
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FERNANDO DOS SANTOS

Model-Driven Agent-based Simulation
Development

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dra. Ana L. C. Bazzan
Coadvisor: Prof. Dra. Ingrid Nunes

Porto Alegre
January 2019

CIP — CATALOGING-IN-PUBLICATION

Santos, Fernando dos

Model-Driven Agent-based Simulation Development / Fer-
nando dos Santos. – Porto Alegre: PPGC da UFRGS, 2019.

145 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Ana L. C. Bazzan; Coadvisor: Ingrid Nunes.

1. Agent-based Modeling and Simulation. 2. Model-driven
Development. 3. Domain-specific Modeling Language. 4. User
Study. I. Bazzan, Ana L. C.. II. Nunes, Ingrid. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

The Agent-based Modeling and Simulation (ABMS) paradigm has been used to an-

alyze, reproduce, and predict phenomena in many application areas, such as traffic

and epidemiology. Building agent-based simulations is a challenging task that often

demands technical expertise in ABMS and its simulation platforms. Researchers have

already argued about the importance of tools and building blocks that increase the

abstraction level and therefore reduce the effort in agent-based simulation development.

Model-driven Development (MDD) is an approach for software development, in which

high-level modeling artifacts drive the production of effort-consuming low-level artifacts,

such as the source code. Previous studies on the use of MDD in mainstream software

development have already shown that it significantly increases productivity. However,

in the ABMS paradigm MDD has been exploited in a limited way. Most of the existing

proposals consider modeling and code generation of limited simulation aspects, leaving

much left to be implemented by developers. Nevertheless, there is a lack of empirical

studies that demonstrate whether these MDD approaches are indeed effective. In

this thesis, we exploit MDD in the context of ABMS. We propose MDD4ABMS,

a model-driven approach for developing agent-based simulations. MDD4ABMS is

composed of the following elements, which are the main contributions of this thesis: (i) a

metamodel for agent-based simulations that was built following a bottom-up approach to

abstract aspects recurrently used in simulations and make them available for modeling;

(ii) a domain-specific modeling language with building blocks to instantiate agent-based

simulation models; and (iii) model-to-code transformations to generate source code for

NetLogo, a widely used agent-based simulation platform. While abstractions provided

by the metamodel allow developers to focus on which features to consider in simulations

instead of how to implement and integrate them (a task that may introduce inconsistencies

in simulations), building blocks provided by the modeling language promote expressive

modeling. Empirical studies showed that MDD4ABMS reduces the development effort

in comparison to NetLogo, and meets qualitative aspects related to the user experience,

such as ease of comprehension and usability. These results give evidence of the benefits

that MDD4ABMS provide to ABMS.

Keywords: Agent-based Modeling and Simulation. Model-driven Development.

Domain-specific Modeling Language. User Study.

Desenvolvimento Dirigido a Modelos de Simulações baseadas em Agentes

RESUMO

O paradigma de modelagem e simulação baseadas em agentes (do inglês, ABMS) tem

sido usado para analisar, reproduzir e predizer fenômenos em diversas áreas, tais como

tráfego e epidemiologia. A construção de simulações baseadas em agentes é uma tarefa

desafiadora que frequentemente demanda conhecimento em ABMS e suas plataformas

de simulação. Pesquisadores já destacaram a importância de ferramentas e blocos de

construção que aumentem o nível de abstração e consequentemente reduzam o esforço

de desenvolvimento de simulações baseadas em agentes. Desenvolvimento dirigido a

modelos (do inglês, MDD) é uma abordagem para desenvolvimento de software em que

artefatos de modelagem de alto nível conduzem a produção dos artefatos de mais baixo

nível que demandam significativo esforço, como por exemplo a produção de código fonte.

No desenvolvimento de software convencional, estudos mostram que o uso de MDD au-

menta significativamente a produtividade. Entretanto, no paradigma ABMS, o uso de

MDD tem sido explorado de forma limitada. Na maioria das propostas existentes, a mo-

delagem e geração de código é limitada a alguns aspectos, logo, muito ainda precisa ser

implementado pelos desenvolvedores. Além disto, há uma carência de estudos empíricos

que demonstrem se tais propostas são de fato efetivas. Nesta tese exploramos MDD no

contexto de ABMS. Propomos MDD4ABMS, uma abordagem dirigida a modelos para

desenvolvimento de simulações baseadas em agentes. MDD4ABMS é composto dos se-

guintes elementos, que são as principais constribuições desta tese: (i) um metamodelo

para simulações baseadas em agentes, construído de forma bottom-up a fim de abstrair os

aspectos recorrentemente usados em simulações e disponibilizá-los para uso em mode-

los; (ii) uma linguagem de modelagem, que oferece blocos de construção para instanciar

modelos de simulações baseadas em agentes; e (iii) transformações modelo-para-código,

que geram código fonte para NetLogo, uma plataforma de simulação largamente utilizada.

Enquanto as abstrações providas pelo metamodelo permitem aos desenvolvedores focar

em quais aspectos desejam considerar nas simulações em vez de como implementá-los e

integrá-los (uma tarefa que pode introduzir inconsistências nas simulações), os blocos de

construção providos pela linguagem promovem modelagem expressiva. Estudos empíri-

cos mostraram que MDD4ABMS reduz o esforço de desenvolvimento em comparação

ao NetLogo, e satisfaz aspectos qualitativos relacionados à experiência do usuário, tais

como facilidade de compreensão e usabilidade. Tais resultados fornecem evidência dos

benefícios que MDD4ABMS oferece para ABMS.

Palavras-chave: Modelagem e Simulação baseada em Agentes, Desenvolvimento Diri-

gido a Modelos, Linguagem de Modelagem Específica de Domínio, Estudo com Usuários.

LIST OF ABBREVIATIONS AND ACRONYMS

ABMS Agent-based Modeling and Simulation

AI Artificial Intelligence

AME Atomic Model Element

AOSE Agent-Oriented Software Engineering

ATSC Adaptive Traffic Signal Control

BDI Beliefs, Desires, and Intentions

BPMN Business Process Modeling Notation

CSV Comma Separated Values

DEVS Discrete Event System Specification

DSL Domain-specific Language

FQAD Framework for Qualitative Assessment of DSLs

GIS Geographic Information System

GQM Goal-Question-Metric

LOC Line of Code

MAS Multiagent System

MDD Model-driven Development

ODD Overview, Design concepts, and Details

OOP Object Oriented Programming

OSM Open Stree Map

TSC Traffic Signal Controller

UML Unified Modeling Language

LIST OF FIGURES

Figure 2.1 General Modeling Schema. Adapted from Edmonds (2001) and Ban-
dini, Manzoni and Vizzari (2009) ...20

Figure 2.2 MDD Abstraction Layers and Model Transformation Elements.
Adapted from Bocciarelli and D’Ambrogio (2014)..28

Figure 3.1 Overview of the MDD4ABMS Approach ...39
Figure 3.2 Core Metamodel: Environment, Entities, and Agents...................................42
Figure 3.3 Core Metamodel: Relationships ..43
Figure 3.4 Core Metamodel: Sources ...44
Figure 3.5 Core Metamodel: Creational Strategies...45
Figure 3.6 Core Metamodel: Simulation Outputs...46
Figure 3.7 Core Metamodel: Mobility and Surviving Agent Capabilities......................47
Figure 3.8 Core Metamodel: External Agent and Agent Capability48
Figure 3.9 Adaptive Traffic Signal Control: Domain Terminology and Concepts52
Figure 3.10 Traffic Signal Control Metamodel Extension: Flow Control54
Figure 3.11 Traffic Signal Control: Example of Concept Abstractions..........................54
Figure 3.12 Traffic Signal Control Metamodel Extension: Decision Capabilities55
Figure 3.13 The SIR Epidemiological Compartmental Model58
Figure 3.14 Spread of Disease Metamodel Extension: Disease as Agent Capability.....60
Figure 3.15 Spread of Disease Metamodel Extension: Infection61
Figure 3.16 Spread of Disease Metamodel Extension: Progression and Mortality62
Figure 3.17 Spread of Disease Metamodel Extension: Disease Introduction.................64

Figure 4.1 Concrete Syntax: Overview Diagram..66
Figure 4.2 Concrete Syntax: Concern, Parameter, Entities, and Agents68
Figure 4.3 Concrete Syntax: Relationships and Output..69
Figure 4.4 Concrete Syntax: Mobility and Surviving Capabilities.................................70
Figure 4.5 Concrete Syntax: Flow Control Capability ...70
Figure 4.6 Concrete Syntax: Decision Capabilities ..71
Figure 4.7 Concrete Syntax: Disease Elements and Basic Properties of a Disease........72
Figure 4.8 Concrete Syntax: Disease Transmission View ..73
Figure 4.9 ABStractme Tool: User Interface and Overview Diagram............................77
Figure 4.10 ABStractme Tool: Concern, Flow Control, State Machine, and Learning..79
Figure 4.11 ABStractme Tool: Disease Model, Mobility, Output, and External

Agent Capability ...80

Figure 5.1 Core Metamodel and ABStractLang Study: Expertise of Participants84
Figure 5.2 Core Metamodel and ABStractLang Study: Summary of Score and Time...85
Figure 5.3 Perceived Ease of Comprehension ..87
Figure 5.4 Expertise of Participants ..100
Figure 5.5 Number of Correct Features ..102
Figure 5.6 Percentage of Correctness of Features...104
Figure 5.7 Time to Develop Simulations ..106
Figure 5.8 Time to Develop Features in Entirely Correct Simulations.........................108
Figure 5.9 Overall Time to Develop Features TF1–TF3 and TF5 in the Traffic Sim-

ulation ...110
Figure 5.10 Time to Develop Features Considering Finished Simulations110
Figure 5.11 Subjective Evaluation: Usability ...112

Figure 5.12 Subjective Evaluation: Reliability, Productivity, and Expressiveness.......113

Figure A.1 Abstract State Machine Metamodel..134

Figure B.1 Complete MDD4ABMS Metamodel: Part 1 ..136
Figure B.2 Complete MDD4ABMS Metamodel: Part 2 ..137

Figure C.1 Concrete Syntax of Disease Elements: Progression View..........................138
Figure C.2 Concrete Syntax of Disease Elements: Mortality View..............................139
Figure C.3 Concrete Syntax of Disease Elements: Introduction View.........................139

LIST OF TABLES

Table 2.1 Elements of the Overview, Design concepts, and Details (ODD) Proto-
col (GRIMM et al., 2010). ..24

Table 2.2 Comparison of Metamodels for Agent-based Simulation...............................32
Table 2.3 Basic Characteristics of Agent-based Simulation Platforms. Adapted

from (KRAVARI; BASSILIADES, 2015) ..34
Table 2.4 Comparison of Platforms for Agent-based Simulation36

Table 3.1 Core Metamodel: Types of Sources ..44
Table 3.2 Core Metamodel: Types of Creational Strategies ...46
Table 3.3 Simulations of Adaptive Traffic Signal Control Selected for Analysis...........51
Table 3.4 Simulations of Spread of Disease Selected for Analysis57

Table 4.1 Subset of the Production Rules ...75

Table 5.1 Core Metamodel and ABStractLang Study: Summary of the Questionnaires83
Table 5.2 Core Metamodel and ABStractLang Study: Treatment Groups84
Table 5.3 Score and Time to Comprehend Simulations..85
Table 5.4 Empirical Evaluation of Development Effort: Size Comparison91
Table 5.5 Participants of the Mini-course Editions ...98
Table 5.6 Demographic Characteristics of Participants ..100
Table 5.7 Programming Expertise of Participants, in Years..101
Table 5.8 Number of Participants per Treatment Group ...101
Table 5.9 Details on the Number of Correct Features...102
Table 5.10 Number of Simulations and Features by Defect Type103
Table 5.11 Details on Percentage of Correctness of Features105
Table 5.12 Summary of Time (in Minutes) to Develop Simulations107
Table 5.13 Details on Time to Develop Features in Entirely Correct Simulations108

Table G.1 Wilcoxon Signed-rank Tests Comparing MDD4ABMS and NetLogo145

CONTENTS

1 INTRODUCTION...12
1.1 Problem Statement and Limitations of Existing Work14
1.2 Proposed Solution and Contributions Overview..16
1.3 Thesis Outline..18
1.4 Disclaimer ..19
2 BACKGROUND AND RELATED WORK..20
2.1 Agent-based Modeling and Simulation...20
2.1.1 Foundations..20
2.1.2 Applications ...24
2.2 Model-driven Development..26
2.3 Related Work...29
2.3.1 Metamodels..30
2.3.2 Platforms for Agent-based Simulation...33
2.4 Final Remarks ...35
3 MODEL-DRIVEN AGENT-BASED SIMULATION DEVELOPMENT..............38
3.1 MDD4ABMS Overview ..38
3.2 Core Metamodel..39
3.2.1 Basic Simulation Aspects ..41
3.2.2 Creation of Entities and Initialization & Update of Attributes43
3.2.3 Data Collection ..45
3.2.4 Basic Agent Capabilities..47
3.3 Domain-Specific Extensions ...48
3.3.1 Domain Analysis Method ..49
3.3.2 Traffic Signal Control and Decision-making Extensions.......................................50
3.3.3 Spread of Disease Extensions ..56
3.4 Final Remarks ...64
4 THE ABSTRACTLANG LANGUAGE AND TOOL SUPPORT...........................65
4.1 The ABStractLang Language ..65
4.1.1 Overview Diagram...66
4.1.2 Concern Diagram...67
4.1.2.1 Core Elements...67
4.1.2.2 Traffic Signal Control and Decision-related Elements69
4.1.2.3 Disease-related Elements ..72
4.2 Model-to-Code Transformations ...73
4.3 ABStractme Modeling Tool..76
4.4 Final Remarks ...78
5 EVALUATION...81
5.1 User Study: Core Metamodel and the ABStractLang Language.......................81
5.1.1 Procedure ...82
5.1.2 Participants...83
5.1.3 Results and Discussion ..85
5.1.4 Threats to Validity..88
5.2 Empirical Evaluation of Development Effort...88
5.2.1 Procedure ...89
5.2.2 Results and Discussion ..90
5.2.3 Threats to Validity..92
5.3 User Study: Simulation Development with MDD4ABMS93
5.3.1 Procedure ...95

5.3.2 Participants...98
5.3.3 Results and Discussion ..101
5.3.3.1 Design Quality (RQ1) ...101
5.3.3.2 Development Effort (RQ2) ...106
5.3.3.3 Subjective Evaluation (RQ3) ..111
5.3.4 Threats to Validity..114
5.4 Final Remarks ...115
6 CONCLUSION ...117
6.1 Contributions...118
6.2 Future Work ..120
REFERENCES...124
APPENDIX A — MDD4ABMS METAMODEL: ABSTRACT STATE MA-

CHINE ...134
APPENDIX B — MDD4ABMS COMPLETE METAMODEL135
APPENDIX C — ABSTRACTLANG CONCRETE SYNTAX FOR MODEL-

ING DISEASE ASPECTS..138
APPENDIX D — EXAMPLE OF NETLOGO SOURCE CODE GENER-

ATED BY PRODUCTION RULES...140
D.1 Source Code for Setting up and Running a Simulation....................................140
D.2 Source Code for the State Machine gamma plan...140
D.3 Source Code for the Learning Capability plan learning...................................141
APPENDIX E — DETAILS OF THE SPREAD OF DISEASE SIMULATION

DEVELOPED IN THE USER STUDY...143
APPENDIX F — DETAILS OF THE ADAPTIVE TRAFFIC SIGNAL CON-

TROL SIMULATION DEVELOPED IN THE USER STUDY..................144
APPENDIX G — SUMMARY OF STATISTICAL TESTS: QUALITATIVE

ASSESSMENT OF USABILITY ASPECTS ...145

12

1 INTRODUCTION

Agent-based simulations have been widely used to understand the emergent be-

havior of complex systems. These systems are composed of multiple entities, or agents,

which can interact with each other and are situated in an environment that they can per-

ceive and modify through their actions. It is not trivial to formulate analytical models

that can simulate the behavior of such complex systems. Building them is a challeng-

ing task that has been widely investigated in the context of Agent-based Modeling and

Simulation (ABMS), a simulation paradigm that uses autonomous agents and multiagent

systems to reproduce and explore a phenomenon under investigation.

The ABMS paradigm has been used to simulate systems in many application ar-

eas, such as traffic, ecology, economics, and epidemiology (MACAL; NORTH, 2014).

According to Macal and North (2014), ABMS is selected as the simulation paradigm in

such areas because it can explicitly incorporate the complexity arising from individual

behavior and interactions that exist in real settings. Moreover, the closer correspondence

between agent models and the target system reduces the modeling gap and hence ABMS

is a step towards accuracy and precision in modeling (EDMONDS, 2001).

An agent-based model must explicitly deal with the following three elements:

agents, interactions and environment. An agent-based simulation system (BANDINI;

MANZONI; VIZZARI, 2009) is a software system composed of an agent-based model

and an execution specification. When a simulation runs, processes associated with the

agent-based model are executed repeatedly over the timeline defined in the execution

specification. Additionally, such specification also determines the temporal scale and ex-

tent, how many agents are created and their initial states, and which data is collected for

further analysis.

