
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

THANNER SOARES SILVA

An architecture for enabling business
process-oriented text generation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Lucinéia Heloisa Thom

Porto Alegre
April 2019

CIP — CATALOGING-IN-PUBLICATION

Silva, Thanner Soares

An architecture for enabling business process-oriented
text generation / Thanner Soares Silva. – Porto Alegre:
PPGC da UFRGS, 2019.

153 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Lucinéia Heloisa Thom.

1. Business process management. 2. Business process model
and notation. 3. Natural language processing. 4. Service oriented
architecture. I. Heloisa Thom, Lucinéia. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Business process management has become an increasingly present activity in organiza-

tions. In this context, business process descriptions are considered as a useful artifact in

both identifying business processes and complementing business process documentation.

However, organizations do not always create business process descriptions to document

their business processes. In addition, business process descriptions may not follow a spe-

cific format, which may lead to contain ambiguous or non-recurring sentences that make

it difficult to understand the process. Thus, this dissertation aims to develop an approach

that enables the generation of business process-oriented texts. In the context of this work,

the business process-oriented text is defined as a text that is structured, able to maintain

the maximum information related to the business process, and able to check the quality of

the process in relation to the BPMN 2.0 and in relation to soundness. In order to achieve

this goal, was performed an analysis in the literature and in 64 business process descrip-

tions in order to define how business process-oriented texts should be. In addition, an

SOA-based architecture was developed in which the steps required to generate the busi-

ness process-oriented text are addressed to the individual services. The analysis made

it possible to find 101 recurring sentence templates in business processes descriptions, of

which 13 were considered to have ambiguity issues based on the adopted criteria. Further-

more, a prototype was developed and the process description produced by the approach

was compared to the original process model through a process similarity technique. The

findings made in order to define how the business process-oriented texts should be can

support other approaches in generating business process descriptions more suitable for

process analysts and domain experts. Finally, the architecture can be enhanced with other

services capable of providing other functionalities that contribute to the creation and man-

agement of business processes descriptions in organizations.

Keywords: Business process management. business process model and notation. natural

language processing. service oriented architecture.

Uma arquitetura para geração de texto orientado a processos de negócio

RESUMO

O gerenciamento de processos de negócio tem se tornado uma atividade cada vez mais

presente nas organizações. Nesse contexto, descrições de processos de negócio são con-

sideradas um artefato útil na identificação de processos de negócio e na complementação

da documentação de processos de negócio. No entanto, as organizações nem sempre

criam descrições de processos de negócio para documentar seus processos de negócio.

Além disso, descrições de processos de negócio podem não seguir um formato específico,

podendo conter sentenças ambíguas ou não recorrentes, que dificultam a compreensão do

processo. Assim, esta dissertação visa desenvolver uma abordagem que permita a geração

de textos orientados a processos de negócio. No contexto deste trabalho, o texto orientado

a processos de negócio é definido como um texto estruturado, capaz de manter o máximo

de informações relacionadas ao processo de negócio, e capaz de verificar a qualidade do

processo em relação ao BPMN 2.0. e em relação ao soundness. Para atingir esse objetivo,

foi feita uma análise na literatura e em 64 descrições de processos de negócio, a fim de

definir como deveriam ser os textos orientados a processos de negócio. Além disso, foi

desenvolvida uma arquitetura baseada em SOA na qual as etapas necessárias para gerar

o texto orientado a processos de negócio são endereçadas a serviços individuais. A aná-

lise permitiu encontrar 101 templates de sentença recorrentes em descrições de processos

de negócio, sendo 13 deles considerados como tendo problemas de ambiguidade com

base nos critérios adotados. Além disso, um protótipo foi desenvolvido e a descrição de

processo produzida pela abordagem foi comparada com o modelo de processo original

através de uma técnica de similaridade de processos. As descobertas feitas para definir

como devem ser os textos orientados a processos de negócio podem suportar outras abor-

dagens na geração de descrições de processos de negócio mais adequadas para analistas

de processo e especialistas de domínio. Por fim, a arquitetura pode ser aprimorada com

outros serviços capazes de fornecer outras funcionalidades que contribuem para a criação

e gerenciamento de descrições de processos de negócio para as organizações.

Palavras-chave: Gerenciamento de processos de negócio, modelagem e notação de pro-

cessos de negócio, processamento de linguagem natural, arquitetura orientada a serviços.

LIST OF ABBREVIATIONS AND ACRONYMS

BPM Business Process Management

BPMN Business Process Model and Notation

DSYNT Deep Syntactic Tree

JSON JavaScript Object Notation

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

OMG Object Management Group

REST Representational State Transfer

RPST Refined Process Structure Tree

SBVR Semantics of Business Vocabulary and Rules

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

WADL Web Application Description Language

WSDL Web Service Description Language

XML Extensible Markup Language

XSD XML Schema Definition

YAWL Yet Another Workflow Language

LIST OF FIGURES

Figure 1.1 Security check airport process. ..11
Figure 1.2 Methodology. ...16

Figure 2.1 BPM lifecycle. ...19
Figure 2.2 BPMN 2.0 elements...21
Figure 2.3 Example of BPMN model: Computer repair. ..22
Figure 2.4 Example of business process description: Computer repair.22
Figure 2.5 Symbols used in YAWL...24
Figure 2.6 Example of YAWL model: Computer repair. ..25
Figure 2.7 An NLG system architecture ...26
Figure 2.8 Original architectural representation of SOA. ...28

Figure 3.1 Process description: Exercise 4.18. ...43
Figure 3.2 Question 4: Process model example..45
Figure 3.3 Question 5: Process model example..47
Figure 3.4 Example of process description: Computer repair (adapted from Figure

2.4). ...52
Figure 3.5 Example of process description of Figure 3.4 rewritten................................65

Figure 4.1 Business process-oriented text generation...68
Figure 4.2 Architecture for business process-oriented text generation.70
Figure 4.3 Contracts and definition files. ..71
Figure 4.4 Architecture overview: File exchange perspective.72
Figure 4.5 Example of sentence with metadata. ...72
Figure 4.6 BPMN example: Document sign...75
Figure 4.7 Levels in a process model. ...81
Figure 4.8 Process model generation from natural language text overview.86
Figure 4.9 Process model with problems. ...97
Figure 4.10 Original text generation approach architecture..101
Figure 4.11 DSynT example. ..102
Figure 4.12 Text Writer Service overview. ..104
Figure 4.13 Example of sentence created from a trivial fragment.106
Figure 4.14 Example of rewritten process description: Computer repair.116
Figure 4.15 Interaction between user and web browser. ...117

Figure 5.1 Prototype overview. ...122
Figure 5.2 Prototype: Input data. ..123
Figure 5.3 Prototype: Text Markers sidebar..125
Figure 5.4 Prototype: Text Structuring sidebar. ..126
Figure 5.5 Prototype: Verifications sidebar...127
Figure 5.6 Procedure for calculating similarity...129
Figure 5.7 Process model transformation. ..131

LIST OF TABLES

Table 2.1 Related works 1 ...31
Table 2.2 Related works 2 ...33
Table 2.3 Related works 3 ...36

Table 3.1 Data sources. ...41
Table 3.2 Example of identification of sentence templates...53
Table 3.3 Identified ambiguity issues..55
Table 3.4 Atomic sentence templates by category 1. ..56
Table 3.5 Atomic sentence templates by category 2. ..57
Table 3.6 Atomic sentence templates by category 3. ..58
Table 3.7 Grouped sentence templates..59
Table 3.8 Sentence templates chosen to compose the process description.63

Table 4.1 Verification types classification. ..97
Table 4.2 Modifications in bond fragments. ...107
Table 4.3 Modifications in message aggregation. ...109
Table 4.4 Modifications in discourse markers...110

Table 5.1 Similarity summary. ..134
Table 5.2 Similarity - Part 1. ...135
Table 5.3 Similarity - Part 2. ...136

Table 7.1 Business process descriptions 1. ...143
Table 7.2 Business process descriptions 2. ...144
Table 7.3 Business process descriptions 3. ...145

CONTENTS

1 INTRODUCTION...10
1.1 Motivation..12
1.2 Goals and Hypothesis ...14
1.3 Contributions...15
1.4 Methodology ..15
1.5 Remainder ...16
2 FUNDAMENTALS ...18
2.1 Business Process Management...18
2.2 Process Modeling Languages ...20
2.2.1 Business Process Model and Notation...20
2.2.2 Yet Another Workflow Language ..23
2.3 Natural Language Processing ..25
2.4 Service Oriented Architecture ...27
2.5 Related Works ...30
2.5.1 Discovery of Processes from Natural Language Texts ..30
2.5.2 Generation of Business Process Descriptions..33
2.5.3 Alignment between Process Model and Business Process Description.................35
2.6 Final Considerations...37
3 BUSINESS PROCESS DESCRIPTION DESIGN...39
3.1 Business Process Descriptions..40
3.2 Analysis for Structuring the Text ..40
3.2.1 Question 1: How is the text usually described in relation to the process?.............41
3.2.2 Question 2: How is the text organized in terms of paragraphs?42
3.2.3 Question 3: What is the voice used in the text?...44
3.2.4 Question 4: How does the text describe splits and joins?......................................44
3.2.5 Question 5: How does the text describe the different paths generated by splits?..46
3.3 Analysis for Sentence Design ...49
3.3.1 Preparation of Sentences..49
3.3.2 Identification and Classification of Sentence Templates50
3.3.3 Ambiguity in Sentence Templates ...54
3.3.4 Analysis of Sentence Templates and Ambiguity Issues ..54
3.4 Text Design...59
3.4.1 Term to Represent Processes Paths..60
3.4.2 Text Structuring Design ...60
3.4.3 Sentence Design...61
3.5 Study Case: Computer Repair Process Description..65
3.6 Final Considerations...66
4 ARCHITECTURE FOR BUSINESS PROCESS-ORIENTED TEXT GEN-

ERATION ...68
4.1 Architecture Overview..69
4.1.1 File Exchanges ...71
4.1.2 Behavior of Services for the Generation of Business Process-oriented Texts73
4.2 Data Definition Files ...74
4.2.1 Process File Schema ..74
4.2.2 Process Verification File Schema...78
4.2.3 Text Metadata File Schema..79
4.3 Service Definition Files ...84

4.4 Text Reader Service ..86
4.4.1 Modifications in the Process Model Generation from Natural Language Text

Approach..87
4.4.2 Text Reader Output ..88
4.4.3 Process Identification Issues ..91
4.5 Process Verification Service ...92
4.5.1 BPMN Verification...93
4.5.2 YAWL Verification...95
4.5.3 Classifications of the Verifications...96
4.5.4 Verification Service Output..96
4.6 Text Writer Service ...100
4.6.1 Modifications in the Generating Natural Language Texts from Business Pro-

cess Models Approach ...103
4.6.2 Pre-processing Phase ...104
4.6.3 Modifications in DSynT - Message Generation Stage...105
4.6.4 Modifications in Message Refinement Stage...109
4.6.5 Modifications in Realization Phase..110
4.6.6 Text Writer Output ...111
4.7 Main Service ..115
4.7.1 Text Marking..117
4.7.2 Text Structuring..118
4.7.3 Process Verification Display ..119
4.8 Final Considerations...119
5 TEST OF THE BUSINESS PROCESS-ORIENTED TEXT GENERATION

ARCHITECTURE...121
5.1 Developed Prototype ...121
5.2 Similarity Verification...127
5.2.1 Verification Procedure..128
5.2.2 Results Obtained by the Similarity Technique...133
5.3 Final Considerations...137
6 CONCLUSION ...138
6.1 Publications ...141
7 APPENDIX: BUSINESS PROCESS DESCRIPTIONS..143
REFERENCES...146

10

1 INTRODUCTION

In order to stay competitive, organizations document and manage their business

processes. A business process can be defined as “a collection of events, activities and

decisions that collectively lead to an outcome that brings value to an organization’s cus-

tomers” (DUMAS et al., 2018). These processes, in turn, can be presented through dif-

ferent representations, such as: business process descriptions or business process models.

The combination of distinct representations can improve understanding of the process as

they provide different perspectives on it (NAWROCKI et al., 2006; OTTENSOOSER et

al., 2012).

While business process descriptions are presented as natural language texts that

describe how the process should occur, business process models use notations made up

of visual elements and rules to represent the business process. There are several process

modeling notations in the literature that can be used to model business processes. Zimoch

et al. (2018) presents some: Business Process Modeling Notation (BPMN 2.0) (OMG,

2013), Declarative Process Modeling (AALST; PESIC; SCHONENBERG, 2009), eGantt

Chart (LANZ; KOLB; REICHERT, 2013), Event-driven Process Chain (EPC) (AALST,

1999), Flow Chart (SCHULTHEISS; HEILIGER, 1963), Integrated Definition for Process

Description Capture Method (IDEF3) (MAYER et al., 1995), Petri Net (MURATA, 1989),

and UML Activity Diagram (DUMAS; HOFSTEDE, 2001).

Figure 1.1 presents a business process model created following the BPMN 2.0.

This figure demonstrates a process of security check at the airport. This process starts

when the boarding pass is received. Then, the passenger must proceed to the security

check. There, the passenger must pass through the security screening and the luggage

must pass through the luggage screening. Having the former two activities executed, the

passenger must proceed to the departure level. This process ends when the passenger

reaches at the departure level.

The business process model presented in Figure 1.1 is composed of different ele-

ments defined as process elements. Each process element has its own graphic represen-

tation and a certain semantics. As an example, the rectangle with rounded corners and

with the label “Proceed to security check” corresponds to an activity and aims to express

that the action “Proceed to security check” should be performed by some resource (in this

case, the passenger).

To achieve the goal of documenting and managing their processes, organizations

11

Figure 1.1: Security check airport process.

Source: The authors, adapted from Dumas et al. (2018)

need to discover their processes. Dumas et al. (2018) describes the discovery of processes

as the act of gathering information about existing processes and organizing them in terms

of a as-is process models. The as-is process model depicts how the process currently

occurs in the organization.

According to Dumas et al. (2018), the discovery of processes usually involves

the participation of two main roles: the process analyst and the domain specialist. The

process analyst is defined as the person who has in-depth knowledge of business process

modeling techniques and uses this to construct process models. However, the process

analyst usually has no knowledge of the operation of the process that will model. On the

other hand, the domain specialist has detailed knowledge of the operation of the process,

but has no experience with process modeling techniques.

The process discovery can be done through the use of different methods. Dumas et

al. (2018) presents three different methods for process discovery, being: interview-based

discovery, workshop-based discovery, and evidence-based discovery.

Interview-based discovery refers to methods that make up the interview with do-

main experts about how a process is run. Such methods involve asking questions from

domain experts or even asking them to write a text describing the process.

Evidence-based discovery, in turn, covers the techniques of document analysis,

observation, and automatic process discovery. The document analysis makes use of the

different documents of the organization to seek to understand the process. In this context,

different manuals, reports, business policies, books, forms, letters and e-mails can be used

as a source by a process analysts. On the other hand, observation can be considered as

a daily analysis of how people in the organization carry out their activities. Automatic

process discovery, in turn, make use of event logs provided by information systems in

12

order to find the business processes (AALST; WEIJTERS; MARUSTER, 2004).

Finally, the workshop-based discovery seeks to bring together different domain

experts to get a more holistic view of the process. For the better understanding of the

process, several sessions involving different participants may be necessary, requiring a

good preparation and scheduling. Moreover, in addition to process analysts and domain

experts, this method relies on other roles such as the facilitator (responsible for organizing

participants’ verbal contributions), the tool operator (responsible for inserting the results

of the discussion in the modeling tool), and the process owner (responsible for the efficient

and effective operation of the process).

This work focuses on the creation of process descriptions so that it can contribute

to process discovery (i.e. document analysis) and process documentation.

1.1 Motivation

This work arose from a need observed in previous works of the same research

group (FERREIRA; THOM; FANTINATO, 2017; FERREIRA et al., 2017). Although

these works have different objectives and methodologies in relation to this work, both

aim to contribute to the process discovery from business process descriptions.

In terms of relevance, this work is justified by three different reasons. First, this

work allows the structuring of documents that contain information related to business

processes and thus facilitate the process discovery in textual descriptions. Facilitating the

process discovery in textual descriptions is desirable since the acquisition of a process

model (i.e., the realization of process discovery) may require 60% of the total time spent

in a workflow project (HERBST; KARAGIANNIS, 1999). Second, this work can aid

in communication between process analysts and domain experts. Having a structured

document describing the process can help in the interaction between these roles during

process discovery. Finally, this work can serve for the understanding of the process by the

actors of the organization acting, in this way, as a script to be followed by professionals.

Concerning the structuring of documents, the technique of analyzing organiza-

tional documents can be complicated since many of the organizational information is

stored in unstructured form (BLUMBERG; ATRE, 2003; MAQBOOL et al., 2018). In

addition, most of the available documentation of an organization’s operations is not orga-

nized in a process-oriented manner (DUMAS et al., 2018).

Regarding communication between process analysts and domain experts, only

13

process analysts understand the process models in detail (OTTENSOOSER et al., 2012;

LEOPOLD; MENDLING; POLYVYANYY, 2012; MAQBOOL et al., 2018), which may

hinder the validation of the process model. In this context, the use of textual descriptions

could improve the understanding of the process by the domain experts (OTTENSOOSER

et al., 2012) and, consequently, the interaction between these and process analysts during

process model validation.

In relation to act as a script to be followed by professionals, business process

descriptions can also be maintained along with process models to make process infor-

mation accessible to various stakeholders, including those who are unfamiliar with the

reading and interpretation of process models (AA; LEOPOLD; REIJERS, 2017). In an

experiment conducted with 196 students that sought to compare the ability to understand

processes from textual descriptions and process models demonstrated that the most effec-

tive approach to comprehension occurred when textual descriptions were used followed

by presentation of their respective process models (OTTENSOOSER et al., 2012).

Moreover, many organizations supplement their documents with process descrip-

tions to add information that is not demonstrated in their process models (LEOPOLD et

al., 2016). This need is also observed in other areas that involve the use of models for

data representation. Lavoie and Rambow (1997), in his work on generating text from

object-oriented data model, comments that graphics needs to be complemented by an al-

ternate view of the data in order to improve communication. More specifically, the authors

suggest that the data could be complemented with standard english text.

Although there is an interest in creating business process descriptions, its creation

involves different challenges. Among them, it is possible to highlight: the ambiguity

present in the natural language texts, the identification of process elements and the verifi-

cation of the process being described.

Referring to the ambiguity present in natural language texts, the texts can contain

snippets that generate multiple interpretations. As an example, in the sentence “Then, the

passenger must pass through the security screening and the luggage must pass through the

luggage screening”, the snippet “and” may raise doubts whether actions “pass through the

security screening” and “pass through the luggage screening” should be executed in se-

quence (i.e., the second action is performed only after the first action has been performed)

or in parallel (i.e., the two actions are performed at the same time). Such interpretations

can lead to misunderstandings of the process and, consequently, to possible errors (FER-

RARI et al., 2017).

14

Concerning identification of process elements in process descriptions, in many

situations people may have difficulty in identifying all process elements (e.g. events,

activities) being presented in a process description. This issue has already been high-

lighted in other works and is presented as a point to be solved (LEOPOLD; MENDLING;

POLYVYANYY, 2014). A possible solution could be to mark the elements of the process

in the process descriptions and thus to help the readers to identify the elements (FER-

REIRA et al., 2017).

In relation to the verification of the process being described, it is interesting that

not only is the description correct, but also that the process being described presents no

problems (e.g., process that describes a loop that never ends, activity that is never per-

formed, activity that does not present who is the resource that performs it). In this con-

text, the description can be checked to conform to some modeling notation. In addition,

a verification can ensure that the process has soundness (AALST, 1998). A process is

considered sound if it has at least one option to finish, that at the end of the process there

are no tasks still in progress, and that has no paths that will never be executed.

1.2 Goals and Hypothesis

Considering the reasons and the challenges previously presented, structured doc-

uments capable of describing processes objectively are shown as desirable artifacts for

organizations. Thus, this dissertation aims to develop an approach that allows the gener-

ation of business process-oriented text from natural language text. In the context of this

work, a business process-oriented text is defined as a text that is:

1. Structured.

2. Able to maintain the maximum information related to the business process.

3. Able to check the quality of the process in relation to the BPMN 2.0 and in relation

to soundness.

The hypothesis of this work is: It is possible to generate business process-oriented

text from natural language text. From the defined hypothesis, the following specific goals

are defined:

• Define how a business process-oriented text should be.

15

• Define an architecture that allows the generation of business process-oriented text.

• Check the similarity of the business process-oriented text to the original process.

To achieve these goals, existent techniques for discovering processes from natural

language texts and techniques for generating natural language texts capable of describing

business processes are taken into account in this work.

1.3 Contributions

The main contributions of this dissertation, which are detailed in the conclusions,

are:

• Process Description Design: In order to define how a process description should

be described, an analysis was carried out on 64 process descriptions. This analysis

consisted of a structural analysis of the texts and an analysis of sentence templates.

Further, the analysis allowed to identify which sentence templates appear recur-

rently in the literature even presenting some kind of ambiguity issue. The results of

this analysis may contribute to other approaches that describe business processes.

• Architecture for generation of business process-oriented text: In order to pro-

duce a process-oriented text, a service-oriented architecture consisting of five ser-

vices was defined. Each service performs a certain functionality in order to produce

the process description. In addition, contracts for communication between these

services were deferred.

• Prototype: A prototype has been implemented for a generation of the process-

oriented text. This prototype was constructed considering the defined approach for

generation of process-oriented text. In addition, this prototype seeks to produce

process descriptions that meet an analysis performed in the process description de-

sign.

1.4 Methodology

For the generation and validation of the business process-oriented text, this work

presented a methodology that consists of four steps. Figure 1.2 presents the four steps of

the methodology and how they are related.

16

Figure 1.2: Methodology.

Business process
description design

Definition of the
architecture for

business process-
oriented text
generation

Similarity-based
verification

Development of a
prototype

Step 1 Step 2 Step 3 Step 4

Source: The authors

First, it was defined through empirical analyzes how the business process-oriented

text should be (i.e., Step 1). Next, the architecture for business process-oriented text

generation was defined (i.e., Step 2). Then, to enable testing of the created architecture, a

prototype was developed (i.e., Step 3). Finally, a verification technique based on similarity

was used to verify if the text generated by the approach is in accordance with its respective

process (i.e., Step 4).

1.5 Remainder

This dissertation is divided into six chapters, considering this introduction. The

other chapters are organized as follows:

• Chapter 2 outlines the fundamentals of Business Process Management (BPM), pro-

cess modeling languages, Natural Language Processing (NLP) and Service Ori-

ented Architecture (SOA). Initially, the definition of BPM and the description of

its life cycle is presented. Regarding process modeling languages, this chapter ex-

plores the two languages used in this work, being: BPMN and Yet Another Work-

flow Language (YAWL). Then, it is defined NLP and presented its main concepts

that will be used by this work. In addition, the concepts of SOA are described.

Finally, the related works of this dissertation are presented.

• Chapter 3 presents the analysis performed for the definition of the design of business

processes descriptions. First, this analysis takes into consideration how business

processes descriptions are usually structured. Next, these process descriptions are

analyzed with the objective of identifying recurrent sentence templates that do not

present ambiguity issues.

• Chapter 4 presents the architecture to the generation of business process-oriented

texts. In this chapter, the services created and the contracts defined for the interac-

17

tion between them are presented.

• Chapter 5 presents the developed prototype. In addition, this section reports the

results of the similarity check between the business process-oriented text and the

original process, and presents an analysis of the results.

• Chapter 6 presents the final conclusions of this work, highlighting the main contri-

butions, limitations and possible future works.

18

2 FUNDAMENTALS

This chapter presents the main concepts that underlie this work. Section 2.1 intro-

duces BPM and the business process lifecycle. Section 2.2 presents the process modeling

languages BPMN 2.0 and YAWL. Section 2.3 defines NLP and describes the main con-

cepts and techniques that were used in this dissertation. Section 2.4 defines SOA and

presents Representational State Transfer (REST) as a way to obtain a SOA. Section 2.5

presents the related works of this dissertation. Finally, Section 2.6 presents the final con-

siderations of this chapter.

2.1 Business Process Management

BPM is a discipline that involves concepts, methods, techniques, and tools for dis-

covering, analyzing, redesigning, executing, and monitoring business processes (DUMAS

et al., 2018). BPM can be seen from the perspective of a lifecycle formed by a set of steps

that have well-defined objectives and are directly related.

Several BPM lifecycles have been proposed by different authors in books and pa-

pers, such as: Aalst (2004), Aalst (2013), Weske (2012), Muehlen and Ho (2005), Brocke,

Rosemann et al. (2010), Hallerbach, Bauer and Reichert (2008). In order to describe BPM

phases, this work chose to present the lifecycle proposed by Dumas et al. (2018) because

it is a very complete and easy to understand lifecycle, covering different BPM levels of

abstractions in its execution. Figure 2.1 presents the BPM lifecycle proposed by Dumas

et al. (2018). This lifecycle is composed by 6 phases, being:

• Process identification: In this phase, two goals are expected. Firstly, it is defined

which business problems will be considered by the analysis. Secondly, the pro-

cesses relevant to these business problems are identified, delimited, and related.

This phase results in a process architecture that provides an overview of the pro-

cesses existent in an organization and its relationships.

• Process discovery: In this phase, the relevant organizational processes defined ear-

lier are understood and modeled in the way they currently occur. This phase is also

known as “as-is process modeling”. The result of this step is a set of as-is process

models.

• Process analysis: In this phase, qualitative and quantitative analyses of what can be

19

Figure 2.1: BPM lifecycle.

Source: Dumas et al. (2018)

improved in the as-is models are carried out, taking into account a set of objectives

and metrics to be achieved.

• Process redesign: In this phase, the creation of new processes based on the ob-

servations made in the process analysis phase occurs. This phase is also known as

"process improvement". The result of this step is a set of to-be process models.

• Process implementation: In this phase, the changes necessary to transform the

as-is process into the to-be process are prepared and executed. This step involves

modifying the organization to perform the new process (i.e., organizational change

management) and automating the process through the use of IT systems such as a

Business Process Management System (BPMS) (i.e, a system that makes feasible

process automation).

• Process monitoring: In this phase, the monitoring of the new process to identify

nonconformities and degradation problems is carried out. Once the process presents

problems or is not achieving the expected results, a new life cycle iteration becomes

necessary.

As this work aims to help communication between process analysts and domain

experts in order to understand the processes of the organization as they occur, it is pos-

20

sible to point out that this work focuses on bringing contributions mainly to the process

discovery phase.

2.2 Process Modeling Languages

In this work, the BPMN 2.0 is used as the main language of the approach. Also,

the soundness of a business process is supported by YAWL. Therefore, the remainder of

this section introduces the fundamentals of BPMN 2.0 and YAWL.

2.2.1 Business Process Model and Notation

The BPMN 2.0 is a standard for process modeling maintained by the Object Man-

agement Group (OMG) (OMG, 2013). BPMN 2.0 includes five elements categories: flow

objects (activities, events, and gateways), data (data objects, data inputs, data outputs, and

data stores), connecting objects (sequence flows, message flows, associations, and data as-

sociations), swimlanes (pools and lanes) and artifacts (groups and text annotations). In

this work, the focus is on flow objects, swimlanes and connecting objects because they are

used for the identification and generation of business process descriptions.

Regarding flow objects, activities can be defined as a task that a company performs

in a process (e.g., “create a document”, “make a purchase”). An activity can be atomic or

non-atomic and is represented as rounded boxes. Events are described as some things that

happen in the process and usually have a cause (e.g., “boarding pass received”, “purchase

order received”) or an impact (e.g., ”order rejected”, “order fulfilled”). Events are repre-

sented as circles and indicate where a particular process starts (start event) or ends (end

event). Moreover, there are events that can occur between a start event and an end event

(intermediate event) which can affect the flow of the process but cannot start it or end it.

Finally, gateways are represented as a diamond shape and are responsible for controlling

divergence (split) and convergence (join) of sequence flows in a process. Thus, a gateway

can lead to different paths (split) or join different paths into one (join). A path, in turn, can

be defined as a set of flow objects connected sequentially through sequence flows. There

are six different types of gateways which differ in both the logic that they execute and the

representation placed within the gateway diamond. Among them, it can be highlighted:

exclusive gateway (XOR, represented with or without a “X” marker), where the decision

21

Figure 2.2: BPMN 2.0 elements.

Source: The authors, adapted from Weske (2012)

making leads to the execution of exactly one path (e.g., “the payment must be made either

with cash or with debit card”); parallel gateway (AND, represented with a “+” marker),

where all possible paths must be executed (e.g., “the cook must prepare the food and

the drink”); and inclusive gateway (OR, represented with a “O” marker), where decision

making leads to the execution of at least one path (e.g., “the employee must request the

materials from supplier 1 or supplier 2”).

In relation to swimlane, a pool represents a participant in a business process. A

pool is graphically represented as a container that partitions a process from other partic-

ipants. If a pool does not contain a process, it is considered as a black box. Lane, on

the other hand, are the partitions used to organize and categorize activities within a pool.

Lanes are often used for representing internal roles (e.g., “manager”, “clerk”), systems

(e.g., “an enterprise application”), or an internal department (e.g., “shipping”, “finance”).

Regarding connecting objects, sequence flows are used to show the order of flow

objects in a process. A sequence flow is represented as a solid single line with a solid

22

Figure 2.3: Example of BPMN model: Computer repair.

Source: The authors

arrowhead. A message flow represents the flow of messages between two different partic-

ipants and is represented as a dashed single line with an open circle line start and an open

arrowhead line end. In addition, an association is used to link information and artifacts

with flow objects. Data associations, on the other hand, are used to relate data objects

and activities. Both association and data association are represented as a dotted single

line.

Figure 2.3 presents an example of a BPMN 2.0 process model composed by one

start event, five activities, one exclusive decision gateway (XOR-split), one exclusive

merge gateway (XOR-join), and one end event. After the process starts, an activity is

executed (called “Make evaluation”). Then, there is a decision making in which only one

of three possible paths can be followed. After one path is followed, the process returns to

the main path, another activity is performed and the process ends. A possible description

of the process shown in Figure 2.3 can be seen in Figure 2.4. The relationships between

the text and the model are evidenced through si, where i refers to the sentence number in

the text.

Figure 2.4: Example of business process description: Computer repair.

(s1) When the process starts, the technician must perform an evaluation in the com-
puter. (s2) If there is a software problem, the technician must format the computer.
(s3) If there is a hardware problem, the technician must replace the part and fill out
the part replacement form. (s4) On the other hand, if no problem is found, no modifi-
cation should be made to the computer. (s5) The process finishes after the technician
completes the repair form.

Source: The authors

BPMN 2.0 business process models can be represented and stored in files in the

BPMN format. This file format is a standard maintained by OMG to represent processes

23

following BPMN 2.0 (OMG, 2013).

2.2.2 Yet Another Workflow Language

YAWL (AALST; HOFSTEDE, 2005) is a workflow language that took as its start-

ing point Petri Nets and was extended with constructs to address some workflow patterns

(AALST et al., 2003; RUSSELL et al., 2006), such as: multiple instances, advanced

synchronisation, and cancellation.

In addition, YAWL has an open source tool that performs syntactic verification and

allows analysis of the model’s soundness. The syntactic verification can be understood as

checks necessary for the YAWL model to be considered correct. The analysis of sound-

ness, in turn, seeks to identify execution problems in a workflow, even if it is considered

to be syntactically correct. In this context, a workflow is considered with sound if, and

only if, has the option to complete, has absense of dead tasks (e.g. unreachable parts),

and has proper completion.

Figure 2.5 shows the symbols used in YAWL. The notation is composed by con-

ditions and tasks linked by arrows. Conditions can be interpreted as places in the Petri

Net. In the input condition, the execution tokens are created and in an output condition,

the tokens are destroyed. In an YAWL model, there is exactly one unique input condition

and one unique output condition. In contrast to Petri nets, it is possible to connect tasks

(transition-like objects) without a condition (place-like object) between them.

Tasks represent work units to be performed. In the context of YAWL, there are

atomic tasks and composite tasks. The difference between these is that the composite

task represents a container for a sub-net with its own set of YAWL elements. Moreover,

both atomic tasks and composite tasks can have multiple instances created after the task

is started. In addition, a threshold can be set, and by the time it is reached, all running

instances are terminated and the task completes.

