool for improving BCI training and enhancing feedback
experiences [Neuper and Pfurtscheller 2010]. Training tasks should include an intuitive pre-
sentation so that the users can easily understand the action to be executed and improve their
performance. However, it is currently hard to choose the right presentation, and it should be a
motivating and engaging environment, as it is pointed out by [Chavarriaga et al. 2017], besides
natural and realistic. Here, VR can be shown as a real alternative for tackling this presentation
issue.

Lotte et al. [Lotte et al. 2013] show how combining BCI with VR can carry towards
a new and improved BCI system. Nevertheless, such VR feedback can also introduce some
interference to the motor imagery-related brain activity used by the BCI because both µ and β

bands are reactive in motor imagery and observation of the real movement [Pfurtscheller and
Neuper 2001]. An interesting study carried out by Neuper et al. [Neuper et al. 2009] explores
the influence of different types of visual feedback in the modulation of the EEG signal during
the BCI control. Using a video to show a first-person view of an object-directed grasping
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movement, they were able to found modulation activity in sensorimotor rhythms caused by this
real feedback stimuli. They highlight the importance of the amount of information provided by
this condition in order to reduce the reactive bands.

Likewise, Ron-Angevin and Diaz-Estrella [Ron-Angevin and Diaz-Estrella 2009] made
a comparison between the screen condition (Graz) and VR, focusing on the BCI’s performance
(classification rates). They successfully found improvements in the feedback control of the VR
condition in untrained subjects. However, they used car navigation as a task, which could be
seen as an abstract object because it is expected natural and realistic feedback, such as an arm
doing the imaginary task performed by the user. So far, all of the studies cited above have used
different feedback stimuli, but none of them has used a virtual arm, which could be useful for
the training step.

Precisely, Skola and Liarnokapis [Skola and Liarokapis 2018] carried out a recent work
using an embodied VR training for MI-BCI. A human-like avatar performs the motor actions in
synchrony with the user’s actions. This neurofeedback-guided motor imagery training reports
improvements in classification rates in comparison with the Graz paradigm. Even though it was
not reached a significant difference, the authors report that ERD in VR subjects is stronger than
the control group. Likewise, the same sort of results is reported by Braun et al. [Braun et al.
2016]. However, in this case, an anthropomorphic robotic hand is used as a visual guide. Also,
they found differences between the two conditions in the electrodermal activity and subjective
measures. Thus, this thesis aims to study the advantages presented by a realistic VR scenario
adopting a realistic arm as a training application, in comparison to the traditional Graz scenario
(arrows and fixation cross). Both training conditions were made in a VR environment.

3.3 Body transfer illusion and Brain-Computer Interface

So far, MI-BCI applications have used attached body parts, in other words, mental rep-
resentations of jointed limbs following the human anatomy constraints (e.g., two arms, two
legs, two feet, in a symmetrical distribution). To the date, nevertheless, there is neither explo-
rations nor applications that include non-embodied human limbs, although the RHI experiments
demonstrated the human capabilities to create body transfer illusions [Botvinick and Cohen
1998, Ferri et al. 2013]. Indeed, the RHI demonstrates not only a static body illusion repre-
sentation (sense of ownership) but also an active movement eliciting a body illusion (sense of
agency) [Kalckert and Ehrsson 2012].

In the works of Braun et al [Braun et al. 2016], and Skola and Liarnokapis [Skola
and Liarokapis 2018] reported that they were inspired by the RHI experiment. They also in-
clude within their discussions, the analysis of the sense of ownership, agency, and self-location
towards the non-body object, concepts that are being recently taken into account in BCI re-
search [Alimardani, Nishio and Ishiguro 2016, Alimardani, Nishio and Ishiguro 2014]. Never-
theless, there is not any substantial effort to study and explore the possibility of using the RHI
as a control command inside the BCI loop, creating thus a supernumerary limbs BCI system.

Bashford and Mehring [Bashford and Mehring 2016] proposed this possibility with their
work. They used an imaginary third arm for assessing the ownership and agency of a non-body
limb in an imitation BCI (i.e., subjects think that their EEG activity is controlling the arm).
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Results show that there is independent ownership and control – based on the correct movements
observed against the subject movements – of the third arm keeping the sense of ownership of the
real hands. These findings suggest the capabilities of human of extrapolating limbs to execute
motor actions. However, they did not study the use of this third arm as a control command inside
the BCI loop. Moreover, Perez-Marcos and colleagues [Perez-Marcos, Slater and Sanchez-
Vives 2009] used BCI for inducing a virtual hand illusion ownership. The authors use MI-
BCI for controlling the movements of the third virtual arm and found correlations between the
muscle activity and movements of the virtual arm. However, they used attached body parts
(left hand or right foot movements) to elicit the control signals, rather than a third virtual arm.
This thesis aims to study the inclusion of a third virtual arm (emerging from the chest) to elicit
an RHI, but also this work explores the classification of this arm from the left and right-hand
movements in order to use it in an MI-BCI system. This thesis is a step towards the developing
of a system using MI-BCI for supernumerary limbs by performing a study on the ability to
control a third imaginary arm, while comparing the effectiveness of using the conventional
arrows and fixation cross as training step (Graz) against a first-person view using a human
avatar (Hands).
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4 MATERIALS AND METHODS

4.1 Overview

An offline MI-BCI experiment, which uses EEG for recording the data and VR scenarios
for presenting the stimulus, was conducted in a reduced noise room. The experiment’s aim is
to check the feasibility of controlling a virtual third arm using MI-BCI while the traditional
training paradigm (Graz) is compared against a first-person view using a human avatar. There
were two recording sessions with two runs in each one with a resting time between them. The
sessions were conducted on two separate days within one week. Only on the first day, the
participants had to fill up three questionnaires: MIQ-3 (see Appendix A), demographics and
Edinburgh Handedness (see Appendix B). Likewise, after each session, participants filled the
NASA-TLX form (see Appendix C).

4.2 Participants

Ten right-handed volunteers (four women) participated in the study. Participant ages
were within 18 and 34 years old with a mean of 23. All participants had basic informatics
knowledge. Only 30% did not have previous experience with VR and no one had any previous
experience in MI-BCI. No one had problems with the head movements. Half of the population
had visual impairments (mainly myopia and astigmatism). The experiment was conducted in
accordance with the Declaration of Helsinki. Participants were informed both oral and written
about the procedure and the EEG recording. All participants gave written informed consent (see
Appendix B).

4.3 Data Acquisition

The EEG data was collected using an OpenBCI 32 bit board at a sampling rate of 250
Hz. It is an Open Source Arduino-compatible component that can be used to measure the brain
activity (EEG), heart activity (EKG) and muscle activity (EMG). Figure 4.1 shows and describes
the features of the Open BCI board [BCI 2019]. Following the 10-20 EEG placement system,
eight passive gold cup electrodes were used and placed at sensorimotor cortex (see right side of
Figure 4.2), namely, frontal (F3, Fz, F4,) central (C3, Cz, C4), and parietal (P4, P3) cortices.
Left and right mastoids were used as reference and ground electrodes respectively.

For the VR exposition, a head-mounted display (HMD) Oculus Rift CV1 is used with
a resolution of 2160 x 1200 (1080 x 1200 per eye), refresh rate of 90 Hz, a 110o field of view,
and both rotational and positional tracking for delivery the immersive scene. The popular game
engine Unity3D was used to develop the immersive scene that was intended to assist the user
when imagining and performing motor actions whit their arms, left and right real arms and the
middle imaginary one (see left side Figure 4.2).

There was a special focus on the realism of the models: left and right hands were placed
matching with the rest positions of the real hands. A third hand was placed in the middle of the
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Figure 4.1 – Open BCI board and its main features.

Source: https://goo.gl/iDSi9v

body, like emerging from the chest trying to avoid visual relations with the left or the right arm.
The fingers on the third arm also were modified to be symmetric, since that the thumbs in either
left and right hand can indicate to which arm it belongs, their were removed from the third arm.
In this way, it is ensured an independent arm and not a copy or extension of the existing arms.
High-quality textures were used with shaders designed to highlight generic skin details. Bones
in each finger preserve the average human hand proportions.

Figure 4.2 – Experiment setup. Left: A subject using a BCI interface to control his “three” arms in
a virtual reality experience. Right: the electrodes placement over the sensorimotor area (filled circle),
following the 10-20 system.