As in the case of any software system, the development of an agent-based simula-

tion system is a process that often involves different roles, from experts of an application

area to developers (GALÁN et al., 2009). From the conceptualization, goals, and purpose

of the simulation produced by application area experts, developers build the simulation

system. Though mainstream software developers have technical expertise in program-

ming logic, expertise in the ABMS paradigm may be an issue, which may affect the

design quality of simulations, as well as productivity, even for experienced mainstream

software developers.

The ABMS community has been working to provide alternatives for developing

13

agent-based simulation systems. On the one hand, methodologies, processes, and meta-

models have been proposed (GARRO; RUSSO, 2010; KLÜGL; DAVIDSSON, 2013;

GHORBANI et al., 2013). Although these alternatives provide support for specifying

most aspects of the agent-based model, support for specifying execution aspects is lim-

ited, often absent. On the other hand, there are simulation platforms such as NetLogo and

Repast. These platforms provide programming environments with language constructs

to define agents, interactions, and the environment, as well as execution aspects. How-

ever, previous expertise in programming logic is required to implement the simulation

dynamics.

Although agent-based simulation systems have been developed using the existing

alternatives, researchers have already argued about the importance of providing build-

ing blocks and tools at a higher abstraction level (PARUNAK; SAVIT; RIOLO, 1998;

HAMILL, 2010; WELLMAN, 2016). As pointed out by Macal (2016, p. 152), “lack of

easy-to-use tools and standardized user interfaces for ABMS model development is a bar-

rier to adoption of ABMS.” Such approaches already exist in other contexts. For example,

Simulink offers abstractions related to electric motors and power control to simulate dy-

namic systems, and the Business Process Modeling Notation (BPMN) provides abstrac-

tions related to activities and participants to model business processes. These approaches

provide languages tailored for expressive modeling, reducing the abstraction gap in mod-

els. In the context of ABMS, such approaches would potentially ease the development of

simulation systems and increase productivity.

In agent-based simulations, agents can be endowed with learning or evolution-

ary capabilities to adapt to changes in themselves or the environment. Artificial In-

telligence (AI) techniques that provide such capabilities are well established and can

be incorporated into agents leading to more realistic simulations (KLÜGL; BAZZAN,

2012). However, such agent capabilities are usually developed from scratch in existing

approaches for ABMS. Consequently, besides determining which features are considered

in a simulation (e.g., which learning technique or spread of disease model is adopted by

agents), the designer must also know how to implement and integrate them with other

simulation elements. Incorrect implementation of these features may introduce inconsis-

tencies in the simulation. In the particular case of agent-based simulations, where the

output is usually unknown beforehand, these inconsistencies may lead to wrong findings.

Detecting and fixing such inconsistencies is a complex and effort consuming task that

affects productivity and may frustrate ABMS beginners. Therefore, providing the simula-

14

tion designer with reusable models of these features from which error-free source code is

generated would facilitate the development of simulation systems and foster the adoption

of the ABMS paradigm.

Given this context, in this thesis we investigate expressiveness and productivity in

agent-based simulation development. In Section 1.1 we present the problem we address

in this thesis and the limitations of existing work. In Section 1.2 we describe our proposed

solution and provide an overview of the contributions.

1.1 Problem Statement and Limitations of Existing Work

As introduced earlier, in this thesis we aim to tackle two issues of the available

alternatives for ABMS: limited expressiveness and productivity. Based on these two

issues, the research question considered in this thesis is stated as follows.

Research Question.

How to reduce the effort in agent-based simulation development with main-

stream software developers that have little expertise in ABMS?

Limitations of existing work, which are associated with this research question, and

issues associated with agent-based simulation development are as follows.

(1) Limited expressiveness. Expressiveness is related to the ability to represent an

agent model and its execution specification with high-level, ABMS-related, abstrac-

tions (i.e., abstractions of recurrent agent capabilities used in simulations, or recur-

rent topologies for the simulated environment). Such abstractions would provide

building blocks, reduce the abstraction gap, and increase productivity.

An evaluation of existing Agent-Oriented Software Engineering (AOSE) method-

ologies, processes, and metamodels, as well as platforms focused on agent-based

simulation development, showed that they support the specification of limited as-

pects of an agent model and its execution specification. Moreover, building blocks

for aspects recurrently specified in models are rarely provided by these approaches.

On the one hand, there are approaches that rely on the UML for modeling agent-

based simulation systems—e.g., MDA4ABMS (GARRO; PARISI; RUSSO, 2013),

ODiM (DUARTE; LARA, 2009), and the approach by Iba, Matsuzawa and Aoyama

15

(2004). However, Bauer and Odell (2005) already reported that the UML does

not provide expressive constructs to specify sophisticated aspects of agent-based

simulations such as learning and adaptation. On the other hand, approaches such as

AMASON (KLÜGL; DAVIDSSON, 2013) and MAIA (GHORBANI et al., 2013)

do not rely on the UML. However, these approaches abstract only basic aspects

of agent models, and sophisticated aspects are left out as well. Finally, existing

platforms for agent-based simulation development provide limited abstractions for

aspects recurrently used in simulations, as detailed next.

(2) Demand for expertise in ABMS and, in particular, in models and techniques

adopted (or desired) in simulations. Although existing approaches for develop-

ing agent-based simulation systems, in particular platforms for simulation develop-

ment, already do the job (i.e., one can develop and run fully-featured simulations

by using them), they provide limited building blocks for aspects recurrently used

in simulations. Developers of agent-based simulation systems must usually spec-

ify and implement these recurrent aspects from scratch. Hence, besides modeling

or programming skills in the selected approach, those developers must have exper-

tise in models and techniques adopted in simulations. For example, to develop a

spread of disease simulation, a developer must know which epidemiological model

must be used and how to implement it. As mentioned earlier, developing these ele-

ments from scratch compromises productivity and can introduce inconsistencies in

simulations.

(3) Lack of assessment of the effectiveness of existing approaches involving de-

velopment tasks performed by developers. Despite qualitative arguments that

motivate the use of existing alternatives for developing agent-based simulation sys-

tems, there is a need for concrete evidence that they, in fact, promote expressive-

ness and productivity. Usually, only examples and case studies that demonstrate the

feasibility of using these alternatives to develop simulation systems are available.

No effectiveness evaluations are presented to show that these alternatives indeed

provide benefits to mainstream software developers with little expertise in ABMS

regarding expressiveness and productivity.

16

1.2 Proposed Solution and Contributions Overview

Software engineering supports mainstream software development by providing

techniques for the specification, design, implementation, and evolution of systems. One

of these techniques is Model-driven Development (MDD) (ATKINSON; KÜHNE, 2003;

SCHMIDT, 2006). MDD aims to find domain-specific abstractions and make them avail-

able for modeling. In MDD models are thus considered first-class citizens and the devel-

opment is driven by modeling artifacts (STAHL et al., 2006a).

An MDD approach combines Domain-specific Languages (DSLs) with model

transformations. These are tied by a metamodel that specifies concepts and relationships

among them within a domain. A model is thus an instance of such a metamodel. DSLs

are modeling or programming languages tailored for a particular domain. The specific

focus on a particular domain allows DSLs to express the key aspects of that domain, trad-

ing generality for expressiveness (STAHL et al., 2006a). Model transformations, in turn,

allow changing the model abstraction level, as well as generating source code. When auto-

mated, such model transformations can be executed to produce source code automatically

from models, which increases productivity and enhance quality in software development.

Considering that, in MDD approaches, domain-specific aspects are made available

for modeling, it is a potential approach to promote expressiveness and productivity in

agent-based simulation development. Previous work on the use of MDD in industry has

already shown that MDD approaches increase productivity because the modeling effort

is focused on domain concerns instead of programming statements (SPRINKLE et al.,

2009; TOLVANEN; KELLY, 2016).

MDD approaches focused on ABMS have been proposed, such as

MDA4ABMS (GARRO; PARISI; RUSSO, 2013) and ODiM (DUARTE; LARA,

2009), as well as the approaches by Iba, Matsuzawa and Aoyama (2004) and Gómez-

Sanz, Fernández and Arroyo (2010). However, these approaches usually cover only basic

aspects of simulations and have issues concerning expressiveness and code generation.

Nevertheless, these MDD approaches have been mostly evaluated from the point of view

of feasibility. Evaluation, with quantification, of effectiveness is almost never considered.

We thus investigate the following research hypothesis in this thesis.

17

Research Hypothesis.

With a model-driven approach focused on providing high-level abstractions

for simulation aspects, expressive modeling, and source code generation, mainstream

software developers with little expertise in ABMS are able to model and execute

simulations with reduced effort.

We propose a model-driven approach for ABMS, called MDD4ABMS, and eval-

uate it to assess the benefits provided to mainstream software developers. MDD4ABMS

is composed of (i) a metamodel for agent-based simulations, (ii) a domain-specific mod-

eling language with tool support, and (iii) model transformations for code generation.

These three elements, as well as (iv) their empirical evaluation, are the main contributions

of this thesis. Next, we briefly describe these main contributions, as well as other minor

contributions.

(i) A metamodel for agent-based simulations, which abstracts aspects frequently

used in simulations and make them available for modeling, addressing limitations

(1) and (2) of existing work. It was build following a generative, bottom-up ap-

proach, which considered as input existing agent-based simulations. The meta-

model is composed of a core (SANTOS; NUNES; BAZZAN, 2017c) and extensions

for two application domains: adaptive traffic signal control (SANTOS; NUNES;

BAZZAN, 2017b; SANTOS; NUNES; BAZZAN, 2017a; SANTOS; NUNES;

BAZZAN, 2018), and spread of disease.

(ii) A domain analysis method, which allows extending the metamodel with abstrac-

tions from other application domains (SANTOS; NUNES; BAZZAN, 2018). When

applied to a set of existing agent-based simulations it produces as output a list of

abstractions that correspond to the domain model, which can be then incorporated

into the metamodel.

(iii) A domain-specific modeling language DSL, called ABStractLang, which

provides a more productive and expressive way for specifying agent-based

simulations (SANTOS; NUNES; BAZZAN, 2017c; SANTOS; NUNES; BAZZAN,

2018). It is a modeling language that adopts graphical notation and provides build-

ing blocks to instantiate elements of the MDD4ABMS metamodel, contributing for

addressing limitations (1) and (2) of existing work.

18

(iv) Model transformations for code generation, which generate code for NetLogo,

a widely used agent-based simulation platform (SANTOS; NUNES; BAZZAN,

2018). This contribution addresses limitation (2) of existing work, in particular,

productivity and consistency issues.

(v) A modeling tool, called ABStractme, which enable mainstream software devel-

opers to create agent-based simulation models using the ABStractLang modeling

language (MOREIRA et al., 2017). ABStractme provides a diagram editor, and au-

tomatically executes the model-to-code transformations for generating source code

for the simulation.

(vi) Three empirical studies, which evaluate different aspects of MDD4ABMS (SAN-

TOS; NUNES; BAZZAN, 2017c; SANTOS; NUNES; BAZZAN, 2018). Results

showed that MDD4ABMS effectively provide benefits for mainstream software de-

velopers with respect to design quality and development effort. Additionally, by

conducting these studies we ensure that MDD4ABMS is not subject to limitation

(3) of existing work.

MDD, as a research field, proposes solutions to a number of problems faced in

software development. Model-to-model transformations allow model conversion between

distinct software platforms or distinct programming paradigms. Round-trip engineering

can be used to synchronize these models. However, as we were interested primarily in

expressive modeling and productivity in simulation development, these aspects are not in

the scope of this thesis.

1.3 Thesis Outline

The remainder of this thesis is organized into five chapters, as follows.

Chapter 2 presents the background on topics relevant to this thesis, describes related

work and discusses their limitations.

Chapter 3 describes the MDD4ABMS metamodel, which abstracts recurrent aspects of

agent-based simulations.

Chapter 4 details the domain-specific language ABStractLang created for modeling

agent-based simulations, in addition to model-to-code transformations and the

ABStractme modeling tool.

19

Chapter 5 presents the three empirical studies conducted to evaluate the benefits of

the MDD4ABMS approach with respect to design quality, development effort, and

subjective aspects such as ease of comprehension and usability.

Chapter 6 concludes this thesis, outlining directions for future work.

1.4 Disclaimer

Note about the adopted agent-based simulation terminology. Different terms are

found in the literature to refer to the agent-based simulation paradigm. Agent-based So-

cial Simulation (ABSS), Multiagent-based Simulation (MABS), Agent-based Simulation

(ABS), and Agent-based Modeling and Simulation (ABMS) are among the terms most

frequently adopted to refer to such paradigm. In this thesis, we follow the terminology

used by Klügl and Bazzan (2012) and Macal and North (2010), and therefore we adopt

ABMS to refer to the agent-based simulation paradigm. Additionally, the terms “agent-

based simulation system” and “agent-based simulation” are used interchangeably to refer

to a software system that realizes an agent-based model and thus can be used for running

simulations.

Expected reader’s background This thesis assumes that the reader has some degree

of familiarity with multiagent systems and agent-based simulations. Although Chapter 2

presents some background on these subjects, those unfamiliar with agents and their rea-

soning cycle may find it difficult to comprehend the agent-based simulation metamodel

proposed in this thesis and its assumptions. Newcomers in agent-based simulations are

referred to Macal and North (2010), Klügl and Bazzan (2012), and Wilensky and Rand

(2015) to get familiar with the topic.

Note about the semantic of the metamodel elements. As previously explained, the

agent-based simulation metamodel proposed in this thesis captures aspects frequently

used in simulations. The terminology adopted in the metamodel is straightly related to

the abstracted aspects. For example, an agent is abstracted as an agent element, and its

mobility is abstracted as an mobility element. Given this closely related correspondence

between simulation aspects and their abstractions, the semantic (meaning) of the meta-

model elements is not described in this thesis, which reinforces the need for the reader

having got familiar with agent-based simulation terms. Constraints regarding valid rela-

tionships between metamodel elements are described throughout the text of this thesis.

20

2 BACKGROUND AND RELATED WORK

This chapter presents a brief overview of the topics relevant to this thesis. Sec-

tion 2.1 focuses on the foundations and applications of agent-based modeling and sim-

ulation. Model-driven development and its elements are presented in Section 2.2. Sec-

tion 2.3 presents related work on alternatives for developing agent-based simulations and

discusses how they ease the development of simulations and promote development pro-

ductivity. Finally, Section 2.4 points out remarks on these topics.

2.1 Agent-based Modeling and Simulation

2.1.1 Foundations

A model is an abstract (and often simplified) representation of a target system.

Models can be specified for either existing or planned systems to enable predicting the

state of the system through an inferential process (EDMONDS, 2001; BANDINI; MAN-

ZONI; VIZZARI, 2009). Figure 2.1 illustrates the relation between a model and its target

system. According to Edmonds (2001), something is a model of something else if the di-

agram commutes, i.e., if the generated state of the model coherently explains or predicts

the state observed from the natural process of the target system. Modeling and the infer-

ence produced from models are therefore predictive and explanatory instruments to gain

additional insights about the target system (BANDINI; MANZONI; VIZZARI, 2009).

Other reasons for modeling include straight replication, sensitivity analysis, to guide data

collection, and to suggest analogies (EPSTEIN, 2008).

Figure 2.1: General Modeling Schema. Adapted from Edmonds (2001) and Bandini,
Manzoni and Vizzari (2009)

Target System

Model

Observed State

Generated Stateinference

natural process

modeling /
encoding

analysis,
leading to
explanation
or prediction

(or simulation)

21

Many target systems are characterized by the presence of autonomous entities,

whose behaviors (actions and interactions) determine the evolution of the overall system.

These systems can be modeled as Multiagent System (MAS), and their states can be

generated by simulation (execution) (BANDINI; MANZONI; VIZZARI, 2009). Building

these agent systems to allow inference through simulation is the focus of Agent-based

Modeling and Simulation (ABMS), a simulation paradigm that uses autonomous agents

and multiagent systems to analyze, reproduce, or predict phenomena.

A MAS is a system composed of agents. The commonly adopted definition of

agent specifies the following set of properties that characterize an agent entity: (i) au-

tonomy: the ability to operate without intervention; (ii) reactivity: the ability to perceive

the environment in which it is situated and respond to changes on it; (iii) pro-activeness:

the ability to take the initiative according its internal goals; and (iv) social ability: the

possibility to interact with other agents (WOOLDRIDGE; JENNINGS, 1995).

From a multiagent view, each agent in the system can have distinct abilities or

architectures, leading to heterogeneous systems. Social ability plays a key role when

agents have only a limited perception of the situation and must interact to achieve their

individual or collective goals. Considering these features of MAS, the ABMS paradigm

supports the study and analysis of decentralized decision making, local-global interac-

tions, self-organization, emergence, and the effects of heterogeneity in the modeled sys-

tem (BANDINI; MANZONI; VIZZARI, 2009).

The following sequence of steps was presented by Edmonds (2001) for modeling

and simulation in the ABMS paradigm.

1. Abstraction. The target system is abstracted, i.e., its relevant aspects are identified

to build an analogical model of the system.

2. Design. A MAS is designed so as to incorporate that aspects previously identified.

3. Inference. The MAS is run (executed) to generate the model outputs.

4. Analysis. Model outputs are analyzed by a variety of means, which can include

simple inspection, visualization techniques, or statistics. Such analysis verifies

whether the model indeed represents the target system and validates whether re-

sults are acceptable in terms of outcomes.

5. Interpretation. Conclusions regarding the target system are drawn by interpreting

the behavior displayed in the MAS.

6. Application. The knowledge gathered from the MAS is applied to explain or pre-

dict the target system.