Furthermore, tasks can be attached with up to one split and one join. The YAWL

allows three types of splits and joins to: define parallel paths (AND-split task and AND-

join task), define exclusive paths (XOR-split task and XOR-join task), to define inclusive

paths (OR-split task and OR-join task).

Finally, there is a notation to remove tokens. According to the syntax of this

symbol, at the time the external task executes, all tokens belonging to the dashed rounded

rectangle area bound to the task by the dashed line are removed. This notation can be

24

Figure 2.5: Symbols used in YAWL.

Source: Aalst and Hofstede (2005)

used to deal with cancellation in the workflow process.

Figure 2.6 presents an example of a YAWL process model based on the BPMN

2.0 model depicted in the Figure 2.3. This YAWL process model is composed by one

input condition, five atomic tasks (i.e. being one a XOR-split task and one a XOR-join

task) and one output condition. After the process starts, a task is executed (called “Make

evaluation”). Then, there is a decision making in which only one of three possible paths

can be followed. After one path is followed, the process returns to the main path, another

task is performed and the process ends. As well as for the BPMN 2.0 process model ex-

ample (Figure 2.3), the relationships between the business process description depicted in

Figure 2.4 and the YAWL model are evidenced through sx, where x refers to the sentence

number in the text.

The YAWL is used in this work to ensure that the business process-oriented text

is able to check the quality of the process in relation to soundness. In addition, YAWL’s

choice lies in the fact that it has an implementation that is open source that prevents the

approach being limited by a license and allows to make customizations to fit the approach

developed in this work.

25

Figure 2.6: Example of YAWL model: Computer repair.

Source: The authors

2.3 Natural Language Processing

According to Jurafsky and Martin (2009), the goal of NLP is to get computers to

perform useful tasks involving human language. These tasks may be to allow human-

machine communication, to improve human-human communication, or doing useful pro-

cessing of text or speech.

Reiter and Dale (2000) consider that the NLP is composed of two sub-fields, be-

ing: Natural Language Understanding (NLU) and Natural Language Generation (NLG).

Taking into account this work is directly related to the creation of business process de-

scriptions, the remainder of this section will introduce NLG focusing on its definition,

applications and architecture.

Reiter and Dale (2000) define NLG as a sub-field of artificial intelligence and

computational linguistics that is concerned with the construction of computer systems

that can produce understandable texts in some human language generally starting from

some non-linguistic representation of information as input.

One of the main uses of NLG is related to create computer systems that present

information in a representation that people consider easy to understand (REITER; DALE,

1997). Among the applications of NLG, it is possible to mention: generating natural lan-

guage texts from business process models (LEOPOLD; MENDLING; POLYVYANYY,

2012), generating natural language descriptions of object-oriented data models (LAVOIE;

RAMBOW; REITER, 1996), generating natural language specifications from UML class

diagrams (MEZIANE; ATHANASAKIS; ANANIADOU, 2008), generation of weather

forecast descriptions (GOLDBERG; DRIEDGER; KITTREDGE, 1994), generation of

bilingual (i.e. english and french) statistical reports (IORDANSKAJA et al., 1992).

According to Reiter and Dale (2000), NLG systems generally follow a three-stage

26

Figure 2.7: An NLG system architecture

Source: Reiter and Dale (2000)

pipeline architecture, composed by the following modules: document planner, microplan-

ner and surface realiser. Figure 2.7 presents this NLG architecture.

In the document planner module, the activities of conceptual lexicalisation, con-

tent determination and document structuring are carried out. In the conceptual lexicali-

sation messages are constructed from the data input. In the content determination, it is

decided which messages need to be communicated. Finally, in the document structuring

is carried out the organization of these messages in order to generate a coherent and fluent

text. The output of the document planner module is a document plan. A document plan

is represented as a tree that specifies how the messages should be grouped and related to

satisfy the initial communicative goal.

In the microplanner module, the activities of expressive lexicalisation, linguistic

aggregation and referring expression generation are carried out. In the expressive lexical-

isation is chosen which lexical items should be used to realise the conceptual elements in

the messages. In the linguistic aggregation it is defined whether and how the messages

should be combined. Finally, in referring expression generation is defined how the enti-

ties in the messages should be referred to (e.g. transform subjects that appear sequentially

multiple times in pronouns). The output of the microplanner module is a text specifica-

27

tion. A text specification is a data object that provides a complete specification of how

the text should be generated. However, the natural language text is only possible after the

accomplishment of the surface realiser module.

Finally, in surface realiser module, the text specification produced by the mi-

croplanner is transformed into text. At this stage, the message structures are converted

into grammatically correct sentences.

2.4 Service Oriented Architecture

Acordling to Channabasavaiah, Holley and Tuggle (2003), SOA is: “an applica-

tion architecture within which all functions are defined as independent services with well-

defined invokable interfaces, which can be called in defined sequences to form business

processes”. The service, on the other hand, is a software component provided through an

endpoint accessible by the network, which has well-defined communication interfaces and

supports the achievement of strategic objectives associated with service-oriented comput-

ing (ERL, 2008; PAUTASSO; ZIMMERMANN; LEYMANN, 2008).

The development of a SOA-based computing solution may be accompanied by

many advantages. First, SOA facilitates modularization since services are handled sepa-

rately and not as a single monolithic architecture. In addition, SOA is technology inde-

pendent. Thus, it is possible that different services interact with each other even if they

are implemented in different programming languages, software versions or operational

systems. Moreover, SOA allows federation. In this context, services can work together,

but each has its own autonomy and self-management.

Figure 2.8 presents the original architectural representation of SOA (ERL, 2008).

This architecture consists of 3 different elements that represent roles that the services can

play. These elements are:

• Service registry: Service that is a central element for the service discovery. This

service is used at two different moments. At first, it is possible that existing services

can be registered in a service registry reporting their location and the functionality

they can provide. In the second moment, other services can access the service

registry to make queries looking for a service that offers a certain functionality.

• Service provider: Service that is available to provide certain functionality. You

can register for a service registry by entering the location of the service (i.e. the

28

Figure 2.8: Original architectural representation of SOA.

Source: The authors adapted from Erl (2008)

address of the service) and how to interact with it (i.e. the functionality it provides

and how to access them).

• Service consumer: Service that consumes a particular functionality provided by

another service. The service consumer searches the service registry for some ser-

vice that provides some expected functionality. When the service registry finds

a service that meets the service consumer request, the service registry sends data

about the service to the service consumer so that the service consumer can, thus,

communicate directly with the service provider and obtain the desired functionality.

A service can act as more than one role at different moments. Thus, it is possible

for a service to sometimes act as a service provider, providing a service, and sometimes

acting as a service consumer, making use of other services. Usually, services are expected

to interact through well-defined interfaces called service contracts.

According to Erl (2008), a service contract establishes the terms of agreement

between the service consumer and the service owner. The contract shall provide the tech-

nical constraints and requirements as well as any semantic information that the service

owner wishes to make public. Contract consists of service description documents, such

as: service definition files (e.g. WSDL, WADL), data definition files (e.g. XSD), and pol-

icy files (e.g. WS-Policy). In addition, contracts may also contain non-technical service

documents, such as Service Level Agreement (SLA) documents.

According to Ren and Lyytinen (2008), SOA can be implemented in many ways,

such as: Web services, Common Object Request Broker Architecture (CORBA), Dis-

tributed Component Object Model (DCOM). The most common is through web services

(ERL, 2008; REN; LYYTINEN, 2008). Web services, in turn, can be of different ap-

proaches, such as: Simple Object Access Protocol (SOAP) and REST.

29

REST is an architectural style for distributed hypermedia systems (FIELDING;

TAYLOR, 2000). REST is composed of a set of principles and rules for the construction

of interoperable web services. In addition, REST performs communication through the

hypertext transfer protocol (HTTP) and uses the verbs of this protocol (e.g. PUT, GET,

POST, DELETE) to carried out communication between the different services.

Fielding and Taylor (2000) defines that REST follows the client-server architec-

tural style. Furthermore, all communication is stateless and caching can be used to im-

prove the network efficiency. Moreover, REST promotes a uniform interface between

components, makes use of layered system (i.e. each component can see only the immedi-

ate layer with which they are interacting) and allows client functionality to be extended by

downloading and executing code in the form of applets or scripts (i.e. code-on-demand).

Some of key benefits of REST when compared to SOAP are its simplicity and

the recommendation of its use for ad-hoc integration over the Web (PAUTASSO; ZIM-

MERMANN; LEYMANN, 2008). In addition, REST has a low degree of coupling (PAU-

TASSO; WILDE, 2009), and is quite efficient in terms of performance (KUMARI; RATH,

2015). In addition, SOAP displays great verbosity in your messages (ZIMMERMANN

et al., 2004). Considering that we want to develop an approach efficient in terms of per-

formance, that allows communication between services with little effort (low verbosity

in messages), and where new services can be easily added or replaced in future versions

(low degree of coupling), this work opted for the use of REST for the implementation of

SOA.

Although in the early SOA follow the architecture represented in Figure 2.8, it has

undergone changes and modifications to suit the most diverse scenarios and technologies.

As an example, Pautasso and Wilde (2009) points out that REST Web services are usu-

ally not described or registered in any standardized or centralized way. This idea goes

against the goal of maintaining a centralized service discovery point (i.e. service registry)

proposed by the original SOA architecture.

Still related to the discovery of services, in the first version of web services it was

proposed the use of Universal Description, Discovery and Integration (UDDI) to act as a

service registry for SOAP-based services. However, the UDDI were not widely adopted

(ERL, 2008; PAUTASSO; ZIMMERMANN; LEYMANN, 2008). Therefore, some or-

ganizations end up accessing the services directly (i.e. the service consumer address is

inserted into the service provider). Others, in turn, choose to implement their own way of

discovering services (PAUTASSO; WILDE, 2009; ZIMMERMANN et al., 2004; BAL-

30

ANI; HATHI, 2009).

2.5 Related Works

The related works of this dissertation involve the application of NLP in BPM.

Several recent studies have already carried out systematic literature review of works that

relate BPM and NLP (BORDIGNON et al., 2018; RIEFER; TERNIS; THALER, 2016;

MAQBOOL et al., 2018).

In this work, the related works were divided into three different streams of re-

search, being: discovery of processes from natural language texts, generation of business

process descriptions, and alignment between process model and business process descrip-

tion. In the following sections these works will be presented and discussed.

2.5.1 Discovery of Processes from Natural Language Texts

The works included in this category are related to the identification of business

processes from texts. These works are relevant as they contribute to the process discov-

ery stage helping to understand how the organization’s processes are documented. For

this category, twelve works were found and divided into three different groups: generate

process models from texts, process mining from natural language text and activity label.

While the first two groups act on the identification of the whole process, the third group,

in turn, act directly on the scope of the activity label. Table 2.1 presents the works of this

category.

Vakulenko (2011) proposes a method for semi-automated process model extrac-

tion from business process descriptions. The method was designed according to the spe-

cific patterns and vocabulary typical for documents containing business process specifi-

cations. The method presented high precision and recall for activity extraction. However,

it presented lower results when trying to extract the relationship between the process el-

ements. One of the limitations pointed out by the author was that the tool was not able

to detect and resolve anaphoras (e.g., to understand a particular actor or object that is

represented in the text as a pronoun or determinant). Differently from the work presented

in this dissertation, the work proposed by Vakulenko (2011) aims to produce a process

model and not a business process description.

31

Table 2.1: Related works 1
Discovery of Processes from Natural Language Texts

• Generate Process Models From Text

– (VAKULENKO, 2011)

– (FRIEDRICH; MENDLING; PUHLMANN, 2011)

– (FERREIRA; THOM; FANTINATO, 2017)

– (FERREIRA et al., 2017)

– (CAPORALE, 2016)

– (GHOSE; KOLIADIS; CHUENG, 2007)

– (HEUSER; ELSTERMANN, 2016)

– (ELSTERMANN; HEUSER, 2016)

• Process Mining from Natural Language Text

– (GONCALVES; SANTORO; BAIAO, 2009)

– (GONÇALVES; SANTORO; BAIÃO, 2010)

– (EPURE et al., 2015)

– (LI et al., 2010)

• Activity Label

– (PITTKE et al., 2015)

– (LEOPOLD; SMIRNOV; MENDLING, 2010)

Source: The authors

Friedrich, Mendling and Puhlmann (2011) proposes an approach that is able to

identify process elements in texts, as well as their respective relationships, in order to

produce a BPMN process model. In addition, the approach has its own technique of

anaphora resolution that helps in identifying elements that are presented in the text as

pronouns and determinants. The evaluation of this approach shows that for a set of 47

text-model pairs from industry and textbooks, the authors are able to generate on aver-

age 76.98% of the models correctly. Similar to the previous work, the work proposed

by Friedrich, Mendling and Puhlmann (2011) aims to produce a process model and not a

business process description. In any case, considering the characteristics of this work, the

technique proposed by Friedrich, Mendling and Puhlmann (2011) to identifying the pro-

cess elements and their respective relationships was adapted to be used by our approach

to generate business process-oriented texts.

Ferreira, Thom and Fantinato (2017) proposes a semiautomatic approach that al-

32

lows the identification and marking of process elements from a set of rules defined through

an empirical analysis of business processes descriptions. This approach was validated

through a survey that collected opinions about mapping rules and through precision, re-

call, f-measure and accuracy measurements. In addition, Ferreira et al. (2017) conducted

a survey with the objective to evaluate the difference of modeling process when the mod-

elers use rule-mapped text compared to the modeling done by the same modelers without

this additional aid. This analysis focused mainly on measuring the time taken to com-

plete the modeling task and the necessary effort perceived by the modeler. The approach

presented in this dissertation also performs the marking of process elements in a business

process description. However, these works are different because they identify the process

elements in an original text, while our approach aims to generate a new business process

description from the original text.

Caporale (2016) suggested a method that allows generating process models from

business process descriptions. To achieve this, the author proposed that the business pro-

cess descriptions should be specified with a controlled natural language, based on sen-

tence templates, in order to facilitate the extraction of information necessary to generate

the models. Similar to the other works in this section, the work proposed by Caporale

(2016) aims to generate process models and not the generation of business process de-

scriptions.

Ghose, Koliadis and Chueng (2007) proposed a framework and prototype tool

that can query information resources (e.g., corporate documentation, web-content, code)

for construct models to be incrementally adjusted to correctness by an analyst. One of

the techniques used by authors to extract information from text is based on template ex-

traction. In this technique, the authors created templates from textual structures that are

commonly used in describing processes and used these templates to extract knowledge

from text documents. Similar to the other works in this section, the work proposed by

Ghose, Koliadis and Chueng (2007) aims to build process models and not the generation

of business process descriptions.

In addition to the works cited above, there were works related to the discovery

of processes from descriptions made by domain experts (HEUSER; ELSTERMANN,

2016; ELSTERMANN; HEUSER, 2016), technique of model generation through min-

ing of group stories (GONCALVES; SANTORO; BAIAO, 2009; GONÇALVES; SAN-

TORO; BAIÃO, 2010), technique of mining activities from texts (EPURE et al., 2015)

and automatic extraction of process information from policy documents through the use

33

of machine learning techniques (LI et al., 2010). Moreover, there were works related to

the definition of activity labels (PITTKE et al., 2015) and the automated activity label

refactoring (LEOPOLD; SMIRNOV; MENDLING, 2010).

Although the work presented in this dissertation makes use of techniques for dis-

covery of processes from natural language texts, the works identified in this stream of

research are only intended to extract knowledge of business process descriptions or the

generation of process models from business process descriptions. Thus, this work differs

from the works present in this section because it seeks, based on information extracted

from a business process description, produce a business process-oriented text.

2.5.2 Generation of Business Process Descriptions

The works included in this category are related to the generation of business pro-

cess descriptions from process models. These works are relevant since they may provide

textual documentation capable of accompanying a process described by a process model-

ing language. Among the main applications is to help people with no knowledge in the

process modeling language understand the process. For this category, seven works were

found and divided into two different groups: generation of business process descriptions

from process models and text structuring. Table 2.2 presents the works of this category.

Table 2.2: Related works 2
Generation of Process Descriptions

• Generation of Process Descriptions from Process Models

– (LEOPOLD; MENDLING; POLYVYANYY, 2012)

– (LEOPOLD; MENDLING; POLYVYANYY, 2014)

– (MEITZ; LEOPOLD; MENDLING, 2013)

– (AYSOLMAZ et al., 2018)

– (RODRIGUES; AZEVEDO; REVOREDO, 2016)

– (MALIK; BAJWA, 2012)

• Text Structuring

– (FERRARI et al., 2017)

Source: The authors

Leopold, Mendling and Polyvyanyy (2012) propose an approach that allows the

34

generation of natural language text from a BPMN process model. This approach is com-

posed of three stages of natural language generation, being: sentence planning, text plan-

ning and realization. One of the advantages of this approach is that it deals with struc-

tures that are recurrently encountered in business processes (e.g., a XOR gateway leading

to two activities), but also presents a a graph-based way to describe parts of the process

that do not fit these structures. In addition, Leopold, Mendling and Polyvyanyy (2014)

extend the approach by conducting a validation with users in which they ask users to

translate the generated texts back into the process models in order to investigate whether

humans can successfully understand the generated texts. The approach proposed in these

works was adapted to be used by our approach of generation of business process-oriented

text. Among the changes, the approach was modified to have sentence templates that

were recurrently found in actual business process descriptions. In addition, some sen-

tence templates have been modified in order to reduce ambiguity issues in the business

process descriptions created.

Meitz, Leopold and Mendling (2013), in turn, propose a natural-language text gen-

eration approach from Petri nets to help people with little modeling experience understand

and validate their process models. The main difference from our approach is that our ap-

proach produces text from business process description while this approach produces text

from a Petri net.

Aysolmaz et al. (2018) defined a semi-automated approach to generate natural lan-

guage requirements documents (i.e., list containing a sequence of steps to be performed)

based on business process models. The authors adopted a template filling technique, in

which sentence templates are defined containing gaps that must be filled with information

from a requirements model. The main difference from our approach is that Aysolmaz

et al. (2018) generates a requirement document, while our approach produces a textual

description.

Rodrigues, Azevedo and Revoredo (2016) propose a language-independent frame-

work that automatically generates natural language texts from BPMN business process

models. The authors propose a framework that works for two languages, being: English

and Portuguese. However, the authors comment that the approach was conceived as an

independent language solution, which can be applied theoretically to any language. Simi-

lar to other works already cited in this section, the work presented by Rodrigues, Azevedo

and Revoredo (2016) has as input a BPMN process model, while our approach receives

as input a business process description.

35

Malik and Bajwa (2012) present a novel approach to automatically generate nat-

ural language representation of business process models explained in BPMN. The pre-

sented approach employs Semantics of Business Vocabulary and Rules (SBVR) as an

intermediate representation to generate natural language expressions those are easy to

understand for business stakeholders. Among the limitations, the text produced by this

approach does not perform some common NLG techniques in order to make the text more

readable (e.g., performing referring expression in order to transform subjects that appear

sequentially multiple times in pronouns). In addition, the approach deals with recurring

structures in business processes but, unlike Leopold, Mendling and Polyvyanyy (2012),

does not make it clear how to deal with parts of the process that do not follow one of these

structures.

Ferrari et al. (2017) conducted a literature review and a set of interviews with dif-

ferent public institutions aiming at improving the business process descriptions to be used

in public administrations. Among the main contributions, the authors provide a set of

guidelines to guide the construction of business process descriptions. In addition, the au-

thors concluded that there are four macro-areas of research in which computer scientists

can contribute towards more quality in business process descriptions, being: readabil-

ity; ambiguity; relevance and text summarisation; modelling and consistency. The main

difference in relation to our approach is that our approach generates a business process

description while the objective of Ferrari et al. (2017) is providing guidelines to guide the

construction of business process descriptions.

Although the work presented in this dissertation makes use of techniques for the

generation of business process descriptions, the works identified in this stream of research

are only intended to define how the business process descriptions should be or to perform

the automatic generation of business process descriptions from business process models.

Thus, this work differs from the others presented in this section because it produces a

business process-oriented text from a business process description. In addition, this work

also performs a verification of the process described in relation to BPMN 2.0 and in

relation to the soundness.

2.5.3 Alignment between Process Model and Business Process Description

The works included in this category are related to the alignment between process

model and business process description. These works are relevant since they help to find

36

inconsistencies between business process descriptions and process models that represent

the same process. Among the main applications is to avoid nonconformities in the process

documentation. For this category, three works were found and divided into two different

groups: inconsistencies between process models and business process description and

ambiguity. Table 2.3 presents the works of this category.

Table 2.3: Related works 3
Alignment between Process Models and Process Descriptions

• Inconsistencies between Process Models and Process Description

– (AA; LEOPOLD; REIJERS, 2015)

– (AA; LEOPOLD; REIJERS, 2018)

• Ambiguity

– (AA; LEOPOLD; REIJERS, 2016)

Source: The authors

Aa, Leopold and Reijers (2015) presented an approach to automatically detect

inconsistencies between process model and the corresponding textual description. The

authors have identified that a technique for detecting inconsistencies between a process

model and a business process description must deal with the ambiguity present in the nat-

ural language. This must be done because an ambiguous sentence may produce multiple

interpretations of a process (e.g., it is not possible to define with certainty whether in the

sentence “Then, the passenger must pass through the security screening and the luggage

must pass through the luggage screening.” the activities described in italics are executed

in sequence or in parallel).

In another work, Aa, Leopold and Reijers (2016) proposed to deal with ambigu-

ity in business process descriptions introducing the behavioral space concept. According

to the authors, the behavioral space captures all possible behavioral interpretations of a

business process description. Thus, a given business process description containing an

ambiguity could generate multiple business process descriptions representing each possi-

ble interpretation.

Furthermore, Aa, Leopold and Reijers (2018) presented an approach to verify the

compliance between a process model and a business process description, considering the

ambiguity present in texts. To handle the ambiguity issues, they used the concept of

behavioral space previously proposed by Aa, Leopold and Reijers (2016).

Differently from the work presented in this dissertation, the works identified in

37

this stream of research are intended to find inconsistencies between business process de-

scriptions and process model. Thus, this work differs from the works presented in this

section because this work seeks to generate business process-oriented texts from natural

language texts, while the works of this section aims to compare texts and process models.

2.6 Final Considerations

This chapter presents the fundamentals used in this dissertation, being them: BPM,

BPMN 2.0, YAWL, NLP, and SOA.

In relation to BPM, the different phases of the BPM lifecycle for the identification,

generation, and management of business processes in the organizations were presented.

Moreover, it was discussed in which phase of the lifecycle this work is inserted.

In addition, this chapter presented the fundamentals of some process modeling

languages used in this work. Firstly, it presented the main concepts of BPMN 2.0, as well

as gave an overview of its notational elements and addressed the process elements used

in the scope of this dissertation. Then, was presented the notation YAWL and discussed

how the same can be applied for verification of soundness in a process.

Subsequently, this chapter presented NLP, with the main focus being the NLG

sub-field. For NLG, the chapter presented its definition, applications, and a pipeline ar-

chitecture of how NLG systems are generally created. Regarding this architecture, each

module with its respective inputs and outputs has been presented.

Regarding SOA, it was presented its definition, its main advantages, and its orig-

inal architectural representation. In addition, the chapter defines what services and con-

tracts are from the perspective of SOA. Moreover, different ways of implementing SOA

were presented, focusing on the architectural style REST.

In the context of related works, works were presented that involve the applica-

tion of NLP in BPM. These works were divided into three different streams of research,

being: discovery of processes from natural language texts, generation of business pro-

cess descriptions, and alignment between process model and business process descrip-

tion. Among these three streams of research, this work is more related to the generation

of business process descriptions. However, as this work aims to generate the business

process-oriented text from a natural language text, it is also possible to relate the work

presented in this dissertation to the discovery of processes from natural language texts.

Besides the main differences already presented between this work and the related

38

works, this work presents other characteristics that distinguish it from the presented re-

lated works. Firstly, this work presents an empirical analysis in 64 business processes

descriptions in order to understand how business process descriptions are usually written.

This analysis includes understanding the structure of a business process description, find

recurrent sentence templates used in a business process description, and to highlight am-

biguity issues in these sentence templates. In addition, the business process descriptions

generated by this work are intended to assist in understanding the process by previously

identifying possible nonconformities with BPMN 2.0 and soundness. Finally, this work

proposes the interaction with the user, since it can mark the process elements, highlight

the activities carried out by certain resources, and perform the restructuring of the text.

This restructuring can be done by defining the size of the paragraphs, indenting the text,

and adding bullet points in sentences of the text.

39

3 BUSINESS PROCESS DESCRIPTION DESIGN

For the generation of a business process-oriented text, it was first necessary to de-

fine how this process description should be. For this, it was necessary to define how the

text would be structured (e.g., paragraph size, use of active or passive voice, how certain

parts of a process are represented in a business process description) and how the sen-

tences that would compose the text should be. To achieve these objectives, in the context

of the present work, empirical analyses were carried out on existing business process de-

scriptions and literature works, in order to discover how business process descriptions are

described. Then, the analyses were used to define how a business process-oriented text

should be.

The first analysis that was carried out was intended to understand how process

descriptions are usually structured. To this end, five questions were asked about how

business processes are usually described. To answer these questions, we analyze business

process descriptions found in the literature. In addition, we considered in this analysis

works in the literature that analyze business process descriptions with the purpose of

generating process models, and works that suggest how texts in natural language can be

structured. The answer to these questions will help define how business process-oriented

texts should be structured.

The second analysis aimed to understand how the sentences that make up the text

usually are. For this, an analysis was carried out on business process descriptions found

in the literature with the objective of identifying recurring sentence templates. In the lit-

erature, a number of approaches have been found that use sentence templates to generate

business process descriptions or to transform process descriptions into process models.

However, the corresponding approaches do not explain how the sentence templates that

compose the process description were selected and this information is important, as it

directly interferes with the quality of the text. Sentence templates not carefully selected

may produce process descriptions with ambiguity issues that may not be understood by

the process analysts and domain experts. In order to avoid producing process descriptions

with ambiguity issues, an analysis was performed in order to identify ambiguity issues

that are presented in sentence templates. In the context of this work, a sentence template

is considered with ambiguity issues when it allows multiple interpretations of the process.

Finally, the sentence templates identified were categorized and classified as having ambi-

guity issues or not. This second analysis, as well as its results obtained, were published

40

by the authors in the 26th International Conference on Cooperative Information Systems

- CoopIS 2018 (SILVA et al., 2018).

The remainder of this chapter is structured as follows. Section 3.1 introduces

the business process descriptions used in the empirical analyses. Section 3.2 presents

the analysis to understand how the business process descriptions are usually structured.

Section 3.3 presents the analysis for the definition of the sentences that will compose

the text. Section 3.4 describes how the process descriptions will be taking into account

the information collected in the previous analyses. Section 3.5 provides an example of a

process description created from the design decisions suggested in this chapter. Finally,

Section 3.6 presents the final considerations of this chapter.

3.1 Business Process Descriptions

The process descriptions used in the analysis came from two different sources and

only process descriptions in English were considered, as templates are very sensitive to

the language.

Firstly, 47 process descriptions present in Friedrich (2010) were identified. From

this first source, 17 process descriptions were disregarded for the following reasons: they

were translated from another language through machine translation services (14 texts),

were duplicated (2 texts) or had a description format based on enumeration (1 text).

Secondly, 34 process descriptions from the book Fundamentals of Business Pro-

cess Management (DUMAS et al., 2013) were identified. The final set of 64 process

descriptions, as well as their respective sources and types are presented in Table 3.1. In

addition, the name of all business process descriptions as well as the repository for ac-

cessing them can be seen in the Appendix.

3.2 Analysis for Structuring the Text

In this section, we perform an analysis in business process descriptions and liter-

ature works with the objective of answering five questions. These questions have arisen

from the need to understand how business process descriptions are usually structured. The

five questions are:

• Question 1: How is the text usually described in relation to the process?

41

Table 3.1: Data sources.
Source Amount Type
HU Berlin 4 academic
TU Berlin 2 academic
QUT 8 academic
TU Eindhoven 1 academic
Vendor Tutorials 4 industry
inubit AG 3 industry
BPM Practicioners 1 industry
BPMN Prac. Handbook 3 textbook
BPMN M&R Guide 4 textbook
Fundamentals of BPM 34 textbook
Total 64 –

Source: The authors

• Question 2: How is the text organized in terms of paragraphs?

• Question 3: What is the voice used in the text?

• Question 4: How does the text describe splits and joins?

• Question 5: How does the text describe the different paths generated by splits?

In the following sections each of these questions will be detailed and possible

answers will be presented.

3.2.1 Question 1: How is the text usually described in relation to the process?

This question is intended to understand how the business process is usually orga-

nized into a process description. In this sense, this question seeks to understand at what

point the notational elements are represented in the process descriptions.

From the business process descriptions analyzed, it was observed that the texts

describe the processes following the sequence of the execution of their activities. When

compared to a process model represented in BPMN 2.0 notation, the process description

begins by describing the start events and ends by describing the end events.

In addition, works that extract business process information from natural language

texts usually consider that activities are sequentially described in the text, following a

chronological order of when they are executed (SCHUMACHER; MINOR; SCHULTE-

ZURHAUSEN, 2013; VAKULENKO, 2011; FRIEDRICH; MENDLING; PUHLMANN,

2011; FERREIRA; THOM; FANTINATO, 2017).

42

3.2.2 Question 2: How is the text organized in terms of paragraphs?

This question is intended to understand whether the process descriptions are struc-

tured using paragraphs. If they are, this question seeks to understand the causes that lead

to the creation of paragraphs, for example: to reach a certain number of words, to reach a

certain number of sentences, to describe some process element, to describe some common

structure in processes. In order to find out the different reasons that lead to the creation

of new paragraphs, we analyzed the business process descriptions and works existing in

the literature that discuss the subject. It is important to emphasize that the purpose here is

not to find the best way to divide the text into paragraphs, but rather the different possible

ways so that one or more can be used in the design of the business process-oriented text.

This question was difficult to answer considering the process descriptions col-

lected by data sources. The reason is that the process descriptions presented by Friedrich

(2010) are all described as a single paragraph. However, when searching for the orig-

inal sources (or, in some cases, in other sources that these texts appear), it has been

observed that some of these process descriptions can also be found divided into multi-

ple paragraphs. In this sense, we tried to find through internet searches others sources

(e.g., books, examples provided by process modeling tools) in which these descriptions

appeared. Of the 30 process descriptions considered, only 15 were identified. In relation

to the identified texts, five presented multiple paragraphs, being: Underwriters (Pd4),

Claims Notification (Pd12), Intaker Work (Pd15), Oracle Tutorial (Pd19), and Exercise

5 (Pd33). These texts contained an average of 4.4 paragraphs and an average of 3.77

sentences per paragraph. Among the different reasons that led to the creation of new

paragraphs, it is possible to highlight: to describe a new event, to describe the assign-

ments of a resource, to describe different gateways (i.e., each gateway would be a new

paragraph), to show the different paths of a gateway, and to join the paths of a gateway.

Regarding the process descriptions present in Dumas et al. (2013), it was identified

that from 34 texts analyzed only 2 presented multiple paragraphs, being: Exercise 4.18

(see Figure 3.1) and Exercise 4.33. Both texts contained five paragraphs and an average of

4.4 sentences per paragraph. In addition, it was observed that some paragraphs contained

context information (i.e., did not describe the process itself) or information that could

occur during the entire process (e.g., “Any time during the process, the manager may

require the report.”).

The definition of the use of paragraphs in the text is not limited to the generation of

43

Figure 3.1: Process description: Exercise 4.18.