Source: the author

In order to synchronize the EEG data and the markers that indicate when a specific task
started, the lab streaming layer (LSL) library [Boulay 2019] is used for recording experimental
data. LSL is an open-source system that unifies different time series collected in research exper-
iments, offering a centralized collection with near real-time synchronization (sub-millisecond
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accuracy on local network) based on Network Time Protocol (NTP). The recorded streams are
compiled into a XDF file format (extensible data format) which supports a multistream con-
tainer data, large headers, and sample and time-synchronization information). The EEG data is
labeled with the Unity trials using LSL4Unity (a third party software based on LSL) [xfleckx
2019].

4.4 Experimental Procedure

The experiment involves the execution of four different task in two experimental condi-
tions. The subjects were invited to rest (RS), or to move a specific hand: third hand (TH), left
hand (LH), and right hand (RH). Conditions considered were: Graz, and Hands. The Hands
condition involved the presentation of a human-like avatar, whereas Graz the presentation of
arrows.

The subjects sat comfortably in an armchair and were asked to rest their arms in the
armrest and avoid any other movements during the recordings. Initially, the participants wore
the HMD for getting into the scene and running several trials for learning the instructions pre-
viously read. After the training, the EEG cap is mounted, followed by the traditional gelling
process, and then the HMD is fit, trying as much as possible to avoid that the HMD frame
touches the EEG electrodes. Moreover, the signal quality is checked before and after mounting
the HMD.

The two experimental conditions followed the timing protocol proposed by Pfurtscheller
[Pfurtscheller and Neuper 2001]. The users performed 20 trials of each task (randomly selected)
with a duration of 7 seconds (see the bottom side of Figure 4.3). The main difference between
the conditions lies in the visual feedback, as follows:

1. Graz condition: starting with a gray screen (resting state), at time 2s, a fixation cross at
the center of the scene was displayed with a short warning tone (‘beep’) which indicates
to the user to pay attention to the incoming visual cue presented at time 3s. At time 4s, the
user had to perform the motor task for three seconds. The color of the arrows indicates
the task (red for execution and white for imagination) and its direction indicates if the
hand should be either left or right. The third arm cue was an arrow pointing upwards (see
the middle of Figure 4.3).

2. Hands condition: at the start, the user’s hands were placed in the equivalent real arms
positions (resting state), at time 2s, the same auditory cue starts indicating an incoming
stimulus. Next at time 3s, a visual cue is introduced without animation to let the user
prepare for the action they will. At time 4s, the animation is introduced, and the user must
perform either the mechanic or imaginary operation. This state continues until the end
of the task (three sec more). For the visual cues, the real skin shading represents actual
open-close hand movements, while transparent shading represent imaginary movements.
Moreover, it is important to highlight that the third arm appears in the scene only when
this specific trial is necessary. In other trials, there are just two visible hands (see the top
of Figure 4.3).
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Figure 4.3 – Experiment paradigm. The visual stimulus of the task’s cue are corresponding for both
experimental conditions. Top: visual stimuli for Hands condition. Middle: visual stimuli for Graz
condition. Bottom: timing of the trials following the classical Graz protocol.

Source: the author

Following [Neuper et al. 2005], subjects were instructed to perform the kinesthetic
experience in motor imagery tasks, i.e., imagining the sensation of performing the motor tasks
rather than the visual representation of the movement. The authors suggest that kinesthetic
motor imagery is essential to elicit sensorimotor patterns (ERD\S). Besides, in order to avoid
the carry-over bias, both experimental conditions were counterbalanced across participants (i.e.
five subjects start with Hands condition and the rest with Graz). Likewise, it is necessary to
mention that the movement animations were applied directly to the bones always looking for a
natural behavior of the hand. The animations are predefined, they are not based on the user’s
EEG activity.

Finally, in contrast to Skola and Liarnokapis [Skola and Liarokapis 2018] where the
Graz condition is presented in a monitor, this thesis performs comparisons of the Graz and
Hands conditions in a virtual environment. Therefore, the users have to wear the HMD in both
conditions. The background of Graz scenario was set to gray, avoiding high contrast that could
produce discomfort on the user’s eyes.

4.5 BCI pipeline

4.5.1 EEG pre-processing

The recorded data is imported and processed into EEGLAB (14.1) [Delorme and Makeig
2004] (under Matlab 2017b). After down-sampling at 115 Hz, the signals are band-pass filtered
at range 1-35Hz using a finite impulse response (FIR) filter. Usually, a notch filter is used
for line noise, but this method generally creates band-holes, and distortions close the cut-off
frequency. Therefore, the Cleanline plugin, which uses multi-taper regression for removing
sinusoidal artifacts, is used at 50-115 Hz instead. Likewise, Cleanraw plugin is set-up for
rejecting bad channel, no more than two (mainly the sensormitor ones). The rejected channels
are then interpolated using a spherical function. Finally, EEG signals are re-referenced using
common average referenced (CAR).
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As this thesis aims to explore the featuring extraction and classification of the third vir-
tual arm in an MI-BCI, an extension of the CSP method is used for extracting discriminative
patterns from both temporal-spatial EEG features. This approach, known as Filter Bank Com-
mon Spatial Pattern (FBCSP) [Ang et al. 2008], uses CSP in several frequency bands and runs a
feature selection algorithm to automatically choose the relevant frequency bands and their cor-
responding CSP features. Therefore, to study, as much as possible, the influence of both time
window of the trials and the frequency bands on the accuracy of the classifiers, this thesis uses
FBCSP algorithm for several time windows (100, 200, 400, 600, 800, 1000 and 2000 ms) for
extracting features and evaluating the classification accuracy. The bank with the MI frequency
bands is comprised of alpha (8-12 Hz), low beta (12-16 Hz), middle beta (16-24 Hz), high
beta (24-30 Hz), and whole beta (12-30 Hz) bands. The reason for splitting the beta band into
sub-bands is for getting enough variables for the FBCSP algorithm to work. The next section
explains FBCSP method and the proposed framework.

4.5.2 Feature extraction

The ERS/ERD patterns are predominant in alpha (8-12 Hz), and beta (13-30 Hz) rhythms
and their onset go from 500ms up to three seconds after the movement execution [Pfurtscheller
1999]. Inspired by these facts, this thesis creates a framework to obtain the best combination of
window size, frequency band, and classifier for each user. Obtaining a pool of all possible com-
binations, running the FBCSP algorithm [Ang et al. 2008] in seven time-window sizes of the
signal (100, 200, 400, 600, 800, 1000 and 2000 ms onset the stimuli) and five frequency bands
(8-12 Hz,12-16 Hz, 16-24 Hz,24-30 Hz,12-30 Hz). The method employs a greedy algorithm to
heuristically find the best combination based on the classification error rates (validation) of all
possibilities. Focusing on the variability that exists across the users in their performance, this
approach proposes to create a suitable and user-centered offline BCI classification.

The FBCSP approach has demonstrated successful performance in BCI applications
[Ang et al. 2008]. Likewise, CSP is one of the most known and widely used methods for extract-
ing features in a two classes BCI application [Blankertz et al. 2008,Lotte 2014]. CSP computes
the project matrix W ∈ Rc×c that linearly transforms the band-pass filtered data E ∈ Rc×t into
a spatial filtered signal Z ∈ Rc×t (with c being the number of channels and t the EEG samples
per channel) as follows:

Z =W T E (4.1)

Thus, the power of Z effectively discriminates two mental states (classes), maximizing the
variance under one condition; meanwhile, it is minimizing for the other [Blankertz et al. 2008].
In order to get the most discriminative patterns, the first and last m (m=3) columns of W were
used to create the spatial-filtered signal Z. The m-dimensional feature vector is then formed
from the logarithm of the normalized variance of Z:

vi = log(var(Zi)), i = 1,2, ...,2m. (4.2)

This results in 30 features (six CSP filters per each frequency bands) for each EEG trial in
the specific window. From these features, the maximum Relevance Minimum Redundancy
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(mRMR) feature selection algorithm is used to extract the most relevant features [Peng, Long
and Ding 2005]. This algorithm minimizes the redundancy meanwhile maximize the relevance
of the features using mutual information. As the size of vi depends on the frequency bands, the
number of selected features was progressively increased (step = 3) from the minimum amount
(6) up to the total size of vi. Hence, the selected features for each time window is used to
separately train three BCI classifiers [Lotte et al. 2007]: Support Vector Machine (SVM), K-
Nearest Neighbor (KNN), and Linear Discriminant Analysis (LDA).