22

This thesis is focused on the first three steps of this process, in which details about

the structure of the target system and how it is going to be simulated are specified. Anal-

ysis, interpretation, and application follow from the model outputs. Those steps use well-

known methods, such as statistical analysis, and they rely on the modeler introspection.

In the first two steps, a model of the target system is conceptualized in terms of

multiagent systems. This model must explicitly deal with the following three elements:

agents, interactions and environment. These are detailed next.

An agent is composed of properties (or attributes) and behaviors for enabling au-

tonomy, reactivity, pro-activeness and social ability. According to Bandini, Manzoni and

Vizzari (2009), agent behaviors are composed of two elements: (i) actions, which can

cause modifications in the environment or in other agents; and (ii) a mechanism for de-

liberation, i.e., for selecting actions to be carried out according to the agent’ perceptions

and its internal state. Deliberation is related to the agent architecture (e.g., BDI—Beliefs,

Desires, and Intentions), but is also related to agents’ abilities such as learning and adap-

tation (BANDINI; MANZONI; VIZZARI, 2009; MACAL; NORTH, 2014).

The environment contains any other elements not modeled as agents, such as re-

sources and objects. According to Weyns, Omicini and Odell (2007, p. 15), “The envi-

ronment is a first-class abstraction that provides the surrounding conditions for agents to

exist and that mediates both the interaction among agents and the access to resources.”

Weyns, Omicini and Odell (2007) also states that the environment (i) is responsible for

structuring the MAS physically (topology); (ii) embeds resources and services and sup-

ports access to them; (iii) can maintain dynamics, having processes of its own, inde-

pendent of agents (e.g., evaporation, spontaneous growth or resources); (iv) is locally

observable and accessible to agents, supporting agents’ perception and action; and (v)

can define/enforce rules for the MAS (e.g., mobility).

The above environment responsibilities are inter-related. For instance, the agents’

perception of their neighborhood is related to the environment topology and its notion of

location and vicinity. Macal and North (2014) identified the following common topolo-

gies: soup, where no spatial location is provided (a non-spatial model); grid or lattice,

composed of cells–agents are located on them; euclidean space, composed of coordi-

nates, which specifies agent location; GIS, composed of realistic patches of geospatial

landscapes (the agent location can be a ZIP code or a geospatial coordinate); and net-

work, which specifies static or dynamic links between nodes.

Interaction is a fundamental component in MAS. Often, the global system dynam-

23

ics emerges from the local behavior and interactions among its composing parts, charac-

terizing a complex system. Interaction can be direct or indirect (BANDINI; MANZONI;

VIZZARI, 2009). Direct interaction implies that an agent communicates directly (e.g.,

message exchanging). In order to communicate directly, agents must know each other

and must acquaint with the communication model used (language, messages, protocol,

etc.). Indirect interaction, in turn, uses some media interposed among the communication

partners. Such media can be an artifact (e.g., a blackboard, a traffic light) or the environ-

ment itself (e.g., pheromone trails). The state of the media reifies the communication.

Interaction has a structure, which specifies relationships: what is or can be con-

nected to what. The topology of the environment plays a key role in specifying this struc-

ture if inter-agent interactions are limited, for example, to the spatial neighborhood or to

the agent acquaintance network. Interaction dynamics may change how, when, and which

agents interact over time (MACAL; NORTH, 2014). Such dynamics is often governed by

agents’ deliberation mechanism.

The inference—the third step of the process for modeling and simulation in the

ABMS paradigm—is done by simulating the execution of agent behaviors and interac-

tions repeatedly over a timeline (MACAL; NORTH, 2014). Such simulation requires an

execution specification, which must deal with the following aspects: (i) the temporal scale

and extent of the simulation; (ii) dynamic processes scheduling; (iii) set-up of the model

(its input data, how many entities must be created, and how they are initialized); and

(iv) observation, specifying which data are collected for testing, understanding and ana-

lyzing the system, and how and when these data are collected (BANDINI; MANZONI;

VIZZARI, 2009; GRIMM et al., 2010).

Explicit documentation for all these agent-based simulation details is key to pro-

mote models’ understanding and replication. One step towards this direction was the

Overview, Design concepts, and Details (ODD) protocol (GRIMM et al., 2006). The

ODD protocol promotes a more rigorous formulation of models and provides a checklist

for all the key elements of an agent-based simulation. These elements are grouped into

three blocks, as shown in Table 2.1, which also presents the elements that should be doc-

umented for each block. The overview block intends to document the overall purpose and

structure of the model so as to readers can get an idea of the model’s focus, resolution,

and complexity quickly. The design concepts block describes the general concepts from

agent systems and complex adaptive systems underlying the design of the model. The last

block, details, intends to present the details that were omitted in the overview block, in

24

Table 2.1: Elements of the ODD Protocol (GRIMM et al., 2010).
Category Element

Overview
Purpose
Entities, state variables, and scales
Process overview and scheduling

Design concepts

Basic principles
Emergence
Adaptation
Objectives
Learning
Prediction
Sensing
Interaction
Stochasticity
Collectiveness
Observation

Details
Initialization
Input data
Submodels

particular, the submodels implementing the model’s processes.

ODD is being widely used for the description of agent-based

simulations (MÜLLER et al., 2014). In fact, the Journal of Artificial Societies and

Social Simulation strongly encourage authors to document their models using ODD

before publishing them (JASSS, 2017). However, ODD is completely based on textual

descriptions. Although it is possible to include diagrams in an ODD document, there is

neither standard notation nor ways to translate them to code.

2.1.2 Applications

A clear understanding of a model is fundamental to avoid either its misinterpreta-

tion or incorrect replication. ABMS is a step towards accuracy and precision in modeling,

given that the close correspondence between the MAS model and the target system re-

duces the representational gap (EDMONDS, 2001).

Many existing phenomena can be modeled as agent-based systems. However,

given the bottom-up nature of this paradigm, ABMS is particularly suitable for modeling

complex systems and emergent phenomena. In these systems, dynamics is drawn from

flexible and local interactions. Additionally, population sizes and environment structures

can vary over time. These characteristics are not easily handled by conventional simula-

tion paradigms, such as equation-based ones. Additionally, equation-based methods re-

25

quire prior knowledge of the aggregate phenomenon and its global patterns, which might

be unavailable if the emergent phenomenon is unknown in advance (WILENSKY; RAND,

2015).

In equation-based models, entities are treated either as probability distributions or

aggregated into variables. This assumption of population homogeneity is acceptable only

when the population is sufficiently large so that the differences are averaged out, or an

explicit treatment of heterogeneity does not lead to further gains. Unless appropriately

used, these assumptions may lead to oversimplifications resulting in irrelevant simulation

output (KLÜGL; BAZZAN, 2012). Consequently, the ABMS paradigm is suitable for

systems that require heterogeneity in states and behaviors.

The ABMS paradigm is also suitable for systems where agents are adaptive to-

wards their goals. In such systems, agents can be endued with learning or evolutionary

capabilities to adapt to changes either in themselves or in the environment. Artificial in-

telligence techniques that provide such capabilities are well established and can be easily

incorporated in simulations, allowing more realistic results (KLÜGL; BAZZAN, 2012).

Some trade-offs must be considered before adopting the ABMS paradigm. If the

system has thousands or millions of agents, its simulation can be computationally inten-

sive. The ABMS paradigm is focused on modeling at the micro level, and performance

degradation is the price one pays for having a rich representation of agents. Equation-

based models may be an alternative for performance. However, numerically solving com-

plicated equation-based models may take as much computational time as agent-based

models (WILENSKY; RAND, 2015).

The number of decisions that the model designer makes increases as more details

must be incorporated into the model. Equation-based models are focused on describing

the system at a macro (aggregate) level and rely on implicit assumptions about the micro

level. In the ABMS paradigm, in turn, designers must know how the micro-level elements

of the system operate, and thus they must decide how these elements will be specified as

well.

The ABMS paradigm has been used to model and simulate systems in many appli-

cation areas, such as agriculture, air traffic, ecology, economics, epidemiology, healthcare,

market analysis, and social networks (MACAL; NORTH, 2014). According to Macal and

North (2014), in these cases, ABMS was selected as the simulation paradigm because it

can explicitly incorporate the complexity arising from individual behavior and interac-

tions that exist in real-world scenarios.

26

2.2 Model-driven Development

Software engineering provides support for professional software development by

means of techniques for specification, design, and evolution of systems. Software mod-

els are widely used in software engineering. In model-based development, models are

used as guidance to source code implementation, playing a secondary role in the soft-

ware development process. In Model-driven Development (MDD) (SCHMIDT, 2006), in

contrast, models are first-class citizens, and the development is driven by modeling arti-

facts (ATKINSON; KÜHNE, 2003; STAHL et al., 2006a). In MDD, models are used to

(semi-)automatically generate the source code of software systems and thus play a lead-

ing role in the development process. This (semi-)automatic generation of source code

improves efficiency, productivity, reliability, reusability, and interoperability.

Previous work on the use of MDD in domains such as automotive manufactur-

ing, mobile devices, and telecommunications, showed that productivity increases be-

cause the modeling effort is focused on domain concerns instead of programming state-

ments (SPRINKLE et al., 2009). In the context of software development in industry,

Tolvanen and Kelly (2016) showed that MDD approaches can increase productivity by a

5–10x factor.

Making domain abstractions available for modeling is fundamental in MDD. The

goal is to allow building models that are simultaneously abstract and formal. Abstrac-

tion, in these models, does not mean vagueness, but compactness and reduction to the

essence (STAHL et al., 2006a). The goals of MDD are the following:

• To increase development speed through automation of source code generation;

• To enhance software quality through formally-defined modeling languages and au-

tomated transformations;

• To avoid redundancy and manage technological changes: bugs can be fixed and

cross-cutting concerns can be changed in just one place (i.e., the source code gen-

erator);

• To promote reusability: once modeling languages and transformations have been

defined, they can be used in the sense of a software product line;

• To manage complexity through abstraction: modeling languages enable program-

ming on a more abstract level.

• To offer a productive environment via the use of building blocks and best practices;

and

27

• To meet interoperability and portability requirements by means of separating the

specification of a particular functionality from its implementation on a specific plat-

form;

According to Stahl et al. (2006b), an MDD approach combines the following ele-

ments: (i) domain-specific languages; (ii) model transformations; and (iii) transformation

engines and source code generators. The former allows expressing domain concepts ef-

fectively, while the latter two introduces automation. These elements are described as

follows.

A Domain-specific Language (DSL) is a language designed for a particular do-

main, trading generality for expressiveness (STAHL et al., 2006a). The type system of a

DSL formalizes the application structure, behavior, and requirements of that particular do-

main (SCHMIDT, 2006). Therefore, DSLs provide high-level, off-the-shelf, abstractions

for the business-related concepts and process. For instance, a DSL for the simulation of

dynamical systems (e.g., Simulink) would offer abstractions related to electric motors and

power control. General-purpose languages, such as Java, can be used for simulating these

elements, but they would demand additional effort and programming skills to build such

abstractions from scratch. By reducing the amount of programming expertise needed,

DSLs open up their application domain to a larger group of users (MERNIK; HEERING;

SLOANE, 2005). The focus on a particular domain—in our case, ABMS—brings reading

and learning efficiency and allow expressing what, instead of how, to compute (CONSEL

et al., 2005; KOSAR et al., 2010). According to Tolvanen and Kelly (2016), DSLs can

increase productivity by a 5x–10x factor. However, creating a DSL can be costly and

difficult. Previous work on MDD showed that the more specific the DSL, the higher the

chance of success (HUTCHINSON; ROUNCEFIELD; WHITTLE, 2011).

A common way of describing DSLs is metamodeling (SCHMIDT, 2006). A meta-

model defines concepts and relationships among them, in addition to their key seman-

tics and constraints within a domain. The construction of a metamodel follows from

a metamodeling activity, on which a domain analysis is performed to identify the do-

main concepts that should be provided by a DSL and thus must be included in the meta-

model (STREMBECK; ZDUN, 2009). Usually, a metamodel is constructed upon a meta-

metamodel that provides elementary concepts to define metamodel elements, such as the

ability to represent relationships between them. A metamodel is thus an instance of a

meta-metamodel. A model of a system, in turn, is an instance of the domain metamodel.

Meta-metamodels, metamodels, and models represent different abstraction layers of an

28

MDD approach. These layers are organized by their abstraction level, as illustrated in

Figure 2.2. The meta-metamodel is at the top (M3) layer, followed by the metamodel

(M2) and model (M1) layers. The bottom layer (M0) contains model instances, which

represent particular systems.

Figure 2.2: MDD Abstraction Layers and Model Transformation Elements. Adapted
from Bocciarelli and D’Ambrogio (2014)

While the metamodel describes the domain concepts available for building models

(in other words, the language abstract syntax), the notation used to render these concepts

is specified by the language concrete syntax (ATKINSON; KÜHNE, 2003). An effective

concrete syntax reduces the abstraction gap by providing building blocks that expres-

sively represent domain concepts, leading to a more productive environment. The precise

meaning of the symbols used in the concrete syntax is formalized by the semantics of the

language. The semantics of a DSL must be either well-documented or intuitively clear,

adopting concepts from the problem space so that a user having domain knowledge will

recognize the domain elements (STAHL et al., 2006a).

The goal of the second element of an MDD approach, model transformations,

is to convert models. Model transformations are automated by means of transformation

engines and source code generators, and those constitute the third element of an MDD ap-

proach. With a transformation engine, a source model can be converted to a target model

or to code. The former conversion is called model-to-model (m2m) transformation, and

the latter is model-to-code transformation (m2c). Transformation rules are specified at the

metamodel level to map elements of distinct metamodels or to map elements to code state-

29

ments, as illustrated in Figure 2.2. For example, transformation rules can map elements of

class diagrams from the UML to statements of the Java programming language. Model-

to-code transformations are the basis of source code generators that, in turn, automate

the creation of low-level software artifacts (e.g., lines of code). Manually creating such

artifacts is an effort-consuming task and requires technical expertise. Moreover, pieces of

code for recurrent structures and concepts are often repeatedly implemented. By putting

these pieces of code into code generators, an MDD approach increases productivity in

software development.

2.3 Related Work

Remarkable work has been developed in the MAS community for modeling or

building agent systems. Gómez-Sanz and Fuentes-Fernández (2015) reviewed a selec-

tion of Agent-Oriented Software Engineering (AOSE) methodologies in order to account

how well the AOSE community is meeting the software lifecycle used in the industry.

Their study considered consolidated methodologies that have received attention from

the community in the last years (GAIA, MESSAGE, PASSI, Tropos, Prometheus, IN-

GENIAS, ADELFE, and MaSE) as well as new methodologies (ASEME, GORMAS,

OperA, DSML4MAS, and ForMAAD). There are also modeling languages tailor-made

for MASs: Agent-DSL, MAS-ML, SDLMAS, DSML4MAS, Agent-UML, AM, and

SEA_ML. Additionally, many agent-based platforms are available for creating MASs.

In a recent work, Kravari and Bassiliades (2015) surveyed twenty-four platforms that are

used by the MAS community. Considering such magnitude in the number of platforms,

we focus on the ones providing support for simulation.

MDD alternatives were also conceived to build MASs. Kardas (2013) reviewed a

selection of MDD approaches for MAS and classified them into three categories: com-

plete MDD approaches with multiple metamodels at distinct abstraction levels and model

transformations (Cougaar MDA, PIM4Agents, and MDD4SW Agents); partial MDD

approaches with single metamodels and either model-to-model or model-to-code trans-

formations (Malaca, CAFnE, TAOM4e, PIM4SOA, AMDA); and extensions of existing

MAS methodologies to support MDD (INGENIAS Development Toolkit (IDK), Model-

driven Tropos, and Model-driven ADELFE).

From the point of view of the ABMS paradigm, previously mentioned approaches

share a common drawback: they are focused exclusively on the MAS elements. In that

30

sense, they are approaches for constructing general purpose MAS. However, built-in

agent abilities, such as learning and adaptation, are not provided. Except for some exten-

sions for these work (detailed later), they do not cover simulation aspects such as temporal

extent, exogenous processes, initialization, observation, and repetition. Even having total

or partial MDD support, the focus on general purpose MAS prevents these approaches

from providing high-level abstractions for specifying such execution aspects. Moreover,

Kardas (2013) noticed that in most of these MDD approaches, support for code gener-

ation is limited. Usually, code is generated only at the template level, and a significant

amount of code needs to be manually completed. Therefore, feasibility and effectiveness

of these MDD approaches are limited because the amount and quality of the automatically

generated MAS components appear to be insufficient.

Considering that this thesis focuses on agent-based simulations, the review is nar-

rowed to methodologies and platforms able to deal with simulation aspects. Given that

this thesis proposes an MDD approach agent-based simulation development, alternatives

that refer to at least one MDD concern are considered: metamodels, or domain-specific

languages, or model transformations. The reviewed approaches are classified into two cat-

egories: metamodels (which also includes methodologies and processes) and platforms.

In the following sections, we briefly describe these approaches and discuss their limita-

tions.

2.3.1 Metamodels

The model-driven approach of Iba, Matsuzawa and Aoyama (2004) is based on

a metamodel that covers general aspects of agent-based simulations, such as agents, be-

haviors, relations, goods, and information. The approach relies on the UML for creating

simulation models on the basis of their proposed metamodel. While behaviors are spec-

ified with UML activity, communication, and statechart diagrams, all other elements are

specified with UML class diagrams.