The mortgage application process starts with the receipt of a mortgage application
from a client. When an application is sent in by the client to the broker, the broker
may either deal with the application themselves, if the amount of the mortgage loan
is within the mandate the broker has been given by BestLoans, or forward the appli-
cation to BestLoans. If the broker deals with the application themselves, this results
in either a rejection or an approval letter being sent back to the client. If the broker
sends an approval letter, then it forwards the details of this application to BestLoans
so that from there on the client can interact directly with BestLoans for the sake of
disbursing the loan. In this case, BestLoans registers the application and sends an
acknowledgment to the client.
The broker can only handle a given number of clients at a time. If the broker is not
able to reply within one week, the client must contact BestLoans directly. In this case,
a reduction on the interest rate is applied should the application be approved.
If BestLoans deals with the application directly, its mortgage department checks the
credit of the client with the Bureau of Credit Registration. Moreover, if the loan
amount is more than 90% of the total cost of the house being purchased by the client,
the mortgage depart- ment must request a mortgage insurance offer from the insurance
department. After these interactions BestLoans either sends an approval letter or a
rejection to the broker, which the broker then forwards to the client (this interaction
may also happen directly between the mortgage department and the client if no broker
is involved).
After an approval letter has been submitted to the client, the client may either accept or
reject the offer by notifying this directly to the mortgage department. If the mortgage
department receives an acceptance notification, it writes a deed and sends it to an
external notary for signature. The notary sends a copy of the signed deed to the
mortgage department. Next, the insurance department starts an insurance contract for
the mortgage. Finally, the mortgage department submits a disbursement request to the
financial department. When this request has been handled, the financial department
notifies the client directly.
Any time during the application process, the client may inquire about the status of
their application with the mortgage department or with the broker, depending on
which entity is dealing with the client. Moreover, the client may request the cancella-
tion of the application. In this case the mortgage department or the broker computes
the application processing fees, which depend on how far the application process is,
and communicates these to the client. The client may reply within two days with
a cancellation confirmation, in which case the process is canceled, or with a can-
cellation withdrawal, in which case the process continues. If the process has to be
canceled, BestLoans may need to first recall the loan (if the disbursement has been
done), then annul the insurance contract (if an insurance contract has been drawn) and
finally annul the deed (if a deed has been drawn).

Source: The authors adapted from Dumas et al. (2013)

44

business process descriptions. In terms of NLP, different works were found that present

approaches for the automatic segmentation of natural language texts in multiple para-

graphs (HEARST, 1994; HEARST, 1997; HEINONEN, 1998). These studies consider,

among other things, factors such as the similarity between sentences and the expected size

of paragraphs to define how the text will be divided into paragraphs.

3.2.3 Question 3: What is the voice used in the text?

This question is intended to understand whether the process descriptions are usu-

ally described using the active voice or the passive voice. An example of an active voice

would be the sentence s1 of Figure 2.4 (i.e., “When the process starts, the technician must

perform an evaluation in the computer.”). This sentence could be written in the passive

voice as “When the process starts, an evaluation on the computer should be performed.”.

As can be seen in both sentences, the sentence representing the passive voice would not

be possible to recognize who is the actor that performs the action of evaluating the com-

puter. This happens because not always the passive voice will contain the information of

who carries out an action.

The absence of information from the actor performing the action is a characteristic

present in many sentences in the passive voice that is undesirable in process descriptions

since without knowing who is the actor that performs an action, it is possible to create

process descriptions where there are activities without explicitly knowing the resource

responsible for performing them.

In the process descriptions analyzed it was observed that the majority of them

describes the process in the active voice (51.57% of the business process descriptions),

followed by business process descriptions described in the passive voice (32.81% of the

business process descriptions). In addition, we found business process descriptions that

use both the active voice and passive voice to describe the process (15.62% of the business

process descriptions).

3.2.4 Question 4: How does the text describe splits and joins?

This question is intended to understand how process descriptions describe splits

and joins. To answer this question, the business process descriptions presented in Section

45

3.1 have been analyzed. The different ways of representing splits and joins were called

cases. Each case will be presented containing a specific notation, a description, and an

example of process description.

For the notation, in the present work cases were defined as Case4−ti where 4

represents the question number, t represents its type (i.e., s for split and j for join), and

i represents an index associated with a given case (index starts with the value of 1 and

will be incremented to represent each possible new case). In order to complement the

description, each case will present an example of process description highlighting, when

possible, where in the process description the case appears. The process descriptions

created for each case are intended to describe the BPMN 2.0 process model with generic

activities presented in Figure 3.2. This process model was created because it is an easy

example to understand the different cases related to this question.

Figure 3.2: Question 4: Process model example.

Source: The authors

From the business process descriptions analyzed, two ways of describing splits

were derived, being them:

• Case4−s1: A sentence is used to describe splits.

– Example: The process starts by performing activity 1. Then one of the follow-

ing paths can be performed. If condition A is true, activity 2 must be done.

However, if condition B is true, activity 3 must be done. In any case, the

activity 4 is performed. Finally, the process ends.

• Case4−s2: A sentence is not used to describe splits. In this case, split is implied in

markers, such as: if, else, in case that, for the case.

– Example: The process starts by performing activity 1. If condition A is true,

46

activity 2 must be done. However, if condition B is true, activity 3 must be

done. In any case, the activity 4 is performed. Finally, the process ends.

In the business process descriptions analyzed, three ways of describing joins were

identified, being them:

• Case4−j1: A sentence is used to describe joins.

– Example: The process starts by performing activity 1. If condition A is true,

activity 2 must be done. However, if condition B is true, activity 3 must be

done. The process continues after one of the paths is executed. Then, the

activity 4 is performed. Finally, the process ends.

• Case4−j2: A sentence is not used to describe joins and these are implicit in the text.

– Example: The process starts by performing activity 1. If condition A is true,

activity 2 must be done. However, if condition B is true, activity 3 must be

done. Activity 4 is then performed. Finally, the process ends.

• Case4−j3: A sentence is not used to describe joins, but the following sentence make

use of discourse markers, such as: in any case, in all case, afterward.

– Example: The process starts by performing activity 1. If condition A is true,

activity 2 must be done. However, if condition B is true, activity 3 must be

done. In any case, activity 4 is then performed. Finally, the process ends.

3.2.5 Question 5: How does the text describe the different paths generated by splits?

Regarding how the text behaves to describe the different paths generated by splits,

the texts analyzed usually describe the paths in different ways. These ways are differ-

entiated by some considerations, being: (1) when to stop describing a path (i.e., upon

reaching the join or end of the process); (2) if the description of new paths should repeat

or not information previously described by previous paths. Based on the identified con-

sideration, each of the possible ways to describe the different paths generated by a split

were identified.

As in question 4, cases were used to represent the different ways of describing

the different paths generated by splits. Each case will be presented containing a specific

notation, a description, and an example of process description.

47

For the notation, cases were defined as Case5−i where 5 represents the question

number, and i represents an index associated with a given case (index starts with the

value of 1 and will be incremented to represent each possible new case). In order to

complement the description, each case will present an example of process description

highlighting the paths covered by the description. The process descriptions created for

each case are intended to describe the BPMN 2.0 process model with generic activities

presented in Figure 3.3. This process model was created because it is an easy example to

understand the different cases related to this question.

Figure 3.3: Question 5: Process model example.

Source: The authors

• Case5−1: Displays each possible path from the start of the split to the end of the

process.

– Example: When the process starts, one of the following paths is executed.

(Path 1) If condition A is true, then activity 1 is performed. Then, if condition

C is true, activity 4 is performed and the process ends. (Path 2) On the other

hand, if condition A is true, then activity 1 is performed. Then, if condition D

is true, then activity 3 is performed. Finally, activity 4 is performed and the

process ends. (Path 3) On the other hand, if condition B is true, activity 2 is

performed. Finally, activity 4 is performed and the process ends.

• Case5−2: Displays each possible path from the start of the split to the respective

join.

– Example: When the process starts, one of the following paths is executed.

(Path 1) If condition A is true, then activity 1 is performed. Then, if condition

C is true, the path ends. (Path 2) On the other hand, if condition A is true,

then activity 1 is performed. Then, if condition D is true, then activity 3 is

48

performed. (Path 3) On the other hand, if condition B is true, activity 2 is

performed. After performing one of the paths, activity 4 is performed and the

process ends.

• Case5−3: Displays a possible path from the beginning of the split to the end of the

process. It then presents the other paths taking into account what has already been

presented.

– Example: When the process starts, one of the following paths is executed.

(Path 1) If condition A is true, then activity 1 is performed. Then, if condition

C is true, activity 4 is performed and the process terminates. (Path 2) On

the other hand, after activity 1, condition D may occur. Then activity 3 is

performed. Finally, activity 4 is performed and the process ends. (Path 3) On

the other hand, if condition B is true, activity 2 is performed. Finally, activity

4 is performed and the process ends.

• Case5−4: Displays a possible path from the beginning of the split to the respective

join. It then presents the other paths taking into account what has already been

presented.

– Example: When the process starts, one of the following paths is executed.

(Path 1) If condition A is true, then Activity 1 is performed. Then, if condition

C is true, the path ends. (Path 2) On the other hand, after activity 1, condition

D may occur. In this case, activity 3 is performed. (Path 3) On the other hand,

if condition B is true, activity 2 is performed. After performing one of the

paths, activity 4 is completed and the process ends.

In cases where a path is described and then presents the other paths taking into

account what has already been described (i.e., case Case5−3 and Case5−4), they can

prevent sentences describing previously presented paths from being repeated. In this way,

this also contributes to a lesser process description, since an element already presented as

a sentence will not be described again in another sentence. However, such cases may make

it difficult to understand the process model as the reader can get lost in the fragmented

paths of the text.

49

3.3 Analysis for Sentence Design

In order to determine the design of the sentences, an analysis of process descrip-

tions in the literature was carried out to find the most recurrent sentence templates and to

identify those with ambiguity issues. To the best of our knowledge, this work presents

itself as the first effort to create a method to identify and classify sentence templates in

business process descriptions. This section presents this method, as well as an analysis

of the sentence templates identified in relation to ambiguity issues. A total of 101 sen-

tence templates was found and divided into 29 categories. Each category is composed by

sentence templates that can be replaced in a process description and represent the same

information. In addition, six types of ambiguities were identified and, when compared

with the sentence templates found, enabled us to define 13 templates related to ambiguity

issues.

The following subsections present the procedures followed to: (3.3.1) prepare the

sentences for the analysis, (3.3.2) identify and classify the sentence templates, and (3.3.3)

address the ambiguity issues.

3.3.1 Preparation of Sentences

In this first stage, the sentences are prepared for the identification and classifica-

tion of sentence templates. For this, the sentences of a process description are modified

to become more generic. This modification is necessary because a business process de-

scription may contain snippets of text that are directly related to the process context. As

an example, the sentences “The manager must sell the product” and “The salesman must

sell the product” are identical, except by who carries out the activity of selling the prod-

uct. This difference can hinder the identification and classification of sentence templates,

since these sentences can be considered as different sentence templates. In this sense, a

term capable of representing both “manager” and “salesman” could be used in order to

make these two sentences equal and, consequently, to define both as the same sentence

template. Thereby, the business process descriptions were previously analyzed and four

different placeholders were created with the goal to replace in the sentences the snippets

related to the context by more generic information. The created placeholders are: role,

condition, number, and object.

The placeholder role is associated with the role responsible for performing a par-

50

ticular action. In relation to the business process model, a role could be considered as

a participant. As an example, in the sentence “The process finishes after the technician

completes the repair form.”, once the technician is the one performing the action, the

word “technician” can be replaced by the placeholder role. Therefore, the sentence after

the modification would be written as “The process finishes after the role completes the

repair form.”.

The placeholder condition aims to define some condition that needs to be satisfied

for a given flow to occur. Normally, the condition appears in a business process model

as a label that tracks the output sequence flow of an exclusive or inclusive gateway. For

instance, in the sentence “In case it is a software problem, the technician must format the

computer.” it is possible to observe that to be done the activity of formatting the computer

must exist before the condition “it is a software problem”. Therefore, this condition will

be replaced in the text by the placeholder condition. Moreover, the technician can also be

replaced in this sentence by the placeholder role.

The placeholder number is used to represents a certain amount of process elements

or paths in a process model. As an example, in the sentence “After all five activities

are completed, the process ends.”, the amount “five” can be replaced by the placeholder

number.

Finally, the placeholder object can represent the business object to which the sen-

tence refers. For instance, in the sentence “The car can be sold by the manager or the

seller”, the business object “car” can be replaced by the placeholder object. In addition,

the placeholders role 1 and role 2 could be created to represent the manager and seller

respectively. After the preparation stage, the modified sentences containing the created

placeholders will be used for the identification and classification of sentence templates.

3.3.2 Identification and Classification of Sentence Templates

In the context of this work, a sentence template was considered as each pattern

presented in a sentence that is able to describe one or more process elements. These

process elements appear in the template as placeholders to be replaced. For the scope

of this work, a reduced set of notational elements is taken into account to find sentence

templates, being: activity (Ac), AND-split (G+s), AND-join (G+j), XOR-split (GXs),

XOR-join (GXj), OR-split (GOs), OR-join (GOj), start event (Es), intermediate event

(Ei), end event (Ee). In addition, “empty” is used to define paths without elements (e.g.,

51

Figure 2.3, s4).

Since a sentence template has been defined as a pattern presented in a sentence

capable of describing one or more process elements, in order to identify the sentence tem-

plate it is necessary to identify the process elements in the text. Although there are works

that contribute to the automated identification of process elements in texts, to the best of

our knowledge, there is no approach capable of extracting the process elements in a tex-

tual description with complete precision (EPURE et al., 2015; FERREIRA et al., 2017;

FRIEDRICH; MENDLING; PUHLMANN, 2011). In addition, automated identification

approaches can draw incorrect conclusions about a process by making assumptions about

texts that allow for multiple interpretations (AA; LEOPOLD; REIJERS, 2016). There-

fore, an automated analysis of sentence templates could be compromised by the selected

approach of extracting process elements, so the identification of the sentence templates in

the present work was carried out manually.

The identification and classification of sentence templates were carried out in par-

allel. To perform the classification of sentence templates, we define each sentence tem-

plate as composed of three elements. These elements were defined because they describe

the process characteristics present in a sentence template. These elements are:

• Target: the set of process elements described by the sentence template. A target

must appear in the sentence, even if implicitly (i.e., without a placeholder to fill

with the process element).

• Relationship: how the process elements in the sentence are associated to each

other: none (RN), composed by 0 or 1 process element; sequential (RS), one el-

ement follows the other; exclusive (RX), elements follow different paths that exit

from the XOR-split gateway; inclusive (RO), elements follow different paths that

exit from the same OR-split gateway; and parallel (R+), elements follow different

paths that exit from the same AND-split gateway.

• Source: the process element that occurs immediately before the analyzed sentence.

As in the BPMN 2.0 specification, the source can be understood as the element prior

to the currently described element connected by a sequence flow. A source may or

may not be evidenced in the sentence.

As an example, Figure 3.4 presents a process description adapted from the Figure

2.4. In this example, five sentence templates were identified, two of which have target

52

Figure 3.4: Example of process description: Computer repair (adapted from Figure 2.4).

(sa1) The repair department of the company X performs repairs of computers and
printers. (sa2) Once a computer with problems arrives, the technician must perform
an evaluation. (sa3) In case it is a software problem, the technician must format the
computer. (sa4) For the case that it is a hardware problem, the technician must replace
the part and fill out the part replacement form. (sa5) This form must contain the
part identification code and the technician’s signature. (sa6) On the other hand, if no
problem is found, no modification should be made to the computer. (sa7) The process
finishes after the technician completes the repair form.

Source: The authors

with the sequential relationship (sa4, sa7) and three have target with the none relationship

(sa2, sa3, sa6). In the sentence sa2, it is possible to define the sentence template “Once

Es, the role must Ac”, where Es is the source evidenced in the sentence template, Ac is

a placeholder for an activity described in the target and role refers to some participant in

the process that performs the activity Ac. The sentences sa3, sa4 and sa6 have as source

a XOR-split gateway not evidenced in the sentence template. In addition, the sentence

sa7 has as its source a XOR-join gateway and as target an activity (Ac) and an end event

(represented implicitly by “The process finishes after”). Not all sentences in a text are

necessarily mapped to a sentence template, since process descriptions can be composed by

other information, such as statements that contextualize the process (sa1) and statements

that detail an activity or business rule (sa5).

In order to identify the sentence templates, each process description was inserted

into a spreadsheet, as illustrated in Table 3.2. In the spreadsheet, each line represents one

sentence and the columns represent the following attributes: sentence, sentence template

ID (i.e., the ID of the sentence template that can be a number or “none”) and sentence

template.

After all the sentence templates were identified, they were grouped into categories

based on source, target and relationship. As a result, each category is composed by sen-

tence templates that can be replaced in a process description and represent the same infor-

mation. As an example, the sentence sa3 is defined as a sequential relationship between

a XOR-split (source) and an activity (target). This sentence can be rewritten by another

sentence template that have the same properties, therefore the same category, such as:

“Once condition, the role needs to Ac”.

The analysis of sentence templates was done in two different manners, namely

53

Table 3.2: Example of identification of sentence templates.
Process Description: Computer repair

Sentence Sentence
Template ID

Sentence Template

The repair department of the company X
performs repairs of computers and print-
ers.

None

Once a computer with problems arrives,
the technician must perform an evaluation.

3 Once Es, the role must
Ac.

In case it is a software problem, the tech-
nician must format the computer.

10 In case condition, the
role must Ac.

For the case that it is a hardware problem,
the technician must replace the part and
fill out the part replacement form.

25 For the case condition,
the role must Ac and Ac.

This form must contain the part identifica-
tion code and the technician’s signature.

None

On the other hand, if no problem is found,
no modification should be made to the
computer.

1 On the other hand, if
condition, empty.

The process finishes after the technician
completes the repair form.

8 The process finishes af-
ter the role Ac.

Source: The authors

atomic level analysis and group level analysis. At the atomic level analysis, it is consid-

ered that if two sentences have the same text, but represent different process elements in

the source, they are defined as two distinct sentence templates. For example, sentences

“When a computer with problems arrives, the technician must perform an evaluation.”

and “When performing a repair, the technician must perform an evaluation.” are de-

fined as different sentence templates because they have different process elements in the

source, being respectively: “When Es, Ac.” and “When Ac, Ac.”. On the other hand,

at the grouped level analysis it is considered that different possible process elements can

be translated as the same sentence template. In this case, the two sentence templates de-

scribed above can be viewed as a single sentence template (i.e., “When (Ac or Es), Ac.”),

capable to have as source either an activity or a start event.

To facilitate the categorization of sentence templates, we create a notation based

on the previously defined criteria. Sti = Rs(source, target) can be interpreted as: there

is a sentence template Sti that starts from a source, can describe a target and is associated

through a sequential relationship Rs. In the case of atomic level analysis, a source is a

process element. On the other hand, in the case of group level analysis a source is a set

of possible process elements (e.g., Ac|GXs|G+s). A target can be described as target =

54

Rx(component1, ..., componentn), i.e., a target is a set of components that relate to each

other through a relationship Rx. Finally, a component can be a process element, empty,

or another target. Thus, two different sentence templates belong to the same category if

they share the same notation, which means to start from the same source and reach the

same target.

3.3.3 Ambiguity in Sentence Templates

After the identification and classification of the sentence templates, they were an-

alyzed in relation to ambiguity issues. As mentioned, in the context of this work a sen-

tence template was considered ambiguous when it allows multiple interpretations of the

process. To identify common ambiguity issues in process descriptions, two approaches

were carried out: analysis of the literature and analysis of the sentence templates.

As for the analysis of the literature, works related to ambiguity in process descrip-

tions were investigated. Although some works related to this subject were found, only a

few of them (AA; LEOPOLD; REIJERS, 2015; AA; LEOPOLD; REIJERS, 2016; AA;

LEOPOLD; REIJERS, 2018; AKBAR; BAJWA; MALIK, 2013) presented cases of am-

biguity. This analysis of the literature made it possible to find eight ambiguity problems

that were categorized into five different types of ambiguity.

In terms of the analysis of the sentence templates, two independent tasks were

conducted. In the first part, an analysis of each sentence template was carried out individ-

ually in order to identify ambiguity issues. In the second part, an analysis was carried out

involving the combination of sentence templates. For the latter case, sentence templates

that share the same description, but do not have the same classification (i.e., source, target

or relationship) were considered candidates for ambiguity issues.

Table 3.3 presents the six different types of ambiguities that were identified in this

work, with their respective identifiers (AmbiID), descriptions, examples, and source.

3.3.4 Analysis of Sentence Templates and Ambiguity Issues

After analyzing the process descriptions in an atomic level, it was possible to ob-

tain a set of 101 sentence templates for 29 categories. Of these, 13 sentence templates

were classified as having one of the six ambiguity issues. Tables 3.4 to 3.6 show the sen-

55

Table 3.3: Identified ambiguity issues.
AmbiID Description Example Source
Ambi1 The term “and” can have dif-

ferent meanings, such as: se-
quence, dependence, paral-
lelism, contrast.

The employee must
update the document
and prepare the prod-
uct for shipping.

- Akbar, Bajwa
and Malik (2013)
- Aa, Leopold and
Reijers (2016)
- Aa, Leopold and
Reijers (2018)

Ambi2 The terms “or” and “some-
times” may raise doubts
whether it includes or is
mutually exclusive to the
different alternatives.

(1) The document is
accepted or denied.
(2) The bicycle can be
mounted or painted.

- Akbar, Bajwa
and Malik (2013)
- this work

Ambi3 The term “latter” usually
does not make clear to what
previous activities it refers.

In parallel to the latter
steps...

- Aa, Leopold and
Reijers (2016)
- Aa, Leopold and
Reijers (2018)

Ambi4 The terms “meanwhile”,
“concurrently”, “meantime”,
“in the meantime” and “at the
same time” make it difficult
to specify which sets of
activities they refer to.

In the meantime, the
sales department must
prepare the receipt.

- Aa, Leopold and
Reijers (2018)
- this work

Ambi5 Repetitions usually not clear
what activities should be per-
formed again.

The previous steps
must be repeated.

- Aa, Leopold and
Reijers (2015)
- Aa, Leopold and
Reijers (2016)
- Aa, Leopold and
Reijers (2018)

Ambi6 The term “while” can mean
simultaneity or concession.

While it is true that
the company has the
money, they can’t
build the houses.

- this work

Source: The authors

tence templates for each one of the 29 categories (CID), with their respective category

notation. Each sentence template has a specific identifier presented in the “StID” column.

In addition, the number of times each sentence template appeared in the process descrip-

tions analyzed is presented in the “N” column. Moreover, the ambiguity issues identified

for each sentence template, when identified, is presented in the “AmbiID” column, based

on the elements in Table 3.3.

Considering the identified sentence templates, the most recurrent is “If condition,

Ac.” (i.e., St71), from category C18, which appeared 81 times. It is possible to observe that

this sentence template is fairly recurrent in business process descriptions because the two

56

Table 3.4: Atomic sentence templates by category 1.
CID Notation StID Sentence Template N AmbiID

C1 RS(Ac, RN(Ac))

St1 Once Ac, Ac. 15
St2 Then Ac. 13
St3 When Ac, Ac. 11
St4 After Ac, Ac. 10
St5 Next Ac. 5
St6 Afterwards, Ac. 4
St7 As soon as Ac, Ac. 3
St8 Subsequently Ac. 3
St9 The role then Ac. 3
St10 Upon Ac, Ac. 3
St11 After that Ac. 2
St12 Likewise Ac. 2
St13 Ac, after which Ac. 1
St14 Immediately after Ac, Ac. 1
St15 In addition to Ac, Ac. 1
St16 In the following Ac. 1
St17 Moreover, Ac. 1
St18 Thereafter Ac. 1
St19 Therefore Ac. 1

C2 RS(Ac, RN(Ee))

St20 After Ac, the process ends. 1
St21 After all number activities are

completed the process ends.
1

St22 For role the process ends then. 1
St23 The process ends here. 1
St24 The process finishes only once

Ac.
1

C3 RS(Ac, RN(GXs))

St25 After Ac, the object may lead
to number possible outcomes:
condition or condition.

2 Ambi2

St26 After Ac, it is checked whether
condition.

1

St27 After Ac, the role can either
condition, condition or condi-
tion.

1

St28 After Ac, the role investigates
whether condition or condition.

1

St29 After Ac, the role may either
condition or condition.

1

St30 One of the number alternative
process paths may be taken.

1

St31 The role can either condition or
condition.

1

St32 The role can then condition or
condition.

1 Ambi2

St33 This procedure is repeated for
each condition.

1 Ambi5

St34 When Ac, it is first checked
whether condition.

1

Source: The authors

57

Table 3.5: Atomic sentence templates by category 2.
CID Notation StID Sentence Template N AmbiID
C4 RS(Ac, RN(GXj)) St35 Then the process continues nor-

mally.
1

C5 RS(Ac, RS(Ac, Ac))
St36 Ac and Ac. 15 Ambi1
St37 Also Ac and Ac. 1 Ambi1

C6 RS(Ac, RS(Ac, Ac, Ac))
St38 Ac and Ac and Ac. 1 Ambi1
St39 First Ac, then Ac, and finally Ac 1

C7 RS(Ac, RS(Ac, Ee))

St40 Ac, which ends the process. 2
St41 Finally, Ac. 2
St42 The process completes with Ac. 2
St43 Ac, then the process ends. 1
St44 After Ac, this process path

ends.
1

St45 Afterwards, Ac and finishes the
process instance.

1

St46 The process finishes when Ac. 1

C8 RS(Ac, RS(Ac, GXs))
St47 The role Ac and may decide to

either Ac or Ac.
1 Ambi1

C9 RS(Ac, R+(Ac, Ac))
St48 While Ac, Ac. 2 Ambi6
St49 Next, Ac while Ac. 1 Ambi6
St50 Once Ac, Ac and meantime Ac. 1

C10 RS(Ac, RX(Ac, Ac))
St51 After Ac, the role either Ac or

Ac.
1

St52 When Ac, the role may either
Ac or Ac.

1

C11 RS(Ac, RX(Ac, Ac, Ac))
St53 Sometimes Ac, sometimes Ac

and sometimes Ac.
1 Ambi2

C12 RS(Ac, RO(Ac, Ac))
St54 object may be Ac from either

role 1 or role 2 or from both.
1

St55 The role may either Ac or also
Ac.

1

C13 RS(Ei, RN(Ee)) St56 After role Ei, the process flow
ends.

1

C14 RS(Es, RN(Ac))

St57 The process starts with Ac. 7
St58 The process starts when Ac. 6
St59 First, Ac. 3
St60 The process starts by Ac. 2
St61 When Es, Ac. 2
St62 Whenever Es, Ac. 2
St63 After the process starts, Ac. 1
St64 The process is triggered by Ac. 1
St65 The process starts once Ac. 1

C15 RS(Es, RS(Ac, Ac, Ac)) St66 Ac and Ac and Ac. 1 Ambi1

C16 RS(G+s, RN(Ac))
St67 In the meantime, Ac. 2 Ambi4
St68 At the same time, Ac. 1 Ambi4

C17 RS(G+j, RN(Ac))
St69 Afterwards, Ac. 2
St70 After each of these activities,

Ac.
1

Source: The authors

58

Table 3.6: Atomic sentence templates by category 3.
CID Notation StID Sentence Template N AmbiID

C18 RS(GXs, RN(Ac))

St71 If condition, Ac. 81
St72 Otherwise, Ac. 10
St73 In this case Ac. 7
St74 In case condition, Ac. 3
St75 For the case condition, Ac. 2
St76 condition, in which case Ac. 1
St77 condition, otherwise Ac. 1
St78 However, if condition, Ac. 1
St79 In that case, Ac. 1
St80 In the latter case, Ac. 1
St81 On the other hand, if condition

Ac.
1

St82 Sometimes condition, then Ac. 1

C19 RS(GXs, RN(Ee))
St83 If condition the process will

end.
1

St84 In the former case, the process
instance is finished.

1

C20 RS(GXs, RN(G+s))
St85 This action consists of number

activities, which are executed
in an arbitrary order.

1

C21 RS(GXs, RN(GXs))
St86 If condition, this results in ei-

ther condition or condition.
1

C22 RS(GXs, RS(Ac, Ac, Ac))
St87 If condition, role may need to

first Ac, then Ac and finally Ac.
1

C23 RS(GXs, R+(Ac, Ac)) St88 Once condition, Ac and mean-
time Ac.

3

C24 RS(GXs, RX(Ac, Ac))
St89 If condition, Ac, otherwise Ac. 4
St90 In case condition, Ac, other-

wise Ac.
1

St91 role either Ac or Ac. 1

C25 RS(GXs, RX(Ac, Ee))
St92 If condition Ac, otherwise the

process is finished.
1

C26 RS(GXs, RX(Ac, empty))
St93 If condition, Ac, except if con-

dition.
1

St94 In case condition, Ac otherwise
the process continues.

1

C27 RS(GXj, RN(Ac))

St95 In any case, Ac. 4
St96 In either/any case, Ac. 1
St97 Once one of these number ac-

tivities is performed, Ac.
1

St98 The process then continues
with Ac.

1

C28 RS(GXj, RS(Ac, Ee))
St99 Afterwards, Ac and the process

completes.
1

St100 Finally, Ac. 1

C29 RS(GXj, R+(Ac, Ac))
St101 Then, two current activities are

triggered, Ac and Ac.
1

Source: The authors

59

sentence templates that appear the most after this sentence template were identified only

15 times (i.e., St1 and St36). Moreover, the category that presented the largest diversity

of sentence templates is C1, with 19 distinct sentence templates, followed by C18 (with

12) and C3 (with 10).

In terms of ambiguity, the type that appeared most in the sentence templates is re-

lated to the term “and” (Ambi1), having occurred five times. Moreover, Ambi2 appeared

three times, followed by both Ambi4 and Ambi6 (2 times), and Ambi5 (1 time). In ad-

dition, in the identified sentence templates no case was found related to the ambiguity

Ambi3.

Furthermore, it is possible to notice that not all relationships between process

elements are explored in Tables 3.4 to 3.6. This occurs because some relationships that

occur in the model are not explicitly transformed into sentences. Also, there are some

relationships that appear less frequently than others in the texts considered.

In the group level analysis, the atomic level sentence templates that share the same

target but presents different process elements as sources were grouped. From the data col-

lected in the atomic level analysis, it was possible to identify 8 sentence templates that

were transformed into four grouped sentence templates. Table 3.7 presents the grouped

sentence templates. In this table are presented the new notations able to represent the

grouped sentence templates, as well as the new sentence templates. In addition, the iden-

tifier of the atomic sentence templates used in each grouped sentence template are pre-

sented in the “StID” column. Finally, as in atomic level analysis, the number of times each

grouped sentence template appeared in the process descriptions analyzed is presented in

the “N” column.

Table 3.7: Grouped sentence templates.
Notation Sentence Template StID N
Rs(Ac|Es, Rn(Ac)) When Ac|Es, Ac. St3, St61 13
Rs(Ac|G+j, Rn(Ac)) Afterwards, Ac. St6, St69 6
Rs(Ac|GXj, Rs(Ac, Ee)) Finally, Ac. St41, St100 3
Rs(Ac|Es, Rs(Ac, Ac, Ac)) Ac and Ac and Ac. St38, St66 2

Source: The authors

3.4 Text Design

To perform the text design, the analyses performed previously will be used to

define how business process-oriented texts will be constructed. For this, design decisions

60

will be presented taking into account the five questions raised during the analysis for

structuring the text and the sentences selected during the analysis for sentence design.

This section will also present other design decisions and their respective justifications.

The following subsections present the steps followed to: (3.4.1) define the term to

represent the different paths of the process, (3.4.2) define the text structure according to

the analysis for structuring the text performed, and (3.4.3) define the sentences that will

compose the text according to the analysis for sentence design performed.

3.4.1 Term to Represent Processes Paths

To represent different paths generated by a split, different terms can be used, such

as: “procedures”, “paths”, “branches”, “set of elements”, “activities”. In order to nor-

malize the different sentences that will compose the process description, we chose to use

the term “procedure” whenever referring to these different paths. In this regard, for the

construction of the process description, a sentence template such as “One of the number

alternative process paths may be taken.” (i.e., St30) was transformed into “One of the

number alternative procedures may be taken.”.

The term “procedure” was chosen because the terms “paths” and “branches” present

the idea of flows in a process model. As the purpose is to describe a process even by those

who do not have understanding in process modeling, the term “procedure” seems more

appropriate. In addition, the terms “set of elements” and “activities” may give an impres-

sion of arbitrariness in the actions to be carried out while “procedure” has more the idea

of not only what must be done but how must be done (i.e., how to proceed).