4.5.3 Classification

Linear classifiers have successfully demonstrated their excellent performance in BCI
applications due to their simplicity and processing time [Lotte et al. 2007]. Moreover, non-
linear classifiers offer to map the input data into higher dimensional space where the classes are
easily separable. Therefore, this thesis uses two of the most popular linear approaches (SVM
and LDA) and a non-parametric method (KNN).

SVM is one of the most known supervised method for learning. SVM finds the optimal
hyperplane that separates the data by maximizing the margin between the classes. The original
SVM can easily be extended to a non-linear method using the kernel functions K(x,y). Mean-
while, LDA obtains the hyperplane by the projection of the covariance matrices that maximizes
the distance between the classes means and minimizes the inter-class variance. The figure 4.4
shows the main differences between the two classifiers visually, as it was explained before, it
lies in the way how the hyperplane is calculated. Both SVM and LDA uses the same equation
of the hyperplane as well as a sign function for predicting the labels. The hyperplane is defined
by:

y = wT x+b (4.3)

Figure 4.4 – Linear classifiers. Left: Linear Discriminant Analysis (LDA). Right: Support Vector
Machine (SVM).

Source: https://goo.gl/u8CjGL
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In the other hand, KNN is a non-parametric method that assigns the class label by cal-
culating the distances between the incoming data and a set of k nearest training data. Such dis-
tance is measured with several methods, where the Euclidean distance is the most used [Mitchell
1997]. This distance function (D) is described by:

D =

√√√√ k

∑
i=1

(xi− yi)2 (4.4)

These methods were trained to classify independently four binary imaginary tasks: Third
and Left hand (TH\LH); Third and Right hand (TH\RH); Third hand and Resting State (TH\RS);
and Left and Right hand (LH\RH). The data of each run is merged into a single dataset for thus
training the classifiers. The reader can notice that the real movements are not included in the
classification. The intention of including the real movements in the experiment was to reduce
the abstractness of the three imaginative tasks and have a fresh mental representation of the
action.

The miss-classification error was computed using the usual k-fold cross-validation ap-
proach. This method randomly divides the filtered data into k equal size partitions and uses k-1
sets to train the model and one set to validate it. In this study, we used ten times the 10-fold
cross-validation. Finally, the above classifiers were implemented using the Statistics and Ma-
chine Learning Toolbox of Matlab. Both SVM and LDA used the default parameters (linear
kernel, C=100, and standardize predictor data for SVM and LDA without any hyperparameter
optimization). KNN uses a Euclidean distance and k = 5.

4.6 Event-Related Spectral Perturbation (ERSP)

The event-related spectral perturbation (ERSP) is a generalization of the ERD/ERS pat-
terns. ERSP computes the changes of the spectral powers in time-frequency domains, relative
to the stimuli [Delorme and Makeig 2004]. Thus, with this approach, the changes of the EEG
signals elicited by motor imagery events can be detected alongside the spectral band and epoch.
ERSP values were computed for every mental task (TH, LH, RH, RS) in Graz and Hands con-
ditions using the newtime function of the toolbox, which uses FFT with a Hanning window to
remove window border effects. The function uses a time window of -500 ms to 2500 ms across
the frequency range of 5 to 30 Hz for 200 output times. The Bootstat function was set up with
a significant alpha of 0.05 for calculating the two-tailed permutation significance probability.
The sensorimotor area composed by the electrodes C3, Cz and C4 were used to display the
time-frequency ERD/ERS maps (See Figures 5.1 and 5.2 in the Chapter 5).

4.7 Task load index

Task load index developed by Alan Gevins and Michael E. Smith [Smith et al. 2001] is
used in order to have an objective measure of the task load. The authors found that the power
changes of θ at frontal mid-line sites and α at parietal sites are related to the task load associated
with the mental effort required for task performance. Thus, this index can be measured by the
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ratio of θ to α . In this thesis, besides of the subjective assessment of the cognitive load by the
NASA-TLX [Hart and Stavenland 1988], the average of the absolute power of frontal mid-line
(F3, Fz, F4) θ and parietal (P3-P4 plus Cz) α were used to assess the mental tasks per condition
(Graz and Hands).
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5 EEG ANALYSIS

5.1 Summary

This chapter presents and discusses the EEG patterns found for the three imaginary tasks
(TH, LH, RH) using ERSP method. ERD/ERS maps are shown in order to describe the EEG
activity during the execution of the tasks in a time-frequency representation. These maps reveal
strong and widespread ERS patterns for the third arm in both conditions as well as that the
realistic training (Hands) elicits stronger ERS/ERD activity than the traditional Graz condition.
Furthermore, the power changes analysis complements the above findings since that the Hands
conditions presents more significant regions than Graz conditions (mainly at C3 than the other
locations), where the power difference is clearly perceived.

5.2 Results

5.2.1 ERSP results

Figures 5.1 and 5.2 show the time-frequency representation of significant (bootstrap
method, p < 0.05) ERD/ERS values (blue indicates ERD) for the Hands and Graz condition
respectively. These maps coming from a single subject (6) at electrode positions C3, Cz and
C4. The subject was chosen because it has reached the lowest classification errors (see the next
chapter).

For the TH task, at C3 position in Hands condition, a strong power decrease is clearly
visible around 500ms after stimulus onset, and this behavior is presented in almost the whole
frequency range; whereas in the other two imagery tasks, LH has a decrease in alpha followed
by an increase in alpha and beta; RH has a similar pattern but without ERS activity in alpha.
Interestingly, TH task held the ERD activity during the rest of the epoch after 1000ms with few
ERS in middle and high beta band. Conversely, in Graz condition at C3, the ERD patterns of
the TH task are attenuated and widespread with some ERS activity at the end of the epoch in
high beta band.

At Cz in Hands condition, the TH task presents an ERS activity that starts around 500ms
in alpha, and an ERD that starts around 1000ms in alpha and beta band. LH presents a strong
ERS activity in both alpha and beta anticipated by an ERD in alpha and middle beta. RH has a
strong ERD activity in alpha and beta and posteriorly some ERS in beta. Meanwhile, in Graz
condition, TH shows ERD pattern in alpha until the first 1000ms At the end of the epoch, some
ERS activity is presented in high beta. In LH, there is an ERD pattern in alpha during the first
500ms and a widespread ERS activity later. RH holds the ERD in alpha at the same time with
some ERS in middle beta.

Similarly, TH task in Hands condition presents an ERD pattern around 500ms in alpha
and middle beta at the C4 position. This activity is held again during the whole epoch (mainly
in alpha). Few ERS activity is found in high beta after 1000ms. The ERS activity is most
prominent in alpha and low-middle beta for LH, meanwhile, RH shows an ERD/ERS pattern
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Figure 5.1 – Significant ERD/ERS patterns of the mental task at C3, Cz, C4 positions for Hands con-
dition. A strong ERD activity is found at the three electrodes for the third hand (TH). Whereas, ERS
patterns are found mainly for the left hand (LH). The ERD/ERS fluctuation is more visible for the right
hand (RH), mostly at C4.

Source: the author

in alpha and beta in the first 1000ms. For Graz condition, the ERD patterns of TH task are
widespread in alpha and beta between 500ms and 1500ms with some presence of ERS in high
beta. LH has a strong ERD activity during the first 1000ms in alpha and some widespread ERS
in high beta. RH has strong ERD patterns during the same previous time in both alpha and
middle beta followed by a strong ERS activity in alpha, extended along of the epoch.

5.2.2 Power spectral results

In order to explore the differences of the ERD/ERS patterns among tasks in the two
conditions, Figures 5.3 and 5.4 shows comparisons of the power changes of the TH task against
the other imagery tasks (LH-RH) in both conditions using the same electrodes array from the
same subject (6). Moreover, Figure 5.5 presents the power changes of the TH task in both
conditions. The paired Wilcoxon signed-rank test was used to find out significant differences
between tasks (p<0.05). They are shaded by gray blocks.

The differences presented by TH-LH and TH-RH are significantly more broad-banded
at C3 than other channels in Hands condition (Figure 5.3). Meanwhile, Graz condition presents
similar significant region sizes among the channels (Figure 5.4).
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Figure 5.2 – Significant ERD/ERS patterns of the mental task at C3, Cz, C4 positions for Graz condition.
An ERD activity is mainly found in the alpha band (8-12 Hz) at the three electrodes for the third hand
(TH). The ERD/ERS patterns are widespread for left and right hands (LH, RH respectively) at the three
electrodes. There is extensive activity in the resting state (RS).