Garro, Parisi and Russo (2013) proposed MDA4ABMS, a process based on the

model-driven architecture for specifying simulation models. A light, task-based meta-

model is provided for modeling structural and behavioral aspects of agents and the en-

vironment. As in previously mentioned approaches, MDA4ABMS relies on UML for

modeling these aspects. Moreover, code generation is semi-automated. Guidelines are

provided for manually transforming some elements of diagrams into code artifacts.

31

As reported by Bauer and Odell (2005), UML does not provide expressive con-

structs to specify high-level aspects of agent-based simulations. Aspects such as adapta-

tion and learning need to be specified from scratch, as well as simulation aspects. There-

fore, effectiveness and productivity are compromised in these UML-based related work.

Alternatively, there are MDD approaches for agent-based simulation development

that do not rely on UML for modeling. These approaches range from brand new meta-

models with modeling languages and model transformations to extensions of existing

agent methodologies.

The AMASON metamodel (KLÜGL; DAVIDSSON, 2013) was proposed to cap-

ture the basic structure and dynamics of agent-based simulations. According to its au-

thors, AMASON is focused not on providing a highly elaborated metamodel with specific

suggestions to all possibly occurring concepts, but on a metamodel that fits a wide variety

of models. Consequently, it covers only very basic structures and processes. Models are

specified as tuples and sets of bodies, minds, and regions (environment), and their dy-

namics is specified by means of predicates, which define state transitions. Neither model

transformations nor code generation is provided.

The MAIA metamodel (GHORBANI et al., 2013) captures social concepts such

as norms and roles. It is based on institution analysis and therefore is mainly focused

on agent-based social simulations. In (GHORBANI et al., 2014), semi-automatic code-

generation was proposed in the form of a guideline for transforming a MAIA model into

an executable simulation. Human intervention is required to transform aspects such as the

simulation setup. Social concepts are also considered by Coutinho et al. (2009), which

proposed an organizational metamodel by merging existing organizational models. Such

a merged metamodel promotes organizational interoperability among organizational mod-

els. However, simulation designers need to specify the organizational model from scratch,

given that the merged metamodel does not capture models recurrently used in simulations.

In the IODA methodology for agent simulations (KUBERA; MATHIEU; PI-

CAULT, 2008), a modeling language was proposed for specifying the simulation dy-

namics as interactions among agents. An interaction is considered a condition/action rule

involving a source and a target agent. The concrete syntax of the modeling language is

characterized by an interaction matrix, which indicates which interactions an agent may

perform or undergo, and with which other agents. However, there are no available coarse-

grained building blocks and thus complex interactions must be specified from scratch.

The use of the INGENIAS (PAVÓN; GÓMEZ-SANZ, 2003) modeling language to

32

specify agent-based simulation models was proposed by Fuentes-Fernández et al. (2010).

The INGENIAS language provides elements for modeling agent-related aspects such as

agents, roles, goals, tasks, events, interactions, and societies. Similarly, Sansores and

Pavón (2005) adopted the INGENIAS language for modeling and proposed model trans-

formations to generate code for agent-based simulation platforms. In both work, further

customizations in the INGENIAS language were required to support the modeling of sim-

ulation aspects, such as the temporal and spatial extent (SANSORES; PAVÓN; GÓMEZ-

SANZ, 2005) and the scheduling and management of agents’ life-cycle (GÓMEZ-SANZ;

FERNÁNDEZ; ARROYO, 2010). In spite of providing improved representation for

agent-related aspects in comparison to UML, the INGENIAS language does not provide

expressive elements for recurrent aspects such as adaptation and learning. Additionally,

as reported by Kardas (2013), the INGENIAS development kit has issues with respect to

code generation—code is generated only at the template level.

The presented approaches have limited support for modeling sophisticated aspects

of agent-based simulations and for generating code from them. Table 2.2 presents a com-

parison of the described approaches. Some approaches adopt UML diagrams as the means

of specifying the simulation structure and dynamics, while others adopt textual and tab-

ular descriptions. These approaches provide neither built-in simulated environment nor

agent capabilities.

Nevertheless, it is noteworthy to discuss how these approaches have been evalu-

Table 2.2: Comparison of Metamodels for Agent-based Simulation
Approach Means of

Specification*
Built-in simulated
environments

Built-in agent
capabilities

Iba, Matsuzawa and
Aoyama (2004)

UML class, activity,
communication, and
statechart diagrams

- -

MDA4ABMS Textual description
Tables
UML activity diagram

- -

AMASON Tuples and sets
Predicates for state transi-
tions

- -

MAIA Tables and forms - -

IODA Interaction matrix - -

INGENIAS INGENIAS diagrams - -

*of agents, interactions, and environment (structure and dynamics)

33

ated. As previously mentioned, MDD is effective for increasing productivity in software

development if the development effort is focused on domain concerns instead of pro-

gramming statements. Such a gain in productivity would not be possible if the effort

to create models using the provided metamodels and modeling languages were greater

than using other ways (e.g., programming languages). Therefore, in order to show that

MDD approaches are effective and thus improves productivity, one must go beyond show-

ing that they are feasible. With respect to related work on MDD targeted to agent-based

simulations, we observed that they limit themselves to showing examples and case stud-

ies that demonstrate the feasibility of their MDD approaches—the ability to model and, in

some cases, to generate code. No effectiveness evaluation is presented. Therefore, despite

being able to generate code from models, there is no evidence that the effort required to

create these models is less than developing simulations directly on the target simulation

environment.

2.3.2 Platforms for Agent-based Simulation

We next present and discuss agent-based simulation platforms. The discussion is

focused on the availability of features and building blocks for aspects recurrently used

in simulations. We refer the reader to Sichman (2015), and Kravari and Bassiliades

(2015) for a comparison of these platforms regarding other, more general aspects. We

limit the discussion to the platforms enumerated by Klügl and Bazzan (2012): Swarm,

Repast, MASON, and NetLogo. Kravari and Bassiliades (2015) reported that these plat-

forms belong to the group of the most promising ones. We also considered two additional

platforms: GAMA and AMP. Table 2.3 presents basic characteristics of these platforms,

sorted by the latest release date. It can be seen that these platforms are distributed under

public/academic license and are open source. Although MASON, Swarm, and AMP are

yet considered in recent surveys, it has been a while since their latest releases.

GAMA and NetLogo provide their own graphical toolkit and programming lan-

guages for developing agent-based simulations (TAILLANDIER et al., 2010; WILEN-

SKY, 1999). In their graphical environment, designers can specify a few details of the

simulation, and control its execution by means of user interface components. Each plat-

form provides its own programming language, in which the dynamics of agents, interac-

tions, and simulated environment must be programmed. Therefore, the designer should

have programming expertise and have had learned these programming languages to de-

34

Table 2.3: Basic Characteristics of Agent-based Simulation Platforms. Adapted from
(KRAVARI; BASSILIADES, 2015)

Platform Latest release License Open source

GAMA September 11, 2018 public/academic
√

NetLogo June 14, 2018 public/academic
√

Repast October 27, 2017 public/academic
√

SeSAm February 06, 2017 public/academic
√

MASON June 19, 2015 public/academic
√

Swarm August 01, 2013 public/academic
√

AMP May 27, 2012 public/academic
√

velop simulations. Concerning the simulated environment, NetLogo provides only a grid

topology, with methods for importing environmental data from Geographic Information

System (GIS) files. Any other topologies (e.g., a graph) need to be specified programmat-

ically. GAMA provides both grid, graph, and Cartesian space topologies. Additionally,

GAMA provides support for loading the simulated environment directly from GIS files.

With respect to built-in agent capabilities, NetLogo provides code libraries for features

such as fuzzy logic and linear programming. GAMA provides built-in abilities for spec-

ifying agent reflexes, tasks, and states—these abilities are composed of sets of actions

executed automatically by the agent. No library is provided either by NetLogo or GAMA

for agent capabilities such as learning or adaptation.

Repast provides a graphical toolkit with editors to develop agent-based

simulations (NORTH; COLLIER; VOS, 2006). In Repast, a simulation is developed ei-

ther in plain Java code or in the ReLogo programming language. Therefore, both the

structure and dynamics of agents, interactions, and the simulated environment are speci-

fied as either Java or ReLogo source code. These elements are conceptualized as classes,

methods, attributes, and relationships—from Object Oriented Programming (OOP). Re-

cently, statecharts were provided to conceptualize agents’ dynamics (OZIK et al., 2015).

Within a statechart, the designer can specify agent states and transitions between them.

However, elaborated agent dynamics still needs to be specified using either ReLogo or

Java code within on enter/on exit events associated with states or transitions. Repast pro-

vides a set of OOP classes for recurrent environment topologies beyond grids, which could

potentially ease the development of simulations in a great variety of domains. Concerning

abstractions for agent capabilities, Repast provides built-in support for specifying neural

networks and genetic algorithms, all of them by means of Java source code libraries.

MASON and Swarm are programming libraries for developing agent-based

simulations (LUKE et al., 2005; MINAR et al., 1996). While MASON is a Java library,

35

Swarm is distributed either as a Java or an Objective-C library. Both provide a set of

classes to develop agent-based simulations and to visualize the simulation execution. In

these platforms, agents, interactions, and the simulated environment, as well as the sim-

ulation execution, need to be source coded. The set of classes provided by MASON

includes classes for recurrent environment topologies, for rigid body dynamics, and for

agents’ processes scheduling. Swarm provides only a grid environment topology. With

respect to agent capabilities, MASON provides classes for evolutionary computing con-

cepts. That way, agents can be endued with features and operations to produce adaptive

behaviors by means of genetic evolution. In contrast, no built-in feature is provided by

Swarm for agent capabilities.

In SeSAm and AMP, agent-based simulations are developed by visual program-

ming (KLÜGL; HERRLER; FEHLER, 2006; PARKER, 2010). Agents, interactions, and

the simulated environment are assembled by means of a component tree. In SeSAm, the

dynamics of these elements are specified with activity diagrams that resemble the UML

activity diagram. In turn, in AMP, dynamics is specified as chained action nodes in the

component tree. With respect to the simulated environment, while SeSAm provides only

a grid topology, AMP provides grid, continuous space, and network environments. Both

platforms do not provide built-in agent abilities, which means that abilities such as learn-

ing must be developed from scratch.

Table 2.4 presents a comparison of the discussed simulation platforms. It can be

seen that these platforms have limited built-in support for specifying sophisticate aspects

of agent-based simulations. Although it is possible to create simulations that consider

agent abilities such as learning, flow control, and disease models, much must be devel-

oped from scratch. Moreover, developers must have expertise in programming logic to

develop those abilities in either textual or visual programming languages. Finally, al-

though simulation aspects (e.g., exogenous processes, simulation setup, and observation)

are supported by these simulation platforms, programming expertise is usually required

to specify them.

2.4 Final Remarks

The ABMS paradigm is particularly suitable for modeling emergent phenomena

and complex systems composed of interacting heterogeneous agents with adaptive be-

haviors. Despite the potential of the ABMS paradigm, there is a lack of methodological

36

Table 2.4: Comparison of Platforms for Agent-based Simulation
Platform Means of

Specification*
Built-in simulated
environments

Built-in agent
capabilities

GAMA GAMA code Grid
Graph
Cartesian space

Agent reflexes, tasks, and
states

NetLogo NetLogo code Grid Fuzzy logic
Linear programming
(NetLogo code libraries)

Repast ReLogo or Java code
Statechart for agents’ dy-
namics

Grid
Continuous space
Network (all by means of
OOP classes)

Neural networks
Genetic algorithms
(Java code libraries)

MASON Java code Grid
Continuous space
Network (all by means of
OOP classes)

Rigid body dynamics
Agent process scheduling
(Java code libraries)

Swarm Java or Objective-C code Grid -

SeSAm Visual component tree
Activity diagram

Grid -

AMP Visual component tree
Chained action nodes

Grid
Continuous space
Network

-

*of agents, interactions, and environment (structure and dynamics)

support. That includes all steps from a precise formulation of the simulation objective

to automatic generation of model documentation (KLÜGL; BAZZAN, 2012). Addition-

ally, researchers have already stressed the importance of building blocks and tools at a

higher abstraction level (PARUNAK; SAVIT; RIOLO, 1998; HAMILL, 2010; KLÜGL;

BAZZAN, 2012; WELLMAN, 2016). One step towards this direction is the ODD proto-

col. However, it is completely based on textual descriptions and hence provides neither a

standard notation nor code generation.

As stated by Parunak, Savit and Riolo (1998), a widespread realization of the

advantages of ABMS will depend on the availability of several intuitive, drag-and-drop

tools for building and analyzing agent-based models easily. The popularity and maturity

of equation-based modeling are explained by the availability of such tools. Most alter-

natives for agent systems are at lower levels of solution maturity, and the way towards

consolidation of alternatives must include languages that support solutions to recurrent

problems (WEYNS et al., 2015). This thesis vision goes towards this direction. With an

approach that provides off-the-shelf concepts recurrently used in simulation (e.g., agent

37

capabilities such as learning, or topologies for the simulated environment), the adoption of

ABMS as a simulation paradigm could possibly increase. Considering that MDD aims to

find domain-specific abstractions and make them available for modeling, it is a candidate

approach for raising the abstraction level in agent-based simulation development.

38

3 MODEL-DRIVEN AGENT-BASED SIMULATION DEVELOPMENT

In this thesis, we propose MDD4ABMS, a model-driven approach for agent-based

simulation development. As described in the background chapter, making domain ab-

stractions available for modeling is key to the success of any MDD approach. Therefore,

the core of our MDD4ABMS approach is a metamodel that captures the aspects that com-

pose agent-based simulations (agents, interactions and the simulated environment), in ad-

dition to the simulation execution specification. From such a metamodel, ready-to-run

simulation code can be automatically generated via model-to-code transformations.

This chapter describes how the MDD4ABMS metamodel was conceived following

a generative, bottom-up approach, and how it was extended via a domain analysis method

to capture concepts from particular application domains. The metamodel is constructed

upon the Ecore meta-metamodel1, and it is specified with UML. This chapter starts with

an overview of the elements that compose the MDD4ABMS approach and how they in-

teract. Then, the core metamodel is explained. Finally, we describe two extensions to the

core metamodel that capture concepts from the adaptive traffic signal control and spread

of disease application domains.

3.1 MDD4ABMS Overview

The main elements of our MDD4ABMS approach are (i) a metamodel for agent-

based simulations, (ii) the ABStractLang modeling language, and (iii) model-to-code

transformations. MDD4ABMS also includes ABStractme, a modeling tool through which

designers can create simulation models and have their source code generated. Figure 3.1

shows an overview of our MDD4AMBS approach and its elements, which are briefly

described next.

The agent-based simulation metamodel abstracts aspects recurrently used in

simulations. Basic aspects, such as the simulated environment, entities, and agents, are

grouped into a core metamodel. Other aspects, such as decision capabilities and concepts

that are domain specific, are incorporated into specific metamodels. Together, these spe-

cialized metamodels compose the agent-based simulation metamodel. This metamodel

can be further extended to capture aspects from other application domains. Indeed, the

simulation metamodel proposed in this thesis has been already extended with the fol-

1<http://www.eclipse.org/modeling/emf/>

http://www.eclipse.org/modeling/emf/

39

Figure 3.1: Overview of the MDD4ABMS Approach

Modeling
Language

(ABStractLang)
Modeling Tool
(ABStractme)

Model-to-Code
Transformations

Code
Generator

«metamodel»

Agent-based Simulation

«metamodel»
Decision-making

«metamodel»
Core

«metamodel»
Spread of Disease

«metamodel»
Traffic Signal Control

Source Code

usesexecutesproduces

abstract
syntaxrealizes

Designer specifies a simulation
model and have its

code generated

executes a
simulation

realizes

MDD4ABMS

lowing concepts from two application domains: decision making and flow control from

the traffic signal control domain, and compartmental disease models from the spread of

disease domain.

Specifying a simulation by manually instantiating metamodel elements would be

an effort consuming task. To ease the specification of simulations MDD4ABMS pro-

vides ABStractLang, a modeling language that provides building blocks to reduce the

abstraction gap and to represent domain concepts expressively. The agent-based simula-

tion metamodel defines the abstract syntax of the ABStractLang language.

In the model-to-code transformations element, transformation rules are specified

on the basis of the metamodel. These transformation rules are executed by the code gen-

erator element, which receives as input a simulation model, executes the model-to-code

transformations, and produces as output the NetLogo source code that implements the

model. Finally, the ABStractme modeling tool element provides an integrated environ-

ment on which the designer can specify agent-based simulations using the ABStractLang

modeling language and have its source code generated.

In the following sections, we detail the core and the specialized metamodels and

how they were constructed. The modeling language, model-to-code transformations, and

modeling tool elements are described later, in Chapter 4.

3.2 Core Metamodel

Any source of explicit or implicit domain knowledge can be used as input for iden-

tifying domain abstractions and build a metamodel, such as technical documents, knowl-

edge from domain experts, and existing code (MERNIK; HEERING; SLOANE, 2005).

40

In this thesis, we built the metamodel considering existing agent-based simulations. This

generative, bottom-up approach was used to incorporate into the metamodel only those

elements that are, indeed, recurrently used in agent-based simulations.