3.4.2 Text Structuring Design

In this section the structure of the text is defined according to the analysis for

structuring the text carried out in Section 3.2. In relation to how the text will be described

in relation to the process (Question 1), we chose to describe the text sequentially (i.e.,

starting from the initiating events and going to the end events) because this was the most

recurrent way of describing processes in business process descriptions analyzed. Con-

cerning how the text is organized in terms of paragraphs (Question 2), it was chosen, as

well as Ferrari et al. (2017), to describe paragraphs with a maximum of 5 sentences. How-

61

ever, recognizing that different factors may contribute to the decision of paragraph size,

the architecture presented in Chapter 4 of this work seeks to provide ways to customize

the size of paragraphs. Regarding the voice used in the text (Question 3), the text will

always be presented in the active voice because this form makes explicit the actor who

performs a certain action. If it is not possible to define the actor of a particular action, a

generic actor (e.g., “Resource 1”) should be created.

Regarding how the text will describe splits and joins (Question 4), the use of sen-

tences to explicitly present splits and joins make text more verbose. However, it facilitates

in identifying where splits and joins occur in the process. Thus, we chose to maintain sen-

tences that describe splits and joins. Regarding splits, sentences will explicitly describe

splits (i.e., Case4−s1). In relation to joins, there are two cases able to make explicit the

joins in the text. Among these cases, markers will be used to make explicit in the text

where there is a join (i.e., Case4−j3).

In order to describe the different paths of a split (Question 5), two cases were

chosen. First, it was chosen to describe each possible path from the beginning of the split

to the respective join (i.e., Case5−2). However, considering that a process can contain

several paths and that this can lead to very long descriptions where many sentences are

repeated for the different paths, the case that describes from split to join without repeating

what has already been described can be used (i.e., Case5−4).

3.4.3 Sentence Design

In relation to the sentence analysis, the sentence templates were chosen taking into

consideration three criteria, being applied in the order in which they appear:

1. Sentence templates without ambiguity issues: Sentence templates that are not

ambiguous considering the cases of ambiguity previously pointed.

2. Non-generic sentence templates: Sentence templates that are not dependent on

the source (e.g., Once Ac, the role must Ac).

3. Most recurring sentence templates: Sentence templates that appear with recur-

rence in business process descriptions.

Table 3.8 presents the sentence templates chosen to compose the process descrip-

tion. This table contains the element being considered, the type of the element, which

62

categories of the sentence templates match the respective element and type, the chosen

sentence template, and the corresponding sentence template ID (i.e., StID). In addition to

the sentence templates chosen from the analysis, some sentence templates were adapted

(i.e., use of the term “(adapt)” in StID) and others were created (i.e., use of the term

“Created” in StID).

In relation to start element, were selected sentence templates to describe the start

of a process. This type of sentence can be find in the categories C14 and C15 present in Ta-

ble 3.5. The sentence templates were selected according to two types: sequence and split.

Regarding sequence, a sentence template was selected that demonstrates a sequencing

between the beginning of the process and an activity. For this, the sentence template St57

of the Table 3.5 was selected. This sentence template could be complemented with an

activity such as “The process starts with a client making a request.”. On the other hand,

in relation to the type split a sentence template was selected that demonstrates the se-

quencing between the beginning of the process and a split gateway. For this, the sentence

template St61 was adapted and used. This sentence template could be complemented with

a sentence that represents a split gateway, for example: “When the process starts, one of

the number alternative procedures is executed.”.

Regarding sequence element, sentence templates that represent the sequence of

actions were selected. For this, was selected templates of two types: atomic and aggrega-

tion. The type atomic describes an activity that proceeds another. Elements of this type

are represented in Table 3.4 as in category C1. Since atomic is quite recurrent in process

descriptions, three sentence templates of this type have been selected. The three sentence

templates selected are those that do not present ambiguity issues, are non-generic, and

are most recurring. In addition, the sentence templates “Then, Ac.” (i.e., St2) and “After-

wards, Ac.” (i.e., St6) were not used because these terms will be present in other sentence

templates. On the other hand, the type aggregation seeks to represent sentence templates

that contain more than one activity being described in sequence. The most recurrent sen-

tence template in this group is St36 (i.e., “Ac and Ac.”). However, this sentence template

presents an ambiguity issue. Thus, based on the sentence templates St39 and St87, the

sentence template “Ac and then Ac.” was created that clarifies the idea of sequencing

between activities.

In relation to end element, were selected sentence templates to describe the end

of a process. This type of sentence can be found in several categories present on Tables

3.4 to 3.6. The sentence templates were selected according to two types: sequence and

63

Table 3.8: Sentence templates chosen to compose the process description.
Element Type Categories Sentence Template StID

Start

Sequence C14, C15 The process starts
with ...

St57

Split C14, C15 When the process
starts, ...

St61
(adapt)

Sequence

Atomic 1 C1 Next, ... St5
Atomic 2 C1 Subsequently, ... St8
Atomic 3 C1 After that, ... St11
Aggregation C5, C5, C15,

C22

... Ac and then Ac. St39,
St87
(adapt)

End

Sequence C2, C7, C13,
C19, C25, C28

Finally, the process
ends.

St20,
St41
and
St100
(adapt)

Join C2, C7, C13,
C19, C25, C28

..., the process ends. St20

Exclusive
Choice

Split C3 ..., one of the num-
ber alternative pro-
cedures is executed.

St30
(adapt)

Join C4, C27 - C29 In any case, . . . St95
Path C18 - C26 In the ordinal proce-

dure, ...
Created

Path with
condition

C18 - C26 If “condition”, ... St71

Inclusive
Choice

Split None ..., number alterna-
tive procedures may
be executed.

St30
(adapt)

Join None Afterwards, . . . St69
(adapt)

Path None In the ordinal proce-
dure, ...

Created

Path with
condition

None If “condition”, ... St71
(adapt)

Parallelism

Split C16, C20 ..., number proce-
dures are executed in
an arbitrary order.

St85
(adapt)

Join C17 After each case, ... St95
(adapt)

Path 1 C16 In the meantime, ... St67
Path 2 C16 At the same time, ... St68

Source: The authors

64

join. Regarding the type sequence, a sentence template was selected that demonstrates a

sequencing between an activity and the end of the process. In relation to the type join, a

sentence template was selected that demonstrates the sequencing between a join gateway

and the end of the process. In both cases, the sentence template evidenced in St20 “...the

process ends.” was used. Although it appears only once, similar sentence templates

have appeared elsewhere (i.e., St21, St22, St23, St40, St43, St44, St56, and St83). The

difference between the two types is in the preceding snippet. For the type sequence the

sentence template presents in St41 and St100 “Finally, ...” was selected to precede thus

forming the sentence “Finally, the process ends.”. On the other hand, for the type join the

sentence template that will precede must come from a join gateway, for example: “In any

case, the process ends.”.

The next three elements are related to gateways. To represent them, the following

types will be used: split, join, path, and path with condition. For split type and join

type, sentence templates will be used that represent, respectively, split gateways and join

gateways. For the path type will be used sentence templates that describe the different

paths generated by split gateways. In addition, a particular case of path named path with

condition has been created. This particular case will be applied whenever all possible

paths of a gateway have a related condition. In terms of BPMN 2.0 process model, it

would be the equivalent of all sequence flows that are output from a split gateway having

a label that describes a condition.

Regarding the exclusive choice, were selected sentence templates to describe the

XOR gateway. The split sentence template was chosen because it is the first that meets the

three criteria (more specifically, it is the first that is non-generic). In addition, the sentence

template was adapted to describe procedures rather than process paths. Moreover, the join

and path with condition sentence templates were chosen because they also met the defined

criteria. Finally, to create sentences of type path a sentence template containing the term

ordinal was created. This term should be modified to the ordinal of each procedure as

described (i.e., first, second, third, etc.). Thus, an example of a sentence with type path

would be "In the first procedure, the manager will request the report.".

For inclusive choice, were selected sentence templates to describe the OR gate-

way. In this case, no sentence template was found to fill the conceived categories. In the

descriptions observed, few cases of sentence templates involving the OR gateway were

found. The case found is present in the category C12. However, this category represents

sentences that have multiple activities being performed as inclusive and, in turn, do not fit

65

into any of the expected cases. Thus, the sentence template St30 was adapted to be used

by type split and the sentence template St69 was used by type join. In addition, just like

the exclusive choice, was used the created sentence template to represent the type path.

Finally, the sentence template for type path with condition was copied from the exclusive

choice, since this sentence template can be used for both cases. Regarding parallelism,

were selected sentence templates to describe the AND gateway. The split sentence was

adapted to present the procedures instead of the activities. Regarding join, even though

there is a particular category of sentences, the defined sentence was chosen to standard-

ize with the sentence St95. Since there are no conditions in AND gateways, two types

of sentences have been defined to represent the multiple paths of a parallelism: “In the

meantime, ...” (i.e., St67) and “At the same time, ...” (i.e., St68). As can be seen in

Table 3.5, these two sentence templates are considered ambiguous because they do not

make clear what is being executed in parallel. However, the use of explicit split and join

sentences may help mitigate this issue.

3.5 Study Case: Computer Repair Process Description

As a demonstration of the design of business process descriptions as presented in

this work, the process description described in Figure 3.4 could be rewritten as shown by

Figure 3.5. This example was written manually from the recommendations proposed in

Section 3.4.

Figure 3.5: Example of process description of Figure 3.4 rewritten.

(sa1) The repair department of the company X performs repairs of computers and
printers. (sa2) The process starts with the technician performing an evaluation. (ns1)
Then, one of the 3 alternative procedures is executed.

(sa3) If “it is a software problem”, the technician must format the computer. (sa4)
If “it is a hardware problem”, the technician must replace the part and then fill out the
part replacement form. (sa5) This form must contain the part identification code and
the technician’s signature. (sa6) If “no problem is found”, no modification should be
made to the computer.

(ns2) In any case, the technician completes the repair form. (ns3) Finally, the
process ends.

Source: The authors

The first thing to note is that the process description has been separated into three

66

paragraphs. For this case, this division was chosen because it separates the elements that

are outside the gateway of those that are inside the gateway. In addition, no paragraph

was too long (i.e., with more than 5 sentences).

In this new process description, the sentence sa1 remained the same because it

only presents context information. In addition, the sentence sa2 was modified by the sen-

tence template “The process starts with Ac” (i.e., St57). Then, to make the split gateway

explicit, the sentence “Then, one of the 3 alternative procedures is executed.” (i.e., ns1)

was created consisting of the sequencing sentence template “Then, ...” (i.e., St2) and the

sentence template for exclusive choice “..., one of the number alternative procedures is

executed.” (i.e., St30 (adapt)).

Moreover, the sentences sa3, sa4 and sa6 were rewritten using the sentence tem-

plate “If “condition”, ...” (i.e., St71). In addition, to solve the ambiguity issue related to

“and” (i.e., Ambi1) in the sentence sa4, the sentence was modified to the sentence tem-

plate “... Ac and then Ac”. Furthermore, the sentence sa5 also has not been modified

because this sentence only describes a business rule.

Finally, the sentence sa7 was separated into two new sentences: ns2 and ns3. The

first sentence (i.e., ns2) was created to make the join explicit and to represent the last

activity in this process. On the other hand, the second sentence (i.e., ns3) was created to

represent the end of the process.

3.6 Final Considerations

In this chapter, two analyses were performed to understand how process descrip-

tions are usually presented. Based on these analyses, it was defined how the process

descriptions should be described taking into account the information collected in the pre-

vious analyses. Finally, an example of a process description created from the design

decisions suggested in this chapter are presented.

Regarding the structuring of the text, it sought to understand how texts are usually

structured to display the information of a business process. In order to answer this ques-

tion, we have defined 5 questions about process descriptions. To answer these questions,

analyses were performed on actual process descriptions and on different approaches in

the literature.

Regarding analysis of sentence design, an empirical analysis of business process

descriptions was carried out in order to discover the most recurrent sentences used to de-

67

scribe BPMN process models. In addition, an analysis was performed in order to find

sentences with ambiguous meaning. The analysis consisted of three different steps. First,

a set of 64 process descriptions was selected and their sentences were prepared for the

identification of sentence templates. Then, an identification and a classification of sen-

tence templates was performed in the prepared sentences. Finally, the sentence templates

were marked as having or not ambiguity issues. Among all, 101 sentence templates were

found and they were classified into 29 different categories. Of these, 13 sentence tem-

plates were considered as having ambiguity issues.

This chapter aims to contribute to the description of business processes in a way

that is closer to a pattern and with less ambiguity issues. It can be useful for creating pro-

cess descriptions more suitable for process analysts and domain experts. In addition, the

results raised by this chapter can help approaches for identification of process elements in

natural language texts and for automated creation of business process descriptions. For

identification of process elements in natural language texts, the approaches can use the

identified sentence templates as patterns to be sought in texts. In this case, sentence tem-

plates could be searched in the sentences of a process description. By finding a sentence

corresponding to a sentence template, the process elements present in the sentence could

be identified. For automated creation of process descriptions, the approaches can choose

to use the most recurring sentence templates, or take advantage of the variety of sentence

templates in each category to make the text more diversified.

In the next chapter will be presented the architecture developed for the generation

of business process-oriented text.

68

4 ARCHITECTURE FOR BUSINESS PROCESS-ORIENTED TEXT GENERA-

TION

In order to be able to generate a business process-oriented text, we construct an

approach that consists of 5 stages: input data, text reading, process verification, text

writing and text output. Firstly, a natural language text is given as input to the input data

(i.e., input data stage). Then the approach reads the natural language text and produces

an intermediate structure (i.e., text reader stage). Next, the intermediate structure is used

to verify the process described by the text in relation to the BPMN 2.0 and in relation

to soundness (i.e., process verification stage), and to generate the process description

(i.e., text writer stage). Finally, the verification and the generated process description are

combined for the generation of the business process-oriented text (i.e., output text stage).

Figure 4.1 presents the approach with its respective stages.

Figure 4.1: Business process-oriented text generation.

Source: The authors

The approach described in this work proposes to generate business process-oriented

text with the following set of BPMN 2.0 process elements as scope: task, subprocess,

XOR gateway, AND gateway, OR gateway, start event, intermediate event, end event,

sequence flow, lane, pool.

The remainder of this chapter is organized as follows: Section 4.1 presents an

overview of the architecture built based on the described approach (see. Figure 4.1). In

this section, are presented the services and the interaction between them for the generation

of a business process-oriented text. Then, Sections 4.2 and 4.3 present the files used for

defining the contracts. In this sense, Section 4.2 presents the data definition files and the

Section 4.3 presents the service definition files. Furthermore, Sections 4.4 to 4.7 presents

the services defined in this work. Finally, Section 4.8 presents the final considerations of

69

this chapter.

4.1 Architecture Overview

The architecture developed in this work follows the principles of the Service Ori-

ented Architecture (SOA) (ERL, 2008). This style of software architecture has been

chosen because it allows to decompose the approach into services that have autonomy,

are self-managed, and can communicate independently of the programming language,

software versions or operational systems. Figure 4.2 presents the architecture overview

composed of 5 services, being them: Service Registry, Main Service, Text Reader Ser-

vice, Process Verification Service, and Text Writer Service. Each service is responsible

for playing a role in generating the business process-oriented text:

• Service Registry: Service that maintains the location (URI) of the available ser-

vices.

• Main Service: Service that acts as a service consumer making requests to the other

services. Based an input (i.e., business process description or BPMN 2.0 process

model), this service interacts with other services to produce the business process-

oriented text.

• Text Reader Service: Service responsible for identifying the process elements and

their respective relationships in a business process description. This service pro-

vides two functionalities:

1. Generation of a intermediate structure containing the process elements and

their relationships.

2. Generation of metadata that can be used to mark and structure the process

elements in the original text.

• Process Verification Service: Service responsible for performing the process ver-

ification. It verifies that the process is in accordance with the BPMN 2.0 and helps

to verify the soundness of the process.

• Text Writer Service: Service responsible for generating the text according to the

text design defined in Chapter 3.

70

Figure 4.2: Architecture for business process-oriented text generation.

Source: The authors

Some of the services presented in this work use or are adaptations of other ap-

proaches present in the literature. In this context, when a service makes use of an existing

approach, a description of the approach, the reasons for its use, and the main modifications

made to suit the purpose of the work will be presented.

In terms of implementation, this work followed the contract first approach (ERL,

2008). In this approach, it is first defined how the contracts will be and then it is defined

how the services will communicate with those contracts. This approach allows services to

be coupled to contracts (i.e., service-contract coupled) rather than the opposite. Therefore,

the contracts are not created from the service logic and, hence, make the architecture

independent of the information referring to the context of that service. Thus, the services

were defined and prepared so that they could communicate according to the definitions of

the contracts.

As can be observed in Figure 4.2, the services presented in the architecture com-

municate through three different contracts, being: Text Reader Contract, Process Verifi-

cation Contract, and Text Writer Contract. These contracts define how to communicate

with the Text Reader Service, Process Verification Service, and Text Writer Service re-

spectively.

In the context of this work, each of the defined contracts consists of two different

types of files: data definition files and service definition files. The data definitions files

are documents that define the data that will be shared between the services. In total,

three data definitions files were created, being: Process File Schema, Text Metadata File

Schema, and Process Verification File Schema. On the other hand, the service definition

files are documents that represent how services will communicate (i.e., possible requests

and responses). In total, three service definition files were created, being: Text Reader

71

Figure 4.3: Contracts and definition files.

Source: The authors

Definition, Text Writer Definition, and Process Verification Definition. Figure 4.3 presents

a representation of the data definitions files and the service definitions files, as well as how

they relate to the contracts created. In the following sections, the data definition files and

service definition files will be presented in more details.

4.1.1 File Exchanges

The architecture developed can still be seen from the perspective of the files that

are sent and received by the services. Figure 4.4 presents services, what they expect as

input, and what they are capable of producing as output. As can be seen, there are three

possible files, being: Process File, Text Metadata File, and Process Verification File.

These files will be defined respectively by the data definition files Process File Schema,

Text Metadata File Schema, and Process Verification File Schema.

The Process File is responsible to represent the business process. In this sense,

this file represents the process elements, as well as how these process elements are related

to each other. This file is used at two different moments. In the first moment, the file

72

Figure 4.4: Architecture overview: File exchange perspective.

Source: The authors

is created by the Text Reader Service and describes the process elements and their rela-

tionships. In the second moment, the file is read by the Text Writer Service and Process

Verification Service.

The Text Metadata File is responsible for returning the text produced and the mark-

ings related to the process. These markings act as a mapping between the text and the

business process. In addition, they allow to mark process elements in the text and make

changes in the text structure. As an example, consider the sentence described in Figure

4.5. In order to mark the activities present in this sentence, it is necessary to know if there

is a snippet of the sentence (i.e., part of the sentence) that describes a process element of

type activity (i.e., process element type), the position in the sentence where this snippet

starts (i.e., start index), and the position in the sentence where this snippet ends (i.e., end

index).

Figure 4.5: Example of sentence with metadata.

The process starts when
start index
↓
the technician performs an evaluatio

end index
↓
n︸ ︷︷ ︸

process element type

.

Source: The authors

The Process Verification File is responsible for returning the process issues ob-

served. In this file, all issues identified in the process are listed along with a reference to

the process element in which the problem was encountered. This file is used at two differ-

ent moments. In the first moment, the file is created by the Process Verification Service to

describe the issues identified. In the second moment, this file is used by the Main Service

73

in generation of the business process-oriented text.

4.1.2 Behavior of Services for the Generation of Business Process-oriented Texts

For the generation of business process-oriented texts, the Service Registry is ini-

tially started to receive the new services. Then, service providers (i.e., Text Reader Ser-

vice, Process Verification Service, and Text Writer Service) are registered in the Service

Registry. Subsequently, the Main Service is started and is waiting for a user request.

When the Main Service receives a text as input (i.e., typed text or file in TXT

format), it searches the Service Registry for the location of a service that performs text

reading. The Service Registry then returns the location of the Text Reader Service to the

Main Service. Subsequently, the Main Service communicates with the Text Reader Ser-

vice and forwards the natural language text. The Text Reader Service then processes the

natural language text and returns the identified process elements as well as their relation-

ships (i.e., Process File) to the Main Service.

After receiving the Process File from the Text Reader Service, the Main Service

searches the Service Registry for the location of a service that performs business process

verification. Then, the Service Registry returns the location of the Process Verification

Service to the Main Service. Subsequently, the Main Service communicates with the Pro-

cess Verification Service and forwards the Process File. The Process Verification Service

then processes the business process and returns the process issues that were identified (in

relation to BPMN 2.0 and soundness) to the Main Service as a Process Verification File.

In addition, the Main Service searches the Service Registry for the location of a

service that performs the generation of text with metadata. Then, the Service Registry

returns the location of the Text Writer Service to the Main Service. Subsequently, the

Main Service communicates with the Text Writer Service and forwards the Process File.

The Text Writer Service then processes the business process and returns the text with

metadata to the Main Service as a Text Metadata File.

Having received the Process Verification File and Text Metadata File, the Main

Service generates a web page and sends it to the user so that it can access and interact

with the business process-oriented text.

As defined in this section, it is possible that Text Reader Service also produces

metadata for the original text. In this case, the Main Service would send the original text

to the Text Reader Service and this, in turn, would send in response a file of type Text

74

Metadata File.

4.2 Data Definition Files

To perform the communication between services, it is necessary to define the data

that will be shared between them. The files used to define the data that will be shared are

the data definition files. In the context of this work, three data definition files were defined

for the communication between the services, namely: Process File Schema, Text Metadata

File Schema, and Process Verification File Schema. These files have been defined as XSD

files since it is a common file format to describe this type of document (ERL, 2008).

Data definition files of this work have been converted automatically from XSD

files to Java classes through the Java Architecture for XML Binding (JAXB) API (FI-

ALLI; VAJJHALA, 2003). Thus, it is possible to manipulate (i.e., insert, modify, or

delete) the data that will compose the files that will be shared between the services work-

ing directly on the JAVA attributes and classes. In the following sections each of the data

definition files will be defined and detailed.

4.2.1 Process File Schema

The Process File Schema will be the file responsible for defining how the Process

File should be. To represent the process elements as well as their relationships the BPMN

file format was used as Process File.

As discussed previously, the BPMN file format is a standard maintained by OMG

for representing processes following the BPMN 2.0 (OMG, 2013). The BPMN file format

allows to describe business processes in a file in XML format. The files used to define and

generate the BPMN file format were taken from the OMG site1, which are: BPMN20.xsd,

BPMNDI.xsd, DC.xsd, DI.xsd, Semantic.xsd. Therefore, the Process File Schema is

actually a set of these five XSD files provided by the OMG.

One of the advantages of using the BPMN file format is that since this is the de-

fault BPMN file to describe the business process models, well-known and largerly used

1https://www.omg.org/spec/BPMN/2.0/About-BPMN; last acessed 2019-02-02

75

BPMN modelling tools (e.g., Bizagi2, Bonita3, Signavio4, Bpmn.io5) can export their pro-

cess models to this format. Consequently, not only texts, but also process models can be

directly provided as inputs for the generation of business process-oriented texts. In addi-

tion, using the BPMN file makes it easy to update the approach to new versions of BPMN

specification. This is possible because, to ensure that it conforms to the current version,

it is only necessary to get the new version of the files provided by OMG, automatically

generate classes using JAXB and, if necessary, update the service.

Figure 4.6: BPMN example: Document sign.

Source: The authors

According to OMG (2013), the BPMN file seeks to cover two different aspects in a

process: process models and process diagrams. Process models contains the semantics of

the model. This aspect describes what the process elements are and how they are related.

As an example, the process model represented in Figure 4.6 has 7 process elements (i.e., 1

pool, 1 lane, 2 events, 1 task, and 2 sequence flows). Among these elements, it is possible

to note input and output relationships between certain flow objects and sequence flows

(e.g., the start event has a sequence flow as output). On the other hand, process diagrams

store the visual representation of business processes. This aspect seeks to cover visual

questions such as the size and positioning of process elements in the model OMG (2013).

Considering Figure 4.6, process diagrams is related to information, such as: pool size,

lane size, and positioning of process elements.

Listing 4.1 presents the BPMN file for the process model depicted in Figure 4.6.

As can be seen, the file starts with a header addressing the location of the tags (line 2).

Next, the bpmn:collaboration (lines 3 to 5) is informed. In this step, all participants and

2https://www.bizagi.com; last acessed 2019-02-02
3https://www.bonitasoft.com; last acessed 2019-02-02
4https://www.signavio.com; last acessed 2019-02-02
5https://bpmn.io; last acessed 2019-02-02

76

message flows represented are listed.

In sequence, the file describes the bpmn:process (lines 6 to 27). This part of the

file is responsible for describing the lanes (lines 7 to 13) of the process, the process ele-

ments that belong to each lane (e.g, lines 9 to 11), the flow objects (lines 14 to 24) and

sequence flows (lines 25 to 26) with their respective properties (e.g., id, name, incom-

ings, outgoings, sourceRef, targetRef). As an example, the process element shown in the

lines 18 to 21 is a task (i.e., bpmn:task) with id “T_1” and label “Sign the document”.

In addition, this task has as input the process element of id “Sf_1” and as output the pro-

cess element of id “Sf_2”. These process elements, in turn, are two sequence flows (i.e.,

bpmn:sequenceFlow) described in the lines 25 and 26 respectively. A file in BPMN for-

mat can describe multiple pools. In this case, there will be multiple bpmn:process in the

BPMN file.

Finally, in the bpmndi:BPMNDiagram (line 28 to 60) is where the features present

in the process diagram aspect are described. In this part of the document, the position and

size of the process elements presented in bpmn:process (lines 6 to 27) are defined. As an

example, the process element presented in lines 18 to 21 has a graphic representation

in the lines 42 to 44. This process element will be represented in the process model at

position 299 of axis X and 98 of axis Y. In addition, this process element will have width

100 and height of 80.

Listing 4.1: BPMN file example: Document sign.

1 <?xml v e r s i o n="1.0" encoding="UTF-8"?>

2 <bpmn:definitions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

" xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI" xmlns:dc="

http://www.omg.org/spec/DD/20100524/DC" xmlns:di="http://www.omg.

org/spec/DD/20100524/DI" id="Definitions_0hf160f" targetNamespace="

http://bpmn.io/schema/bpmn">

3 <bpmn:collaboration id="Collaboration_1">

4 <bpmn:participant id="Par_1" name="Document sign process"

processRef="P_1" />

5 </bpmn:collaboration>

6 <bpmn:process id="P_1" isExecutable="false">

7 <bpmn:laneSet id="Ls_1">

8 <bpmn:lane id="L_1" name="Manager">

9 <bpmn:flowNodeRef>Se_1</bpmn:flowNodeRef>

10 <bpmn:flowNodeRef>T_1</bpmn:flowNodeRef>

11 <bpmn:flowNodeRef>Ee_1</bpmn:flowNodeRef>

77

12 </bpmn:lane>

13 </bpmn:laneSet>

14 <bpmn:startEvent id="Se_1" name="Document received">

15 <bpmn:outgoing>Sf_1</bpmn:outgoing>

16 <bpmn:messageEventDefinition />

17 </bpmn:startEvent>

18 <bpmn:task id="T_1" name="Sign the document">

19 <bpmn:incoming>Sf_1</bpmn:incoming>

20 <bpmn:outgoing>Sf_2</bpmn:outgoing>

21 </bpmn:task>

22 <bpmn:endEvent id="Ee_1" name="Document stored">

23 <bpmn:incoming>Sf_2</bpmn:incoming>

24 </bpmn:endEvent>

25 <bpmn:sequenceFlow id="Sf_1" sourceRef="Se_1" targetRef="T_1" />

26 <bpmn:sequenceFlow id="Sf_2" sourceRef="T_1" targetRef="Ee_1" />

27 </bpmn:process>

28 <bpmndi:BPMNDiagram id="BPMNDiagram_1">

29 <bpmndi:BPMNPlane id="BPMNPL_1" bpmnElement="Collaboration_1">

30 <bpmndi:BPMNShape id="Par_1_di" bpmnElement="Par_1">

31 <dc:Bounds x="105" y="60" width="451" height="163" />

32 </bpmndi:BPMNShape>

33 <bpmndi:BPMNShape id="L_1_di" bpmnElement="L_1">

34 <dc:Bounds x="135" y="60" width="421" height="163" />

35 </bpmndi:BPMNShape>

36 <bpmndi:BPMNShape id="Se_1_di" bpmnElement="Se_1">

37 <dc:Bounds x="181" y="120" width="36" height="36" />

38 <bpmndi:BPMNLabel>

39 <dc:Bounds x="174" y="163" width="51" height="40" />

40 </bpmndi:BPMNLabel>

41 </bpmndi:BPMNShape>

42 <bpmndi:BPMNShape id="T_1_di" bpmnElement="T_1">

43 <dc:Bounds x="299" y="98" width="100" height="80" />

44 </bpmndi:BPMNShape>

45 <bpmndi:BPMNShape id="Ee_1_di" bpmnElement="Ee_1">

46 <dc:Bounds x="475" y="120" width="36" height="36" />

47 <bpmndi:BPMNLabel>

48 <dc:Bounds x="451" y="163" width="84" height="14" />

49 </bpmndi:BPMNLabel>

50 </bpmndi:BPMNShape>

51 <bpmndi:BPMNEdge id="Sf_1_di" bpmnElement="Sf_1">

52 <di:waypoint x="217" y="138" />

78

53 <di:waypoint x="299" y="138" />

54 </bpmndi:BPMNEdge>

55 <bpmndi:BPMNEdge id="Sf_2_di" bpmnElement="Sf_2">

56 <di:waypoint x="399" y="138" />

57 <di:waypoint x="475" y="138" />

58 </bpmndi:BPMNEdge>

59 </bpmndi:BPMNPlane>

60 </bpmndi:BPMNDiagram>

61 </bpmn:definitions>

As the objective of this work is in the identification of process elements and in

the relationship between them, it will be focused only on the process model aspect.

In this context, this work focused on the creation and reading of tags belonging to the

bpmn:collaboration and bpmn:process.

4.2.2 Process Verification File Schema

For the representation of the Process Verification File, an XSD file was created.

Listing 4.2 depicts this XSD file named Process Verification File Schema. The first ele-

ment responsible for including all the others is called messageList (line 9). The message-

List tag is composed of 0 or more verification messages called message (line 13). Each

message is composed of four elements, being them:

• description: Displays the description of the verification (line 15).

• processElementId: Represents the index of the process element. This index helps

to map the process elements to those described in the Text Metadata File. In addi-

tion, it can assume the value of “Process” in situations where the error is not related

specifically to a process element (line 17).

• messageType: Displays the type of verification message. Any string can be used

as value of this tag. However, taking into account the current Process Verification

Service, the possible values currently assigned to this variable are: structure, label,

and pragmatic (line 18).

• source: Displays where the message was generated from. Any string can be used as

value of this tag. However, taking into account the current Process Verification Ser-

vice, the possible values currently assigned to this variable are: BPMN verification,

79

YAWL verification (line 19).

Listing 4.2: Process verification file schema.

1 <?xml v e r s i o n="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3 xmlns:ve="http://br/edu/ufrgs/inf/bpm/verificationmessages"

4 targetNamespace="http://br/edu/ufrgs/inf/bpm/

verificationmessages">

5

6 <xs:element name="bpmnVerification" type="ve:tBpmnVerification"/>

7 <xs:complexType name="tBpmnVerification">

8 <xs:sequence>

9 <xs:element name="messageList" type="ve:tMessage"

maxOccurs="unbounded"/>

10 </xs:sequence>

11 </xs:complexType>

12 <xs:element name="message" type="ve:tMessage"/>

13 <xs:complexType name="tMessage">

14 <xs:all>

15 <xs:element name="description" type="xs:string"/>

16 </xs:all>

17 <xs:attribute name="processElementId" type="xs:string"/>

18 <xs:attribute name="messageType" type="xs:string"/>

19 <xs:attribute name="source" type="xs:string"/>

20 </xs:complexType>

21 </xs:schema>

For the Process Verification Files, JSON was used as the data interchange format.

This format was used because it is faster and uses fewer resources than XML files (NUR-

SEITOV et al., 2009). An example of Process Verification File produced by the Process

Verification Service will be presented in the following sections.

4.2.3 Text Metadata File Schema

For the representation of the Text Metadata File, an XSD file was created. Listing

4.3 depicts this XSD file named Text Metadata File Schema. The first tag responsible for

including all the others is called textMetadata (line 6). A textMetadata is composed of

two elements, being them:

80

• processList: List that contains all the processes present in textMetadata. (line 9).

• text: A textual description with metadata. (line 10).