Source: the author

At C3, both cases (TH-RH, TH-LH) in Hands condition show significant differences in
almost the whole frequency range. Conversely, in Graz condition, TH-RH shows more signifi-
cant differences in alpha and low beta than TH-LH, but they share the significant region around
20Hz up to 25Hz. At Cz in Hands, the TH-LH comparison does not have a significant region
in the alpha band, but it shares a low and middle beta with TH-RH, which has significant dif-
ferences in some alpha and high beta sub-bands. For Graz in the same location, the TH-LH
comparison indicates wide-spread sub-band regions for the beta, in alpha only a small region
around 10hz is presented and, meantime, TH-RH shows a consistent region in alpha and low
and high beta. Finally, at C4 in Hands, the TH-RH comparison shows more wide regions than
TH-LH, especially in alpha and middle beta rhythms. The same behavior is presented in Graz
condition, where TH-RH has more significant regions in alpha and low and middle beta than
TH-LH, which does not have a significant difference in alpha, only in several sub-bands along
beta, mainly upper than 15Hz.
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Figure 5.3 – Comparison of the power changes of the mental tasks in the sensory-motor area (C3, Cz,
C4) in Hands condition. Top: Third hand (TH, blue) - Left hand (LH, red). Bottom: Third hand (TH,
blue) - Right hand (RH, red).

Source: the author

In the comparison of the TH task between conditions (Figure 5.5), the ERS patterns are
stronger in Hands than Graz, in line with the ERS/ERD maps (Figures 5.1 and 5.2). Such differ-
ence is more evident at C3 than the other channels. Likewise, C3 noticeably shows significant
regions within both alpha and beta rhythms, whereas Cz is more often in middle and high beta,
and C4 in alpha and middle beta.

5.3 Discussion

The presented patterns (figures 5.1 and 5.2) suggest a significant decreasing activity in
the sensorimotor area caused by realistic training in comparison with the Graz. Besides, the
ERD activity of the TH task is widespread, and its strength is keeping along of the epoch at the
three sensorimotor channels (more at C3 than others) which could suggest that there is not a
compulsory hemisphere governing the control and action of the imaginary arm. Besides, these
facts motivate the author to adopt several time windows and frequency bands in order to obtain
the most suitable combination for classification (see Chapter 4).

Nevertheless, the analysis of the power changes between tasks (Figures 5.3 and 5.4)
show that there are more significant regions at C3 than the other electrode positions. The fact
above could indicate that the user’s handedness influences the region where TH task presents
more activity. In the same way, the common ERD/ERS patterns are visible in both LH and RH
tasks, although it is more evident in RH than LH. However, these patterns were missed in TH
(only an increasing power activity was found in high frequencies: > 25Hz). It could suggest
that the absence of symmetry of the third arm does not elicit a supplementary ERD activity for
this task.

Finally, the unexpected activities presented in the resting state (RS) could be caused by
the inertia of the motor/imagery movement. The paradigm to be adopted in the future should
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Figure 5.4 – Comparison of the power changes of the mental tasks in the sensory-motor area (C3, Cz,
C4) in Graz condition. Top: Third hand (TH, green) - Left hand (LH, orange). Bottom: Third hand (TH,
green) - Right hand (RH, orange).

Source: the author

Figure 5.5 – Comparison of the power changes of the third arm task in the sensory-motor area (C3, Cz,
C4) for both conditions. Blue: Third hand in Graz condition. Red: Third hand in Hands condition.

Source: the author

include a blank space between the motor task and resting state so that the movements could be
easily excluded.



49

6 CLASSIFICATION FRAMEWORK

6.1 Summary

The present chapter synthesis the classification results. Initially, all error rates obtained
from each classifier are presented graphically. Consequently, the best combination of the time
window, number of features and classifier is presented for each subject and condition. Likewise,
the distribution of the number of features among the task is presented in order to find out the
most used frequency bands. In overall, the error rates indicate that Hands condition significantly
outperforms (u=0.32) the Graz (u=0.36) in the classification. Furthermore, the classification
of TH-LH was better than the other two motor imagery condition (TH-RH, LH-RH) in both
conditions (Graz = 0.34, Hands=0.29). It could suggest that the third virtual task is done with
some handedness, since that it is better distinguished the non-dominant hand of the user.

6.2 Results

The Figures 6.1, 6.2 and 6.3 show error rates of the SVM, KNN and LDA classifiers
respectively for each binary classification (Third hand (TH) - Left hand(LH), TH - Right Hand
(RH), TH - Resting state (RS), and LH-RH). These rates are in function of the number of
features and the size of the time windows. The surfaces are obtained for both Graz (top) and
Hands (bottom) conditions.

Initially, the SVM surfaces of Graz condition (top Figure 6.1) shows that the third virtual
arm is classified with better accuracies from resting state than the other two arms, exhibiting a
decreasing behavior from a time window of 1000 ms and more prominent when the number of
feature increases. The TH-LH and LH-RH present variable fluctuation along both time window
and number of features, the last one with higher peaks. Meanwhile, TH-RH shows that error
rates increase as a higher number of features. In the other hand, Hands condition surfaces
(bottom Figure 6.1) show that error rates decrease as the time window increase in TH-LH, TH-
RH, and TH-RS (with error rates lower thant 0.20), while LH-RH presents a flat-shape behavior.
The number of features does not seem to affect error rates considerably (few fluctuations).

KNN surfaces of Graz condition (top Figure 6.2) presents that TH-RH has lower error
rates than the other classifications. The time window influences the error rates, being notable
from 1000ms, and the number of features remains unclear, fewer numbers reach low error
rates for TH-RH and TH-RS (up to 20), but fluctuations are present in TH-LH and LH-RH.
Meanwhile, the surfaces of Hands condition (bottom Figure 6.2) shows a consistent decrease
activity in function of the time (1000 ms onwards), the fluctuation of the number of features is
still presented, but in TH-RS error rates tend to be lower as the number of features increases.

Finally, LDA surfaces are quite similar to SVM surfaces in both conditions. In Graz
(top 6.3), TH-RS has lower error rates than the other cases. Besides, the TH-RH and TH-RS
show that error rates rise in function number of features, while a reduction is visible as the time
window is longer. In the other side, the Hands surfaces (bottom 6.3) continues with the tendency
presented by the two other classifiers, in other words, error rates decrease as the time window is
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Figure 6.1 – Error rates over number of features and time window size for all users. Top: Graz condition.
Bottom: Hands condition. The four binary classification are represented by a)TH-LH; b)TH-RH; c)TH-
RS; and d)LH-RH.

Source: the author

more prolonged, while the number of features shows a quasi-flat behavior, with weak influence
in comparison with the time window (minor increases as the number of feature rises).

It can be seen clearly that Hands condition reached lower error rates than Graz in the
three classifiers. Likewise, error rates are lower in the classification that includes the third arm
than the left and right classification; in effect, RH-LH classification in some cases reached error
rates close to 0.5. Finally, the tendency in both conditions is that error rates decrease as the time
window increases (1000ms onwards), but in the number of features is unclear, with fluctuations
among tasks and conditions.

Following the error mean values of each window\feature, a greedy algorithm is run in
order to find the optimal global choice. Thus, for each subject, it is possible to obtain the best
combination of the three conditions (i.e., number of features (NF), size of the window (SW)
and classifier (C)) and, therefore, to pick up the best miss-classification rate (error). Table 6.1
shows these values in Graz (G) and Hands (H) conditions among the subjects.

The mean error obtained over all participants (n=10) in Hands condition was approx 32%
(i.e. TH-LH: 0.29±0.03, TH-RH: 0.29±0.03, TH-RS: 0.29±0.03, and LH-RH: 0.39±0.01)
and around 36% in Graz condition (i.e. TH-LH: 0.34± 0.02, TH-RH: 0.38± 0.02, TH-RS:
0.29± 0.02, and LH-RH: 0.42± 0.01). Pairwise comparison using paired Wilcoxon signed
rank test with Bonferroni correction reveals a significant (V = 0, p-value = 0.048) between
conditions. Likewise, Dunn’s Kruskal-Wallis Multiple Comparisons with Bonferroni correction
show significant difference among groups, exactly in both TH-LH (z=-2.49, p-value=0.03) and
TH-RS (z=-3.92, p-value=0.0003) against LH-RH for Graz, and in Hands only for TH-RS (z=-
2.44, p-value=0.04).
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Figure 6.2 – Error rates over number of features and time window size for all users. Top: Graz condition.
Bottom: Hands condition. The four binary classification are represented by a)TH-LH; b)TH-RH; c)TH-
RS; and d)LH-RH.