The core metamodel abstracts basic, recurrent concepts found in existing agent-

based simulations. To build this metamodel, we considered a set of 50 exist-

ing agent-based simulations available at the CoMSES Net Computational Model Li-

brary (ROLLINS et al., 2014; CoMSES Net, 2018). This set was composed of the 45

last recently published simulations by the time of the analysis (Dec, 2015), and the 5 top-

downloaded ones (MURPHY, 2015). Simulations with neither associated publication or

available source code were removed, resulting in a set of 17 simulations whose domains

are social simulation, land use, and epidemic dissemination. We included an additional

existing simulation that was not available at the CoMSES model library: the Haiti Earth-

quake simulation (CROOKS; WISE, 2013), which investigates how people react to the

distribution of food, and how rumors relating to their availability propagate through the

population. Finally, the Sugarscape simulation (EPSTEIN; AXTELL, 1996; LI; WILEN-

SKY, 2009) was included due to its potential for being used with educational purposes.

Therefore, a set of 19 simulations were considered to build the core metamodel.

Each simulation was investigated to elicit the elements that describe core aspects.

The ODD protocol was used to guide such elicitation, in particular, its overview and de-

tails blocks in which structural simulation elements are documented, and the observation

element of the design details block in which the data collected from the simulation is

specified. We identified that these simulations use parameters as input, and some of them

rely on external files to create or initialize their environments, such as GIS files with ele-

vation or demographic data. Such simulation types often demand high coding effort, since

developers typically need to program data input routines in the simulation platform. In the

Haiti Earthquake simulation, for example, external GIS files are used for the specification

of the environment, containing information about the population density, relative level of

devastation, existing transportation network, and location of aid centers. After investigat-

ing all the simulations, we identified the following recurrent elements: an environment, in

which all situated entities are located; simulation parameters (e.g., rates, amounts, etc.);

and entities and agents with attributes and relationships. These simulation elements have

structural and execution (setup) aspects, as well as outputs. Next sections describe how

these elements are abstracted in the metamodel.

41

3.2.1 Basic Simulation Aspects

Figure 3.2 shows a partial view of the core metamodel in which the basic sim-

ulation elements identified are abstracted. The main element of the metamodel is the

AgentBasedSimulation, which aggregates all other simulation elements. To specify the

environment in which all other situated entities (Entity) are located, the metamodel in-

troduces the notion of spatial abstraction. SpatialAbstraction is the ground of the sim-

ulation, discretized in spatial units (as proposed in the ODD protocol). A SpatialUnit

is a particular type of entity in which other objects of the environment can be situated.

Based on the investigated simulations, three types of spatial abstractions are provided,

each of them with its particular spatial unit: (i) Grid composed of cells (GridCell),

(ii) Cartesian2DSpace composed of points (Cartesian2DPoint), and (iii) Graph com-

posed of links and edges (GraphLink and GraphNode, respectively). A spatial unit also

specifies an Occupation policy, which affects the mobility of agents. Three occupation

policies are provided: many entities or agents can simultaneously occupy the same spatial

unit; distinct entities can occupy the same spatial unit given that they are of distinct types

(e.g., a human and a pet agent); or, a more restrictive policy in which only one entity can

occupy the spatial unit per timestep.

Spatial units have standard properties, i.e., a GridCell has a col and lin values

that defines its location (coordinates) within the Grid spatial abstraction. However, ad-

ditional properties may be required depending on the simulation. To support spatial unit

customization, the EntitySupplementaryStructure was incorporated into the meta-

model to allow supplementing the spatial unit with additional attributes, which are then

embedded into the spatial unit entity.

In the considered simulations, model parameters and entities are often imple-

mented without a clear separation of the concepts associated with different aspects of

the simulation. Such a situation can lead to scattered descriptions across distinct portions

of the simulation model or code, which can impair comprehension and future mainte-

nance. To avoid such scattering, our metamodel groups the specification of parameters

and entities by Concern. Each concern has a title and a description, and can be composed

of parameters, entities, and supplementary structures. This concern-driven specification

is helpful when modeling simulations involving experts from different application areas

or sub-areas. It also promotes scalability and manageability of models, given that con-

cerns split models into smaller, manageable parts, as recommended in the MDD litera-

42

Figure 3.2: Core Metamodel: Environment, Entities, and Agents

ture (VOELTER et al., 2013).

An Entity is a relevant object that exists in a simulation. The structural specifica-

tion of an entity includes its name and attributes. An Agent is a particular kind of entity

that may have capabilities. Concerns receive parameters usually used as input to a sim-

ulation, which are concern attributes (e.g., the number of buildings). Entity and concern

attributes correspond to the same model element, namely Attribute. Such attributes are

described in terms of name, type, and cardinality, i.e., whether this value is a collection

and of how many elements. The attribute type is either a PrimitiveType or a complex

type represented by the Type element. An attribute is associated with a value when sim-

ulation runs. The idea of entities as elements with attributes is in fact part of almost all

43

Figure 3.3: Core Metamodel: Relationships

agent-based metamodels, such as those presented by Bernon et al. (2004). However, given

that we follow a bottom-up approach, existing metamodels were not used as starting point

to avoid bias that can lead to the introduction of unnecessary or overly complex concepts.

Relationships can be specified between entities. Figure 3.3 shows the relationship

types abstracted into the core metamodel.2 A Composition relationship indicates that

the source entity is composed of other entities, representing a whole-part relationship.

The whole is responsible for creating the parts, and the whole does not exist without its

parts (e.g., a building is composed of its floors). A Container relationship indicates

that the source entity may contain others, e.g., a building may contain people. Finally,

an Association indicates relationships with other semantics between two entities (e.g.,

friendship between people). A relationship has a cardinality, which specifies how many

target entities may be related to the source entity during the execution of a simulation.

A relationship also has a direction, which specifies the awareness of the relationship. If

UNIDIRECTIONAL, only the source entity is aware of the relationship. If BIDIRECTIONAL,

both source and target entities are aware of the relationship.

3.2.2 Creation of Entities and Initialization & Update of Attributes

The elements previously presented are related to the structural aspects of an agent-

based simulation. Additionally, the metamodel has elements to describe the execution

specification: how values of attributes are initialized and updated, and how entities and

agents are created. A Source element, shown in Figure 3.4, abstracts the provision of

values, hiding low-level details of how these values are provided. Sources are used both

to initialize or update attributes, and to provide values to any other simulation element

that demand them (e.g., a learning technique demand values for its parameters, such as the

2In this and in all other diagrams in the following, the gray color is used to highlight the metamodel
elements that were either already described or will be detailed later.

44

Figure 3.4: Core Metamodel: Sources

Table 3.1: Core Metamodel: Types of Sources
Type Identifier Description

StaticValueSource V The designer informs the value directly in the specification.

ManualSource The value is provided at runtime, by means of some input component.
Supported manual sources are the following:

ManualInputSource MI Manual input that accepts string or numeric values.
ManualYesNoSource MYN Manual yes/no input, that may be used for boolean values.
ManualBounded

Source

MB Manual input of numeric values. This source creates an input com-
ponent that allows numeric values bounded by a min–max interval
and that are multiples of a step value.

ManualFromList

ValueSource

MLV Manual input that provide a list of allowed values.

ExpressionSource E An Expression element specifies operations over values or param-
eters to compute the resulting value (e.g., math operations).

ParameterSource P The provided value is the value of a previously defined parameter.

FileSource Values are read from files. Supported file formats are the following:

CSV FCSV The value is read from a Comma Separated Values (CSV) file. The
attribute of the nth created entity is set according to the specified
fields of the nth line in the file.

GISASCII FGIS The value is read from an ASCII GIS file, a tabular data file in which
each value is associated with a point in the space. The attribute of
the entity located at (x,y) has its value set according to the element
at (x,y) in in the file.

SHAPE FSHP The value is read from a shape file, which contains geospatial vec-
tor data structured as points, lines or polygons in the space. The
attribute is set according to the specified attribute from the corre-
sponding shape of an entity in the file.

OSM FOSM The value is read from an Open Stree Map (OSM) file, which is a
structured data file that represents traffic networks. The attribute is
set according to the specified attribute from the corresponding traffic
link or node in the file.

DecisionMakingSource DM The value is provided by a decision capability (described later).

45

learning rate). Table 3.1 shows the types of sources provided (the Identifier column shows

how source types are referred to in the ABStractLang modeling language, described af-

terwards). Only StaticValueSource, ManualSource, and ExpressionSource are ac-

cepted to initialize attributes associated with concerns (i.e. parameters). To initialize and

update entity attributes, in turn, any of the provided sources are accepted. These associa-

tion constraints between attributes and sources are part of our metamodel semantics.

Creational strategies are incorporated into the metamodel to abstract the setup of

the simulation, in particular how entities and agents are created and located in the spatial

abstraction. These are represented by the CreationalStrategy element, as shown in

Figure 3.5. Two strategies are supported: DesignerDefStrategy and FileStrategy.

These are detailed in Table 3.2. Although file-based strategies are based on the same file

types, creational strategies and sources give distinct semantics for file contents.

Figure 3.5: Core Metamodel: Creational Strategies

3.2.3 Data Collection

With respect to data collected for testing, understanding, and analyzing the simu-

lation, the considered simulations usually output these data to plots or files, either peri-

odically or by the end of the simulation. Figure 3.6 shows the metamodel elements that

capture the specification of which data is collected, and how and when they are collected.

This specification is supported by the OutputDataset and Output elements. The latter

abstracts a particular value collected from an entity, while the former groups related val-

ues that are either saved in the same file (as columns) or shown in the same plot (as lines

or bars). Each output has its own periodicity, which can be either PERIODIC (the value

collected at every step of the simulation) or APERIODIC (the value is collected by the end

of the simulation execution). Two output types are provided. In the Aggregation output,

46

Table 3.2: Core Metamodel: Types of Creational Strategies
Type Identifier Description

DesignerDefStrategy Designer
Defined

The designer is in charge of specifying the number of entities (quan-
tity) that are created and their locations. The specification is done
via sources to abstract the provision of such values. Only the fol-
lowing sources are accepted:

for quantity: Static Value (V), Manual (only MI,MB, or MLV),
Parameter (P), and Expression (E). In all these cases, the resulting
value of the source must be an integer value.

for location: Static Value (V), Manual (only MI or MLV), or Ex-
pression (E). The resulting value of the source must be the abso-
lute position of the entity on the environment (e.g., (x,y) coordi-
nate). For an Expression source, the result value can also be the
name of another entity specified in the model. In such a case, the
newly created entity will be located at the same position of one
existing entity whose name was provided.

FileStrategy Represents file-based strategies, on which the number and location of
entities are provided as files. The following file strategies are supported:

CSVFileStrategy CSV
File

One entity is created for each line of the CSV file, and the comma
separated fields are available for use in the initialization of its at-
tributes (e.g., in expressions).

GISFileStrategy GIS
File

One entity is created for each data value, and its location is the spa-
tial unit at that coordinate.

GeometricDataFile

Strategy

Shape
File

A composite entity and its contained entities (specified using com-
position relationships) are created according to the mapping of
points, lines, and polygons to their corresponding entity types.

the value is collected via an aggregation function (either COUNT, AVERAGE, or RATIO). In

the Histogram output, the value feeds a histogram function. If the output is AVERAGE

aggregation function or Histogram, it must be related to the entity attribute that provides

the value.

Figure 3.6: Core Metamodel: Simulation Outputs

47

3.2.4 Basic Agent Capabilities

As mentioned earlier, an agent is a particular kind of entity that may have capabili-

ties. Figure 3.7 shows the metamodel elements of basic agent capabilities identified in the

considered simulations. The AgentCapability abstracts the notion of agent capability.

Two basic capabilities are provided: Mobility and Surviving.

Figure 3.7: Core Metamodel: Mobility and Surviving Agent Capabilities

A Mobility element abstracts agents’ ability to move from one spatial unit to an-

other within the spatial abstraction (the simulated environment). The BoundedMobility

element abstracts that kind of mobility on which the range is limited by either an up-

per limit, a lower limit, or both. Two subtypes of bounded mobility are provided:

RandomWalk and ClosestBestSpatialUnit. While agents endued with a RandomWalk

mobility move to a random spatial unit within the range limits, agents endued with a

ClosestBestSpatialUnit mobility move to the closest spatial unit within the range

whose value of a particular attribute is either the maximal or minimal (e.g., move to the

nearest spatial unit with the maximal level of a particular resource).

A Surviving element abstracts aspects that govern agents’ life cycle. These as-

pects are abstracted as LifeResource elements. Identified life resources are AGE and

ENERGY, but support for a CUSTOM resource is provided. For each life resource, an agent

attribute is derived. A life condition takes into account the life resource and specifies the

condition that keeps the agent alive, i.e., the agent dies when such a condition stops being

48

met. For example, an AGE life resource that has an expression `< 100' as life condition

would keep the agent alive for 100 time steps.

To allow the designer to incorporate capabilities not yet covered by the metamodel,

we provided abstractions of external agents and agent capabilities, as shown in Figure 3.8.

An ExternalAgent is an agent whose structure and behavior are entirely developed in

the target simulation platform. Similarly, an ExternalAgentCapability is a capability

developed in the target simulation platform that is assigned to the agent and activated

when the simulation is running. The implementation of these elements is provided as

external source code files.

Figure 3.8: Core Metamodel: External Agent and Agent Capability

As in MDD approaches for mainstream software development, the MDD4ABMS

approach and its metamodel are based on a few assumptions regarding agent-based

simulations. These assumptions reflect aspects inherent from the ABMS paradigm. By

being inherent from the paradigm, they can be implicit on models so as to let the designer

focus on other, often more relevant, simulation aspects. One main assumption adopted

for the MDD4ABMS approach is that the behavior of an agent results from the activa-

tion of its capabilities at each timestep. For example, at each timestep, an agent endued

with Surviving and Mobility capabilities will first activate the Surviving capability

to determine whether it remains alive. If so, then it activates the Mobility capability

to move throughout the environment. With respect to data collection, we assume that

OutputDataset elements are mapped to plots in the generated simulation source code,

and Output elements to either plot lines or bars. Other assumptions are discussed in the

next sections, which present domain-specific extensions.

3.3 Domain-Specific Extensions

As previously described, in this thesis we adopted a generative, bottom-up ap-

proach for building the core metamodel. This metamodel abstracts recurrent agent-based

simulation aspects; however, these aspects are very rudimentary. For example, a de-

49

signer who wants to endue agents with learning will have to develop such ability from

scratch. Additional simulations were studied to extend the metamodel, and consequently

the MDD4ABMS approach as a whole, with further aspects that increase the abstraction

level of agent-based simulation models. The study is restricted to two application do-

mains due to the expertise of the research group members and the availability of existing

agent-based simulations: traffic signal control and spread of diseases. The domain analy-

sis method followed to identify domain-specific aspects is described in Section 3.3.1. The

metamodel extensions derived from the application of this domain analysis method in the

two application domains are described in Sections 3.3.2 and 3.3.3.

3.3.1 Domain Analysis Method

The domain analysis method uses as input existing agent-based simulations and

produces as output a list of abstractions that correspond to the domain model. The method

follows from a bottom-up approach in order to reduce the bias of individual experts’

views while identifying domain concepts, similar to the approach used to conceive the

core metamodel.

To formulate the domain analysis method, we considered existing work in this

context, focused on MAS. Hassan et al. (2009) proposed a process to guide the iden-

tification and formalization of domain concepts. A similar initiative was proposed by

Garro and Russo (2010). In spite of providing valuable guidelines for identifying agents,

interactions, and environmental entities, these processes do not provide support for iden-

tifying higher level concepts, such as adaptation and learning, in addition to aspects such

as temporal extent, initialization, and observation. To overcome this issue, the domain

analysis method adopts the ODD protocol to guide the identification and specification of

most of the key characteristics of a simulation, such as its structure, agent capabilities

(e.g., learning) and its underlying processes.

Our domain analysis method is composed of the following steps.

Step 1. Concept Preliminary List. A list of MAS-related concepts is identified using

existing simulations (e.g., agents and the environment), following the steps of Hassan

et al. (2009) and Garro and Russo (2010).

Step 2. ODD-based Refinement. The ODD protocol is used to refine identified concepts.

The ODD blocks overview and details shed light on structural and simulation aspects

50

such as entity attributes, processes, and initialization. Details about additional agent

capabilities such as learning are revealed by the design concepts ODD block.

Step 3. Concept Abstractions. Identified concepts, already refined based on the ODD

protocol, are analyzed in order to find their underlying essence. Such analysis consid-

ers recurrent characteristics and behaviors. Similar concepts are abstracted as a single,

essential concept, or generalized to a parent concept. In this step, a list of abstractions

is built, containing the domain terminology and concepts, and generalizations.

Step 4. Domain Modeling. The list of abstractions is used to build the domain model.

In the following sections, we describe the metamodel extensions built by applying

this domain analysis method in the traffic signal control and spread of diseases domains.

3.3.2 Traffic Signal Control and Decision-making Extensions

In the area of traffic signal control, the goal is to develop traffic control systems

that i) maximize the overall capacity of the traffic network; ii) maximize capacity of

critical routes and intersection that represent bottlenecks; iii) minimize negative impacts

of traffic on the environment and energy consumption; iv) minimize travel times; and

v) increase traffic safety (BAZZAN, 2009). In such systems, traffic signals devices (e.g.,

traffic lights) are used to control the flow of vehicles.