A processList can contain zero or more tags of type process (line 13). A process

represents a participant (i.e., a pool in the BPMN 2.0) and is composed of three elements,

being them:

• resourceList: List that contains all resources present in the process (line 16).

• id: The process identifier. In terms of the business process model, this information

is related to the process id (line 18).

• name: The name of the process (line 19).

A resourceList can contain zero or more tags of type resource (line 21). A resource

represents a business role (i.e., a lane in the BPMN 2.0) and is composed of two elements,

being them:

• id: The resource identifier. In terms of the business process model, this information

is related to the lane id (line 23).

• name: The name of the resource (line 24).

A text can contain zero or more tags of type sentence (line 32). Each sentence is

responsible for representing a sentence created in the text. The sentence is composed of

three elements, being them:

• value: Represents the sentence that will be used in the text (line 35).

• snippetList: List containing information about snippets from the sentence (line

36).

• newSplitPath: Attribute that stores a Boolean value that represents whether the

sentence is a new split path. In the context of this work, a sentence will be consid-

ered a new split path if it describes a process element presented immediately after

a split gateway (i.e., a new path generated by a split gateway) (line 38).

A snippetList can contain zero or more tags of type snippet (line 40). A tag snippet

presents data referring to a process element in a given part of a sentence. The snippet is

composed of seven elements, being them:

81

Figure 4.7: Levels in a process model.

Source: The authors

• startIndex: Index of where the sentence snippet starts (line 42). If it starts at

the beginning of the sentence, the value assigned to the startIndex will be “0”.

In addition, escape characters will not be considered. Thus, in the sentence “If

\“condition\”, do the activity 1.”, if it is necessary to highlight the word “condition”

the startIndex should be in the letter “c” which, in turn, has the index “4” (i.e., “I”

= index 0, “f” = index 1, “ ” = index 2, “\“” = index 3, and “c” = index 4).

• endIndex: Index of where the sentence snippet ends (line 43). As an example, in

the sentence “If \“condition\”, do the activity 1.”, if it is necessary to highlight the

word “condition” the endindex should be the last letter “n” in the word which, in

turn, has the index “12”.

• processElementId: Represents the index of the process element. This index helps

map the process elements described in the text to the original business process. In

addition, it helps in mapping the process elements with the Process Verification File

(line 44).

• processElementType: Represents the process element described in the snippet.

This attribute helps in marking the process elements in the text (line 45).

• resourceId: Presents the id of the resource to which the process element described

by the snippet is associated (line 46).

82

• processId: Presents id of the process to which the process element described by

the snippet is associated (line 47).

• level: Attribute that stores an integer referring to the level that the snippet is in re-

lation to the business process (line 48). Just as Leopold, Mendling and Polyvyanyy

(2014) do to indent the different sentences produced by their approach, when the

sentence describes elements that are not internal to gateways, this will have the

level with value “0”. However, if the sentence describes an element internal to a

gateway, it will receive the level with value “1”. This value will be incremented as

the gateways are nested (see Figure 4.7).

Listing 4.3: Text metadata file schema.

1 <?xml v e r s i o n="1.0" encoding="UTF-8"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3 xmlns:mt="http://br/edu/ufrgs/inf/bpm/textMetadata"

4 targetNamespace="http://br/edu/ufrgs/inf/bpm/textMetadata">

5

6 <xs:element name="textMetadata" type="mt:ttextMetadata"/>

7 <xs:complexType name="tTextMetadata">

8 <xs:sequence>

9 <xs:element name="processList" type="mt:tProcess"

minOccurs="0" maxOccurs="unbounded"/>

10 <xs:element name="text" type="mt:tText"/>

11 </xs:sequence>

12 </xs:complexType>

13 <xs:element name="process" type="mt:tProcess"/>

14 <xs:complexType name="tProcess">

15 <xs:sequence>

16 <xs:element name="resourceList" type="mt:tResource"

minOccurs="0" maxOccurs="unbounded"/>

17 </xs:sequence>

18 <xs:attribute name="id" type="xs:string"/>

19 <xs:attribute name="name" type="xs:string"/>

20 </xs:complexType>

21 <xs:element name="resource" type="mt:tResource"/>

22 <xs:complexType name="tResource">

23 <xs:attribute name="id" type="xs:string"/>

24 <xs:attribute name="name" type="xs:string"/>

25 </xs:complexType>

26 <xs:element name="text" type="mt:tText"/>

83

27 <xs:complexType name="tText">

28 <xs:sequence>

29 <xs:element name="sentenceList" type="mt:tSentence"

maxOccurs="unbounded"/>

30 </xs:sequence>

31 </xs:complexType>

32 <xs:element name="sentence" type="mt:tSentence"/>

33 <xs:complexType name="tSentence">

34 <xs:sequence>

35 <xs:element name="value" type="xs:string"/>

36 <xs:element name="snippetList" type="mt:tSnippet"

minOccurs="0" maxOccurs="unbounded"/>

37 </xs:sequence>

38 <xs:attribute name="newSplitPath" type="xs:boolean"/>

39 </xs:complexType>

40 <xs:element name="snippet" type="mt:tSnippet"/>

41 <xs:complexType name="tSnippet">

42 <xs:attribute name="startIndex" type="xs:int"/>

43 <xs:attribute name="endIndex" type="xs:int"/>

44 <xs:attribute name="processElementId" type="xs:string"/>

45 <xs:attribute name="processElementType" type="xs:string"/>

46 <xs:attribute name="resourceId" type="xs:string"/>

47 <xs:attribute name="processId" type="xs:string"/>

48 <xs:attribute name="level" type="xs:int"/>

49 </xs:complexType>

50 </xs:schema>

The processElementType attribute was represented as a string and not as a closed

set of elements for two reasons. First, it was not intended to be limited to the process

elements allowed by BPMN 2.0 (i.e., the same as those which compose the Process File)

since this could limit the communication between the services. As an example, BPMN 2.0

has a process element called ExclusiveGateway (i.e., XOR gateway). In order to know if

this gateway is of type split or of type join it is necessary to realize a processing verifying

the amount of incomings and outgoings that gateway owns. However, this information

does not exist in the Text Metadata File so that either it would have to be added or it

would not be possible to distinguish using only the data provided by this file. Thus,

having its own format to describe the types of process elements allows greater expression.

In this case, it could be provided as a “XORSPLIT” value to represent an XOR-split

gateway and “XORJOIN” value to represent an XOR-join gateway. The second reason

84

is to avoid limiting the possibilities of types of process elements even in custom sets of

process elements. Since a string is not a closed set of possibilities, new services will not be

limited to an initially defined set. In addition, if it were a custom set of process elements,

these elements would need to be described in the Text Metadata File Schema. Thus, the

Text Metadata File Schema would need to be updated whenever it was to support new

process elements.

As well as Process Verification File, the Text Metadata File also uses JSON as the

data interchange format. An example of Text Metadata File produced by the Text Writer

Service will be presented in the following sections.

4.3 Service Definition Files

To perform the communication between services, it is necessary to define the in-

terfaces between them in terms of possible requests and responses that a service can meet.

The files used to represent the interfaces of a service are the service definition files. In the

context of this work, were defined three service definition files for the communication be-

tween the services, namely: Text Reader Definition, Process Verification Definition, and

Text Writer Definition. These files have been described as WADL files (HADLEY, 2006).

In addition to being a file format that is often used to describe service definitions in REST

services, the WADL has been chosen because it allows to use XSD files as Data Definition

Files, which is desirable since Process File Schema uses XSD files (i.e., BPMN20.xsd,

BPMNDI.xsd, DC.xsd, DI.xsd, and Semantic.xsd). Moreover, WADL files can be auto-

matically converted to JAVA classes through the Apache CXF (BALANI; HATHI, 2009).

As an example of service definition file, Listing 4.4 presents the Text Reader Def-

inition. This document is composed of two parts: grammars (lines 4 to 7) and resources

(lines 8 to 35). Grammars include the references of the data definition files used in this

service. In the context of the Text Reader Service, the data definitions files are, respec-

tively, for the generation of processes through the Process File (BPMN20.xsd in line 5)

and for the generation of text with metadata through the Text Metadata File (TextMeta-

data.xsd in line 6).

Resources, on the other hand, represents the features that are made available by

the service. The Text Reader Definition has two features, being them: generateProcess

(lines 10 to 21) and generateText (lines 22 to 33). The feature generateProcess receives

as request a natural language text (line 11) and produces as response a Process File (i.e.,

85

represented as media type application/xml in line 18). The feature generateText, in turn,

receives as request a natural language text (line 23) and produces as response a Text Meta-

data File (i.e., represented as media type application/json in line 30).

Listing 4.4: Text reader definition.

1 <?xml v e r s i o n="1.0"?>

2 <application xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns="http://wadl.dev.java.net/2009/02">

4 <grammars>

5 <include href="schemas/BPMN20.xsd"/>

6 <include href="schemas/TextMetadata.xsd"/>

7 </grammars>

8 <resources>

9 <resource path="/service" id="br.edu.ufrgs.inf.bpm.service.

ITextReaderService">

10 <resource path="/generateProcess">

11 <method name="POST" id="generateProcess">

12 <request>

13 <representation mediaType="application/x-www-

form-urlencoded">

14 <param name="text" style="query" type="

xsd:string"/>

15 </representation>

16 </request>

17 <response>

18 <representation mediaType="application/xml"/>

19 </response>

20 </method>

21 </resource>

22 <resource path="/generateText">

23 <method name="POST" id="generateText">

24 <request>

25 <representation mediaType="application/x-www-

form-urlencoded">

26 <param name="text" style="query" type="

xsd:string"/>

27 </representation>

28 </request>

29 <response>

30 <representation mediaType="application/json"/>

31 </response>

86

32 </method>

33 </resource>

34 </resource>

35 </resources>

36 </application>

4.4 Text Reader Service

The Text Reader Service aims to identify the process elements and their respective

relationships in a business process textual description. This service provides two features.

The first feature allows the service to receive as input a natural language text (i.e., Original

Text) and produces as output a file containing the identified process elements as well as

their relationships (i.e., Process File). The second functionality, in turn, also receives

natural language text as input, but produces as output a text containing metadata (i.e., Text

Metadata File).

For the construction of this service, the approach for process model generation

from natural language text proposed by Friedrich, Mendling and Puhlmann (2011) was

used. This approach performs an analysis of the textual description at the sentence level

and at the text level. Figure 4.8 presents an overview of this approach.

Figure 4.8: Process model generation from natural language text overview.

Source: Friedrich (2010)

In the sentence level analysis, the approach proposed by Friedrich, Mendling and

87

Puhlmann (2011) seeks to identify the actions in the text. For this, the text was separated

into individual sentences and the Stanford Parser (MARNEFFE et al., 2006) was used

to extract the information present in the sentences. Then, these actions are stored in an

intermediate structure called World Model.

In the text level analysis, the approach seeks to enrich the data stored in the World

Model. At this point, the previously identified actions are related. For this, the authors

make use of an anaphora resolution technique designed by them to identify words that are

replaced in the text by pronouns (e.g., he, she, it) and determiners (e.g., this, that). Without

the anaphora resolution technique, the sentences “(1) The employee signs the report. (2)

Then he forwards the report to the manager.” would be considered as activities performed

by two different resources (i.e., employee and he) when in fact they are carried out by

the same resource (i.e., employee). In addition, the authors seek to identify some markers

present in the text that may indicate relationships between actions (e.g., “if”, “in parallel”,

“otherwise”). Also, the authors make use of the WordNet (MILLER, 1995) and FrameNet

(BAKER; FILLMORE; LOWE, 1998) lexical databases to perform an extraction of the

meaning of words and phrases in the text and thus, perform the semantic analysis of the

text.

The approach proposed by Friedrich, Mendling and Puhlmann (2011) was chosen

as the basis for the Text Reading Service because it allows, from a description of the

process, to find the process elements and how they are related. Moreover, this approach

presents its own technique of anaphora resolution, which helps to find the resources that

perform activities, even when these resources are represented in the text as pronouns or

determiners. In addition, the approach was validated with 47 process descriptions and

presented 76.98% similarity with the original process models. Finally, the approach is

considered the state of the art by recent works (RIEFER; TERNIS; THALER, 2016).

4.4.1 Modifications in the Process Model Generation from Natural Language Text

Approach

In relation to the modifications, the prototype built by Friedrich, Mendling and

Puhlmann (2011) has been adapted to not only be a Java project and start behaving like a

REST service. In order to do this, the Text Reader Contract has added to the prototype.

In addition, Java code was created to define how to interact with the service (i.e., define

how the inputs should be, how the outputs should be, how the service should behave for a

88

given request).

To meet the first functionality of representing the process elements and their rela-

tionships, the business process produced by the approach was converted to a Process File.

On the other hand, to meet the second functionality of representing the text containing

metadata, the data extracted from the original text were collected so that, together with

the original text, they were transformed into the Text Metadata File.

Since this approach deals with the original text and not with a controlled generated

text, it becomes more complicated to define precisely which parts of a sentence present

which process elements. Thus, for the Text Reader Service in the current approach, it was

defined that the snippets would be equivalent to the size of the sentence. Hence, every

snippet will have as startIndex the value 0 and as endIndex the length of the sentence.

In the following section, an example of Process File generated from the Text

Reader Service is presented. Since Text Writer Service also produces a Text Metadata

File, an example of Text Metadata File will be presented only when the Text Writer Ser-

vice is described (Section 4.6).

4.4.2 Text Reader Output

Listing 4.5 presents the Process File produced from the process description of

Figure 2.4. The produced Process File contains a resource named “technician” (line 5)

and all the process elements that are associated with this resource (lines 6 to 15). In

addition, it is possible to identify 6 activities, which are: “perform an evaluation” (line 18),

“format the computer” (line 22), “replace the part” (line 26), “fill out the part replacement

form” (line 30), “make no modification to the computer” (line 34), and “complete the

repair form” (line 38). Moreover, the document also has a XOR-split (line 42), a XOR-

join (line 48), a start event (line 54) and an end event (line 57). Finally, it is possible to

identify the sequence flows that are connecting the flow elements shown above (lines 60

to 70).

Listing 4.5: Process file example: Computer repair.

1 <?xml v e r s i o n="1.0" encoding="UTF-8" s t a n d a l o n e="yes"?>

2 <definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmlns:ns2="http://www.omg.org/spec/DD/20100524/DI" xmlns:ns4="http:

//www.omg.org/spec/DD/20100524/DC" xmlns:ns3="http://www.omg.org/

spec/BPMN/20100524/DI">

89

3 <process name="Pool" id="id-0">

4 <laneSet name="Pool" id="id-1">

5 <lane name="technician" id="id-2">

6 <flowNodeRef>id-3</flowNodeRef>

7 <flowNodeRef>id-4</flowNodeRef>

8 <flowNodeRef>id-5</flowNodeRef>

9 <flowNodeRef>id-6</flowNodeRef>

10 <flowNodeRef>id-7</flowNodeRef>

11 <flowNodeRef>id-8</flowNodeRef>

12 <flowNodeRef>id-9</flowNodeRef>

13 <flowNodeRef>id-10</flowNodeRef>

14 <flowNodeRef>id-11</flowNodeRef>

15 <flowNodeRef>id-12</flowNodeRef>

16 </lane>

17 </laneSet>

18 <task name="perform an evaluation" id="id-3">

19 <incoming>id-18</incoming>

20 <outgoing>id-13</outgoing>

21 </task>

22 <task name="format the computer" id="id-4">

23 <incoming>id-20</incoming>

24 <outgoing>id-16</outgoing>

25 </task>

26 <task name="replace the part" id="id-5">

27 <incoming>id-21</incoming>

28 <outgoing>id-14</outgoing>

29 </task>

30 <task name="fill out the part replacement form" id="id-6">

31 <incoming>id-14</incoming>

32 <outgoing>id-17</outgoing>

33 </task>

34 <task name="make no modification to the computer" id="id-7">

35 <incoming>id-22</incoming>

36 <outgoing>id-15</outgoing>

37 </task>

38 <task name="complete the repair form" id="id-8">

39 <incoming>id-23</incoming>

40 <outgoing>id-19</outgoing>

41 </task>

42 <exclusiveGateway id="id-9">

43 <incoming>id-13</incoming>

90

44 <outgoing>id-20</outgoing>

45 <outgoing>id-21</outgoing>

46 <outgoing>id-22</outgoing>

47 </exclusiveGateway>

48 <exclusiveGateway id="id-10">

49 <incoming>id-15</incoming>

50 <incoming>id-16</incoming>

51 <incoming>id-17</incoming>

52 <outgoing>id-23</outgoing>

53 </exclusiveGateway>

54 <startEvent id="id-11">

55 <outgoing>id-18</outgoing>

56 </startEvent>

57 <endEvent id="id-12">

58 <incoming>id-19</incoming>

59 </endEvent>

60 <sequenceFlow sourceRef="id-3" targetRef="id-9" name="" id="id

-13"/>

61 <sequenceFlow sourceRef="id-5" targetRef="id-6" name="" id="id

-14"/>

62 <sequenceFlow sourceRef="id-7" targetRef="id-10" name="" id="

id-15"/>

63 <sequenceFlow sourceRef="id-4" targetRef="id-10" name="" id="

id-16"/>

64 <sequenceFlow sourceRef="id-6" targetRef="id-10" name="" id="

id-17"/>

65 <sequenceFlow sourceRef="id-11" targetRef="id-3" name="" id="

id-18"/>

66 <sequenceFlow sourceRef="id-8" targetRef="id-12" name="" id="

id-19"/>

67 <sequenceFlow sourceRef="id-9" targetRef="id-4" name="a

software problem " id="id-20"/>

68 <sequenceFlow sourceRef="id-9" targetRef="id-5" name="a

hardware problem " id="id-21"/>

69 <sequenceFlow sourceRef="id-9" targetRef="id-7" name="founds

no problem " id="id-22"/>

70 <sequenceFlow sourceRef="id-10" targetRef="id-8" name="" id="

id-23"/>

71 </process>

72 </definitions>

91

4.4.3 Process Identification Issues

Although the approach has 76.98% similarity and is considered the state of the

art by other works, it presents points to be improved in the identification of process ele-

ments. Regarding this fact, we try to highlight the main points responsible for decreasing

the similarity in the process identification. These points were presented by the authors

(FRIEDRICH; MENDLING; PUHLMANN, 2011) and also evidenced in our approach.

The points observed are: noise, processing problems, and different levels of abstraction.

Noise is defined as sentences that are not part of the process description, but detail

the data objects used or add information that is out of the process. An example of noise

can be observed in activity “make no modification to the computer” (line 34 present in

Listing 4.5). In the process description of Figure 2.4, the sentence s4 only informs that

no action should be taken if no problem is found. However, the identification approach

considers that there is an action in this sentence and consequently turns it into an activity

in the business process. Another example of noise would be to add a contextualization

information in the process description. If in the process description of Figure 2.4 was

added at the beginning the sentence “Company X performs the repair of computers.”,

this sentence would only aim to contextualize the process being described. However, the

current approach will consider that perform computer repair is an action being performed

by the actor Company X and thus transform it into an activity in the business process.

In relation to processing problems, the approach makes use of NLP tools widely

studied and used. However, these tools presented some undesirable results. According to

the authors, Stanford Parser and FrameNet failed to classify some verbs into sentences.

In addition, WordNet performed some analyses that were not expected. An example ob-

served by the authors can be seen in the sentence “The customer wants to buy a house”.

Once the term house is used to represent an aristocratic family line (e.g., “The house of

York”), the term was classified as an “social group” an identified as an actor rather than

as a resource6 , which leads to problems during the anaphora resolution stage.

Regarding different levels of abstraction, the authors comment that similarity be-

tween the original process model and the process model generated by the approach may

be low when these processes are described at different levels of granularity. This means,

for example, to have a very detailed process description (i.e., process model generated

with several details) and an original process model more abstract. Unlike the other points

6Response expected by the authors. Has no relation to the “resource” present in the Text Metadata File.

92

mentioned, this type of issue more affects the result generated by the validation (i.e.,

similarity) than the process of identifying elements themselves. However, it is important

to note in relation to the different levels of abstraction that the process identified by the

approach will be as detailed as the process description from which it originated.

Since these problems are inherent in the process identification step (i.e., Text

Reader Service), they only affect the generation of business process-oriented text from

natural language texts. Thus, business process-oriented texts generated from process mod-

els are not impaired by the above points. In any case, such points influence the quality of

the text produced since they can lead to an incorrect understanding of the process. Thus,

future works can be created to solve these points in order to improve the accuracy of the

current identification approach and, consequently, the text generation approach proposed

in this work.

4.5 Process Verification Service

This service aims to perform a verification of the business process represented by

the Process File. To do this, this service must receive as input a Process File and produce

as a response a set of verification messages in the form of a Process Verification File.

This service aims to check the quality of the process in relation to the BPMN 2.0 and in

relation to soundness. Therefore, it is not expected of this service to make changes to

the text produced by the approach. The service should only check the business process

and produce the verification messages of the problems or possible points of improvement

identified.

If the verification message is not directly related to a single process element, the

verification message is considered to be in the process and the value “Process” is assigned

to the processElementId attribute of the Process Verification File. In addition, considering

that the generated process description will transform the process to have a single input and

a single output, we have also chosen to assign the value “Process” to the processElementId

in verification messages associated with start events and end events.

The verifications carried out were selected from three different reasons. Firstly,

some verifications were selected because they directly interfere in the quality of the pro-

cess description due to the lack of information presented at the input (i.e., defined as label

verifications). An example of this type of verification would be an activity in which it

is not known which is the resource that executes it. Second, some verifications were se-

93

lected because they identify issues that interfere with the quality of the process, producing

processes with execution problems (i.e., defined as structure verifications). An example

of this type of verification would be to find in a process an activity that will never be

executed. Finally, since the process description can be used during the discovery phase

for the design of the process model, some verifications were defined in order to anticipate

potential problems in the future process model (i.e., defined as pragmatic verifications).

Although pragmatic questions are directly related to the process model, identifying some

problems at the beginning can facilitate the construction of the process models and avoid

some future corrections. An example of this type of verification would be to verify that

the process has OR gateways (i.e., something that should be avoided whenever possible

in a process model (MENDLING; REIJERS; AALST, 2010)).

The verifications performed by the Verification Service come from two sources:

BPMN Verification and YAWL Verification. BPMN Verification seeks to perform process

verifications by considering BPMN 2.0 itself. On the other hand, YAWL Verification con-

verts the process to a YAWL model and performs structural and soundness verifications.

The following sections will go into detail in each of these sources.

4.5.1 BPMN Verification

For the source BPMN Verification a process verification is performed taking into

account the BPMN 2.0. The factors considered are related to the absence of labels in

process elements and some pragmatic factors (MENDLING; REIJERS; AALST, 2010).

For this step, we developed JAVA codes to verify the process described in the Process

File. Whenever an undesirable condition was identified, a verification message was cre-

ated and added to the Process Verification File. These verification messages, in turn, are

composed of predefined texts and some regions that must be filled according to what is

being described. The possible regions are:

• @elementId: Presents the ID of the process element (e.g., “(id: Task1)”).

• @element: Presents the name and the ID of the process element (e.g., “\“Do activ-

ity 1\” (id: Task1)”).

• @elementType: Presents the type of the process element (e.g., “Activity”, “Start

event”).

94

• @processName: Presents the name of the process (e.g., “Computer repair”).

• @amountFind: Presents a number that represents the amount of elements find.

• @amountLimit: Presents a number that represents the number of elements that is

the expected threshold.

The complete set of verification considered in the BPMN Verification, as well as

their respective possible verification messages are presented below.

• V1: Verify process elements without labels (i.e., "No label was identified in the

@elementType @elementId.").

• V2: Verify that the outputs of an XOR-split/OR-split gateway (i.e., conditions) have

labels (i.e., "Not all condition labels were identified in the gateway @element.").

• V3: Verify if an activity is associated with a resource (i.e., “No resource was iden-

tified in the @elementType @element.").

• V4: Verify if a process element that is not a start event does not have an input

process element (i.e., "No incoming element was identified in the @elementType

@element.").

• V5: Verify if a process element that is not a end event does not have an output

process element (i.e., "No outgoing element was identified in the @elementType

@element.").

• V6: Verify the amount of start events.

1. V6.1: Alert when no start event is identified (i.e., "No start event was identified

in the process @processName.").

2. V6.2: Alert when multiple start events are identified (i.e., "Multiple start

events were identified in the process @processName.").

• V7: Verify the amount of end events.

1. V7.1: Alert when no end event is identified (i.e., "No end event was identified

in the process @processName.").

2. V7.2: Alert when multiple end events are identified (i.e., "Multiple end events

were identified in the process @processName.").

95

• V8: Verify if the amount of process elements is greater than 30 (i.e., "The amount

of elements in the process @element exceeded the maximum expected quantity

(found @amountFind and is expected at most @amountLimit)").

• V9: Verify the presence of OR gateways in the process (i.e., "The element @ele-

ment is a inclusive gateway. It is a good practice to avoid using this element in a

process.").

4.5.2 YAWL Verification

In order to verify the soundness in the business process, the YAWL modeling

language was used. In this sense, the approach proposed by Jianhong and Song (2010)

to transform process models in the BPMN 2.0 format for YAWL networks was used. In

relation to this transformation, all the process elements present in the scope of this work

are properly mapped, except pools and lanes that do not present equivalents in the YAWL.

According to Adams and Hofstede (2016), the verification performed by YAWL

can be separated into validation and analysis. In validation, its possible to validate the

specification against YAWL syntax and semantics. Some of the problems that validation

allows to identify are check if the process element does not have an input, check if the

process element does not have an output, check if the process element does not have to

default outgoing flow. However, given the transformation of BPMN 2.0 to YAWL, these

errors are not even possible.

On the other hand, analysis allows a thorough analysis of the specification for

identifying deadlocks and other issues. Moreover, it is only possible to perform an analy-

sis when the validation presents no problem. The verification performed by YAWL allows

you to identify various problems. Some of the key verifications as well as their respective

verification messages can be observed below. For these cases, @elementList will be a list

of @element usually separated by commas.

• V10: Check if the process has an option to complete (i.e., “The process does not

have an option to complete. Potential deadlocks: @elementList”).

• V11: Find activities that will never be executed (i.e., “The process has unreachable

elements: @elementList”).

• V12: Check if the process satisfy the soundness property (i.e., “The process does

96

not satisfy the soundness property.”).

• V13: Check livelocks problems (i.e., “The element @element plays a part in an

infinite loop/recursion in which no work items may be created.”).

In order to perform the YAWL Verification, the Process File is converted in a YAWL

network using the approach proposed by Jianhong and Song (2010). Then, it is submit-

ted to the YAWL tool to perform the validation. If problems are encountered, they are

inserted into a list of verification messages. However, if no problems are found during the

validation, the YAWL network is submitted to the YAWL tool to perform the analysis. If

problems are found during the analysis, they are inserted into a list of verification mes-

sages. Finally, the verification messages are partially transformed to be more related to

BPMN 2.0 and, therefore, more suitable to the process descriptions being created.

If errors are found during the validation step that make the analysis step impossi-

ble, the following message is also created: "It was not possible to verify soundness in the

model. Please correct the errors identified in the YAWL before this is possible.".

4.5.3 Classifications of the Verifications

Following the Process Verification File presented in the Section 4.2.2, each veri-

fication was classified as coming from a particular source (e.g., BPMN Verification and

YAWL Verification) and belonging to a particular message type (e.g., Label, Structure,

and Pragmatic). Table 4.1 presents each verification (VID) with their respective source

and message type.

4.5.4 Verification Service Output

Listing 4.6 presents the Process Verification File in JSON format generated by

Process Verification Service for the BPMN 2.0 process model example represented in Fig-

ure 4.9. As defined by the Process Verification File Schema, each message will contain

a description (i.e., description), a process element ID (i.e.,processElementId), a message

type (i.e., messageType), and a source (i.e., source). As can be observed, 12 problems

were found being 10 generated from the BPMN Verification (lines 3 to 62) and 2 gener-

ated from the YAWL Verification (lines 63 to 74). In addition, it is possible to define that

97

Table 4.1: Verification types classification.

VID
Source Message Type

BPMN Verification YAWL Verification Label Structure Pragmatic
V1 X X
V2 X X
V3 X X
V4 X X
V5 X X
V6 X X
V7 X X
V8 X X
V9 X X
V10 X X
V11 X X
V12 X X
V13 X X

Source: The authors

there is 1 message of type pragmatic (line 6), 9 messages of type label (lines 12, 18, 24,

30, 36, 42, 48, 54, and 60), and 2 messages of type structure (lines 66 and 72).

Figure 4.9: Process model with problems.

Source: The authors

Another thing that can be observed is the process elements that have the processE-

lementId with a value “Process”. They occur in cases where it is not possible to associate

the verification message with a process element (lines 65 and 71), and in cases where the

process element is a start event or end event (lines 5, 11, 23, and 41). Finally, a high-

light should be given for the description of the eleventh message (line 64). This message

informs the user that the process does not have an option to complete and points to po-

tential deadlocks. Although this is an error message generated by YAWL Verification, the

elements have been modified for the BPMN 2.0 process elements.

98

Listing 4.6: Process verification file example: Process model with problems.

1 {

2 " m e s s a g e L i s t " : [

3 {

4 " d e s c r i p t i o n " : " M u l t i p l e s t a r t e v e n t s were i d e n t i f i e d i n t h e

p r o c e s s (i d : P rocess_05u14rw) . " ,

5 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

6 " messageType " : " p r a g m a t i c " ,

7 " s o u r c e " : "BPMN V e r i f i c a t i o n "

8 } ,

9 {

10 " d e s c r i p t i o n " : "No l a b e l was i d e n t i f i e d i n t h e S t a r t Event (i d :

S t a r t E v e n t _ 1 a i 5 5 k s) . " ,

11 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

12 " messageType " : " l a b e l " ,

13 " s o u r c e " : "BPMN V e r i f i c a t i o n "

14 } ,

15 {

16 " d e s c r i p t i o n " : "No l a b e l was i d e n t i f i e d i n t h e A c t i v i t y (i d :

Task_1vmdkpu) . " ,

17 " p r o c e s s E l e m e n t I d " : " Task_1vmdkpu " ,

18 " messageType " : " l a b e l " ,

19 " s o u r c e " : "BPMN V e r i f i c a t i o n "

20 } ,

21 {

22 " d e s c r i p t i o n " : "No l a b e l was i d e n t i f i e d i n t h e S t a r t Event (i d :

S t a r t E v e n t _ 1 w h e l z l) . " ,

23 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

24 " messageType " : " l a b e l " ,

25 " s o u r c e " : "BPMN V e r i f i c a t i o n "

26 } ,

27 {

28 " d e s c r i p t i o n " : "No l a b e l was i d e n t i f i e d i n t h e E x c l u s i v e Gateway

(i d : E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) . " ,

29 " p r o c e s s E l e m e n t I d " : " E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1 " ,

30 " messageType " : " l a b e l " ,

31 " s o u r c e " : "BPMN V e r i f i c a t i o n "

32 } ,

33 {

34 " d e s c r i p t i o n " : " Not a l l c o n d i t i o n l a b e l s were i d e n t i f i e d i n t h e

E x c l u s i v e Gateway (i d : E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) . " ,

99

35 " p r o c e s s E l e m e n t I d " : " E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1 " ,

36 " messageType " : " l a b e l " ,

37 " s o u r c e " : "BPMN V e r i f i c a t i o n "

38 } ,

39 {

40 " d e s c r i p t i o n " : "No l a b e l was i d e n t i f i e d i n t h e End Event (i d :

EndEvent_12npddc) . " ,

41 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

42 " messageType " : " l a b e l " ,

43 " s o u r c e " : "BPMN V e r i f i c a t i o n "

44 } ,

45 {

46 " d e s c r i p t i o n " : "No r e s o u r c e was i d e n t i f i e d i n t h e A c t i v i t y (i d :

Task_1vmdkpu) . " ,

47 " p r o c e s s E l e m e n t I d " : " Task_1vmdkpu " ,

48 " messageType " : " l a b e l " ,

49 " s o u r c e " : "BPMN V e r i f i c a t i o n "

50 } ,

51 {

52 " d e s c r i p t i o n " : "No r e s o u r c e was i d e n t i f i e d i n t h e A c t i v i t y \ " Do

a c t i v t i y 1 \ " (i d : Task_0rd32o3) . " ,

53 " p r o c e s s E l e m e n t I d " : " Task_0rd32o3 " ,

54 " messageType " : " l a b e l " ,

55 " s o u r c e " : "BPMN V e r i f i c a t i o n "

56 } ,

57 {

58 " d e s c r i p t i o n " : "No r e s o u r c e was i d e n t i f i e d i n t h e A c t i v i t y \ " Do

a c t i v i t y 2 \ " (i d : Task_1eeo3ow) . " ,

59 " p r o c e s s E l e m e n t I d " : " Task_1eeo3ow " ,

60 " messageType " : " l a b e l " ,

61 " s o u r c e " : "BPMN V e r i f i c a t i o n "

62 } ,

63 {

64 " d e s c r i p t i o n " : " The p r o c e s s does n o t have an o p t i o n t o c o m p l e t e .