Source: the author

Furthermore, Table 6.1 shows that time windows of 800ms up to 2000ms (maximum
time) were often used in classification that includes the third arm (TH-RH,TH-LH and TH-RS).
In the classifiers, KNN was the most used among the participants and conditions. Moreover, for
the number of feature, there are several variations across the subjects and conditions. Only in
TH-RS, the number of features was widespread. Otherwise, the distribution was concentrated
from six up to 21. Precisely, Figure 6.4 shows the histogram of selection of each frequency
component over all subjects for the four binary classifications. In the figure can be seen that
frequency components in the alpha and beta3 (24-30Hz) were selected for most of the partici-
pants, in effect, the clear peaks are inside these ranges. Meanwhile, the whole beta band (beta
4, 13-30Hz) was few used, showing how the beta sub-bands can be more useful than the whole
band itself.

6.3 Discussion

The high error rates reached by the left-right hand classification (LH/RH) in both con-
ditions (Hands: 0.39±0.01 Graz: 0.42±0.01) could suggest that the inclusion of the third arm
would cause the reduction of its accuracy because the users could interpret either left and right
hand as the third arm. Whereas, the third arm is distinguished from the left hand than the right
with better accuracies. It could support the fact that the TH task follows the activity based on
the handedness. Unfortunately, all of our subjects were right-handed, so we can not evaluate
the handedness thoroughly in this experiment.
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Figure 6.3 – Error rates over number of features and time window size for all users. Top: Graz condition.
Bottom: Hands condition. The four binary classification are represented by a)TH-LH; b)TH-RH; c)TH-
RS; and d)LH-RH.

Source: the author

Evidently, and in line with the previous works [Skola and Liarokapis 2018, Braun et al.
2016], both the classification rates and the modulation of ERS signals were enhanced by the re-
alistic training, evidencing its importance inside the BCI loop. Also, our work goes further than
the one done by Skola and Liarnokapis [Skola and Liarokapis 2018] because they compared
the embodiment VR scenario against the monitor-based Graz, creating a bias in the users who
started with the VR. Here, the comparison was made with both Graz and Hands experimental
conditions made in VR.

The decision of exploring the influence of both the time window and the number of
features in the classification, including three different types of classifiers, sheds light upon the
high variations among subjects and tasks, in effect, it demonstrates that the design of an MI-
BCI system is a subject-sensitive case. Furthermore, the use of multiple learning algorithms
inside of the BCI loop could help to obtain better performances, where a classifier could be
used instead of others when its accuracy is higher.
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Table 6.1 – The best combinations of number of features, time window and classifier and the error rates
reached with them across the subjects for both conditions. The asterisks indicate the subjects that began
the experiment with the Hands condition.

Subject Condition TH-RH TH-LH TH-RS LH-RH
NF SW C Error NF SW C Error NF SW C Error NF SW C Error

1*
G 6 2000 KNN 0.18 6 2000 KNN 0.18 6 800 LDA 0.24 9 2000 LDA 0.42
H 9 2000 LDA 0.17 12 2000 KNN 0.28 15 1000 SVM 0.27 12 2000 SVM 0.41

2
G 6 800 SVM 0.26 24 100 KNN 0.40 9 2000 SVM 0.16 6 2000 KNN 0.30
H 6 2000 KNN 0.19 6 2000 LDA 0.13 24 2000 SVM 0.24 21 800 KNN 0.39

3
G 6 800 LDA 0.42 6 800 KNN 0.41 12 2000 KNN 0.35 21 600 KNN 0.45
H 12 1000 SVM 0.40 9 2000 KNN 0.34 12 2000 KNN 0.27 6 100 KNN 0.48

4*
G 30 100 KNN 0.42 6 800 LDA 0.41 24 1000 KNN 0.37 6 100 SVM 0.46
H 15 100 KNN 0.47 6 400 LDA 0.45 18 600 KNN 0.37 6 1000 SVM 0.36

5
G 30 800 SVM 0.31 6 100 LDA 0.46 12 600 KNN 0.28 15 100 KNN 0.45
H 12 2000 KNN 0.34 24 800 SVM 0.41 15 400 KNN 0.42 12 2000 KNN 0.38

6*
G 21 2000 KNN 0.40 6 100 LDA 0.42 18 2000 SVM 0.26 6 800 KNN 0.45
H 18 2000 SVM 0.10 6 2000 SVM 0.16 30 2000 KNN 0.09 21 400 SVM 0.42

7
G 15 2000 SVM 0.38 18 800 SVM 0.38 21 400 SVM 0.37 21 2000 KNN 0.41
H 21 200 LDA 0.28 30 1000 KNN 0.38 9 1000 SVM 0.34 6 800 SVM 0.44

8*
G 6 800 LDA 0.36 9 800 SVM 0.40 18 2000 SVM 0.31 6 200 SVM 0.46
H 9 800 SVM 0.39 12 800 LDA 0.41 6 800 LDA 0.35 21 800 LDA 0.37

9
G 12 800 KNN 0.38 6 100 SVM 0.48 27 2000 KNN 0.34 15 600 LDA 0.40
H 21 1000 KNN 0.31 9 1000 SVM 0.22 27 800 KNN 0.37 9 800 LDA 0.37

10*
G 12 800 KNN 0.32 9 800 LDA 0.34 6 2000 KNN 0.22 6 100 SVM 0.46
H 6 800 SVM 0.25 6 2000 KNN 0.21 9 2000 LDA 0.22 6 2000 SVM 0.36

Source: the author

Figure 6.4 – Relevant frequency components over all subjects. a) TH-LH; b) TH-RH; c) TH-RS; d)
LH-RH.

Source: the author
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7 COGNITIVE LOAD AND MIQ-3 QUESTIONNAIRE

7.1 Summary

The previous chapter successfully demonstrated that realistic training improves the ac-
curacy in the classification as well as elicits more ERS/ERD patterns than the traditional Graz
paradigm. This chapter focuses on studying the influence that Hands condition has in the users
in terms of the cognitive load. Effectively, the Task Load Index assessment reveals that this con-
dition has a higher cognitive load than the Graz. Conversely, the users perceived the opposite
thing in the subjective assessment. Finally, the imagery questionnaire shows that the External
Visual Imagery was more natural to the users, but it does not have any relationship with the
classification performance.

7.2 Results

Figure 7.1 – Task Load Index and NASA Workload for the two conditions. * Significant differences

Source: the author

Figure 7.1 shows the cognitive load of both objective (Task Load Index) and subjec-
tive (NASA-TLX). The cognitive load assessed by the Task Load Index reflects the fact of that
Hands condition has a significantly higher cognitive load than the Graz (pairwise paired Wilcox
with Bonferroni: V = 656, p-value = 0.00063). There is no significant difference among task.
Meanwhile, the subjective assessment of the cognitive load reflects the opposite; NASA Work-
load points to a higher cognitive load in Graz condition than in Hands although significance
could not be found (paired t-test: t=0.829, p-value=0.428).
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Moreover, Figure 7.2 shows that Hand condition presents a non-significant higher Load
Magnitude than Graz in factors such as Performance, Physical and Temporal demand. Never-
theless, a pairwise paired Wilcoxon reflects that there is a significant difference between condi-
tions in the Frustration factor (V=210, p-value= 0.049), indicating a higher sense of frustration
in Graz than Hands condition.

Finally, Figure 7.3 summarizes the user’s answers of the MIQ-3 questionnaire, the rat-
ings represent how easy (7) or hard (1) was to perform the imagery task (see Appendix A). The
mean values show that External Visual Imagery (5± 1.02) was easier for the users than Inter-
nal Visual Imagery (4.8±1.13) and Kinesthetic Imagery (3.95±1.24). Moreover, Spearman’s
rank correlation is used in order to find out any relationship between the classification error and
both the questionnaires (NASA-TLX and MIQ-3) and the Task Load Index. There are no any
significant correlations in both MIQ-3 and Task Load Index with the performance of the users.
Meanwhile, in the NASA-TLX, there is a significant correlation (rho=-0.366, p-value=0.019)
in Mental demand factor for the Hand condition. Inside this condition, only the TH-LH classi-
fication has a significant correlation with this factor (rho=-0.693, p-value=0.0261).