In scenarios with simple, predictable traffic demand, a fixed traffic signal control

policy that produces satisfactory results can be easily developed and deployed. In con-

trast, in scenarios with complex traffic demands, traffic control systems should be able to

adapt their policies to the current traffic conditions. Agent-based systems is an alterna-

tive that has been considered for creating these Adaptive Traffic Signal Control (ATSC)

systems. Agents are autonomous and distributed by nature, and adaptive decision-making

techniques such as anticipation and learning can be easily incorporated into them (BAZ-

ZAN; KLÜGL, 2013). By being endowed with learning capabilities, for example, agents

can refine traffic control policies in real time and thus optimize the overall traffic flow for

a more efficient use of the existing infrastructure (MANNION; DUGGAN; HOWLEY,

2016). Indeed, the successful use of agents has been reported in traffic specialized liter-

ature (CHEN; CHENG, 2010; JIN; MA, 2015). We next describe the domain analysis

conducted to identify the domain concepts present in ATSC agent-based simulations.

To extend the metamodel, we considered the existing agent-based simulations

51

presented in Table 3.3 (column referred as shows how these simulations are referred

henceforth). To select these simulations, we consulted agent-based simulation experts

in the ATSC domain. The SOTL-Gershenson and SOTL-Cools simulations are focused

on self-organizing traffic signal control agents. In the RL-Wiering, RL-Oliveira, and RL-

Mannion simulations, agents adopt reinforcement learning techniques—each simulation

specifies the learning task in its particular way.

Table 3.3: Simulations of Adaptive Traffic Signal Control Selected for Analysis
Simulation Description Referred as

Gershenson (2005)
Simulate self-organizing traffic lights

SOTL-Gershenson
Cools, Gershenson and
D’Hooghe (2013)

SOTL-Cools

Wiering (2000)
Simulate adaptive traffic signal control
agents that improve their control policies
using reinforcement learning

RL-Wiering
Oliveira and Bazzan (2009) RL-Oliveira
Mannion, Duggan and How-
ley (2016)

RL-Mannion

After performing step 1 of our domain analysis method, we identified different

recurrent MAS-related concepts, which are: environment, agents and their perceptions,

vehicles, and demand. The environment of an ATSC simulation is a traffic network, which

is composed of links and nodes that represent road lanes and intersections, respectively.

Such traffic network is often provided as separated files, such as open street map3 files.

A Traffic Signal Controller (TSC) is an agent in charge of managing traffic light

indicators (red, yellow, and green). TSC agents are created at each intersection and their

perception is related to their incoming and outgoing lanes, such as the queue length and

throughput. Additionally, it is assumed that TSC agents are able to perceive vehicle-

related data, such as speed, and travel/waiting time. Figure 3.9(a) illustrates a TSC agent

with its incoming/outgoing lanes and traffic light indicators.

The design of a TSC agent involves a set of concepts from the traffic control do-

main, which comprises our basic domain terminology and is illustrated in Figures 3.9(b)

and 3.9(c). A stage describes a particular set of allowed traffic movements for vehicles in

the lanes of the intersection. For each TSC, many stages are defined to regulate the traffic

flow. A phase is a period in which the indicators of the corresponding stage are green,

allowing the traffic flow. In addition to the green interval, a phase can specify a change

interval (yellow) and a clearance interval (in which all the indicators of the intersection

are red before activating the next phase). A cycle is a period of time during which all asso-

3<www.openstreetmap.org>

www.openstreetmap.org

52

Figure 3.9: Adaptive Traffic Signal Control: Domain Terminology and Concepts

(a) Traffic signal control agent (b) Stages

(c) Phase, plan, and cycle

ciated stages take place. Consequently, the duration of a cycle corresponds to the sum of

its phase intervals. Finally, a plan is a set of phases assigned to stages plus the sequence

in which they are activated. An offset can be defined for a plan and corresponds to the

period in which the activation of the first phase is postponed. Figure 3.9(c) illustrates two

possible plans of the TSC agent, each with distinct phases. Both plans consider a cycle of

50 seconds. In order to evaluate the effectiveness of TSC agents, vehicles are created in

the traffic network during the simulation according to a traffic demand.

Following step 2 of our domain analysis method, we used the ODD protocol to

guide the identification of how each existing simulation deals with adaptation. In the

SOTL-Gershenson and SOTL-Cools simulations, a set of adaptive criteria based on traffic

conditions are introduced, i.e., a TSC agent changes to another phase according to the

number of vehicles approaching and the time elapsed on the current phase.

In the RL-Wiering simulation, reinforcement learning is used by TSC agents in

order to minimize the overall waiting time of vehicles. Each TSC agent has six stages

and chooses the active stage based on a value function learned. Phases and plans are not

considered. The value function takes into account the expected waiting times of vehicles

given their destinations. In the RL-Oliveira simulation, TSC agents use reinforcement

learning to learn a policy for selecting the plan that minimizes the number of stopped

53

vehicles over all lanes. Two phases and three plans were adopted. While one plan defines

an equal duration for both phases, the other two define a longer duration for a particular

phase (either north-south or east-west). The reward used was the averaged queue length

at the TSC intersection. Finally, in the RL-Mannion simulation, TSC agents also use re-

inforcement learning in order to minimize the overall waiting time of vehicles. Each TSC

agent has six stages and chooses the active stage based on a value function learned. Phases

and plans are not considered. The value function takes into account the expected waiting

times of vehicles given their destinations. These introduced adaptation approaches share

a common characteristic: TSCs have designer-specified fixed plans, which are used as

comparison baselines. Next, we describe how the metamodel was extended by following

steps 3 and 4 of our domain analysis method to support adaptive traffic signal control

concepts.

From the abstraction step, we observed that, essentially, a TSC is an agent

that has a flow control capability for regulating the flow of a set of streams.

Therefore, the metamodel was extended with an additional agent capability called

FlowControlCapability, as shown in Figure 3.10. Such capability has a set of known

streams and a set of flow regulators to manage them. These regulators can be seen as

actuators of the agent. Regulators can be in certain states, such as open or closed, green

or red. Additionally, regulators are homogeneous, which allows decoupling the concept

of state from regulators, abstracted as actuator states. Therefore, each ActuatorState

represents a preset that can be applied to any regulator, and its current state is the active

preset. The actuator state that is automatically activated when no other state is active is

the default state. Actuators can be grouped into actuator groups. All actuators of a group

activate the same state simultaneously. Consequently, a group can be seen as a single actu-

ator, and therefore we abstracted them as Actuatable devices. Each actuator is identified

by a number that relates the actuator to the corresponding stream (i.e., a regulator 0 is in

charge of regulating the stream 0, and so on). Streams are represented as an agent attribute

with cardinality greater than one (i.e., a collection of streams). Additionally, we consider

actuators mutually exclusive: only one actuator or group can assume a non-default state

at a given moment; all others remain in the default state. Figure 3.11 illustrates how

domain concepts were abstracted to these metamodel elements. In the bottom, there are

concepts that were identified in steps 1 and 2 of the domain analysis. Dashed arrows point

to the metamodel elements that abstract such concepts. As can be seen, a TSC agent is

abstracted to an Agent and a FlowControlCapability. Each traffic signal indicator is

54

Figure 3.10: Traffic Signal Control Metamodel Extension: Flow Control

Figure 3.11: Traffic Signal Control: Example of Concept Abstractions

an Actuator, and red/yellow/green states are ActuatorStates. Stages are abstracted to

ActuatorGroups given that the set of actuators that must simultaneously activate a state

is obtained from stage definitions.

The behavior associated with a flow control capability is related to the manage-

ment of its actuators. An agent endowed with a flow control capability selects a pair

(actuator, state) for activation at every timestep. This pair is represented as an agent at-

tribute whose value is an Activation element. A decision capability must be associated

with this attribute. This decision capability endues the agent with the ability to select

the activation that is appropriate to the current traffic conditions. Next, we describe the

decision capabilities provided by our metamodel.

55

A decision capability represents a decision policy. Such a policy describes how to

choose one amongst many available decision options. Figure 3.12 presents the elements

of the metamodel that are related to decision capabilities. The set of available decision op-

tions can be either static or dynamic. Static options are those specified during the model

design. Any Value is considered a static option. As previously shown in Figure 3.10,

actuators, actuator states, and activations are specializations of Value and thus can be

decision options. Decision capabilities can also be decision options for another decision

capability. In such cases, the id of the decision capability is used for further reference

(e.g., for specifying the states of a state machine whose options are other decision ca-

pabilities). Dynamic options exist only during the simulation execution. Therefore, we

assume that these options are stored in agent attributes (e.g., a perception attribute).

Figure 3.12: Traffic Signal Control Metamodel Extension: Decision Capabilities

Periodically, the decide operation of a decision capability is activated and its

output updates the value of a particular agent attribute whose update source is of type

DecisionMakingSource (as described earlier in Table 3.1). From the domain analysis,

we identified three types of decision capabilities: state machines, adaptation, and learning.

A state machine represents a fixed decision policy and is composed of states and

transitions. An abstract state machine is incorporated into the metamodel, with elements

such as states (vertexes), transitions, and triggers. Such abstract state machine, described

in Appendix A, is essentially a subset of the UML Statemachines metamodel.4 The

metamodel customizes the following elements of the abstract state machine to define

4<http://www.omg.org/spec/UML/2.5/>

http://www.omg.org/spec/UML/2.5/

56

a state machine decision capability. The DecisionStateMachine extends the abstract

StateMachine element to define a state machine that act as a decision capability, and

the DecisionState extends the abstract Vertex to relate a state machine state with the

decision option it represents, 5 Consequently, a StateMachine accepts vertexes of type

DecisionState only, and such a constraint must be observed when the simulation model

is specified.

An Adaptation capability represents an adaptive decision policy. There is an

adaptation criterion that describes which decision option should be selected among those

available—the one that meets the criterion. Such a criterion acts as a fitness or utility

function and is therefore specified as an Expression element (see Table 3.1).

A Learning capability allows an agent to learn a decision policy. We consider

a ReinforcementLearning capability, with which agents learn through experience. As

agents act on the environment, they receive a reward signal based on the outcomes of

previous states and actions. States are represented by a LearningStateDefinition,

which use expressions to describe the tuple of elements that characterize a state. The

concrete states are created during the simulation execution, from a cartesian product of

this tuple of elements. Actions are represented by the decision options that are related

to the decision capability. The reward signal is specified as an Expression. Finally,

the set of learning parameters is represented as attributes of the learning capability. As

illustration, Figure 3.11 also illustrates the abstraction of these learning concepts into a

learning element. The reasoning of the TSC agents shown there is based on reinforcement

learning, more specifically on the Q-Learning technique (WATKINS; DAYAN, 1992).

3.3.3 Spread of Disease Extensions

A disease is a condition of the body, or of some of its parts and organs, in which

its functions are disturbed. A disease can be either infectious or noninfectious. While a

noninfectious disease develops over an individuals lifetime (e.g., osteoporosis), an infec-

tious disease can be passed between individuals (KEELING; ROHANI, 2008). Features

and patterns of disease spreading are studied in the domain of epidemiology.

Mathematical models of disease spreading are available, and epidemiologists use

them to analyze how an infectious disease affects a particular population of individuals

5In this and in all other diagrams in the following, the blue color is used to highlight elements from the
abstract state machine metamodel described in Appendix A.

57

and which policies should be adopted to avoid or control pandemics (e.g., vaccination

or quarantine). More recently, agent-based simulations have been used to analyze the

spread of diseases, which is influenced by the population heterogeneity and by local,

spatially bounded, interactions among individuals. When these aspects are taken into

account, more effective health policies can be provided. For example, using agent-based

simulation, Eisinger and Thulke (2008) showed that it is possible to control the spread of

a disease over a fox population by vaccinating 10% fewer individuals in comparison to the

number of vaccinations predicted by the analytical spreading model. In fact, agent-based

simulations were reported as one trend in health informatics (ISERN; MORENO, 2015).

To extend the MDD4ABMS metamodel, we again used a bottom-up approach

considering the simulations shown in Table 3.4. These simulations were selected from

distinct repositories. On April, 2017, a query to the CoMSES model library (CoMSES

Net, 2018) using disease-related terms6 returned 12 simulations. Those on which the dis-

ease is not passed between individuals were discarded. The remaining simulations were

sorted by recency. The top 3 were selected for analysis, namely: AntiVaccine, DogFox,

and Product Diffusion. A query to the GIS and Agent-Based Modeling (CROOKS, 2018)

repository returned the Cholera simulation. Finally, the epiDEM simulation was consid-

ered due to its potential for using with educational purposes.

Table 3.4: Simulations of Spread of Disease Selected for Analysis
Simulation Description Referred as

Yuan and Crooks (2017) Simulates the impact that cyber space anti-vaccine
opinion leaders can cause to the spread of a disease
over non-vaccinated agents.

AntiVaccine

Belsare and Gompper
(2015)

Simulates the spread of the canine distemper virus
over a population composed of dogs and foxes.

DogFox

Shao and Hu (2017) Uses spread of disease models to simulate the diffu-
sion of product types over a social network

Product
Diffusion

Crooks and Hailegiorgis
(2014)

Simulates the spread of cholera in a refugee camp in
Kenya.

Cholera

Yang and Wilensky
(2011)

Simulates the spread of an infectious disease in a
closed population.

epiDEM

After performing step 1 of our domain analysis method, the following MAS-

related concepts were identified: environment, agents that move on the environment, and

the epidemiological model of disease spread. The first two concepts are already covered

by our metamodel. The epidemiological model adopted is the compartmental model of
6“disease”, “infection”, “contamination”, “epidemic”, “immunology”, and “epidemiology”.

58

Kermack and McKendrick (1932). Next, we describe aspects of the compartmental model

that are relevant to the domain analysis.

The mathematical model of Kermack and McKendrick is widely used by epidemi-

ologists to predict and understand the spread of disease. In this model, individuals within

a population are categorized into compartments. The simplest model, called SIR, adopts

the following three compartments: Susceptible, for individuals not exposed to the disease;

Infected, for individuals with the disease; and Recovered for individuals that have suc-

cessfully cleared the disease. The dynamics of the disease is represented by transitions

between these compartments, as illustrated in Figure 3.13. These transitions are governed

by rates: a transmission rate β and a recovery rate γ.

Figure 3.13: The SIR Epidemiological Compartmental Model

S I R
infection

(β)
recovery

(γ)

The number of individuals in the S compartment changes according to Equa-

tion 3.1, which takes into account the fraction I/N 7 of the number of infected individuals

I and the transmission rate β. The parameter β is a composite parameter that synthe-

sizes a contact rate κ among individuals and the probability of transmission upon contact

q, so β = κq represents the probability of transmission given contact. In agent-based

simulations, inter-agent contacts occur as a result of agents’ behavior and are influenced

by agents’ location. Therefore, only the transmission probability is adopted, so β = q.

Equation 3.2 describes how the number of individuals in the I compartment changes. In

addition to the number S of individuals that left the S compartment, it is affected by the

recovery rate γ, the rate at which infected individuals recover from an infection, which is

taken as 1
(mean duration of the diseases) . Finally, the number of individuals in the R compartment

changes according to the number I of individuals that left the I compartment, as shown

in Equation 3.3. Individuals in the R compartment have lifelong immunity.

∂S

∂t
= −βS I

N
(3.1)

∂I

∂t
= βS

I

N
− γI (3.2)

∂R

∂t
= γI (3.3)

7N is the population size.

59

Additional disease parameters can be considered to obtain variations of the basic

SIR model. Deaths caused by the disease can be incorporated via a death rate µ. Tem-

porary immunity is obtained by specifying a duration for the R compartment, leading to

the so-called SIRS model. There are extensions to the SIR model that consider additional

compartments to represent diseases with particular characteristics. A Passive Immunity

compartment can be considered if individuals could have temporary immunity to a dis-

ease, such as when mother antibodies remain in the newborn for a period (HETHCOTE,

2000). This extended model is often called PSIR. For diseases with an incubation period,

an Exposed compartment can be incorporated to categorize individuals that, although in-

fected, do not manifest symptoms yet. This model is called SEIR. If temporary immunity

is considered, models PSIRS and SEIRS are obtained from the latter two models.

The following compartmental models are adopted in the selected simulations: SIR

(epiDEM); SEIR (Cholera); PSIR (AntiVaccine); PSEIR (DogFox). The ProductDiffu-

sion simulation adopts the SIR model, but each compartment represents a consumer state

during the diffusion of new products. The S compartment represents consumers sus-

ceptible to product information (via the influence of product testers that diffuse product

information in their online social network). The I compartment represents consumers that

received product information, and the R compartment represents consumers that decided

not to buy. An additional compartment, B, was considered in this simulation, to represent

consumers that decide to buy the product.

Following step 2 of our domain analysis method, we used the ODD protocol to

identify two additional aspects considered in the spread of disease simulations: inter-

actions and initialization. The interactions specify in which agent-agent or entity-agent

contacts the disease might be transmitted. For example, in the DogFox simulation, the

disease can be transmitted from dogs to foxes, but not from foxes do dogs. Regarding

initialization, details on how the disease start spreading are specified, as for example, the

number of infected agents at the beginning of the simulation. Next, we describe how the

metamodel was extended by following steps 3 and 4 of our domain analysis method in

order to support all of these disease-related concepts.