P o t e n t i a l d e a d l o c k s : 1 c { E x c l u s i v e Gateway (i d :

E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) _ A c t i v i t y : Do a c t i v i t y 2 (i d :

Task_1eeo3ow) } 2 c { E x c l u s i v e Gateway (i d :

E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) _ A c t i v i t y : Do a c t i v t i y 1 (i d :

Task_0rd32o3) } 2 c { E x c l u s i v e Gateway (i d :

E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) _ A c t i v i t y : Do a c t i v i t y 2 (i d :

Task_1eeo3ow) } 1 c { E x c l u s i v e Gateway (i d :

100

E x c l u s i v e G a t e w a y _ 1 f b l 8 y 1) _ A c t i v i t y : Do a c t i v t i y 1 (i d :

Task_0rd32o3) } " ,

65 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

66 " messageType " : " s t r u c t u r e " ,

67 " s o u r c e " : "YAWL V e r i f i c a t i o n "

68 } ,

69 {

70 " d e s c r i p t i o n " : " The p r o c e s s does n o t s a t i s f y t h e s o u n d n e s s

p r o p e r t y . " ,

71 " p r o c e s s E l e m e n t I d " : " P r o c e s s " ,

72 " messageType " : " s t r u c t u r e " ,

73 " s o u r c e " : "YAWL V e r i f i c a t i o n "

74 }

75]

76 }

4.6 Text Writer Service

This service aims to generate a business process-oriented text from a process (i.e.,

process elements and their relationships). For this, this service should receive as input a

Process File and output a business process description with metadata (i.e, Text Metadata

File). These metadata will allow mark the process elements and structure the text.

For the construction of this service, it was used the approach of generating nat-

ural language texts from business process models proposed by Leopold, Mendling and

Polyvyanyy (2012). The approach proposed by Leopold, Mendling and Polyvyanyy

(2012) takes a process model as input and produces a natural language text as output. This

approach consists of 6 different stages, separated into three phases, being: Text Planning,

Sentence Planning and Realization. Figure 4.10 presents the architecture of the approach.

In the Text Planning phase is performed the extraction of linguistic components

present in the labels of the process elements (i.e., Linguistic Information Extraction stage).

In addition, it is performed the linearization of the process model through a Refined Pro-

cess Structure Tree (RPST) (VANHATALO; VÖLZER; KOEHLER, 2009; POLYVYANYY;

VANHATALO; VÖLZER, 2010) for every pool of the input model (i.e., Annotated RPST

Generation stage).

An RPST is a parse tree that, from a process model, produces a tree containing

a hierarchy of sub graphs called fragments. These fragments can be nested or disjoints

101

Figure 4.10: Original text generation approach architecture.

Source: Leopold, Mendling and Polyvyanyy (2014)

with each other and are classified into four categories, being: trivial, bond, polygon, and

rigid. The trivial fragment represents two nodes connected with a single arc. This type

of fragment will be used to represent the sequential link between two process elements

(e.g., connection between the start event and the “Perform evaluation” activity in Figure

2.3). Bond fragment represents a set of fragments sharing two common nodes. This type

of fragment will be used to represent process regions involved in the same split and join

(e.g., the paths involved by XOR-split and XOR-join in Figure 2.3). Polygon fragment

capture sequences of other fragments. Thus, when two or more fragments are presented

sequentially, they make up a polygon fragment (e.g., the trivial fragment composed of

the XOR-split and the “Replace part” activity and the trivial fragment composed of the

“Replace part” activity and the “Fill the part replacement form” activity in Figure 2.3

together form a polygon fragment). Finally, when a fragment can not be classified as

trivial, bond or polygon, it is classified as rigid fragment.

Moreover, in the Text Planning phase is performed the application of text structur-

ing techniques, such as the insertion of paragraphs and bullet points (i.e., Text Structuring

stage).

In the Sentence Planning phase, it is performed the generation of an intermedi-

ate message structure for each fragment of the RPST (i.e., DSynT - Message Generation

stage). The intermediate message structure used by the authors is a Deep-Syntactic Tree

(DSynT) (LAVOIE; RAMBOW, 1997). This structure represents the most significant as-

pects of the syntactic structure of a sentence and will be used as input by the Realization

phase. Each node of a DSynT has a lexeme. Lexeme is a unit of lexicon that has a certain

meaning. Lexemes appear in the texts as nouns, verbs, and adjective stems (BEARD;

VOLPE, 2005). A lexeme may contain inflections and, thus, form a set of words known

as inflected variations. As an example, the words run, running, runs, and ran are different

102

variations from the same lexeme. Each lexeme can be complemented with meta infor-

mation called grammemes able to bring characteristics of how the lexeme should present

itself (e.g., the voice and tense of a verb). Moreover, the different lexemes that will com-

pose the DSynT will be related through edges. An example of DSynT is show in Figure

4.11. As can be seen, the root node is represented by the main verb of the sentence. In

addition, the relation I was used to represent the subject and the relation II to represent

the object of the sentence.

Figure 4.11: DSynT example.

Source: Leopold, Mendling and Polyvyanyy (2014) (adapted)

In addition, in the Sentence Planning phase is also performed the refinement of

messages (i.e., Message Refinement stage). The message refinement consists in the appli-

cation of three techniques: Message Aggregation, Referring Expressions, and Discourse

Markers. Regarding Message Aggregation, messages created in the previous stage can

be combined to form new messages. As an example, the sentences “The technician must

replace the part” and “The technician must fill out the part replacement form” could be

aggregated into “The technician must replace the part and fill out the part replacement

form”. After the Message Aggregation, the Referring Expressions technique is performed.

In this technique, adjacent messages that are executed by the same role had the role re-

placed by a pronoun from the second message. As an example, assuming that the above

messages had not been aggregated, the second sentence would be transformed into “He

must fill out the part replacement form”. Finally, in the Discourse Markers technique,

the authors identified messages that appear in sequence and assigned the connectors then,

afterwards, and subsequently to them. As an example, assuming again that the above mes-

103

sages had not been aggregated, the second sentence would be transformed into “Then, he

must fill out the part replacement form”.

Finally, in the Realization phase is performed the transformation of the intermedi-

ate message structures into grammatically correct sentences (i.e., RealPro Realizer stage).

This task can be performed by softwares called realizers. There are different realizers

in the literature, such as: RealPro Realizer (LAVOIE; RAMBOW, 1997), TG/2 (BUSE-

MANN, 1996), Yet Another Generator (YAG) (MCROY; CHANNARUKUL; ALI, 2000),

and SURGE (ELHADAD; ROBIN, 1997). In order to perform the realization, the authors

used in their approach the software RealPro Realizer from CoGenTex (LAVOIE; RAM-

BOW, 1997). Among the factors that led them to choose this realizer are: the manageabil-

ity of the intermediate structure, license costs, generation speed, and Java compatibility.

The approach proposed by Leopold, Mendling and Polyvyanyy (2012) was chosen

for the creation of the Text Writer Service because it allows, from a BPMN 2.0 process

model, to produce a natural language text. As the expected input of the Text Writer Service

is a file in BPMN format (i.e., called Process File), the input in this approach is shown to

be suitable for the service being constructed. In addition, the authors of the approach have

validated it with users through a back translation technique where 11 students were asked

to interpret process descriptions produced by the tool and try to reproduce the original

process models. The results of the validation indicated that the students understand the

text produced correctly, but they find it difficult to identify some process elements in a

process description.

4.6.1 Modifications in the Generating Natural Language Texts from Business Process

Models Approach

For the creation of the business process-oriented text defined in Chapter 3, this

approach has received several modifications. Figure 4.12 shows the Text Writer Service

presenting in detail the main modifications made in the original approach. Compared with

the original approach, the following changes were made:

1. The input started to receive a Pre-processing stage prior to Text Planning phase,

which verifies that the BPMN 2.0 process can be transformed in text and also ap-

plies small corrections to the process.

2. Sentence Planning phase has been modified to meet the requirements of the text

104

Figure 4.12: Text Writer Service overview.

Source: The authors

that was defined in Chapter 3.

3. The output is no longer a natural language text to become a Text Metadata File.

This modification causes data to be sent about the process being described, which

allows the marking of process elements in the text (e.g., highlight activities in the

text) and the structuring of the text (e.g., paragraph indentation, paragraph split).

4. The Text Structuring stage was no longer the responsibility of the original approach

and became the responsibility of the Main Service.

In the following subsections will be presented the main modifications made in the

original approach in order to produce the Text Writer Service.

4.6.2 Pre-processing Phase

The Pre-processing phase has as objectives to verify if the process described in

the Process File can be transformed in text and, if it can, to adjust the process before

it is transformed. Unlike the Process Verification Service presented in Section 4.5, the

verification performed in the Pre-processing phase only acts as a prerequisite for the gen-

eration of text by the Text Writer Service. This verification is carried out at two different

moments.

At the first moment, it is checked whether the process described by the Process

File contains all the sequence flows addressed to process elements. If it does not, the

105

service returns an exception warning that there are sequence flows that are not connected

and the generation of the text can not be performed.

In the second moment, the process is adjusted so that it can run by the tool. At this

point, 3 checks are made: pool labels verification, lane labels verification, and activity

labels verification. Regarding pool labels verification, the entire process is run in order

to verify that all process elements are related to a pool. If there are elements that are not

related, a generic pool called “Pool @id” where @id is an increment number is created

for these elements. Regarding lane labels verification, it is checked whether the elements

that belong to a given pool are associated with a lane. If not, it is created a lane per pool

called “Resource @id” where @id is an increment number. Then, all elements in that

pool which are not associated with any lane will be associated with that lane. The reason

for these two verifications is that, since the approach expects a text in the active voice, all

elements necessarily need to be related to a resource (i.e., lane) which in turn must belong

to a process (i.e., pool). Regarding activity labels verification, the activities are checked

to see if they do not have a label. If unlabelled activities are identified, they are labeled

as “Do activity with id @id” where @id is the id of the process element. Thus, even if a

process, a resource or an activity is not defined in the Process File, the text will still be

generated.

4.6.3 Modifications in DSynT - Message Generation Stage

In order to define the sentences that will compose the text, the first step was to

make changes in the DSynT - Message Generation stage. In this stage some of the DSynTs

created from the RPST fragment types (i.e., trivial, bond, polygon, rigid) were modified.

These modifications will be presented taking into account each of the types of fragments.

Regarding the trivial fragment, no modifications were made. The reason for this is

that DSynTs created from trivial are generated from information taken from the process

without the need to create new sentences to supplement this information. The information

that compose a trivial fragment are:

• Action: The sentence snippet that describes the action that is performed (i.e., verb).

• Business Object: The sentence snippet that describes the business object in which

the action is performed.

• Additional Information: The sentence snippet that complements the action, with-

106

out being the verb that performs the action or the business object.

• Role: The sentence snippet that describes the role that performs the action.

As can be observed, the Action, the Business object and Additional information are

extracted from the label of the activity itself. In addition, Role will be the participant that

performs the process element being described. Thus, this information will be extracted

from a lane in a BPMN 2.0 process model and inserted as the subject in the sentence.

Trivial fragments may also be complemented with prior information for split and join

gateways. In this case, no changes are required since this information is considered as a

bond fragment and therefore will be defined by the bond fragment. As an example, the

sentence represented in Figure 4.13 could have been generated from an activity “sends the

form to the manager” present in a lane “employee”. Furthermore, this activity consists

of the Action “sends”, the Business object “the form”, and the Additional information “to

the manager”.

Figure 4.13: Example of sentence created from a trivial fragment.

In any case︸ ︷︷ ︸
Prior information

, the employee︸ ︷︷ ︸
Role

sends︸ ︷︷ ︸
Action

the form︸ ︷︷ ︸
Business object

to the manager︸ ︷︷ ︸
Additional information

.

Source: The authors

Bond fragment is used to construct sentences describing splits and joins. For this

fragment, the sentence templates described in Table 4.2 were used. This table is composed

of the type of process element being described (i.e., “Type”), if the gateway is of type split

or join (i.e., “Scope”), the sentence template used in the previous work (i.e., “Leopold,

Mendling and Polyvyanyy (2014) Approach”), and the sentence template suggested in the

current work (i.e., “Current Approach”). If a join gateway is followed directly by another

join gateway, the snippet “the process continues” will be used. As an example, to describe

XOR-join followed by another XOR-join in Figure 3.3, it would be possible to create the

sentence “In any case, the process continues.”.

In addition, the same sentence templates from the original approach was used to

describe skip and loop. Skip seeks to represent different paths starting from a gateway

where at least one of which is an empty path (i.e., no process elements from the split gate-

way to the respective join gateway). The only modification made to this case is that the

original approach only allowed a single path beyond the empty path. In the new approach,

107

Table 4.2: Modifications in bond fragments.
Type Scope Leopold, Mendling and

Polyvyanyy (2014) Approach
Current Approach

Exclusive
Choice

split One of the following branches
is executed.

..., one of the number alterna-
tive procedures is executed.

join Once one of the alternative
branches was executed ...

In any case, ...

Inclusive
Choice

split One or more of the following
branches is executed

..., number alternative proce-
dures may be executed.

join Once all desired branches were
executed ...

Afterwards, ...

Parallelism
split The process is split into number

parallel branches.
..., number procedures are ex-
ecuted in an arbitrary order.

join Once all <number> branches
were executed ...

After each case, ...

Skip
split If required ... If required, ...
join In any case ... In any case, ...

Loop
split - -

join

If required role repeats the
latter steps and continues with...
Once the loop is finished ...

If required role repeats the
latter steps and continues with...
Once the loop is finished ...

Source: The authors

multiple paths are allowed. For this, the sentence describing the split gateway has been

modified to represent only the number of non-empty paths and, if it is an exclusive gate-

way or an inclusive gateway, add the term “if required” in the sentence. As an example,

to describe the XOR-split in the process model of Figure 2.3 could be used the sentence

“Then, if required, one of the 2 alternative procedure paths is executed.”. Loop, on the

other hand, it was not modified since the only sentence template found to represent loops

(i.e., St33) had an ambiguity problem. In addition, the sentence templates presented in

the Leopold, Mendling and Polyvyanyy (2014) approach help to evidence when the loop

starts, runs, and terminates.

In the case of polygon fragment, since it represents only sequences of other frag-

ments, the approach only separates the fragments that exist within a polygon fragment

and processes them individually. Therefore, there are no sentences being created from

polygon fragments and no modifications were made.

In case of rigid fragment, in order to understand how it is transformed into DSynTs,

it is necessary to define how the different paths of a rigid fragment are described and

which are the sentences that compose a rigid fragment. Regarding how the different paths

of a rigid fragment are described, the paths are first transformed into a Petri net (MU-

RATA, 1989). Thereafter, one path will be described from the beginning to the end of

108

the fragment (i.e., main path) and then the other paths (i.e., alternative paths) will be de-

scribed taking into account what has already been presented (i.e., Case5−4 present in

Chapter 3).

Regarding which are the sentences that compose a rigid fragment, rigid fragments

may be composed of other fragments (i.e., trivial, bond, and polygon) and some prede-

fined sentence templates. When a fragment exists within the rigid fragment, it will be

transformed into DSynT by its respective transformation approach. In this case, rigid can

add extra information such as “may also” to indicate that it is describing a part of a path

(e.g., “Then, the employee must fill out the report and send it to the financial manager.

Next, the financial manager must sign confirming receipt. After completing the report,

the clerk may also choose to send it to the financial sector secretariat.”). On the other

hand, the original approach (LEOPOLD; MENDLING; POLYVYANYY, 2014) uses 3

different sentence templates to represent rigid fragments. These 3 sentence templates can

be defined as follows:

• Rigid introduction: A sentence that initiates rigid making explicit that there is

a region with many paths. For this case, the authors use the sentence template

“Subsequently, the process contains a region which allows for different execution

paths.”.

• Main path introduction: Introduction of the main path. For this case, the authors

use the sentence template “One option from start to end is the following:”.

• Alternative path introduction: Introduction of other possible paths. For this case,

the authors use the sentence template “However, the region also allows for a number

deviations:”.

The original format to transform rigid fragments into DSynTs will be retained for

long descriptions. However, for sentences containing few paths (i.e., defined as up to

5 paths) the Petri net will be traversed in order to describe each possible path from the

beginning of the fragment to the respective end (i.e., Case5− 2)). In this case, extra

information (i.e., “may also”) will not be required. In addition, the 3 sentence templates

would be replaced by a single sentence template similar to the Exclusive Choice template

in Table 4.2 (i.e., “..., one of the number alternative procedures is executed.”).

In addition to the modifications described above, some other customizations were

made. To represent a start event, the sentence template “The process starts when ...”

109

(St58) was used instead of “The process starts with ...” (St(57)). In addition to being

quite recurrent, this sentence template assures to use the same verb tense to describe all

activities in the text (i.e., the sentence template St57 would require that only the first

activity of the text be described in the infinitive). To describe the start event followed by

a split gateway, the sentence template “When the process starts, ...” was used. Finally,

“... the process ends.” was used to describe end events and could be complemented with

terms like “Finally,”, “In any case,”, “Afterwards,”, and “After each case,”.

4.6.4 Modifications in Message Refinement Stage

For the Message Refinement stage, modifications were made in two techniques,

being them: Message Aggregation and Discourse Markers (LEOPOLD, 2013). Tables

4.3 and 4.4 present the changes made in message aggregation and discourse markers

respectively.

Regarding Message Aggregation, in order to avoid ambiguity the term “and then”

was used instead of “and” to aggregate sentences of elements that appear sequentially.

In addition, the possibility of aggregating elements belonging to different roles has been

added (e.g., “The employee creates the report and then the manager signs.”).

Table 4.3: Modifications in message aggregation.
Message Aggregation Leopold, Mendling and

Polyvyanyy (2014) Approach
Current Approach

Default Ac and Ac. Ac and then Ac.
Different roles - role1 Ac and then role2 Ac.

Source: The authors

In relation to Discourse Marker, the discourse markers used to represent sequential

elements have been modified to: “Next”, “Subsequently”, and “After that”. In addition,

discourse markers to represent the different paths of a gateway were created.

For the representation of exclusive and inclusive paths where not all possible paths

have a condition, the discourse marker “In the @ordinal procedure” was used. In this

case, @ordinal will be replaced by the ordinal corresponding to the path currently being

described (e.g., “In the first procedure, ...”). On the other hand, if all possible paths have

a condition, the discourse marker “If @condition” was used. In this case, @condition

will be replaced by the condition of the path currently being described (e.g., “If hardware

problem, ...”).

110

For the representation of parallels paths, the first path has no discourse marker, but

the others use discourse markers that convey the idea that different procedures occur at

the same time. For this, the following discourse markers were used to indicate the idea

of parallelism: “In the meantime” and “At the same time”. As pointed out in Section

3.4.3, these markers are considered to have ambiguity issues, but sentences that explicitly

describes the beginning and end of parallelism can help to solve this problem.

Table 4.4: Modifications in discourse markers.
Discourse marker Leopold, Mendling and

Polyvyanyy (2014) Approach
Current Approach

Sequence
Then, ... Next, ...
Subsequently, ... Subsequently, ...
Afterwards, ... After that, ...

XOR and OR Paths
- In the @ordinal procedure, ...
- If “@condition”, ...

AND Paths
- In the meantime, ...
- At the same time, ...

Source: The authors

4.6.5 Modifications in Realization Phase

As can be seen in Figure 4.12, the result of the Text Writer Service is no longer a

natural language text to become a text with metadata. This metadata is information gather

from the Process File and the generated text itself.

During the DSynT - Message Generation stage, the information gather of a process

element will be associated with all DSynTs that represent that process element. This

information can still be modified or even deleted according to the manipulation of DSynTs

during the Message Refinement stage. Finally, in the Realization phase, each DSynT

created by the Sentence Planning phase will be transformed into a sentence and, along

with the information associated with it, will compose the Text Metadata File.

The exception to this generation process is the “startIndex” and “endIndex” at-

tributes present in a Text Metadata File. These attributes will be created only during the

Realization phase right after the DSynT is transformed into a sentence. This is required

because, in order to define the indexes, it is necessary first to know how the sentence is.

111

4.6.6 Text Writer Output

Listing 4.7 presents the Text Metadata File in JSON format generated by Text

Writer Service for the Process File represented in Listing 4.5. As can be seen, this docu-

ment has two parts. The first part is a list containing the processes and resources of each

process (lines 2 to 13) and the second part is a list containing the sentences with metadata

(lines 14 to 149).

In the list containing the processes and resources of each process, it is possible to

observe that there is a single process with id “id-0” (line 10) and name “Pool” (line 11).

Within this process there is a resource with id “id-2” (line 6) and name “technician” (line

7) .

On the other hand, in the list containing the sentences with metadata, it is possible

to observe that the text will consist of 7 sentences (lines 17, 41, 56, 71, 86, 110, and 134).

As described in Section 4.2.3, each of these sentences will be accompanied by a boolean

representing whether the sentence is newSplitPath and a snippetList . Each snippetList, in

turn, will contain a startIndex, an endIndex, a processElementId, a processElementType,

a resourceId, a processId, and a level. As an example, the sentence “If \“a hardware

problem\”, the technician replaces the part and then fills out the part replacement form.”

(Line 86) the value of newSplitPath is “true” (line 107) since it describes a path immedi-

ately after a gateway split. This sentence will still be composed of two snippets. The first

snippet (lines 88 to 96) is represented in the sentence between the indices startIndex “25”

and endIndex “57” (i.e., “the technician replaces the part”) and corresponds to the activity

with id “id-5” being done by the resource with id “id-2” (i.e., “technician”), in the process

with id “id-0” (i.e., “pool”), and having the value of level equals “1” (line 95). On the

other hand, the second snippet (lines 97 to 105) is represented in the sentence between the

indices startIndex “67” and endIndex “102” (i.e., “fills out the part replacement form”)

and corresponds to the activity with id “6-id” being done by the resource with id “id-2”

(i.e., “technician”), in the process with id “id-0” (i.e., “pool”), and having the value of

level equals “1” (line 104).

Listing 4.7: Text metadata file example: Computer repair.

1 {

2 " p r o c e s s L i s t " : [

3 {

4 " r e s o u r c e L i s t " : [

5 {

112

6 " i d " : " id −2" ,

7 " name " : " t e c h n i c i a n "

8 }

9] ,

10 " i d " : " id −0" ,

11 " name " : " Pool "

12 }

13] ,

14 " t e x t " : {

15 " s e n t e n c e L i s t " : [

16 {

17 " v a l u e " : " The p r o c e s s s t a r t s when t h e t e c h n i c i a n p e r f o r m s an

e v a l u a t i o n . " ,

18 " s n i p p e t L i s t " : [

19 {

20 " s t a r t I n d e x " : 0 ,

21 " endIndex " : 23 ,

22 " p r o c e s s E l e m e n t I d " : " id −11" ,

23 " p r o c e s s E l e m e n t T y p e " : "STARTEVENT" ,

24 " r e s o u r c e I d " : " id −2" ,

25 " p r o c e s s I d " : " id −0" ,

26 " l e v e l " : 0

27 } ,

28 {

29 " s t a r t I n d e x " : 24 ,

30 " endIndex " : 61 ,

31 " p r o c e s s E l e m e n t I d " : " id −3" ,

32 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

33 " r e s o u r c e I d " : " id −2" ,

34 " p r o c e s s I d " : " id −0" ,

35 " l e v e l " : 0

36 }

37] ,

38 " n e w S p l i t P a t h " : f a l s e

39 } ,

40 {

41 " v a l u e " : " Next , one o f t h e 3 a l t e r n a t i v e p r o c e d u r e s i s

e x e c u t e d . " ,

42 " s n i p p e t L i s t " : [

43 {

44 " s t a r t I n d e x " : 6 ,

113

45 " endIndex " : 53 ,

46 " p r o c e s s E l e m e n t I d " : " id −9" ,

47 " p r o c e s s E l e m e n t T y p e " : "XORSPLIT" ,

48 " r e s o u r c e I d " : " id −2" ,

49 " p r o c e s s I d " : " id −0" ,

50 " l e v e l " : 0

51 }

52] ,

53 " n e w S p l i t P a t h " : f a l s e

54 } ,

55 {

56 " v a l u e " : " I f \ " fou nd s no problem \ " , t h e t e c h n i c i a n makes t h e

no m o d i f i c a t i o n t o t h e compute r . " ,

57 " s n i p p e t L i s t " : [

58 {

59 " s t a r t I n d e x " : 24 ,

60 " endIndex " : 80 ,

61 " p r o c e s s E l e m e n t I d " : " id −7" ,

62 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

63 " r e s o u r c e I d " : " id −2" ,

64 " p r o c e s s I d " : " id −0" ,

65 " l e v e l " : 1

66 }

67] ,

68 " n e w S p l i t P a t h " : t r u e

69 } ,

70 {

71 " v a l u e " : " I f \ " a s o f t w a r e problem \ " , t h e t e c h n i c i a n f o r m a t s

t h e compute r . " ,

72 " s n i p p e t L i s t " : [

73 {

74 " s t a r t I n d e x " : 25 ,

75 " endIndex " : 60 ,

76 " p r o c e s s E l e m e n t I d " : " id −4" ,

77 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

78 " r e s o u r c e I d " : " id −2" ,

79 " p r o c e s s I d " : " id −0" ,

80 " l e v e l " : 1

81 }

82] ,

83 " n e w S p l i t P a t h " : t r u e

114

84 } ,

85 {

86 " v a l u e " : " I f \ " a ha rdware problem \ " , t h e t e c h n i c i a n r e p l a c e s

t h e p a r t and t h e n f i l l s o u t t h e p a r t r e p l a c e m e n t form . " ,

87 " s n i p p e t L i s t " : [

88 {

89 " s t a r t I n d e x " : 25 ,

90 " endIndex " : 57 ,

91 " p r o c e s s E l e m e n t I d " : " id −5" ,

92 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

93 " r e s o u r c e I d " : " id −2" ,

94 " p r o c e s s I d " : " id −0" ,

95 " l e v e l " : 1

96 } ,

97 {

98 " s t a r t I n d e x " : 67 ,

99 " endIndex " : 102 ,

100 " p r o c e s s E l e m e n t I d " : " id −6" ,

101 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

102 " r e s o u r c e I d " : " id −2" ,

103 " p r o c e s s I d " : " id −0" ,

104 " l e v e l " : 1

105 }

106] ,

107 " n e w S p l i t P a t h " : t r u e

108 } ,

109 {

110 " v a l u e " : " In any c a s e , t h e t e c h n i c i a n c o m p l e t e s t h e r e p a i r

form . " ,

111 " s n i p p e t L i s t " : [

112 {

113 " s t a r t I n d e x " : 0 ,

114 " endIndex " : 11 ,

115 " p r o c e s s E l e m e n t I d " : " id −10" ,

116 " p r o c e s s E l e m e n t T y p e " : "XORJOIN" ,

117 " r e s o u r c e I d " : " id −2" ,

118 " p r o c e s s I d " : " id −0" ,

119 " l e v e l " : 0

120 } ,

121 {

122 " s t a r t I n d e x " : 13 ,

115

123 " endIndex " : 53 ,

124 " p r o c e s s E l e m e n t I d " : " id −8" ,

125 " p r o c e s s E l e m e n t T y p e " : "ACTIVITY" ,

126 " r e s o u r c e I d " : " id −2" ,

127 " p r o c e s s I d " : " id −0" ,

128 " l e v e l " : 0

129 }

130] ,

131 " n e w S p l i t P a t h " : f a l s e

132 } ,

133 {

134 " v a l u e " : " F i n a l l y , t h e p r o c e s s ends . " ,

135 " s n i p p e t L i s t " : [

136 {

137 " s t a r t I n d e x " : 9 ,

138 " endIndex " : 25 ,

139 " p r o c e s s E l e m e n t I d " : " id −12" ,

140 " p r o c e s s E l e m e n t T y p e " : "ENDEVENT" ,

141 " r e s o u r c e I d " : " id −2" ,

142 " p r o c e s s I d " : " id −0" ,

143 " l e v e l " : 0

144 }

145] ,

146 " n e w S p l i t P a t h " : f a l s e

147 }

148]

149 }

150 }

4.7 Main Service

The Main Service is responsible to interact with other services in order to pro-

duce the business process-oriented text from the input provided by the user (i.e., process

description or BPMN 2.0 process model). The service thus works by orchestrating the

services deciding what and when each service should be called.

Initially, Main Service produces a web page and sends it to be processed by the

user using a web browser. In this web page, the user can submit a request containing

a process description or a BPMN 2.0 process model. Once the user provided a process

116

Figure 4.14: Example of rewritten process description: Computer repair.

The process starts when the technician performs an evaluation. Next, one of the
3 alternative procedures is executed. If “founds no problem”, the technician makes
the no modification to the computer. If “a software problem”, the technician formats
the computer. If “a hardware problem”, the technician replaces the part and then fills
out the part replacement form. In any case, the technician completes the repair form.
Finally, the process ends.

Source: The authors

description as input, the Main Service must first interact with the Text Reader Service to

identify the process elements and their relationships. Then, the Main Service interacts

with the Process Verification Service and Text Writer Service. On the other hand, since

the user provided a BPMN 2.0 process model as input, the service does not need to iden-

tify the process elements and their relationships, so it interacts directly with the Process

Verification Service and Text Writer Service.

After receiving the verification made by the Process Verification Service and the

text generated by the Text Writer Service, the Main Service produces the web page that

will be sent to the user. This web page should contain the document produced by the Pro-

cess Verification Service (i.e., Process Verification File), the document produced by the

Text Writer Service (i.e., Text Metadata File), and the JavaScript code needed to process

these documents and produce the text according to the user specifications. As an example

the Text Metadata File in the Listing 4.7 can be processed by JavaScript code to produce

the business process description shown in Figure 4.14. This business process description

is produced by reading the values present in the value attributes of the Text Metadata File.

Figure 4.15 shows how occurs the interaction between the user and the web page

provided by the Main Service. As can be seen, the user can interact with the web page by

providing some settings. From the settings provided by the user, the JavaScript code will

process the Process Verification File and the Text Metadata File to produce the process

description adapted to the user settings.

In the current approach, the JavaScript code supports user settings that allow for

three different features, being: text marking, text structuring and process verification dis-

play. As these features are provided by JavaScript code on the Process Verification File

and the Text Metadata File, it is not necessary to communicate with the server or generate

a new verification and text every time the user wants to perform a configuration on some

of these features. Each of these features will be explored further below.

117

Figure 4.15: Interaction between user and web browser.

Source: The authors

4.7.1 Text Marking

The purpose of the text marking feature is to highlight in the text important parts

of the process in order to facilitate their identification by the user. For this, the JavaScript

code will process the Text Metadata File identifying the snippets that meet the settings

imposed by the user. Whenever a snippet meets a setting, that sentence snippet will be

highlighted in the sentence (i.e., from attribute startIndex to attribute endIndex in that

snippet).

The current approach allows two different types of marking: marking of the pro-

cess element taking into account its type and marking of the process element taking into

account the resource.

The marking of the process element taking into account its type seeks to assign a

specific color to sentence snippets representing process elements of a given type. Thus,

if the user informs, for example, that he wants to identify all the activities of the business

process-oriented text, the JavaScript code created will go through all the snippets of the

sentences present in the Text Metadata File and highlight those snippets whose processE-

lementType is “activity”.

The marking of the process element taking into account the resource seeks to at-

tribute bold to the sentence snippets that represent the process elements that are associated

118

with a particular resource. Thus, if the user informs, for example, that wants to identify all

the process elements of the business process-oriented text that are related to the “manager”

resource, the JavaScript code will go through all the snippets of the sentences present in

the Text Metadata File and highlight those snippets whose resource is “manager”.