Figure 7.2 – NASA factors for the two conditions. *Significant difference.

Source: the author
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Figure 7.3 – MIQ-3 results. Ratings range from 1 (very hard) to 7 (very easy).

Source: the author

7.3 Discussion

The aim of studying the cognitive load in both subjective and objective ways is for a
deeper understanding of the additional load that realistic and visual feedback could cause. In
effect, the outcome of the objective assessment (Task Load Index) goes against to the results
of the subjective one (NASA-TLX). EEG data reveals that the cognitive load is higher (sig-
nificantly) in the realistic condition (Hands) than the standard one (Graz) but the opposite is
presented in the NASA-TLX (without significance). Moreover, some user’s comments at the
end of the experiment, such as "I found harder the arrows than the arms" or "I feel Temporal
demand a bit easier in Hands than Graz because it is easier to visualize" and the opposite "...
The arrow session was a less hard than the virtual hands because with the arms I constantly
tried to follow the hand movements which did not happen with the arrows" could evidence the
disjunctive sensation of the users evidenced by the NASA and Task Load Index. Interestingly, a
user did the next comment "The fact that I had the possibility of performing real hand movement
helped me to release the stress created by the imagery tasks" This comment supports the inten-
tion of keeping the real movements but further studies and comparisons are necessary before
drawing conclusions.

Despite that the Hands condition was kept as simple as possible, it could not be possible
to maintain a low cognitive load like in Graz, in effect, the processing of visual animation is
higher than arrows and fixation cross, showing how the visual processing plays a vital role in
the task load.
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8 CONCLUSION AND FUTURE WORK

8.1 Contributions

This thesis investigated the possibility of using an imaginary third arm inside a MI-BCI
system as well as the differences of the EEG patterns and classification rates of using a realistic
visual training in comparison of the traditional visualization.

Initially, the common EEG patterns of motor imagery activity (ERD/ERS) are found
when the subjects were asked to imagine a hand movement of a third arm emerging from the
chest. These findings can suggest that the illusion of having a third arm could go further than
a Rubber Hand illusion since that, in this case, a limb is attached and included rather than
replaced as RHI does. Furthermore, this thesis demonstrates that such imaginary third hand
can be successfully classified from other imaginary tasks (left and right hand), and resting state.
The results of table 6.1 suggest that the classification distinguishes this third arm from the left
hand and the resting state conditions with higher accuracy rates than it does from the right hand.
This seems to be related to handedness.

Additionally, and in line with the previous findings done by Skola and Liarnokapis
[Skola and Liarokapis 2018], the embodiment training improves the classification performance
as well as elicits stronger and consistent ERS/ERD patterns than the traditional Graz paradigm.
However, such comparison, unlike of Skola and Liarnokapis, is done in VR, i.e., both condi-
tions were made in a VR scenario, eliminating the bias that there exist when the comparison is
made with Graz in a monitor-based presentation.

Finally, the thesis shows the influence that realistic training has in the user, demonstrat-
ing thus that the cognitive load is higher in this scenario. However, the benefits presented by
this feedback are reflected in the enhanced of the ERS signals that consequently produce an
improvement of the classification.

8.2 Limitations

Unfortunately, this work lacks in studies about ownership of the third-arm in both sub-
jectively, with questions about the sense of agency and sense of ownership, and objectively,
using galvanic skin response (GSR), following the work of Bashford and Mehring [Bashford
and Mehring 2016]. These data could give some insights regarding the use of supernumerary
BCI and how it could be used in real applications, coming from the answers of the users.

8.3 Future Works

It would be necessary to experiment with left-handed people, in order to study the hand-
iness of the third arm. Moreover, it is compulsory the online MI-BCI implementation of the
proposed framework and paradigm, including the online recognition of the third virtual arm
from the other imaginary tasks.s

Supernumerary MI-BCI systems are prominent and possible uses should be explored,
especially for VR applications, where customized avatars could be controlled using imaginary
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non-body signals.
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Movement Imagery Questionnaire - 3 (MIQ - 3)
Instruções:

 
 Este questionário diz respeito a duas formas de desempenho mental de movimentos, as quais são 
usadas por algumas pessoas mais que outras, e são mais indicadas para alguns tipos de movimentos 
do que outros.  
 Primeiro, tenta-se formar uma imagem visual ou a figura do movimento na mente. Em seguida, 
tenta-se sentir a execução da ação sem realmente realizar o movimento.  
Será solicitada a realização de ambas as tarefas mentais em movimentos variados neste questionário, e 
em seguida qu que se classifique conforme a facilidade/dificuldade encontrada na realização das 
tarefas. 
 As classificações não estão designadas para avaliar a facilidade ou dificuldade da forma como 
realiza as tarefas mentais. Elas são tentativas para descobrir a capacidade individual para a realização 
das tarefas para movimentos diferentes. Não existem classificações certas ou erradas ou classificações 
melhores que outras.  
 Cada uma das seguintes afirmações descreve uma ação particular ou movimento. Leia cada 
afirmação cuidadosamente e em seguida realize o movimento como é descrito. Realize o movimento 
uma única vez. Retorne para a posição inicial como se fosse realizar a ação, uma segunda vez. Depois, 
dependendo do que for pedido para realizar, ou (1) formar de forma clara e vivida, quanto possível, a 
imagem visual do movimento realizada apenas a partir de uma perspectiva interna (i.e. a partir da 
perspectiva da 1ª pessoa, como se estivesses realmente dentro de si realizando e vendo a ação através 
dos seus olhos), (2) formar de forma clara e vivida, quanto possível, a imagem visual do movimento 
realizada apenas a partir de uma perspectiva externa (i.e. a partir da perspectiva da 3ª pessoa, como se 
estivesse vendo num filme), ou (3) tentar sentir como se realizasse o movimento acabado de executar 
sem realmente realizá-lo.  
 Após completar a tarefa mental requerida, classifique a facilidade/dificuldade de realizar a tarefa. 
Classifique a partir da escala fornecida e tente ser o mais preciso possível. Use o tempo que for 
necessário para decidir a classificação mais adequada para cada movimento. Pode escolher a mesma 
classificação para qualquer número de movimentos “vistos” ou “sentidos” e não é necessário utilizar 
toda a amplitude da escala.

* Required

1. ID *

1) Levantar o joelho

Posição Inicial:

Coloque-se com os pés e pernas juntos e os braços ao longo do corpo. 

Ação:

Levante o joelho direito o mais alto possível de forma a permanecer de pé sobre a sua perna esquerda, 
com a perna direita fletida (dobrada) no joelho. Agora, baixe a sua perna direita para voltar a ficar de pé 
sobre os dois pés. A ação é executada lentamente. 

Tarefa Mental:
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Assuma a posição inicial. Tente sentir-se realizando o movimento já observado mas sem o executar. 
Agora classifique a facilidade/dificuldade encontrada na realização da tarefa mental.  

2. Classificação *
Mark only one oval.

 Muito difícil de sentir

 Difícil de sentir

 Um pouco difícil de sentir

 Neutro (nem fácil nem difícil)

 Um pouco fácil de sentir

 Fácil de sentir

 Muito fácil de sentir

2) Salto

Posição Inicial:

Coloque-se com os pés e pernas juntas e os braços ao longo do corpo.

Ação:

Curve-se para baixo e em seguida salte em linha reta para cima, o mais alto possível, com ambos os 
braços estendidos acima da cabeça. Pouse com os pés afastados e baixe os braços. 

Tarefa Mental:

Assuma a posição inicial. Tente ver-se realizando o movimento já observado a partir da perspectiva 
interna. Agora classifique a facilidade/dificuldade encontrada na realização da tarefa mental. 

3. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

3)Movimento do braço

Posição Inicial:
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Estenda o braço da sua mão não-dominante lateralmente de maneira que ele fique paralelo ao solo com 
a palma da mão para baixo

Ação:

Desloque o seu braço para frente do corpo (ainda paralelo ao solo). Mantenha o braço estendido durante 
o movimento, executando-o lentamente. 

Tarefa Mental:

Assuma a posição inicial. Tente ver-se realizando o movimento já observado a partir da perspectiva 
externa. Agora classifique a facilidade/dificuldade encontrada na realização da tarefa mental.  

4. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

4) Dobrar a cintura

Posição Inicial:

Coloque-se com os pés ligeiramente afastados e os braços completamente estendidos acima da cabeça. 

Ação:

Lentamente, dobre o seu corpo para frente pela cintura tentando tocar nos dedos dos pés com a ponta 
dos dedos das mãos (ou, se possível, tocar no solo com a ponta dos dedos ou com as mãos). Agora, 
volte à posição inicial permanecendo ereto com os braços estendidos sobre a cabeça. 

Tarefa Mental:

Assuma a posição inicial. Tente sentir-se realizando o movimento já observado sem o executar. Agora, 
classifique a facilidade/dificuldade encontrada na realização da tarefa mental. 
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5. Classificação *
Mark only one oval.

 Muito difícil de sentir

 Difícil de sentir

 Um pouco difícil de sentir

 Neutro (nem fácil nem difícil)

 Um pouco fácil de sentir

 Fácil de sentir

 Muito fácil de sentir

5) Levantar o joelho

Posição Inicial:

Coloque-se com os pés e pernas juntos e os braços ao longo do corpo. 

Ação:

Levanta o joelho direito o mais alto possível de forma a permaneceres de pé sob a tua perna esquerda 
com a perna direita fletida (dobrada) no joelho. Agora baixa a tua perna a tua perna direita para voltares a 
estar de pé sob os dois pés. A ação é executada lentamente. 

Tarefa Mental:

Assume a posição de inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva 
interna. Agora classifica a facilidade/dificuldade encontrada na realização da tarefa mental. 

6. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

6) Salto

Posição Inicial:

Coloca-te com os pés e pernas juntas e os braços ao longo do corpo. 
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Ação:

Curva-te para baixo e de seguida salta em linha recta para cima, o mais alto possível, com ambos os 
braços estendidos acima da cabeça. Aterra com os pés afastados e baixa os braços. 

Tarefa Mental:

Assume a posição inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva externa. 
Agora classifica a facilidade/dificuldade encontrada na realização da tarefa mental.

7. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

7)Movimento do braço

Posição Inicial:

Estende o braço da tua mão não-dominante para o lado do corpo de maneira que ele fique paralelo ao 
solo com a palma da mão para baixo

Ação:

Desloca o teu braço para frente do corpo (ainda paralelo ao solo). Mantem o braço estendido durante o 
movimento, executando-o lentamente. 

Tarefa Mental:

Assume a posição de inicial. Tenta sentir-te a realizar o movimento já observado sem o executar. Agora 
classifica a facilidade/dificuldade encontrada na realização da tarefa mental. 
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8. Classificação *
Mark only one oval.

 Muito difícil de sentir

 Difícil de sentir

 Um pouco difícil de sentir

 Neutro (nem fácil nem difícil)

 Um pouco fácil de sentir

 Fácil de sentir

 Muito fácil de sentir

8) Dobrar a cintura

Posição Inicial:

Coloca-te com os pés ligeiramente afastados e os braços completamente estendidos acima da cabeça. 

Ação:

Lentamente dobra o teu corpo para frente pela cintura tentando tocar nos dedos dos pés com a ponta 
dos dedos das mãos (ou, se possível, tocar no solo com a ponta dos dedos ou com as mãos). Agora 
volta à posição inicial permanecendo direito com os braços estendidos sobre a cabeça. 

Tarefa Mental:

Assume a posição de inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva 
interna. Agora classifica a facilidade/dificuldade encontrada na realização da tarefa mental. 

9. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

9) Levantar o joelho

Posição Inicial:

Coloca-te com os pés e pernas juntas e os braços ao longo do corpo. 
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Ação:

Levanta o joelho direito o mais alto possível de forma a permaneceres de pé sob a tua perna esquerda 
com a perna direita fletida (dobrada) no joelho. Agora baixa a tua perna a tua perna direita para voltares a 
estar de pé sob os dois pés. A ação é executada lentamente. 

Tarefa Mental:

Assume a posição inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva externa. 
Agora classifica a facilidade/dificuldade encontrada na realização da tarefa

10. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

10)Salto

Posição Inicial:

Coloca-te com os pés e pernas juntas e os braços ao longo do corpo.

Ação:

Curva-te para baixo e de seguida salta em linha reta para cima, o mais alto possível, com ambos os 
braços estendidos acima da cabeça. Aterra com os pés afastados e baixa os braços. 

Tarefa Mental:

Assume a posição de inicial. Tenta sentir-te a realizar o movimento já observado sem o executar. Agora 
classifica a facilidade/dificuldade encontrada na realização da tarefa mental. 
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11. Classificação *
Mark only one oval.

 Muito difícil de sentir

 Difícil de sentir

 Um pouco difícil de sentir

 Neutro (nem fácil nem difícil)

 Um pouco fácil de sentir

 Fácil de sentir

 Muito fácil de sentir

11) Movimento do braço

Posição Inicial:

Estende o braço da tua mão não-dominante para o lado do corpo de maneira que ele fique paralelo ao 
solo com a palma da mão para baixo

Ação:

Desloca o teu braço para frente do corpo (ainda paralelo ao solo). Mantem o braço estendido durante o 
movimento, executando-o lentamente. 

Tarefa Mental:

Assume a posição de inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva 
interna. Agora classifica a facilidade/dificuldade encontrada na realização da tarefa mental. 

12. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

12) Dobrar a cintura

Posição Inicial:

Coloca-te com os pés ligeiramente afastados e os braços completamente estendidos acima da cabeça.
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Ação:

Lentamente dobra o teu corpo para frente pela cintura tentando tocar nos dedos dos pés com a ponta 
dos dedos das mãos (ou, se possível, tocar no solo com a ponta dos dedos ou com as mãos). Agora 
volta à posição inicial permanecendo direito com os braços estendidos sobre a cabeça. 

Tarefa Mental:

Assume a posição inicial. Tenta ver-te a realizar o movimento já observado a partir da perspetiva externa. 
Agora classifica a facilidade/dificuldade encontrada na realização da tarefa. 

13. Classificação *
Mark only one oval.

 Muito difícil de ver

 Difícil de ver

 Um pouco difícil de ver

 Neutro (nem fácil nem difícil)

 Um pouco fácil de ver

 Fácil de ver

 Muito fácil de ver

Obrigado!
Podemos agora começar com o set-up do experimento.
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Formulário de Participação
 
Deve ser preenchido antes de agendar o horário de participação no experimento.

* Required

1. Email address *

2. Nome *

Termo de Consentimento

Você está convidado a participar de um experimento cujo objetivo é pesquisar e desenvolver 
Interfaces Homem-Computador, através de métodos de Eletroencefalografia (EEG) e Realidade 
Virtual (VR). 
 
As aplicações dos testes serão no Instituto de Informática da UFRGS, por aproximadamente 60 
minutos e constam de três sessões. 
 
Sua participação na pesquisa é totalmente voluntária, ou seja, não é obrigatória. Não está previsto 
nenhum tipo de pagamento pela sua participação na pesquisa e você não terá nenhum custo com 
respeito aos procedimentos envolvidos. 
 
Caso você decida não participar, ou ainda, desistir de participar e retirar seu consentimento, não 
haverá nenhum prejuízo ao atendimento que você recebe ou possa vir a receber na instituição.  
 
O sigilo da identidade do entrevistado será mantido, uma vez que será realizada a substituição dos 
nomes e sobrenomes por códigos numéricos. Os resultados serão apresentados de forma conjunta, 
sem a identificação dos participantes, ou seja, o seu nome não aparecerá na publicação dos 
resultados. 
 
Não são conhecidos riscos pela participação na pesquisa pelos procedimentos envolvidos. Você 
apenas ficará com gel residual no couro cabeludo em função do uso da touca de EEG. Caso ocorra 
alguma intercorrência ou dano, resultante de sua participação na pesquisa, você receberá todo o 
atendimento necessário, sem nenhum custo pessoal.  
 
A avaliação consiste nas seguintes tarefas: 
 
Preenchimento de formulários demográficos e referentes à sua experiência no uso de tecnologias 
EEG e VR e questionário sobre a imaginação motriz. 
 
Será colocada uma “touca” com eletrodos para mensuração da atividade cerebral (EEG) e um Head 
Mounted Display (HMD) para a simulação do ambiente imersivo.  
 