The compartmental disease model is abstracted as a state machine, in which com-

partments act as states, and transitions between compartments act as transitions between

states. A customized state machine is specified to incorporate additional, disease-related,

semantics to states and transitions. Figure 3.14 shows how the metamodel was extended

with a DiseaseModel state machine that specializes StateMachine. Given that the agent

60

that is subject to a disease is in charge of managing its compartmental model, the disease

state machine is also an AgentCapability. The provided compartmental models are

enumerated in the Compartments element. One of them is assigned to the state ma-

chine to specify which compartmental model is adopted and therefore of which states the

machine is composed. Specializations of State were specified to represent the compart-

ments identified, and only these specialized states are accepted in the DiseaseModel state

machine. Compartments other than the specified in the metamodel are supported by the

custom compartmental model, which allows the instantiation of customized states and

transitions. Finally, the disease state machine is associated with an agent attribute that

provides access to the current compartment and is updated by the state machine.

Figure 3.14: Spread of Disease Metamodel Extension: Disease as Agent Capability

The infection caused by contact interactions is specified as a transition from

the susceptible state to either the exposed or infected state. The specialized trigger

InfectionInteractionTrigger models such contact interaction, as shown in Fig-

ure 3.15. For infections caused by disease transmission during inter-agent interactions,

the trigger refers to the disease model of the other agent involved in the interaction and its

infectious state. In this way, the agent may get infected whenever it is in the susceptible

state and there is an interaction with another agent that is in the infectious state. For infec-

tions caused by interactions with contaminated objects, the trigger refers to the infectious

entity. This kind of infection was observed in the Cholera simulation, in which agents

may get infected when they interact with (ingest) contaminated water. In both cases, a

contamination condition expression might be specified. If the infectious entity or agent

does not meet such condition (e.g., bacterial concentration in the water below a particular

threshold), the infection transition is not triggered. In the analyzed simulations, an inter-

action is characterized either by physical contact or by spatial proximity. In the later, there

is an interaction if the distance between elements is less than a given interaction distance

61

Figure 3.15: Spread of Disease Metamodel Extension: Infection

(in other words, if agents are close enough). In the former, there is an interaction only if

the distance between elements is zero, which means they are situated in the same spatial

unit. The interactionType trigger attribute specifies which interaction characterization

is considered by the infection transition. Finally, the transmission probability β is part of

the interaction trigger, and ultimately determines whether the disease state machine will

move to the transition target state when a contact interaction occurs.

After infection, the agent’ current compartment is changed according to the dis-

ease progression. The compartmental model represents this progression as transitions

governed by rates. These rates are related to the duration of each disease stage, repre-

sented as compartments. In our metamodel, the duration of a particular compartment is

specified by the kind8 of the triggers associated with its outgoing transitions. Each of

these transitions represents, therefore, a progression to the next compartment. To incor-

porate additional semantics, there is a specialized transition ProgressionTransition,

as shown in Figure 3.16. Four distinct ways of specifying the duration of a particular com-

partment are provided: probabilistic, deterministic, conditional, and custom durations.

• Probabilistic: a rate is specified. For the cases of the I and R compartments, it

is called recovery rate (γ) and immunity loss rate (w), respectively. This type of

duration is specified as a trigger whose kind is probability and value is the rate.

• Deterministic: a fixed period of time τ is specified, and the agent stays in the com-

partment for that period. A trigger of the kind time is specified in this case, and its

value is the fixed period of time.

• Conditional: a condition is specified, and the agent stays in the compartment until

the condition is met. A condition trigger king is specified for this type of duration.

8The trigger kind specification is part of the abstract state machine definition (see Appendix A)

62

• Custom: a combination of the previous types. For example, the agent necessarily

stays infected for a period of time and then it may recover according to a recovery

rate. In this case, the ProgressionTransition is associated with as many triggers

as the number of combined durations. The disease state machine only moves to the

next compartment after all triggers have been sequentially activated.

Figure 3.16: Spread of Disease Metamodel Extension: Progression and Mortality

Deaths caused by the disease are specified as transitions to an additional pseudo-

state whose kind is final, called Dead. Once the disease state machine reaches this pseudo-

state, the agent dies. In all analyzed simulations, mortality is specified as death rates µ

associated with the compartments in which the agent may die due to the disease. However,

the circumstance under which death rates are evaluated varied among simulations. The

following circumstances are provided by the metamodel.

• At every timeunit: the death rate is evaluated at every timestep while the agent is in

the compartment.

• At specific timeunit: the death rate is evaluated at a particular timeunit, relative to

the moment the agent has entered the compartment.

• When condition holds: the death rate is evaluated whenever a condition holds (i.e.,

when the agent ran out of energy)

• When leaving compartment: the death rate is evaluated only when the compartment

duration has elapsed and the state machine is moving to the next compartment.

Figure 3.16 also shows the metamodel elements related to the mortality speci-

fication. Each of the first three circumstances is represented in our metamodel as a

guard expression, MortalityGuardExpression, associated with the transition to the

Dead pseudo-state. Depending on the circumstance, the expression value can be either

a temporal value (timeunit) or a conditional expression. Additionally, a trigger of kind8

63

probabilistic, whose value is the death rate, is associated with this transition. For the last

circumstance, when leaving compartment, there must exist an outgoing progression tran-

sition departing from the state in which the death rate is applied. After being triggered,

which means that the disease state machine is leaving the compartment, this transition

may be aborted due to the death rate. If so, the state machine moves to an abortion

state, which is the Dead state. Whenever a when leaving compartment mortality is speci-

fied, the death rate is the guard expression of the disease progression transition.

Finally, the extended metamodel supports the specification of how the infection is

introduced in the population in order to start the spread of the disease. Such an infection

introduction is governed by the following aspects.

• Quantity: on how many entities or agents the infection is introduced. Quantity

can be either deterministic or probabilistic. A deterministic quantity specifies the

number of entities/agents which will be infected. A probabilistic quantity specifies

the chance that any entity/agent has to be infected.

• Selection criterion: which entities are considered for having the infection intro-

duced. Selection criterion can be either arbitrary or eligible. Arbitrary means that

any entity/agent can be infected. Eligible means that only entities that met the eli-

gibility criterion are considered for being infected. In both cases, only susceptible

agents are considered.

• Periodicity: when the infection is introduced. Periodicity can be either aperiodic

or periodic. In an aperiodic introduction, infection is introduced at the beginning

of the simulation. In a periodic introduction, in turn, (re)introduces the infection

periodically.

Figure 3.17 shows the metamodel elements related to the infection introduction.

We consider that infection introduction is beyond the agent scope: it is not the agent that

decides whether it is selected for being infected. If it were, the agent would have to know

which others are also selected in order to respect the total number of infected agents. How-

ever, agents do not have such a global knowledge. Therefore, infection introduction is a

task executed by the simulation controller. Consequently, all the aspects that govern in-

fection introductions are specified as DiseaseIntroductionModel elements, which are

accessed by the controller. To allow changing the compartment of the agent selected for

being infected, its disease state machine has a transition from the susceptible compartment

to either the exposed or infected state. A specialized trigger, DiseaseIntroduction, is

64

Figure 3.17: Spread of Disease Metamodel Extension: Disease Introduction

used with this transition. This trigger catches a signal event9 sent by the controller to the

disease state machine when the agent is selected and therefore must become infected.

3.4 Final Remarks

In this chapter, we described the main element of the MDD4ABMS approach: its

agent-based simulation metamodel. The metamodel is composed of a core and domain-

specific extensions. The core abstracts basic simulation aspects, such as entities, agents,

the simulated environment, and the simulation execution specification. Extensions cap-

ture additional aspects that increase the abstraction level of agent-based simulation mod-

els, such as agents’ abilities for decision making, flow control, and compartmental disease

models. These sophisticated metamodel elements put MDD4ABMS one step forward ex-

isting MDD approaches for agent-based simulations because they consider modeling of

limited aspects of simulations and leave much left to be developed in specific applications.

A complete view of the agent-based simulation metamodel is shown in Appendix B.

To specify an agent-based simulation model, the designer needs to instantiate

metamodel elements. In the next chapter, we present the DSL we developed to allow

designers to specify simulation models.

9In UML a signal is an asynchronous communication between objects, and a signal event is a message
requesting the reception of a specific signal. In our metamodel, the signal event notifies the state machine
about the disease introduction.

65

4 THE ABSTRACTLANG LANGUAGE AND TOOL SUPPORT

Chapter 3 presented the MDD4ABMS core metamodel and extensions that capture

aspects from the traffic signal control and spread of diseases domains. As described in

the background chapter, an MDD approach combines a DSL, model transformations and,

code generators to promote productivity. In this chapter, we describe the ABStractLang

language for modeling agent-based simulations. A language has an abstract and a con-

crete syntax. The abstract syntax of ABStractLang is the MDD4ABMS metamodel. The

language concrete syntax, which is specified considering the usability of ABStractLang,

is presented in Section 4.1. Section 4.2 describes how model-to-code transformations are

developed to enable automatic code generation from agent-based simulation models. Fi-

nally, Section 4.3 presents the ABStractme modeling tool created to allow designers to

model simulations using ABStractLang and have NetLogo code generated for them.

4.1 The ABStractLang Language

To develop the ABStractLang language, we followed the systematic approach pro-

posed by Strembeck and Zdun (2009). In this approach, four main activities comprise an

iterative process for building DSLs: i) define the abstract syntax; ii) define the concrete

syntax; iii) define the semantics of the language elements; and iv) integrate the language

with an execution platform/infrastructure. The MDD4ABMS metamodel described in

the previous chapter is used as the language abstract syntax. Next, we describe the lan-

guage concrete syntax and semantics. The developed execution infrastructure for the

ABStractLang language is described later in Sections 4.2 and 4.3. We adopt the following

customized notation of the Backus-Naur form to specify the language concrete syntax:

• Items not enclosed with �guillemots� or `quotes' are literal (terminal) values.

• Nonterminals are enclosed with <angle brackets>.

• Optional items are enclosed with [square brackets].

• A group of items is enclosed with simple (parentheses).

• Items existing zero or more times are suffixed with a * (asterisk) symbol .

• Items existing one or more times are suffixed with a + (plus) symbol .

• A | (pipe) is used to separate alternative definitions and is interpreted as or.

• �Guillemots� denote placeholders for model data.

66

• {Curly brackets} denote a particular element of a set of elements.

The ABStractLang language adopts a graphical notation to present information

in two dimensions (as opposed to linear, textual languages). Moreover, different shapes

can be used to easily perceive different language elements (MOODY, 2009). A simula-

tion is thus specified by means of a set of diagrams, each modeling a particular simula-

tion concern. In the following sections, we present the two diagram types provided by

ABStractLang.

4.1.1 Overview Diagram

An overview diagram points out the purpose of the simulation and any other essen-

tial information to provide a broad picture of the simulation being modeled. Figure 4.1

shows the concrete syntax of the overview diagram. It is composed of the agent-based

simulation title and description, and its concerns. A diamond represents each concern,

with its description beside it. If there is more than one concern, they are shown as a stack

to emphasize that they represent the decomposition of the simulation into conceptual lay-

ers. Except for the bottom layer, there is no semantics associated with the ordering, and

designers can choose an order using any criteria, such as the abstraction level. The con-

Figure 4.1: Concrete Syntax: Overview Diagram

67

cern in the bottom layer, in turn, represents the spatial abstraction of the environment in

which there are situated entities. The designer chooses the appropriate abstraction among

those available: either grid, Cartesian space, or graph. Then, the name of the spatial unit

can be set to a meaningful term according to the vocabulary of the application area of the

simulation.

ABStractLang provides views for specifying certain simulation aspects. A view is

a visual element that displays information. The Spatial Abstraction View, shown in

Figure 4.1, allows the designer to choose the spatial abstraction and configure its extent,

and to set the spatial unit(s) name(s) and occupation. Finally, this view displays the

creational strategy selected for the spatial abstraction, either a GIS or a Geometric Data

file strategy (previously described in Table 3.2).

4.1.2 Concern Diagram

A concern diagram supports the specification of parameters, entities, agents, and

supplementary structures associated with a particular aspect considered in the simu-

lation. We group the concrete syntax description of these elements according to the

MDD4ABMS metamodels. Section 4.1.2.1 describes the concrete syntax of elements

from the core metamodel. The traffic signal control and decision-making metamodels

have the concrete syntax of their elements described in Section 4.1.2.2. Finally, Sec-

tion 4.1.2.3 describes the concrete syntax of the spread of disease metamodel elements.

4.1.2.1 Core Elements

Figure 4.2 shows the concrete syntax of a concern diagram. Considering that the

modeling of a simulation can involve experts from distinct areas (e.g., traffic, humanitar-

ian), each concern is specified in a separate diagram to allow experts to focus on concepts

related to their area and avoid overloading them with unrelated elements. Additionally,

by specifying a separate diagram for each concern ABStractLang deals with scalability

issues of languages with graphical notation. Indeed, the partitioning of the model is rec-

ommended when engineering DSLs in order to keep models manageable (VOELTER et

al., 2013).

The visual representation of parameters, entities, and attributes is inspired by the

UML class diagram. Parameters are represented within a parameters section, shown

68

Figure 4.2: Concrete Syntax: Concern, Parameter, Entities, and Agents

whenever a parameter is specified for the concern. For each parameter, its name and the

source of its initial value are shown. Each type of source is represented by its identifier

(described previously in Table 3.1), returned by the source_identifier function.

An entity is represented using a box with three sections. The top section shows

the entity name. A creation section is in the middle, and an attributes section is in the

bottom of the entity box. The creation section shows the details of the creational strategy

specified for the entity, which can be either Designer defined, GIS File or Geometric

Data File. The attributes section shows the attributes of the entity. The notation used

to represent an attribute consists of its name, cardinality, the source of its initial value,

and the source that updates its value during the simulation. An agent is also represented

using a box with an additional section in which the agent capabilities are enumerated. A

supplementary structure is represented by a rectangle with the bottom line curved to give

the idea of a structure that fits in the spatial unit.

Relationships are represented with lines that connect the source and the target

entity (or agent) boxes. A composition relationship, Figure 4.3(a), is represented by a

line with a filled diamond at the endpoint connected to the source entity (again, inspired

by UML). A container relationship, Figure 4.3(b), follows the same notation but uses an

empty diamond. Finally, for an association relationship, no particular symbol is used for

endpoints, as shown in Figure 4.3(c). For all these relationships, the cardinality is shown

at the endpoint that is connected to the target entity, and the direction is shown below the

relationship line.

69

Figure 4.3: Concrete Syntax: Relationships and Output

(a) Composition

(b) Container

(c) Association (d) Output

An output dataset is represented by a parallelogram connected to the entity or

agent from which data will be collected, as shown in Figure 4.3(d). A view is also pro-

vided so that the designer can manage outputs, their periodicity, type (either aggregation

or histogram), as well as other output details described in Section 3.2.

A box connected to the agent(s) that is/are endued with the capability repre-

sents a mobility capability, as well as a surviving capability, as shown in Figures 4.4(a)

and 4.4(b), respectively. Additionally, the capabilities section of the agent box is changed

to show the owned agent capability(ies). The agent box sections shown in gray remain

unchanged.1 For a mobility capability, the concrete syntax also defines a Basic View

for specifying the mobility identifier and the range limits, and an Objective Function

View for specifying the objective function, which is either to maximize or minimize a par-

ticular spatial unit attribute value. For a surviving capability, there is a Life Resource

View to specify details of life resources, such as how the resource is updated and the

condition that keeps the agent alive.

4.1.2.2 Traffic Signal Control and Decision-related Elements

The concrete syntax of a flow control capability is shown in Figure 4.5. With re-

spect to the agent box, a flow control capability affects both the capabilities and attributes

sections. Whenever such a capability is incorporated into an agent, two predefined ad-

1Hereafter, gray is used to denote elements whose concrete syntax remains unchanged.

70

Figure 4.4: Concrete Syntax: Mobility and Surviving Capabilities

(a) Mobility Capability

(b) Surviving Capability

ditional attributes are created: streams and activation (previously described in Sec-

tion 3.3.2). Additional specifications required by a flow control capability are represented

as boxes connected to the agent by a line. The actuator(s) box shows the identifiers of

actuators. Actuator groups and actuator states are shown in their corresponding boxes.

Figure 4.5: Concrete Syntax: Flow Control Capability

Decision capabilities are represented as boxes whose content describes the ele-

ments required by each capability type, as shown in Figures 4.6(a–c). The concrete syntax

of each box defines, at the top section, the corresponding capability type and its identifier

for further reference. The bottom section presents elements that are particular to each

capability (as described in Section 3.3.2). Input (semicircle2) and output (filled circle)

connectors, as well as other sections, are related to the specification of decision options.

2Semicircle and filled circle connectors are inspired by the UML component diagram.

71

Figure 4.6: Concrete Syntax: Decision Capabilities

(a) State Machine (b) Adaptation (c) Learning

(d) Connections

Decision options are specified with connections, as shown in Figures 4.6(d). A

capability box includes an input connector, from which a connection to any model element

that represents either static or dynamic decision options can be created. As mentioned in

Section 3.3.2, a decision capability can also be a decision option of another decision

capability. In such a case, an output connector is shown in the decision capability box to

denote that the capability is also a decision option.