4.7.2 Text Structuring

The purpose of the text structuring feature is to allow the user to interact with

the text structuring it as he prefers. The current approach allows different types of text

structuring, such as: paragraph indentation, paragraph split, use of bullet points and

numbering in different paths.

Regarding paragraph indentation, this work gives the user the option of indenting

new paragraphs. For this, the JavaScript code scrolls through the text and, every time it

finds a new paragraph, decides based on the user’s settings whether to indent it or not.

Regarding paragraph split, it is given to the user different options to choose when

a new paragraph will be created. Among these options the user can choose if all text

should be kept together, if there should be a new paragraph after a certain amount of

words or sentences, or if a new paragraph should be created every time the level in the Text

Metadata File vary (i.e., similar to Leopold, Mendling and Polyvyanyy (2012) approach).

In addition, the user can choose whether to create a new paragraph when the JavaScript

finds a new resource, a split gateway, or a new process path of a split gateway. Moreover,

the user can choose if the different paths of a gateway should be kept together.

Regarding use of bullet points and numbering in different paths, the user can

choose whether or not to use bullet points and numbering when describing different paths

of a gateway. To do this, the JavaScript code scrolls through the Text Metadata File

and assigns a marker whenever it encounters sentences that represents different paths of

the same gateway. In this case, it is considered different paths of the same gateway the

sentences that: precede and succeed sentences that describes the same split and join gate-

ways, have equal value for the level property, and have the newSplitPath property with

value “true”.

119

4.7.3 Process Verification Display

The purpose of the process verification display feature is to display the verification

messages identified by the Process Verification Service and stored in the Process Verifica-

tion File. This feature can define whether the verification messages will be displayed or

not in the text. In addition, verification messages can be filtered so that only verification

messages related to a particular source or of a particular message type are displayed.

When filtered by a particular source, it may be chosen to display the verification

messages described by a specific source. As presented in the Section 4.5, the current

approach presents verification using two possible sources: BPMN Verification and YAWL

Verification. Therefore, when the user select a certain set of sources, the JavaScript code

created will scroll through the Process Verification File and produce a list containing only

the verification messages whose source property matches one of the selected sources.

When filtered by a particular message type, it may be chosen to display the verifi-

cation messages described by a specific type. As presented in the Section 4.5, the current

approach has three possible message types: Label, Structure, and Pragmatic. Therefore,

when the user select a certain set of message types, the JavaScript code created will scroll

through the Process Verification File and produce a list containing only the verification

messages whose messageType property matches one of the selected types.

After producing the list that meets the filter criteria related to the source and the

message type, the verification messages can be presented to the user. In this work, the

verification messages are displayed in two different formats. In the first format, a list is

constructed that displays all the filtered verification messages grouped by their respective

process elements (through property processElementId). In the second format, the verifi-

cation messages are displayed in the text itself. For this, the verification messages of the

Process Verification File are related to the snippets of the Text Metadata File through the

property processElementId that both have.

4.8 Final Considerations

This chapter presented the service-oriented architecture for generation of business

process-oriented text. In this context, this chapter presented the documents that compose

the contracts (i.e., data definitions files and service definitions files), and the services that

are constructed to meet the different functionalities of the approach.

120

The use of the architecture created is accompanied by different advantages. One of

these advantages is the compatibility because the architecture allows the integration with

services created in other programming languages. Files in the WADL and XSD format

are not restricted to the JAVA language and can be manually or automatically transformed

into code for other programming languages. In terms of maintainability, the architecture

makes use of XSD files defined by the OMG to represent the BPMN 2.0 processes (i.e.,

Process File Schema). Thus, this approach uses for the definition of the Process File

(i.e., representation of process elements and their relationships) the XSD files provided

by the group responsible for defining the BPMN specification, which allows the creation

of classes consistent with the current BPMN. Thereby, using these files helps keep the

architecture up-to-date since for new versions of BPMN the approach just need to update

the XSD files provided by OMG, automatically generate JAVA classes, and make the

necessary modifications to the services.

For the construction of the services it was considered to use and adapt works ex-

isting in the literature. Adopting other approaches to the construction of services allows

to make use of scientifically recognized works with tools that have a certain maturity and,

in some cases, are widely used. However, the use of other approaches is also accompa-

nied by the negative points present in them. One of these points is related to the 76.98%

similarity of the Text Reader Service. Because the approach used is not able to achieve

100% similarity, incorrect process elements and relationships can be identified. Conse-

quently, in case the business process-oriented text is generated from a natural language

text, the text produced may contain inconsistencies since the output generated by the Text

Reader Service (i.e., Process File) has inconsistencies. However, once the approach has

been built as a SOA, new services can be created to contribute to or replace the current

services. In that sense, all that is required is for the new approach to be transformed into

a REST service that can meet the requirements of the contract.

In the following chapter will be presented the results obtained by the approach of

generation of business process-oriented text.

121

5 TEST OF THE BUSINESS PROCESS-ORIENTED TEXT GENERATION AR-

CHITECTURE

This chapter presents the prototype built to make possible the test the architecture

developed in Chapter 4. In addition, this chapter presents the results of the analysis that

was performed to verify the similarity between processes and business process-oriented

texts.

The remainder of this chapter is structured as follows. Section 5.1 presents the

built prototype. Section 5.2 presents the results obtained from the application of the sim-

ilarity verification technique based on graph edit distance. Finally, Section 5.3 presents

the final considerations of this chapter.

5.1 Developed Prototype

In this section will be presented the implemented prototype. Firstly, we will

present the technologies used to develop the prototype and provide a link where the proto-

type can be found. Then, the interface of the implemented prototype and its characteristics

will be presented.

The prototype was developed using the Java programming language. Each of the

5 services defined in Chapter 4 was built as a REST service. Moreover, this prototype

makes use of web technologies (i.e., HTML, CSS, and JavaScript) for the construction

of its interface for user interaction. For the service registry, a REST-based service called

Eureka1 was used. Eureka was chosen because it is also developed in JAVA, in addition

to being a simple tool and have been able to register services without the need for much

configuration. Moreover, even the Eureka service registry is developed in JAVA, it allows

services to be registered and searched through REST operations (i.e., which allows ser-

vices in other programming languages to be used). The prototype developed is available

in: <www.github.com/thanner/MainService>.

Regarding the interface of the implemented prototype, Figure 5.1 presents the

overview of the prototype. As the figure shows, the prototype consists of three parts:

• Part 1 - Input Data: It is responsible for receiving an entry (i.e., natural language

text or BPMN 2.0 file) and sending it to be processed by the Main Service.

1https://github.com/Netflix/eureka; last acessed 2019-02-02

www.github.com/thanner/MainService

122

• Part 2 - Output Data: It is responsible for displaying the outputs generated by the

prototype.

• Part 3 - Output Settings: It is responsible for making the settings in the output

data.

Figure 5.1: Prototype overview.

Source: The authors

Figure 5.2 presents Part 1 in more detail. As can be seen, Part 1 consists of three

distinct areas. In the first area (i.e., Part 1.1) it is possible for a file to be loaded from the

computer to the browser. In the second area (i.e., Part 1.2) it is possible to write the input

data (i.e., natural language text or BPMN 2.0 file) or view the input data provided by the

loaded file. Finally, in the third area (i.e., Part 1.3) it is possible to select whether the file

sent is a natural language text or a BPMN file (i.e., BPMN File toggle button), clear the

input data provided (i.e., CLEAN button), and send the input data to be processed by the

Main Service (i.e., CONVERT button).

Part 2 consists of 4 tabs and the respective output of each tab. The first tab (i.e.,

SOURCE tab) displays the original text when the input provided is a natural language

text. This original text can be marked (i.e., Section 4.7.1) and structured (i.e., Section

4.7.2) according to the user’s output settings. If the input is a BPMN 2.0 file, the message

“The original text does not exist.” will be displayed. The second tab (i.e., TEXT tab)

displays the business process-oriented text generated by the approach. Like the original

text, this text can be marked and structured according to the user’s output settings. In

123

Figure 5.2: Prototype: Input data.

Source: The authors

addition, it may be chosen to display the identified process issues in this text. In this case,

the sentence snippets that are related to process elements with verification messages will

be underlined and the issues can be viewed through a tooltip when hovering the mouse

over the snippet. The third tab (i.e., PROBLEMS tab) displays the verifications issues

grouped by the process element ID (Figure 5.5). The fourth tab (i.e., PROCESS tab)

displays the BPMN 2.0 file used for the verification and generation of business process-

oriented text. This file may be the process produced by the Text Reader Service (i.e. if the

input is natural language text) or the input itself (i.e., if the input is a BPMN 2.0 file).

Part 3 consists of three sidebars, from left to right: Text Markers, Text structur-

124

ing, and Verifications. The sidebar Text Markers is responsible for marking the process

elements in the text. As can be seen in Figure 5.3, this sidebar is composed by toggle

buttons for all possible process elements that can be marked. When the user activate a

toogle button, its process element type will be identified and colored with the correspond-

ing color in the original text (i.e., SOURCE tab) and in the business process-oriented text

(i.e., PROCESS tab). The colors assigned to each process element can be easily modified

in JavaScript code. For this prototype, each possible type of process element received

a distinct color except splits and joins from the same gateway that, although they could

be independently marked, received the same color. Since OMG does not define in its

documentation the standard colors of the process elements, the colors used by the Bizagi

process modeling tool to represent the process elements were used as the basis for the col-

ors. Thus, the first four types of process elements (i.e., activity, start event, intermediate

event, and end event) follow the colors that can be found for these process elements in a

BPMN 2.0 process model made in the Bizagi tool. The other types of process elements

(i.e., XOR gateways, AND gateways, OR gateways, event-based gateway), in turn, are the

earlier colors with less brightness.

In addition, the sidebar Text Markers also has a drop-down list (i.e., RESOURCES)

that lists all the resources found in the process. When a drop-down list element is selected,

its resource will be identified and highlighted in bold in the original text (i.e., SOURCE

tab) and in the business process-oriented text (i.e., PROCESS tab). By default, all toggle

buttons and the drop-down in this sidebar start unchecked.

The sidebar Text structuring is responsible for defining the size of the paragraphs

and the use of bullet points in the text. As can be seen in Figure 5.4, this sidebar is

composed of six toggle buttons and two radio buttons. The toggle buttons, with their

respective descriptions, can be seen as follows:

• Split Resources: Defines that a new paragraph must be created whenever there is a

resource change between the previous sentence and the current sentence (i.e., who

performs the actions). Since some sentences may involve more than one resource,

the first resource described by the sentence will always be considered here.

• Split Gateway: Defines that a new paragraph must be created whenever a sentence

describes a split gateway.

• Split Procedure: Defines that a new paragraph must be created whenever it de-

scribes another procedure (i.e., process path).

125

Figure 5.3: Prototype: Text Markers sidebar.

Source: The authors

• Keep Procedure Together: Defines that process elements related to a procedure

(i.e., path generated by a split gateway) are not separated into different paragraphs.

• Paragraph Identation: Defines whether paragraphs should start with indentation

or not.

• Bullet Point only new Paragraph: Defines that, if bullet points are used, they

appear only at the beginning of paragraphs.

The radio button Paragraph Split defines which criterion will be used to separate

the paragraphs. The possible options are: None (i.e., no separations), Per sentence (i.e.,

by amount of sentences expected in a paragraph), Per word (i.e., by amount of words ex-

pected in a paragraph), and Level (i.e., similar to the Leopold, Mendling and Polyvyanyy

(2014) approach presented in the Section 3.2.2). By choosing Per sentence or Per word

options, the user can also set the number that corresponds to the desired amount of sen-

tences or words. By choosing the Level option, the user can also define whether he want

to use the same type of indentation of the Leopold, Mendling and Polyvyanyy (2014)

approach (i.e., Tab toggle button). It should be noted that the None, Per sentence, and Per

word criteria can be influenced by toggle buttons. Therefore, text configured to produce

paragraphs with a size of 5 sentences can produce a smaller paragraph if the Split Gate-

way toggle button is active or a longer paragraph if the Keep Procedure Together toggle

126

Figure 5.4: Prototype: Text Structuring sidebar.

Source: The authors

button is active. On the other hand, the Level criterion will not be influenced. In this case,

by selecting the Level option the toggle buttons will be deselected and disabled.

The radio button Bullet Point defines how the different paths generated by a gate-

way will be marked. The possible options are: None (i.e., bullet points will not be used),

Trace (i.e., a trace will be used as bullet point), and Number (i.e., a number will be used

as bullet point). For the Number option, the first path after a gateway will receive the

number “1” and the others will receive an increment of that number. In addition, in cases

where there are nested gateways, numbers followed by dots will be used to represent the

internal paths. As an example, considering the process model present in Figure 3.3, the

path represented as “condition A” would receive the number “1”, the path represented

as “condition B” would receive the number “2”, the path represented as “condition C”

would receive the number “1.1”, and the path represented as “condition D” would receive

the number “1.2”.

By default, all toggle buttons start unchecked. In addition, the Paragraph Split

radio button starts by marking the option Per sentence and the number of sentences equal

to 5. Moreover, the Bullet Point starts by marking the option None.

The sidebar Verifications is responsible for configuring which issues identified by

the Process Verification Service will be displayed to the user. As can be seen in the Figure

5.5, this sidebar is composed of a toggle button and two drop-down lists. The toggle

button (i.e., Show toggle button) defines whether the issues found should be also displayed

127

Figure 5.5: Prototype: Verifications sidebar.

Source: The authors

in the business process-oriented text (i.e., PROCESS tab). The first drop-down list (i.e.,

SOURCES drop-down list) should filter the issues so that only those whose source is the

same as those marked in the drop-down list are displayed. Finally, the second drop-down

list (i.e., TYPES drop-down list) should filter the issues so that only those whose type

is the same as those marked in the drop-down list are displayed. If no options from a

drop-down list are selected, the verification messages associated with this filter will not

be filtered and then all verification messages will appear. By default, the toggle button

and the drop-down lists start deselected.

5.2 Similarity Verification

In order to verify if the text generated by the approach is in accordance with its

respective process, we performed a similarity verification between the generated text and

the original process. This verification must take into account whether the process ele-

ments described in the generated text are equivalent to the process elements present in the

original process and whether these process elements are equally related. Thus, the gener-

ated text will be considered similar to the original process when it has the same process

elements as the original process and these process elements occur in the same order as

the original process.

128

Considering that it is desired to identify the process elements and how they are

related, the original process and the generated text were represented as process models.

This format was chosen to perform the verification because the sequence flows present in

a process model make it explicit how the process elements are related. To be represented

as a process model, a given generated text must be transformed into a generated process

model. In addition, to perform the verification, the original process must have a represen-

tation as the process model (defined here as original process model). Moreover, since the

generated text produces a text from an existing process description, the original process

also needs to have a representation as a textual description (defined here as original text).

Having the generated text and the original process represented as process mod-

els, we used an automatic verification technique based on similarity that assigns a value

to how many different process models are equal. In the following sections, the verifica-

tion procedure (Section 5.2.1) will be presented, as well as the results obtained from the

verification (Section 5.2.2).

5.2.1 Verification Procedure

The procedure for calculating similarity is presented in Figure 5.6. In this figure,

an input text is transformed into a BPMN 2.0 process model (i.e., Process model transfor-

mation). Then, the original process model is compared with the generated process model

by a similarity technique (i.e., Similarity calculation). Finally, the results are stored in a

table (i.e., Similarity table).

For the Process model transformation, the same technique present in Text Reader

Service for identification of process elements in natural language texts was used (i.e., ap-

proach developed by Friedrich, Mendling and Puhlmann (2011)). The fact of using this

transformation approach to convert the input text in BPMN 2.0 process model has some

drawbacks, since it can lose information when doing the transformation. However, this

approach was chosen because, in addition to the factors mentioned in Chapter 4, it allows

to do this transformation automatically which contributes to the replication of the exper-

iment. Another option would be to manually model the input text to then perform the

similarity technique. However, the model produced, and consequently the result of simi-

larity, would be influenced by the modeler’s experience in modeling BPMN 2.0 processes,

in understanding the proposed process descriptions, and in the English language.

Moreover, there are other approaches that allow us to calculate similarity without

129

Figure 5.6: Procedure for calculating similarity.

Source: The authors

having to turn the generated text into a process model (SÀNCHEZ-FERRERES; CAR-

MONA; PADRÓ, 2017; AA; LEOPOLD; REIJERS, 2017). However, such approaches

aimed at aligning the natural language text with the process model and not by defining

a similarity between them. Using these approaches in order to verify the similarity be-

tween a natural language text and a process model could be undesirable because these

approaches only compare the sentences of the text with the labels of the process model

and do not take into account the structure of the process. Thus, in these approaches a

sentence of a text and an activity of a process model can describe the same action (i.e.,

sharing of the same words) and therefore present a high similarity, even if the sentence de-

scribes that the action must occur at the beginning of the process and the activity describes

130

that the action must occur at the end of the process. One option would be to adapt such

approaches so that, after alignment, they define a value of general similarity between the

text and the process. However, it would be necessary to create a new similarity technique.

In addition, in none of these papers the proposed tool was found available.

Regarding similarity calculation it is possible to find in the literature different tech-

niques that allow to calculate the similarity between different process models (BECKER;

LAUE, 2012; DUMAS; GARCÍA-BAÑUELOS; DIJKMAN, 2009). Similarity tech-

niques generally compare two process models and assign a value to how much these

process models are similar. In this sense, a technique can take into account different

factors that it considers relevant (e.g., labels, amount of process elements, relationship

between process elements), compare two process models and assign a value for when

these process models are different (i.e., we will consider in this work low similarity as

value 0), intermediate values for when they present resemblances, and another value for

when they are equal (i.e., we will consider in this work high similarity as value 1). Among

these techniques, the similarity was calculated taking into account the technique of Graph

edit distance similarity (DIJKMAN; DUMAS; GARCÍA-BAÑUELOS, 2009).

The graph edit distance is defined as the minimal possible distance induced by a

mapping between the two processes (DIJKMAN et al., 2011). The technique first makes

a mapping between the process elements of two process models taking into account the

labels of the elements. Then, the technique calculates how many operations (i.e., insert,

delete, substitution of elements) are required for one process model to become equal to

the other. For this, the technique takes the two process models and transforms them into

graphs where the graph nodes (represented as N) are activities, events and gateways. In

addition, the graph edges (represented as E) are the sequence flows. To perform the cal-

culation, the approach considers three transformation operations: (1) Node substitution

where a node from one graph is substituted for a node from the other graph; (2) Node

insertion/deletion where a node is inserted into or deleted from a graph; (3) Edge inser-

tion/deletion where an edge is inserted into or deleted from a graph.

The graph edit distance similarity is based on graph edit distance and allows com-

paring two process models assigning a value between 0 and 1 for how much these models

are similar (i.e., the higher the number, the more similar the process models are). The

similarity is given as 1− grapheditdistance. That is, the smaller the graph edit distance,

the greater the graph edit distance similarity.

This technique was selected because it allows analyzing the labels of the process

131

elements and how the process elements are related. In addition, the technique is described

in the same programming language as the developed prototype (i.e., JAVA) and present

itself as capable of verifying process models in different representations (including BPMN

2.0). Finally, the technique is publicly available in ProM process mining and analysis

framework2.

Figure 5.7: Process model transformation.

Source: The authors

However, this technique has some points that can be considered as disadvantages.

One of these points is that it performs a transformation of the model into a graph where the

gateways and events are disregarded. According to Dijkman, Dumas and García-Bañuelos

(2009), these nodes can be disregarded during the similarity calculation process because

they are one of those responsible for the combinatorial explosion when comparing process

models, which affects this technique. However, Becker and Laue (2012) has already

shown that this may lead to different process models being considered similar, which

is undesirable in our verification. As an example, in the Figure 5.7, when the events and

gateways are disregarded, both process models are converted to the same graph. However,

there are different methods of transforming the process model into a graph (BECKER;

LAUE, 2012). In the method we use, events and gateways that do not have a label receive

their respective types as labels (e.g., “startevent”, “xorsplit”, “andjoin”, “endevent”). As

2http://prom.sourceforge.net; last acessed 2019-02-02

132

presented by Becker and Laue (2012) for the technique proposed by Grigori et al. (2010),

inserting labels to these process elements allows assigning a slightly lower similarity for

process models that are similar but have different types of gateways and events.

Another possible disadvantage of this technique is related to processing time. Ac-

cording to Becker and Laue (2012), techniques like graph edit distance similarity con-

sume a long processing time because they analyze the complete structure of the process

and this can be undesirable for identifying similar process models in a large repository.

This does not present itself as a problem for our approach since the technique intends

to compare only two process models for each process considered in this verification and

does not conduct a search in a large repository with several process models. In addition,

in order to find the mapping that induces the maximal similarity, we used the greedy al-

gorithm presented in Dijkman, Dumas and García-Bañuelos (2009) since this algorithm

presented a good mean average precision and a low execution time.

Similarity = 1.0− wskipn · fskipn+ wskipe · fskipe+ wsubn · fsubn
wskipn+ wskipe+ wsubn

(5.1)

According Dijkman, Dumas and García-Bañuelos (2009), the similarity can be

given according to equation 5.1. For its equation, the following elements are presented:

• wskipn: weight assign to inserted or deleted nodes (0 ≤ wskipn ≤ 1).

• fskipn: fraction of inserted or deleted nodes. It is defined as the amount of inserted

and deleted nodes (|skipn|) divided by the sum of the number of nodes of graph 1

(|N1|) and graph 2 (|N2|) (see Equation 5.2).

• wskipe: weight assign to inserted or deleted edges (0 ≤ wskipe ≤ 1).

• fskipe: fraction of inserted or deleted edges. It is defined as the amount of inserted

and deleted edges (|skipe|) divided by the sum of the number of edges of graph 1

(|E1|) and graph 2 (|E2|) (see Equation 5.3).

• wsubn: weight assign to substituted nodes (0 ≤ wsubn ≤ 1).

• fsubn: average distance of substituted nodes. It is defined as the mapping (M) that

assigns a similarity value between two nodes when checking the string edit distance

between its labels (Sim(n,m)) divided by the amount of substituted nodes (|subn|).

(see Equation 5.4).

133

fskipn =
|skipn|
|N1|+ |N2|

(5.2)

fskipe =
|skipe|
|E1|+ |E2|

(5.3)

fsubn =
2.0 ·

∑
(n,m)∈M 1− Sim(n,m)

|subn|
(5.4)

It is possible to customize the algorithm by assigning different values for wskipn,

wskipe, and wsubn. Thus, different significance may be given for each operation (i.e.,

Node insertion/deletion, Edge insertion/deletion, and Node substitution). As well as Di-

jkman et al. (2011), the following values were assigned to the weights: wskipn = 0.1,

wskipe = 0.2, and wsubn = 0.8.

As similarity techniques consider different factors to define when two models are

similar (e.g., labels, structure, amount of nodes), different similarity techniques, or even

different weights for the same similarity technique, can produce different results when

comparing two process models. As an example, a similarity technique S1 can consider

that two process models have a similarity of 0.93 while a second technique S2 can consider

that the similarity between these same process models is 0.68. Thus, in order to compare

the results obtained in this dissertation, the similarity will be presented for three different

cases. Considering Figure 5.6, the procedure for calculating similarity will be the same

for the three cases, changing in each case only the Input text. In the first case, the Input

text will be the original text. In the second case, the Input text will be the text generated

from the original text. In the third case, the Input text will be the text generated from the

original process model. Finally, results obtained by calculating the similarity in each case

were inserted into tables called similarity tables.

5.2.2 Results Obtained by the Similarity Technique

In order to perform the verification, the same process descriptions presented in

Chapter 3 were used. Given the 81 process descriptions considered in this work (see

Appendix), 15 have been disregarded since they do not have the original process model

(Pd58 to Pd65, and Pd75 to Pd81). In addition, 4 were disregarded because the prototype

used by us for the identification of process elements and their relationships was not able

134

to read the text and produce a process model (Pd1, Pd35, Pd36, and Pd70). Thus, 62

business process descriptions were selected in order to perform this verification.

Taking into account the similarity technique employed and the different weights

adopted, Table 5.1 presents the average similarity for the different data sources. In addi-

tion, Tables 5.2 and 5.3 present the results obtained for each business process description.

These tables contain the id of the business process description (i.e., PdID), the similarity

between the original text and the original process model (i.e., Original text), the simi-

larity between the text generated from the original text and the original process model

(i.e., Generated from text), and the similarity between the text generated from the original

process model and the original process model (i.e., Generated from model).

Table 5.1: Similarity summary.
Source Original Text Generated from

Text
Generated from

Model
Friedrich (2010) 73.02% 71.15% 71.88%
Dumas et al. (2013) 59.59% 55.13% 64.44%
Total 69.16% 66.50% 69.73%

Source: The authors

As can be seen, was obtained a greater similarity in business process descriptions

extracted from Friedrich (2010) dissertation than from business process descriptions ex-

tracted from Dumas et al. (2013) book. In analyzing some of the worst results from

business process descriptions extracted from Dumas et al. (2013) it is possible to observe

that this results is connected to the approach of identification of process elements since it

influences the similarity of original text and text generated from text, but do not have an

impact on the text generated from model (i.e., Pd48, Pd66, Pd72). Since the business pro-

cess descriptions present in Friedrich (2010) were the same as those used by the approach

for process element identification, it is expected that common structures present in these

business process descriptions (e.g., some stop words used to identify a parallelism or an

exclusivity in a process description) where assimilated by the approach. Another fac-

tor that reinforces this reasoning is that, according to Table 5.1, for process descriptions

whose source is “Dumas et al. (2013)”, texts generated from models presented similarity

considerably superior to the original texts and texts generated from text (something that is

not observed for process descriptions whose source is “Friedrich (2010)”). Thus, this can

be considered as an opportunity for improvement in the process element identification

approach (i.e., used in this work in the Text Reader Service) since texts extracted from

Dumas et al. (2013) may reveal new ways of describing business processes and, conse-

135

Table 5.2: Similarity - Part 1.
PdID Original Text Generated from Text Generated from Model
Pd2 75.76% 74.64% 74.21%
Pd3 74.71% 74.19% 74.66%
Pd4 74.10% 73.39% 74.95%
Pd5 73.59% 73.74% 73.89%
Pd6 74.45% 74.04% 73.71%
Pd7 73.55% 73.55% 73.86%
Pd8 76.36% 76.22% 76.36%
Pd9 76.03% 76.03% 74.75%
Pd10 76.56% 74.75% 75.00%
Pd11 73.22% 73.25% 73.52%
Pd12 76.36% 75.32% 74.18%
Pd13 75.00% 75.00% 75.00%
Pd14 75.42% 74.18% 74.38%
Pd15 72.92% 72.90% 73.08%
Pd16 73.55% 73.55% 74.03%
Pd17 74.64% 73.68% 74.75%
Pd18 73.54% 73.55% 73.35%
Pd19 73.59% 73.55% 75.00%
Pd20 73.78% 73.50% 73.90%
Pd21 75.76% 75.76% 75.52%
Pd22 73.28% 73.25% 73.68%
Pd23 78.11% 73.52% 74.80%
Pd24 55.50% 37.32% 55.41%
Pd25 63.55% 40.41% 46.75%
Pd26 55.24% 55.24% 46.46%
Pd27 46.58% 33.08% 47.61%
Pd28 74.75% 74.64% 73.57%
Pd29 74.29% 74.33% 74.03%
Pd30 73.45% 73.48% 73.28%
Pd31 73.38% 73.40% 73.71%

Average 73.02% 71.15% 71.88%
Source: The authors

quently, the existing approach can be refined to become even more effective in identifying

process elements and their relationships.

In addition, it is possible to observe that the similarity of the texts generated from

text presented results slightly inferior to original texts. This was expected since, as well as

the original text, the text generated from text also depends on the approach of identifying

process elements in a text. However, although slightly inferior, the text generated from

text (just as texts generated from model) has different advantages, such as: use of recurring

sentence templates, less potential to present ambiguity issues, and allow the marking of

136

Table 5.3: Similarity - Part 2.
PdID Original Text Generated from Text Generated from Model
Pd32 73.66% 73.28% 73.86%
Pd33 73.68% 73.62% 73.29%
Pd34 76.36% 74.64% 74.38%
Pd37 76.95% 73.48% 73.41%
Pd38 75.15% 75.15% 75.52%
Pd39 76.36% 74.64% 74.38%
Pd40 74.68% 74.07% 73.94%
Pd41 74.75% 74.13% 74.03%
Pd42 76.36% 74.03% 73.98%
Pd43 74.69% 73.77% 73.64%
Pd44 74.69% 73.74% 73.68%
Pd45 76.09% 74.24% 74.07%
Pd46 74.75% 74.87% 74.38%
Pd47 75.91% 73.37% 73.32%
Pd48 28.06% 11.22% 74.31%
Pd49 74.31% 74.24% 74.31%
Pd40 50.66% 49.70% 74.87%
Pd51 73.38% 73.43% 74.68%
Pd52 55.41% 55.41% 33.72%
Pd53 73.61% 73.21% 73.64%
Pd54 55.68% 55.68% 52.01%
Pd55 73.68% 73.68% 58.15%
Pd56 73.64% 73.68% 50.67%
Pd57 73.84% 73.82% 73.68%
Pd66 12.04% 11.90% 57.23%
Pd67 73.17% 27.73% 48.93%
Pd68 73.55% 73.48% 73.38%
Pd69 73.22% 73.23% 73.17%
Pd71 42.65% 26.17% 73.48%
Pd72 18.94% 18.88% 74.31%
Pd73 73.10% 73.11% 73.34%
Pd74 73.68% 73.74% 46.05%

Average 59.59% 55.13% 64.44%
Source: The authors

process elements in sentences snippets.

Moreover, it is important to note that texts generated from model presented a sim-

ilarity slightly superior to the original texts, which suggests the ability to produce more

structured texts by improving the process element identification approach. Thus, one

point that may be interesting would be the process analyst already describing the process

following the structure defined in Chapter 3. In any case, it is important to remember that

the purpose of this work is not to produce the process model. The purpose is to produce

137

a description that can be used as a resource for communication between process analyst

and the domain expert as a step prior to process modeling.

In addition to improving the Text Reader Service, other steps can be taken toward

obtaining a greater similarity value for the approach presented in this dissertation. A

possible step would be to increase the scope of process elements considered in this work.

Since some process elements are not representable by the current approach, some process

elements may not have been properly identified in a business process description by the

Text Reader Service or may not have been properly transformed into a sentence by the

Text Writer Service. Another step would be to identify whether the original business

process description and the original process model are at the same level of abstraction. If

one presents itself as more detailed than the other, comparing similarity results may be

impaired.

5.3 Final Considerations

This chapter presents the prototype constructed from the approach proposed by

this work. In addition, this chapter presents the verification technique based on similarity

that verifies if the generated text is structured according to the business process.

As it was presented, the prototype interface consists of a single web page with dif-

ferent tabs that allow the manipulation of the files generated by the services (i.e., Process

Verification File, and Text Metadata File). This prototype can be complemented in order

to provide new user interactions, such as marking other process elements in the business

process description, adding other possibilities of text structuring, or even presenting to

the user the respective BPMN 2.0 process model.

Regarding the verification technique based on similarity, a method was presented

that allows to automatically define how texts produced by the approach are structurally

similar to their respective business processes (i.e., represented through the original pro-

cess models). This validation was made in business process descriptions obtained from

two different sources and presented good results, but also demonstrated some possible

points of improvement. In addition, we have presented factors that may have influenced

the similarity results and possible steps that can be taken to increase similarity and, con-

sequently, generate more structured business process descriptions.

In the following chapter will be presented the conclusions of this work.

138

6 CONCLUSION

This work brings as a contribution an approach that allows the generation of busi-

ness process-oriented text from natural language text. In this work, a business process-

oriented text is a text that is structured, able to maintain the maximum information related

to the business process, and able to check the quality of the process in relation to the

BPMN 2.0 and in relation to soundness. For this, empirical analyses were performed to

determine how a text should be constructed (Chapter 3). In addition, an SOA-based ar-

chitecture was developed in which the steps required to generate the text are addressed

as individual services (Chapter 4). In order to make possible the test of the developed ar-

chitecture, a prototype was built. In addition, the process description produced by the ap-

proach was compared to the original process model through a similarity technique based

on graph-edit distance (Chapter 5).