Após a instalação destes equipamentos, você terá que fazer os testes explicados detalhadamente na 
folha anexa, entre testes terá um espaço de relaxamento. 
 
Sua participação na pesquisa não trará benefícios diretos, porém contribuirá para o aumento do 
conhecimento sobre o assunto estudado e, se aplicável, poderá beneficiar ciência e muitas pessoas 
no futuro. 
 
Salienta-se que, ao longo da pesquisa, os pesquisadores estarão à disposição para responder a 
quaisquer dúvidas relacionadas a tal. Abaixo constará o nome e telefone do pesquisador para 
eventual contato. 
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QUESTIONNAIRES. CONSENTING TERM AND EXPERIMENT INSTRUCTIONS



 
 

3. Caso você esteja de acordo com este termo, marque a opção abaixo. *
Check all that apply.

 Aceito participar deste experimento. Declaro que fui devidamente informado sobre os
objetivos da pesquisa, os procedimentos envolvidos nos testes aos quais vou me submeter e os
possíveis riscos decorrentes de minha participação. Foi-me garantido o sigilo de minhas
informações e o direito de retirar minha participação a qualquer momento.

Perfil do Participante

4. Qual sua idade? *

5. Qual seu sexo? *
Mark only one oval.

 Feminino

 Masculino

6. Qual seu nível de formação? *
Mark only one oval.

 Ensino médio

 Técnico

 Graduado

 Especialista

 Mestrado

 Doutorado

 Pós doutorado

7. Você tem alguma restrição em movimentar
sua cabeça? *

8. Você tem problemas de visão? *
Mark only one oval.

 Sim

 Não

 Não sei
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9. Quais problemas de visão você possui? ( se sim na pergunta acima)
Check all that apply.

 Miopia

 Astigmatismo

 Hipermetropia

 Daltonismo

 Outro

10. Você já usou Oculus Rift ou outro aparelho similar? *
Mark only one oval.

 Não. Nunca usei aparelho similar.

 Sim. Já usei o Oculus Rift antes.

 Other: 

11. Marque a opção que melhor descreve qual mão você usa para a atividade em questão *
Mark only one oval per row.

Sempre
Esquerda

Geralmente
Esquerda

Sem
Preferência

Geralmente
Direita

Sempre
Direita

Escrevendo
Lançando um objeto
Usando uma
tesoura
Escova de dentes
Usando uma faca
(sem garfo)
Usando uma colher
Acendendo um
fósforo

Instruções
Você vai estar sentado, da forma mais confortável e relaxada possível e procurando evitar o máximo 
possível qualquer outro movimento além do indicado para fazer.  O experimento possui 6 etapas 
(Aplicação do questionário de caracterização, treinamento, calibração, dois testes e aplicação do 
questionário final): 
 
-Aplicação do questionário de caracterização: Ao início do experimento, você será convidado a 
responder algumas perguntas demográficas (idade, sexo, educação) e um questionário de 
imaginação motriz. 
 
 -Treinamento: Vai ser apresentada a cena do teste em realidade virtual para que você se habitue 
com o paradigma e os estímulos a serem apresentados. Instruções vão ser subministradas ao longo 
dessa etapa até você aprender o processo todo. 
 
-Calibração: Uma touca branca com eletrodos (8) será colocada em sua cabeça, a mesma irá medir 
as ondas cerebrais, ela poderá ser um pouco desconfortável. Posteriormente, dois eletrodos a mais 
serão colocados detrás da sua orelha (mastoide). 
 
-Experimento: Dois testes vão ser rodados (com um descanso de dois min no meio). Cada teste está 
composto de 100 triais com uma duração de sete segundos cada um (duração total 12min). Os triais 
dividem-se em quatro partes (ver figura 1): 
 
 -Tela cinza: onde você deve ficar relaxado (2 segs). 
 -Sino: som indicando prestar atenção para a instrução a ser apresentada (1 seg). 
 -Seta: Aparece uma seta indicando a tarefa a ser executada (1 seg). 
 -Cruz: Ponto de fixação onde você deve executar a tarefa (3 segs).
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A direção (para cima, esquerda o direita) e a cor (branco e vermelho) das setas representam a tarefa 
a ser executada da seguinte forma: 

Figura 1

Execução movimento mão esquerda.

Execução movimento mão direita.
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Imaginação movimento mão esquerda.

Imaginação movimento mão direita.
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Imaginação movimento terceiro braço.
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-Na imaginação, tente imaginar a sensação de estar fazendo o movimento solicitado (abrir e fechar a 
mão). Para o terceiro braço, imagine um membro adicional que se origina da parte central do tórax e 
executando a mesma ação. 
 
-Aplicação do questionário final: ao final do experimento, você vai responder algumas perguntas 
relacionadas ao teste. Qualquer feedback é bem-vindo. 
 
Se você tiver alguma dificuldade ou mal estar durante o experimento você deve informar para que o 
experimento seja interrompido. 
 
Bom teste e obrigado!

 Send me a copy of my responses.
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NASA TLX & SEQ
* Required

1. User ID *

2. Task *

Fontes de Sobrecarga
A avaliação que você está prestes a fazer é uma técnica que tem sido desenvolvida pela NASA para 
avaliar a importância relativa de seis fatores na determinação da carga de trabalho ("workload") em uma 
dada tarefa: 
 
DEMANDA MENTAL - Quanta atividade mental e perceptual foi exigida (ex.: pensando, decidindo, 
calculando, relembrando, olhando, buscando, etc.)? A tarefa foi fácil ou exigente, simples ou complexa, 
exata ou flexível? 
 
DEMANDA FÍSICA - Quanta atividade física foi exigida (ex.: empurrando, puxando, girando, controlando, 
ativando, etc.)? A tarefa foi fácil ou exigente, devagar ou apressada, preguiçosa ou energética, 
descansada ou trabalhosa? 
 
DEMANDA TEMPORAL - Quanta pressão você sentiu com relação ao tempo devido ao andamento ou 
ritmo em que as tarefas ou etapas da tarefa aconteceram? O ritmo foi devagar e sem pressa ou rápido e 
frenético?  
 
ESFORÇO - Quão duro você tem que trabalhar (mentalmente e fisicamente) para atingir seu nível de 
desempenho? 
 
DESEMPENHO - Quão bem sucedido você pensa ter sido em atingir os objetivos da tarefa estabelecidos 
pelo experimentador (ou por você mesmo)? Quão satisfeito você foi com sua performance ao atingir 
esses objetivos?  
 
NÍVEL DE FRUSTRAÇÃO - Quão inseguro, desencorajado, irritado, estressado e aborrecido versus 
seguro, grato, contente, relaxado, e complacente você se sentiu durante a tarefa? 
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3. Selecione o fator que representa o mais importante contribuinte para a sobrecarga na tarefa
que você acabou de fazer *
Mark only one oval per row.

A B

(A) Dem. Física ou Temporal (B)
(A) Dem. Temporal ou Frustração
(B)
(A) Desempenho ou D. Temporal
(B)
(A) Frustração ou Dem. Mental (B)
(A) Frustração ou Esforço (B)
(A) Dem. Temporal ou Mental (B)
(A) Dem. Física ou Frustração (B)
(A) Esforço ou Dem. Física (B)
(A) Dem. Física ou Desempenho
(B)
(A) Dem. Mental ou Física (B)
(A) Desempenho ou Frustração
(B)
(A) Dem. Mental ou Esforço (B)
(A) Esforço ou Desempenho (B)
(A) Desempenho ou Dem. Mental
(B)
(A) Dem. Temporal ou Esforço (B)

Magnitude da Sobrecarga

4. Quão mentalmente exigente foi a tarefa? *
Demanda Mental
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Muito
Baixa

Muito
Alta

5. Quão fisicamente exigente foi a tarefa? *
Demanda Física
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Muito
Baixa

Muito
Alta

6. Quão corrido ou apressado foi o ritmo da tarefa? *
Demanda Temporal
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Muito
Baixa

Muito
Alta
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7. Quão bem sucedido você foi em realizar o que te foi pedido para fazer? *
Desempenho
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Perfeito Falho

8. Quão duro você teve que trabalhar para alcançar seu nível de desempenho? *
Esforço
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Muito
Baixo

Muito
Alto

9. Quão inseguro, desencorajado, irritado, estressado, e aborrecido você estava? *
Frustração
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Muito
Baixa

Muito
Alta

10. Comentários
(opcional)
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