The following specific objectives have been achieved:

• Define how a business process-oriented text should be: For that, in Chapter 3 anal-

yses were performed in order to define how the text should be structured and which

sentences should be used to compose a business process-oriented text.

• Define an architecture that allows the generation of business process-oriented text:

For that, the Chapter 4 presents a SOA architecture composed of 3 contracts and

five services that enables the generation of business process-oriented texts.

• Check the similarity of the business process-oriented text to the original process:

An analysis was performed using a graph edit distance similarity technique to de-

termine if the text produced by the approach is in accordance with the original

business process model.

In addition, the main contributions of this work are:

• In order to define how a process description should be, empirical analyses of the

literature and existing business descriptions have been developed. This analysis

sought to answer five different questions related to business processes descriptions.

In addition, we presented 101 sentence templates that were identified, quantified,

categorized, and verified in terms of ambiguity issues. Both the analyses, as well as

the design defined in this work, can be useful for approaches that generate business

process descriptions or approaches that perform process discovery from business

process descriptions.

139

• Creation of an architecture for generation of business process-oriented text. This

architecture is based on SOA and consists of 5 services that allow: the storage and

discovery of services (i.e., Service Registry), the identification of process elements

and their respective relationships in a business process description (i.e., Text Reader

Service), the verification of the process according to BPMN 2.0 and soundness

(i.e., Process Verification Service), the generation of a business process description

following the text design defined in Chapter 3 (i.e., Text Writer Service), and the

interaction with the user and with the other services (i.e., Main Service).

• In order to make possible the test of the developed architecture in Chapter 4, a proto-

type that allows the generation of business process-oriented texts was implemented.

Moreover, this prototype allows the marking of process elements in a process de-

scription and structuring of text.

Despite the contributions presented above, this work presents some possible limi-

tations. The first is related to the limited set of process elements considered by the work.

Even using the most recurring process elements in BPMN 2.0, the notation has several

process elements and their presence in a process description or a process model may not

be properly considered by the current approach. In this sense, extending the approach to

more process elements can contribute to a more complete business process-oriented text.

Another limitation could be the fact that the analyses for the design of text performed

in Chapter 3 are carried out manually. Even considering the problems pointed out in an

automatic analysis, once the procedure for identifying and classifying sentence templates

has already been defined in this work, an automatic analysis could collect information

from a larger set of process descriptions and find new sentence templates. Thus, the de-

velopment of an automatic analysis presents opportunities for future works. Finally, once

a prototype has been developed, other validations beyond the similarity technique could

be made. One option would be a scenario in which users could interact with the prototype

or with the business process-oriented text generated by it.

Nevertheless, the work showed promising results regarding the generation of busi-

ness process descriptions. Since we used recurrent and filtered sentence templates, we

tried to produce process descriptions in a way that is closer to a pattern and with less am-

biguity issues. In addition, given the architecture developed, the current services can be

enhanced and new services can be made available to complement the approach. Finally,

as stated earlier, the purpose of this work is not to produce a process model, but rather to

supplement the information of a process or be used by process analyst and domain experts

140

as a document during the process discovery phase. Therefore, the goal is not that this doc-

ument should transform or replace a process model. The goal is for this document to be

confronted with the domain expert in order to better understand how a process occurs in

an organization.

The following possibilities has been identified as future works:

• Regarding process description design analysis in Chapter 3, the approach could

be augmented with new samples of process descriptions (i.e., currently 64 process

descriptions).

• Regarding the sentence template analysis, NLP techniques can be used to automat-

ically extract sentence templates from business process descriptions.

• The analysis of sentence templates developed in Chapter 3 could be updated to be

able to represent a greater amount of process elements and new cases of ambiguity

issue.

• The contracts defined in Chapter 4 could be updated by identifying new ways of

representing and manipulating business process descriptions.

• The services developed in Chapter 4 could also be updated to be able to represent a

greater amount of process elements.

• With respect to the Text Reader Service, functionalities could be developed with the

aim of improving the similarity of texts based on the points of possible improve-

ments discussed in Section 4.4.3.

• With regard to Process Verification Service, it could increase the possible veri-

fications made by the approach. For this, new algorithms could be created to

verify process descriptions or to use other techniques such as BPMN ontologies

(ROSPOCHER; GHIDINI; SERAFINI, 2014; NATSCHLÄGER, 2011) to verify

the process described.

• Regarding the prototype, new forms of user interaction with the business process-

oriented text could be created. One option would be to allow the user to interact with

the input provided without having to perform the processing again. One possibility

for this would be to consider the id of the process element. Thus, by modifying

the label of an activity, it might not be necessary to do the entire procedure to

141

identify process elements, checking the process, and generating the text for the

whole business process again.

6.1 Publications

This section presents the scientific productions related to this dissertation. In all,

three papers were produced and will be described in chronological order. For each paper

will be presented the name of the paper, the authors, the Conference/Journal, the year of

publication, and the Qualis1 at the time of submission.

The first two papers were about topics related to the application of NLP in BPM,

in which this author participated as writer or co-writer of the paper. The third paper

is related to empirical analysis of sentence templates and ambiguity issues for business

process descriptions (i.e., Section 3.3).

• Recognition of Business Process Elements in Natural Language Texts.

Authors: Renato César Borges Ferreira, Thanner Soares Silva, Diego Toralles Avila,

Lucinéia Heloisa Thom, and Marcelo Fantinato.

Conference/Journal: Springer Book.

Year of publication: 2018.

Qualis: N/A.

• Natural Language Processing in Business Process Identification and Modeling:

A Systematic Literature Review.

Authors: Ana Cláudia de Almeida Bordignon, Lucinéia Heloisa Thom, Thanner

Soares Silva, Vinicius Stein Dani, Marcelo Fantinato, and Renato Cesar Borges

Ferreira.

Conference/Journal: XIV Brazilian Symposium on Information Systems - SBSI

2018.

Year of publication: 2018.

Qualis: B2.

• Empirical Analysis of Sentence Templates and Ambiguity Issues for Business

Process Descriptions.

Authors: Thanner Soares Silva, Lucinéia Heloisa Thom, Aline Weber, José Palazzo

1Brazilian system of quality evaluation of the intellectual production of graduate programs.

142

Moreira de Oliveira, and Marcelo Fantinato.

Conference/Journal: 26th International Conference on Cooperative Information

Systems - CoopIS 2018.

Year of publication: 2018.

Qualis: A2.

143

7 APPENDIX: BUSINESS PROCESS DESCRIPTIONS

Tables 7.1 to 7.3 present the business process descriptions used in this work.

Each table has a business process description identifier (i.e., PdID), the name of the

business process description, and whether the business process description is accom-

panied by some process model. Business process descriptions are available at: <https:

//github.com/thanner/ProcessDescriptions>.

Table 7.1: Business process descriptions 1.
PdID Business Process Description Name Contains

Model
Business process descriptions by Friedrich (2010)
Pd1 Bicycle manufacturing yes
Pd2 Computer repair yes
Pd3 Hotel Service yes
Pd4 Underwriters yes
Pd5 SLA Violation yes
Pd6 Supplier Switch yes
Pd7 MC Finalise SCT Warrant Posession yes
Pd8 Conduct Directions Hearing yes
Pd9 Repetition Cycles yes
Pd10 Event-based Gateways yes
Pd11 P&E - Lodge Originating Document by Post yes
Pd12 Claims Notification yes
Pd13 Claims Creation yes
Pd14 Claims Handling Process yes
Pd15 Intaker Work yes
Pd16 Active VOS Tutorial yes
Pd17 BizAgi Tutorial 1 yes
Pd18 BizAgi Tutorial 2 yes
Pd19 Oracle Tutorial yes
Pd20 ACME yes
Pd21 Inubit AG Tutorial yes
Pd22 Powerlicht yes
Pd23 Turbopixel yes
Pd24 Calling Leads yes
Pd25 HR Process - Simple yes
Pd26 HR Process - HR Department yes
Pd27 HR Process - Functional Department yes
Pd28 Exercise 1 yes
Pd29 Exercise 2 yes
Pd30 Exercise 3a yes
Pd31 Exercise 3b yes

Source: The authors

https://github.com/thanner/ProcessDescriptions
https://github.com/thanner/ProcessDescriptions

144

Table 7.2: Business process descriptions 2.
PdID Business Process Description Name Contains

Model
Pd32 Exercise 4 yes
Pd33 Exercise 5 yes
Pd34 Process B2 yes
Pd35 Process B3 yes
Pd36 Process B4 yes
Pd37 Process B5.1 yes
Pd38 Process B5.2 yes
Pd39 Process B6 yes
Pd40 Process B7 yes
Pd41 Process B8 yes
Pd42 Process C1 yes
Pd43 Process C2 yes
Pd44 Process C3 yes
Pd45 Process D1 yes
Pd46 Process D2 yes
Pd47 Process D3 yes
Business process descriptions by Dumas et al. (2013)
Pd48 Example 3.2 yes
Pd49 Exercise 3.1 yes
Pd50 Example 3.3 yes
Pd51 Exercise 3.2 yes
Pd52 Example 3.5 yes
Pd53 Example 3.6 yes
Pd54 Exercise 3.3 yes
Pd55 Example 3.7 yes
Pd56 Exercise 3.4 yes
Pd57 Example 3.8 yes
Pd58 Exercise 3.10 no
Pd59 Exercise 3.11 no
Pd60 Exercise 3.12 no
Pd61 Exercise 3.13 no
Pd62 Exercise 3.18 no
Pd63 Exercise 3.19 no
Pd64 Exercise 3.20 no
Pd65 Example 4.1 no
Pd66 Exercise 4.4 yes
Pd67 Exercise 4.5 yes
Pd68 Example 4.3 yes
Pd69 Exercise 4.7 yes

Source: The authors

145

Table 7.3: Business process descriptions 3.
PdID Business Process Description Name Contains

Model
Pd70 Exercise 4.8 yes
Pd71 Exercise 4.11 yes
Pd72 Exercise 4.12 yes
Pd73 Exercise 4.14 yes
Pd74 Exercise 4.16 yes
Pd75 Exercise 4.18 no
Pd76 Exercise 4.22 no
Pd77 Exercise 4.28 no
Pd78 Exercise 4.30 no
Pd79 Exercise 4.31 no
Pd80 Exercise 4.33 no
Pd81 Exercise 4.34 no

Source: The authors

146

REFERENCES

AA, H. van der; LEOPOLD, H.; REIJERS, H. A. Detecting inconsistencies between
process models and textual descriptions. In: SPRINGER. International Conference on
Business Process Management. [S.l.], 2015. p. 90–105.

AA, H. van der; LEOPOLD, H.; REIJERS, H. A. Dealing with behavioral ambiguity
in textual process descriptions. In: SPRINGER. International Conference on Business
Process Management. [S.l.], 2016. p. 271–288.

AA, H. van der; LEOPOLD, H.; REIJERS, H. A. Comparing textual descriptions
to process models–the automatic detection of inconsistencies. Information Systems,
Elsevier, v. 64, p. 447–460, 2017.

AA, H. van der; LEOPOLD, H.; REIJERS, H. A. Checking process compliance against
natural language specifications using behavioral spaces. Information Systems, Elsevier,
2018.

AALST, W. M. V. D. Business process management: a comprehensive survey. ISRN
Software Engineering, Hindawi Publishing Corporation, v. 2013, 2013.

AALST, W. M. V. D.; HOFSTEDE, A. H. T. Yawl: yet another workflow language.
Information systems, Elsevier, v. 30, n. 4, p. 245–275, 2005.

AALST, W. M. van D. et al. Workflow patterns. Distributed and parallel databases,
Springer, v. 14, n. 1, p. 5–51, 2003.

AALST, W. M. van D.; PESIC, M.; SCHONENBERG, H. Declarative workflows:
Balancing between flexibility and support. Computer Science-Research and
Development, Springer, v. 23, n. 2, p. 99–113, 2009.

AALST, W. M. Van der. The application of petri nets to workflow management. Journal
of circuits, systems, and computers, World Scientific, v. 8, n. 01, p. 21–66, 1998.

AALST, W. M. Van der. Formalization and verification of event-driven process chains.
Information and Software technology, Elsevier, v. 41, n. 10, p. 639–650, 1999.

AALST, W. M. van der. Business process management: a personal view. Business
Process Management Journal, Emerald Group Publishing Limited, v. 10, n. 2, 2004.

AALST, W. Van der; WEIJTERS, T.; MARUSTER, L. Workflow mining: Discovering
process models from event logs. IEEE Transactions on Knowledge & Data
Engineering, IEEE, n. 9, p. 1128–1142, 2004.

ADAMS, M.; HOFSTEDE, A. ter. Yawl user manual, version 4.1. User manual, The
YAWL Foundation, 2016.

AKBAR, S.; BAJWA, I. S.; MALIK, S. Scope resolution of logical connectives in
nl constraints. In: IEEE. Eighth International Conference on Digital Information
Management. [S.l.], 2013. p. 217–222.

147

AYSOLMAZ, B. et al. A semi-automated approach for generating natural language
requirements documents based on business process models. Information and Software
Technology, Elsevier, v. 93, p. 14–29, 2018.

BAKER, C. F.; FILLMORE, C. J.; LOWE, J. B. The berkeley framenet project. In:
ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 17th
international conference on Computational linguistics-Volume 1. [S.l.], 1998. p.
86–90.

BALANI, N.; HATHI, R. Apache Cxf web service development: Develop and deploy
SOAP and RESTful web services. [S.l.]: Packt Publishing Ltd, 2009.

BEARD, R.; VOLPE, M. Lexeme-morpheme base morphology. In: Handbook of
word-formation. [S.l.]: Springer, 2005. p. 189–205.

BECKER, M.; LAUE, R. A comparative survey of business process similarity measures.
Computers in Industry, Elsevier, v. 63, n. 2, p. 148–167, 2012.

BLUMBERG, R.; ATRE, S. The problem with unstructured data. Dm Review, POWELL
PUBLISHING INC, v. 13, n. 42-49, p. 62, 2003.

BORDIGNON, A. C. de A. et al. Natural language processing in business process
identification and modeling: A systematic literature review. In: ACM. Proceedings of
the XIV Brazilian Symposium on Information Systems. [S.l.], 2018. p. 25.

BROCKE, J. V.; ROSEMANN, M. et al. Handbook on business process management.
[S.l.]: Springer, 2010.

BUSEMANN, S. Best-first surface realization. arXiv preprint cmp-lg/9605010, 1996.

CAPORALE, T. A tool for natural language oriented business process modeling. In:
ZEUS. [S.l.: s.n.], 2016. p. 49–52.

CHANNABASAVAIAH, K.; HOLLEY, K.; TUGGLE, E. Migrating to a service-oriented
architecture. IBM DeveloperWorks, v. 16, p. 727–728, 2003.

DIJKMAN, R. et al. Similarity of business process models: Metrics and evaluation.
Information Systems, Elsevier, v. 36, n. 2, p. 498–516, 2011.

DIJKMAN, R.; DUMAS, M.; GARCÍA-BAÑUELOS, L. Graph matching algorithms
for business process model similarity search. In: SPRINGER. International conference
on business process management. [S.l.], 2009. p. 48–63.

DUMAS, M.; GARCÍA-BAÑUELOS, L.; DIJKMAN, R. M. Similarity search of
business process models. IEEE Data Eng. Bull., v. 32, n. 3, p. 23–28, 2009.

DUMAS, M.; HOFSTEDE, A. H. T. Uml activity diagrams as a workflow specification
language. In: SPRINGER. International conference on the unified modeling
language. [S.l.], 2001. p. 76–90.

DUMAS, M. et al. Fundamentals of business process management. [S.l.]: Springer,
2013.

148

DUMAS, M. et al. Fundamentals of business process management. In: . [S.l.]: Springer,
2018.

ELHADAD, M.; ROBIN, J. Surge: a comprehensive plug-in syntactic realization
component for text generation. Computational Linguistics, Citeseer, v. 99, n. 4, 1997.

ELSTERMANN, M.; HEUSER, T. Automatic tool support possibilities for the text-based
s-bpm process modelling methodology. In: ACM. Proceedings of the 8th International
Conference on Subject-oriented Business Process Management. [S.l.], 2016. p. 3.

EPURE, E. V. et al. Automatic process model discovery from textual methodologies.
In: IEEE. Research Challenges in Information Science (RCIS), 2015 IEEE 9th
International Conference on. [S.l.], 2015. p. 19–30.

ERL, T. Soa: principles of service design. [S.l.]: Prentice Hall Upper Saddle River,
2008.

FERRARI, A. et al. Improving the quality of business process descriptions of public
administrations: Resources and research challenges. Business Process Management
Journal, Emerald Publishing Limited, v. 24, p. 49–66, 2017.

FERREIRA, R. C. B.; THOM, L. H.; FANTINATO, M. A semi-automatic approach to
identify business process elements in natural language texts. In: Proceedings of the 19th
International Conference on Enterprise Information Systems. To appear. [S.l.: s.n.],
2017.

FERREIRA, R. C. B. et al. Assisting process modeling by identifying business process
elements in natural language texts. In: SPRINGER. International Conference on
Conceptual Modeling. [S.l.], 2017. p. 154–163.

FIALLI, J.; VAJJHALA, S. The java architecture for xml binding (jaxb). JSR
Specification, January, 2003.

FIELDING, R. T.; TAYLOR, R. N. Architectural styles and the design of network-
based software architectures. [S.l.]: University of California, Irvine Doctoral
dissertation, 2000.

FRIEDRICH, F. Automated generation of business process models from natural language
input. M. Sc., School of Business and Economics. Humboldt-Universität zu Berli,
Citeseer, 2010.

FRIEDRICH, F.; MENDLING, J.; PUHLMANN, F. Process model generation from
natural language text. In: SPRINGER. International Conference on Advanced
Information Systems Engineering. [S.l.], 2011. p. 482–496.

GHOSE, A.; KOLIADIS, G.; CHUENG, A. Process discovery from model and text
artefacts. In: IEEE. Services, 2007 IEEE Congress on. [S.l.], 2007. p. 167–174.

GOLDBERG, E.; DRIEDGER, N.; KITTREDGE, R. I. Using natural-language
processing to produce weather forecasts. IEEE Intelligent Systems, IEEE, n. 2, p.
45–53, 1994.

149

GONCALVES, J. C. de A.; SANTORO, F. M.; BAIAO, F. A. Business process mining
from group stories. In: IEEE. Computer Supported Cooperative Work in Design,
2009. CSCWD 2009. 13th International Conference on. [S.l.], 2009. p. 161–166.

GONÇALVES, J. C. de A.; SANTORO, F. M.; BAIÃO, F. A. A case study on designing
business processes based on collaborative and mining approaches. In: IEEE. Computer
Supported Cooperative Work in Design (CSCWD), 2010 14th International
Conference on. [S.l.], 2010. p. 611–616.

GRIGORI, D. et al. Ranking bpel processes for service discovery. IEEE Transactions
on Services Computing, IEEE, v. 3, n. 3, p. 178–192, 2010.

HADLEY, M. J. Web application description language (wadl). Sun Microsystems, Inc.,
2006.

HALLERBACH, A.; BAUER, T.; REICHERT, M. Managing process variants in the
process lifecycle. 2008.

HEARST, M. A. Multi-paragraph segmentation of expository text. In: ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 32nd annual meeting
on Association for Computational Linguistics. [S.l.], 1994. p. 9–16.

HEARST, M. A. Texttiling: Segmenting text into multi-paragraph subtopic passages.
Computational linguistics, MIT Press, v. 23, n. 1, p. 33–64, 1997.

HEINONEN, O. Optimal multi-paragraph text segmentation by dynamic programming.
In: ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics-Volume 2. [S.l.], 1998. p.
1484–1486.

HERBST, J.; KARAGIANNIS, D. An inductive approach to the acquisition and
adaptation of workflow models. In: Proceedings of the IJCAI. [S.l.: s.n.], 1999. v. 99,
p. 52–57.

HEUSER, T.; ELSTERMANN, M. Working with natural language texts for process
management: Proposal and analysis of a process analysis methodology. In: ACM.
Proceedings of the 8th International Conference on Subject-oriented Business
Process Management. [S.l.], 2016. p. 2.

IORDANSKAJA, L. et al. Generation of extended bilingual statistical reports. In:
ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 14th
conference on Computational linguistics-Volume 3. [S.l.], 1992. p. 1019–1023.

JIANHONG, Y.; SONG, W. Transformation of bpmn diagrams to yawl nets. Journal of
Software, Citeseer, v. 5, n. 4, p. 396–404, 2010.

JURAFSKY, D.; MARTIN, J. H. Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.
[S.l.]: Prentice Hall, Pearson Education International, 2009. 1–1024 p.

150

KUMARI, S.; RATH, S. K. Performance comparison of soap and rest based web
services for enterprise application integration. In: IEEE. Advances in Computing,
Communications and Informatics (ICACCI), 2015 International Conference on.
[S.l.], 2015. p. 1656–1660.

LANZ, A.; KOLB, J.; REICHERT, M. Enabling personalized process schedules with
time-aware process views. In: SPRINGER. International Conference on Advanced
Information Systems Engineering. [S.l.], 2013. p. 205–216.

LAVOIE, B.; RAMBOW, O. A fast and portable realizer for text generation systems. In:
ASSOCIATION FOR COMPUTATIONAL LINGUISTICS. Proceedings of the fifth
conference on Applied natural language processing. [S.l.], 1997. p. 265–268.

LAVOIE, B.; RAMBOW, O.; REITER, E. The modelexplainer. In: Eighth International
Natural Language Generation Workshop (Posters and Demonstrations). [S.l.: s.n.],
1996.

LEOPOLD, H. Natural language in business process models. Thesis (PhD) —
Springer, 2013.

LEOPOLD, H. et al. Integrating textual and model-based process descriptions for
comprehensive process search. In: Enterprise, Business-Process and Information
Systems Modeling. [S.l.]: Springer, 2016. p. 51–65.

LEOPOLD, H.; MENDLING, J.; POLYVYANYY, A. Generating natural language
texts from business process models. In: SPRINGER. International Conference on
Advanced Information Systems Engineering. [S.l.], 2012. p. 64–79.

LEOPOLD, H.; MENDLING, J.; POLYVYANYY, A. Supporting process model
validation through natural language generation. IEEE Transactions on Software
Engineering, IEEE, v. 40, n. 8, p. 818–840, 2014.

LEOPOLD, H.; SMIRNOV, S.; MENDLING, J. Refactoring of process model activity
labels. In: SPRINGER. International Conference on Application of Natural
Language to Information Systems. [S.l.], 2010. p. 268–276.

LI, J. et al. A policy-based process mining framework: mining business policy texts
for discovering process models. Information Systems and E-Business Management,
Springer, v. 8, n. 2, p. 169–188, 2010.

MALIK, S.; BAJWA, I. S. Back to origin: Transformation of business process models
to business rules. In: SPRINGER. International Conference on Business Process
Management. [S.l.], 2012. p. 611–622.

MAQBOOL, B. et al. A comprehensive investigation of bpmn models generation from
textual requirements—techniques, tools and trends. In: SPRINGER. International
Conference on Information Science and Applications. [S.l.], 2018. p. 543–557.

MARNEFFE, M.-C. D. et al. Generating typed dependency parses from phrase structure
parses. In: GENOA ITALY. Proceedings of LREC. [S.l.], 2006. v. 6, n. 2006, p.
449–454.

151

MAYER, R. J. et al. Information integration for concurrent engineering (IICE)
IDEF3 process description capture method report. [S.l.], 1995.

MCROY, S. W.; CHANNARUKUL, S.; ALI, S. S. Text realization for dialog. In:
Proceedings of the International Conference on Intelligent Technologies. [S.l.: s.n.],
2000.

MEITZ, M.; LEOPOLD, H.; MENDLING, J. An approach to support process model
validation based on text generation. In: EMISA Forum. [S.l.: s.n.], 2013. v. 33, n. 2, p.
7–20.

MENDLING, J.; REIJERS, H. A.; AALST, W. M. van der. Seven process modeling
guidelines (7pmg). Information and Software Technology, Elsevier, v. 52, n. 2, p.
127–136, 2010.

MEZIANE, F.; ATHANASAKIS, N.; ANANIADOU, S. Generating natural language
specifications from uml class diagrams. Requirements Engineering, Springer, v. 13,
n. 1, p. 1–18, 2008.

MILLER, G. A. Wordnet: a lexical database for english. Communications of the ACM,
ACM, v. 38, n. 11, p. 39–41, 1995.

MUEHLEN, M. Z.; HO, D. T.-Y. Risk management in the bpm lifecycle. In: SPRINGER.
International Conference on Business Process Management. [S.l.], 2005. p. 454–466.

MURATA, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
IEEE, v. 77, n. 4, p. 541–580, 1989.

NATSCHLÄGER, C. Towards a bpmn 2.0 ontology. In: SPRINGER. International
Workshop on Business Process Modeling Notation. [S.l.], 2011. p. 1–15.

NAWROCKI, J. R. et al. Describing business processes with use cases. In: BIS. [S.l.:
s.n.], 2006. p. 13–27.

NURSEITOV, N. et al. Comparison of json and xml data interchange formats: a case
study. Caine, v. 9, p. 157–162, 2009.

OMG. Business process modeling notation (BPMN). version 2.0.2, 2013. Available from
Internet: <https://www.omg.org/spec/BPMN/>.

OTTENSOOSER, A. et al. Making sense of business process descriptions: An
experimental comparison of graphical and textual notations. Journal of Systems and
Software, Elsevier, v. 85, n. 3, p. 596–606, 2012.

PAUTASSO, C.; WILDE, E. Why is the web loosely coupled?: a multi-faceted metric for
service design. In: ACM. Proceedings of the 18th international conference on World
wide web. [S.l.], 2009. p. 911–920.

PAUTASSO, C.; ZIMMERMANN, O.; LEYMANN, F. Restful web services vs. big’web
services: making the right architectural decision. In: ACM. Proceedings of the 17th
international conference on World Wide Web. [S.l.], 2008. p. 805–814.

https://www.omg.org/spec/BPMN/

152

PITTKE, F. et al. Context-sensitive textual recommendations for incomplete process
model elements. In: SPRINGER. International Conference on Business Process
Management. [S.l.], 2015. p. 189–197.

POLYVYANYY, A.; VANHATALO, J.; VÖLZER, H. Simplified computation and
generalization of the refined process structure tree. In: SPRINGER. International
Workshop on Web Services and Formal Methods. [S.l.], 2010. p. 25–41.

REITER, E.; DALE, R. Building applied natural language generation systems. Natural
Language Engineering, Cambridge University Press, v. 3, n. 1, p. 57–87, 1997.

REITER, E.; DALE, R. Building natural language generation systems. [S.l.]:
Cambridge university press, 2000.

REN, M.; LYYTINEN, K. J. Building enterprise architecture agility and sustenance with
soa. Communications of the Association for Information Systems, v. 22, n. 1, p. 4,
2008.

RIEFER, M.; TERNIS, S. F.; THALER, T. Mining process models from natural language
text: A state-of-the-art analysis. Multikonferenz Wirtschaftsinformatik (MKWI-16),
March, p. 9–11, 2016.

RODRIGUES, R. D. A.; AZEVEDO, L. G.; REVOREDO, K. C. Bpm2text: A
language independent framework for business process models to natural language text.
iSys-Revista Brasileira de Sistemas de Informação, v. 9, n. 4, p. 38–56, 2016.

ROSPOCHER, M.; GHIDINI, C.; SERAFINI, L. An ontology for the business process
modelling notation. In: FOIS. [S.l.: s.n.], 2014. p. 133–146.

RUSSELL, N. et al. Workflow control-flow patterns: A revised view. BPM Center
Report BPM-06-22, BPMcenter. org, p. 06–22, 2006.

SÀNCHEZ-FERRERES, J.; CARMONA, J.; PADRÓ, L. Aligning textual and graphical
descriptions of processes through ilp techniques. In: SPRINGER. International
Conference on Advanced Information Systems Engineering. [S.l.], 2017. p. 413–427.

SCHULTHEISS, L. A.; HEILIGER, E. M. Techniques of flow-charting. Clinic on
Library Applications of Data Processing (1st: 1963), Graduate School of Library
Science. University of Illinois at Urbana-Champaign, 1963.

SCHUMACHER, P.; MINOR, M.; SCHULTE-ZURHAUSEN, E. Extracting and
enriching workflows from text. In: IEEE. Information Reuse and Integration (IRI),
2013 IEEE 14th International Conference on. [S.l.], 2013. p. 285–292.

SILVA, T. S. et al. Empirical analysis of sentence templates and ambiguity issues for
business process descriptions. In: SPRINGER. OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems". [S.l.], 2018. p.
279–297.

VAKULENKO, S. Extraction of Process Models from Business Process Descriptions.
[S.l.]: Citeseer, 2011.

153

VANHATALO, J.; VÖLZER, H.; KOEHLER, J. The refined process structure tree. Data
& Knowledge Engineering, Elsevier, v. 68, n. 9, p. 793–818, 2009.

WESKE, M. Business process management architectures. In: Business Process
Management. [S.l.]: Springer, 2012. p. 333–371.

ZIMMERMANN, O. et al. Second generation web services-oriented architecture in
production in the finance industry. In: ACM. Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and
applications. [S.l.], 2004. p. 283–289.

ZIMOCH, M. et al. The repercussions of business process modeling notations on mental
load and mental effort. 2018.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goals and Hypothesis
	1.3 Contributions
	1.4 Methodology
	1.5 Remainder

	2 Fundamentals
	2.1 Business Process Management
	2.2 Process Modeling Languages
	2.2.1 Business Process Model and Notation
	2.2.2 Yet Another Workflow Language

	2.3 Natural Language Processing
	2.4 Service Oriented Architecture
	2.5 Related Works
	2.5.1 Discovery of Processes from Natural Language Texts
	2.5.2 Generation of Business Process Descriptions
	2.5.3 Alignment between Process Model and Business Process Description

	2.6 Final Considerations

	3 Business Process Description Design
	3.1 Business Process Descriptions
	3.2 Analysis for Structuring the Text
	3.2.1 Question 1: How is the text usually described in relation to the process?
	3.2.2 Question 2: How is the text organized in terms of paragraphs?
	3.2.3 Question 3: What is the voice used in the text?
	3.2.4 Question 4: How does the text describe splits and joins?
	3.2.5 Question 5: How does the text describe the different paths generated by splits?

	3.3 Analysis for Sentence Design
	3.3.1 Preparation of Sentences
	3.3.2 Identification and Classification of Sentence Templates
	3.3.3 Ambiguity in Sentence Templates
	3.3.4 Analysis of Sentence Templates and Ambiguity Issues

	3.4 Text Design
	3.4.1 Term to Represent Processes Paths
	3.4.2 Text Structuring Design
	3.4.3 Sentence Design

	3.5 Study Case: Computer Repair Process Description
	3.6 Final Considerations

	4 Architecture for Business Process-oriented Text Generation
	4.1 Architecture Overview
	4.1.1 File Exchanges
	4.1.2 Behavior of Services for the Generation of Business Process-oriented Texts

	4.2 Data Definition Files
	4.2.1 Process File Schema
	4.2.2 Process Verification File Schema
	4.2.3 Text Metadata File Schema

	4.3 Service Definition Files
	4.4 Text Reader Service
	4.4.1 Modifications in the Process Model Generation from Natural Language Text Approach
	4.4.2 Text Reader Output
	4.4.3 Process Identification Issues

	4.5 Process Verification Service
	4.5.1 BPMN Verification
	4.5.2 YAWL Verification
	4.5.3 Classifications of the Verifications
	4.5.4 Verification Service Output

	4.6 Text Writer Service
	4.6.1 Modifications in the Generating Natural Language Texts from Business Process Models Approach
	4.6.2 Pre-processing Phase
	4.6.3 Modifications in DSynT - Message Generation Stage
	4.6.4 Modifications in Message Refinement Stage
	4.6.5 Modifications in Realization Phase
	4.6.6 Text Writer Output

	4.7 Main Service
	4.7.1 Text Marking
	4.7.2 Text Structuring
	4.7.3 Process Verification Display

	4.8 Final Considerations

	5 Test of the business process-oriented text generation architecture
	5.1 Developed Prototype
	5.2 Similarity Verification
	5.2.1 Verification Procedure
	5.2.2 Results Obtained by the Similarity Technique

	5.3 Final Considerations

	6 Conclusion
	6.1 Publications

	7 Appendix: Business Process Descriptions
	References