There is no restriction on the number of connections that can be created between

a decision capability and model elements that represent decision options. When there is a

single connection, then all the elements of the connection target are considered decision

options. For example, if the target is the actuator(s) element (shown in Figure 4.5) then all

the available actuators will be decision options of the decision capability. Similarly, if the

target is another decision capability, all its possible outputs will be considered decision

options. When there is more than one connection, the Cartesian product of the target

elements is considered as decision options. The middle section of both adaptation and

learning boxes allows specifying which options are indeed considered. It is highlighted in

gray because this section is optional. If all decision options should be considered, then no

72

further specification is required. Otherwise, if only some options should be considered,

they are enumerated in this section. Consequently, constraining the considered options is

feasible only with static decision options. A state machine box does not require such a

section because the considered options are those enumerated as states of the state machine.

4.1.2.3 Disease-related Elements

A disease model capability is represented as a box with the disease name at the

top section, as shown in Figure 4.7. This name comes from the id property of the corre-

sponding DiseaseModel metamodel element instance, dm. The bottom section presents

the adopted compartmental model. A disease model specification can be shared among

many agents, and a dashed line connects the disease box with all agents that are subject to

it. With respect to the agent box, a disease model capability affects both the capabilities

and the attributes sections (a predefined attribute is created to store the agent’s current

disease compartment).

Figure 4.7: Concrete Syntax: Disease Elements and Basic Properties of a Disease

ABStractLang provides views for specifying disease-related aspects. Figure 4.7

shows the Basic View, which displays the following basis disease properties: dis-

ease name, and the adopted compartmental model. Optionally, an immunity condi-

tion is shown if the chosen model contains the PassiveImmunity compartment. Such

condition corresponds to the trigger value of the transition between the Susceptible

and PassiveImmunity states (a particular transition between two states is denoted by

transitions{A, B}, where A and B are the initial letters of state machine states).

Transmissions due to interactions are presented in the Transmissions View,

shown in Figure 4.8. In its top section, this view displays the specification of a particular

73

Figure 4.8: Concrete Syntax: Disease Transmission View

transmission. As previously described in Section 3.3.3, the transmission specification re-

quires specifying an interaction between a susceptible agent and an infectious element, in

addition to the transmission type (either contact or proximity), transmission probability,

and contamination condition (optional) that are considered in the interaction. The bottom

section of the Transmissions View displays, in a tabular fashion, all the transmissions

already specified for the disease model, one per line.3 ABStractLang provides additional

views for specifying disease progression, mortality, and infection introduction. These

follow the same notation of the Transmissions View, and therefore are presented in

Appendix C. Examples of the concrete syntax described in this section are shown later in

Section 4.3.

4.2 Model-to-Code Transformations

While the ABStractLang provides the support needed to model agent-based

simulations, support for code generation is fundamental to reduce the effort to develop

them. The generated code should include all the variables and operations that implement

an agent’s behaviors and capabilities, in addition to the specified entities and the setup

and execution of a simulation.

To generate code from a simulation model and thus exploit the benefits of an

MDD approach for agent-based simulations, we specified model-to-code transformations

to generate code for the NetLogo simulation platform. Model-to-code transformations are

3The value of the i-th column is shown as the i−th row in the figure due to space constraints. All these
data constitute a single row, actually.

74

performed through the use of production rules, which transform instantiated concepts of

our metamodel to NetLogo code statements and blocks, and preserves the semantics of

the model elements..

Generated code for entities and agents must include statements for defining their

attributes, to create them according to the specified creational strategies, and to initialize

and update attribute values according to the specified sources. The agent source code

must include additional statements to implement the agent behavior, which is obtained by

activating each of its capabilities at each timestep as detailed previously in Section 3.2.

For each capability, an initialize operation (code block) is generated to set it up. For deci-

sion capabilities, in addition to operations that are particular to each of them, a decide

operation is generated to select and return the appropriate decision option. For the flow

control capability, an operation to select and apply an activation (actuator-state pair) is

generated. For a disease model capability, all the source code that implements the disease

state machine (states, transitions, and triggers) is generated.

The generated simulation source code also includes statements for defining the

model parameters, which are coded as attributes of the simulation. If the value of these

parameters is provided by the user, operations to create input components are generated.

A setup operation is generated to combine the creation and initialization of all the entities

and agents, and a go operation is generated to combine the update of entities, agents, and

the environment at every timestep, as well to activate the agents’ behavior.

Production rules for the MDD4ABMS approach are specified and documented us-

ing the Xpand template language.4 Each Xpand template describes the source code that

is generated for its corresponding metamodel element. To illustrate how the developed

production rules work, Table 4.1 describes, using natural language, a subset of the rules

for transformation of agents, their attributes, and flow control and learning capabilities

(more specifically for the Q-Learning (WATKINS; DAYAN, 1992) technique). The pro-

duction rule column indicates the rule name which, when applied, is transformed into

the content presented in the transformation column. Model elements are enclosed with

«guillemots». The meaning of NetLogo statements shown in this column is as follows:

breed and breed-own statements are used to declare an agent type and their attributes, re-

spectively; procedure and reporter are used to declare operations—the latter declares

an operation with return value; and set is the assignment statement.

Usually, agent capabilities demand specific data structures. For example, the Q-

4<http://www.eclipse.org/modeling/m2t/?project=xpand>

http://www.eclipse.org/modeling/m2t/?project=xpand

75

Table 4.1: Subset of the Production Rules
Production Rule Transformation: Metamodel Element(s)→ to NetLogo Statement(s)

agent type For each �Agent�→ breed

agent attributes For each �agent.attributes�→ breed-own

For each �agent.capabilities�→
breed-own for derived attributes (e.g., Q-table)

flow control capability For each �agent.capabilities� of type FlowControlCapability→
flowcontrol initialize
flowcontrol select activation

flowcontrol initialize For each �regulators�→ set statements for setting up actuator/groups
For each �states�→ set statements for setting up actuator states
For each �activations�→ set statements for setting up activations

flowcontrol select
activation

set statements for selecting an appropriate activation and for
applying it on the corresponding �regulators�

reinforcement
learning capability

For each �agent.capabilities� of type ReinforcementLearning→
qlearning initialize
qlearning compute reward
qlearnig learn
qlearning decide

qlearning initialize For each �stateDef.stateElements�→
set statements for setting up states

For each �staticOptions� and �dynamicOptions�→
set statements for setting up actions

qlearning compute
reward

For the �reward� expression→
reporter, which evaluates the reward expression and returns its value

qlearnig learn procedure that:
Invokes reward reporter to compute its value
Defines set statements for updating the Q-table using the Q-
Learning update rule:

Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

where:
Q is the Q-table
s, s′ are the current and resulting states
a, a′ are the current and resulting actions
r is the reward
α and γ are learning �parameters�.

qlearning decide reporter that:
Invokes the qlearning learn procedure

Selects and reports an action according to a selection policy
(for an ε-greedy policy, it would be argmaxaQ(s, a) with
probability 1− ε, and a random action with probability ε)

Learning technique demands a data structure (called Q-table) for storing the discounted

expected rewards of the agent. Such data structures are derived from each particular agent

capability and are generated automatically by the production rule agent attributes. The

production rules flow control capability and reinforcement learning capability make

use of extra rules that produce code related to their operations. As can be seen from the

rules that produce a reinforcement learning capability, all the source code that implements

the capability behavior is generated automatically.

76

To guarantee that generated simulations are adequately coded (e.g., the QLearn-

ing technique) and correctly implement the expected behaviors, a verification procedure

was performed, as recommended by Crooks and Hailegiorgis (2014) and Iba, Matsuzawa

and Aoyama (2004). Such a verification consisted of detailed inspections of the source

code and debugging sessions, to ensure that all the units of code are performing their

corresponding operations and are correctly integrated to implement each agent capabil-

ity. Additionally, unit tests were conducted to assert the correct code generation from

different parts of our metamodel. Existing NetLogo simulations were specified using the

ABStractLang language, and the generated simulation code was executed to validate the

produced outputs.

4.3 ABStractme Modeling Tool

The ABStractme modeling tool allows specifying agent-based simulations using

the ABSstractLang language. The tool is an Eclipse plugin, and provides automated code

generation via the execution of the Xpand production rules. ABStractme is built upon

Graphiti5, an Eclipse framework for developing graphical diagram editors. Constraints

related to both the agent-based simulation metamodel and the ABStractLang concrete

syntax are validated by the ABStractme tool at runtime, to avoid the specification of

inconsistent simulation models (e.g., invalid connections to decision options, or or invalid

disease model states).

Figure 4.9 shows the graphical interface of the ABStractme tool, which is com-

posed of four main parts. On the left-hand side, the Project Explorer shows the projects

created by the designer and allows managing projects and diagrams, as usual in the Eclipse

platform. The modeling elements of the ABStractLang language are provided on the

right-hand side, as a Palette of elements from which the designer can drag and drop them

into the diagram. The Properties section on the bottom shows the view (visual element

that displays information, as described in Section 4.1) related to the model element that

is currently selected in the diagram. Finally, the Diagram Editor, on the center, is the

main part of ABStractme, in which the designer specifies the simulation elements. In the

diagram editor shown in Figure 4.9, there is an overview diagram for an adaptive traffic

signal control simulation. Two concerns are specified, in addition to the spatial abstraction

concern (a graph created from an open street map file).

5<https://eclipse.org/graphiti/>

https://eclipse.org/graphiti/

77

Figure 4.9: ABStractme Tool: User Interface and Overview Diagram

When the designer double-clicks a concern element, ABStractme opens the corre-

sponding concern diagram. Figure 4.10 shows the diagram of the Traffic Signal Control

concern, which specifies a traffic signal controller agent. The agent is endued with a

flow control capability to manage the traffic flow at its intersection. Two actuator states

(green and red—default) are specified. Because there are only two actuators (one for

each flow direction, either north-south or west-east), no actuator group is specified. The

activation attribute is updated periodically according to a decision making source (de-

tailed in Section 3.2) that points to the plan learning capability. Such learning capa-

bility uses Q-learning to learn a policy for selecting the plan that minimizes the number

of stopped vehicles over all its incoming lanes. The reward used is the number of vehicles

waiting at the intersection. The decision options of the learning capability are the three

signal plans. Signal plans are specified as state machines because they are fixed decision

policies for selecting an activation according to the elapsed time. Each plan specifies the

duration of two phases: north-south and west-east. Plan alpha gives equal green phase

duration time for both phases. Plans beta and gamma give priority to the horizontal and

78

vertical directions, respectively. The decision options considered by these state machines

are combinations of actuators and actuator states, as can be seen from the connections.

Transitions between states are based on time. For example, in the gamma plan state ma-

chine, state (0, green) is activated for 45 seconds and (1, green) for 15 seconds.

From the execution of the production rules that generate code, NetLogo source

is automatically generated by the ABStractme tool. From the simulation model shown

in Figure 4.10, the generated code includes all the required statements to set up and run

traffic signal controller agents. To illustrate the output of the transformation rules, Ap-

pendix D presents fragments of the NetLogo source code that are generated from this

simulation model, in particular for setting up and running a simulation, and for the state

machine gamma plan and the reinforcement learning plan learning capabilities.

Figure 4.11 shows a concern diagram of a spread of disease simulation. Two

agents, Native and Immigrant, are subject to the Measles disease. Different transmis-

sion rates β are specified for each agent-agent interaction, as shown in the properties view.

A Random Walk mobility is shared by the agents. For each agent, the simulation specifies

an Output Dataset to collect the number of susceptible, infected, and recovered agents.

Finally, two External Agent Capability elements are specified to color each agent

according to its current disease state.

4.4 Final Remarks

In this chapter, we described the concrete syntax of ABStractLang, our domain-

specific language for creating agent-based simulation models. The language adopts

a graphical notation and provides building blocks to instantiate elements of the

MDD4ABMS metamodel. We also described how model-to-code transformations were

developed in order to generate NetLogo source code from models. Finally, we described

ABStractme, a modeling tool created to allow designers to model agent-based simulations

using the ABStractLang and have its NetLogo source code generated automatically. The

tool was developed as an Eclipse plugin and is available online.6 In the next chapter, we

detail how the MDD4ABMS approach was evaluated in order to demonstrate whether it

indeed provide benefits for developing agent-based simulations.

6<http://www.inf.ufrgs.br/prosoft/projects/mdd4abms/>

http://www.inf.ufrgs.br/prosoft/projects/mdd4abms/

79

Figure 4.10: ABStractme Tool: Concern, Flow Control, State Machine, and Learning

80Figure 4.11: ABStractme Tool: Disease Model, Mobility, Output, and External Agent Capability

81

5 EVALUATION

In Chapters 3 and 4, we presented MDD4ABMS, an approach for model-driven

agent-based simulation development that is composed of (i) a core metamodel with ex-

tensions, (ii) a modeling language, and (iii) model-to-code transformations to generate

code for the NetLogo simulation platform. In this chapter, we evaluate MDD4ABMS

through empirical studies. In Section 5.1, we describe a user study conducted to evaluate

the ability of participants to comprehend agent-based simulation models specified with

the ABStractLang language. Next, Section 5.2 presents an empirical study in which a

software engineering metric is used to assess the productivity of using MDD4ABMS to

develop agent-based simulations. Finally, Section 5.3 describes a user study that assesses

the benefits provided by MDD4ABMS, with respect to design quality and development

effort, as it is used by developers with little expertise in ABMS to develop simulations in

the adaptive traffic signal control and spread of disease domains.

5.1 User Study: Core Metamodel and the ABStractLang Language

In order to evaluate whether the MDD4ABMS core metamodel and the

ABStractLang language ease the understanding of agent-based simulations, a user study

was conducted. The study assesses the ability of participants to understand, or compre-

hend, agent-based simulation models instantiated from the abstractions provided by the

metamodel and modeled with the ABStractLang language. The evaluation is based on the

premise that comprehension is one of the key goals of software models and affects the

design, implementation, and evolution of software systems (MOHAGHEGHI; DEHLEN;

NEPLE, 2009).

The study was designed following the Goal-Question-Metric (GQM) tem-

plate (BASILI; SELBY; HUTCHENS, 1986), which is recommended in literature for

conducting experiments in software engineering (FENTON; BIEMAN, 2014; WOHLIN

et al., 2012). Following the GQM template, the goal of the study is: to assess the benefits

provided by ABStractLang for modeling the simulated environment and entities of agent-

based simulations, evaluate the ABStractLang from the perspective of the researchers, as

it is used by graduate and undergraduate students to comprehend implemented agent-

based simulations in a multi-project study. The study was conducted in an early stage of

this thesis to collect empirical evidence to support work towards a fully featured MDD

82

approach for ABMS. In that stage, abstractions for agents, their capabilities, as well as

simulation outputs were not yet incorporated into the metamodel. Consequently, the study

considers modeling of only the simulated environment and its entities.

The following two research questions are derived from the study goal:

RQ1. Does ABStractLang increase the correct comprehension of the structure

and execution specification of implemented agent-based simulations?

RQ2. Does ABStractLang decrease the time to correctly comprehend the struc-

ture and execution specification of implemented agent-based simulations?

To answer these research questions, we selected the following three metrics:

M1. Score of comprehension of agent-based simulation models. (RQ1)

M2. Time spent to comprehend agent-based simulation models. (RQ2)

M3. Degree of perceived ease of comprehension. (RQ1)

Metric M1 indicates the amount of comprehension of the simulation model by

participants, while M2 measures the time spent to comprehend such models. Metric M3

captures the degree at which participants believe that ABStractLang facilitates the com-

prehension of models. Next, we describe the procedure adopted to conduct the study and

collect these metrics.

5.1.1 Procedure

In this study, we compare models produced with ABStractLang and code written

(referred to as models) in the NetLogo platform. Although there are simulation platforms

based on graphical languages —e.g., SeSAM (KLÜGL; HERRLER; FEHLER, 2006)—

they were not selected for comparison because they do not provide support for using

external files (such as GIS) and, therefore, its models are not semantically equivalent

to models specified with our metamodel and the ABStractLang language. Moreover,

advantages of NetLogo over other simulation platforms have already been reported in

literature (RAILSBACK; LYTINEN; JACKSON, 2006).

Participants in our study had to answer an assessment questionnaire about agent-

based simulations modeled with ABStractLang as well as implemented in NetLogo. The

questionnaire had twelve questions associated with elements of the environment speci-

fication (spatial abstraction, model parameters, and entities) and execution specification

83

Table 5.1: Core Metamodel and ABStractLang Study: Summary of the Questionnaires
Purpose: identification of. . . Model Element

Q01 the spatial abstraction Spatial Abstraction

Q02 model parameters
ParametersQ03 parameter data types

Q04 the source of initial parameter values

Q05 entities in the model

Entities

Q06 entity attributes
Q07 entities that are owners of given attributes
Q08 attribute data types
Q09 how attributes are initialized
Q10 how entities are created, and how many
Q11 relationships between parameters and entities
Q12 the initial location of the created entities

(the way parameters are initialized and details of entity creation). Table 5.1 presents the

purpose of each question and the modeling element to which it is related. Questions

highlighted in italics (Q04, Q09, Q10, and Q12) are those associated with simulation

execution specification.

Participants were asked to evaluate both alternatives (ABStractLang and NetLogo)

considering two agent-based simulations: Haiti Earthquake (CROOKS; WISE, 2013), and

TELL ME Influenza (BADHAM; GILBERT, 2014). The comprehension score of a partic-

ipant (metric M1) is calculated based on the correctness of each answered question. The

score of each question is a value between 0 and 1, according to the fraction of correctly

answered sub-questions. For example, Q3 asks for listing three simulation parameters, so

if only two are provided correctly, the score is 0.66. Participants were allowed to leave

blank answers, in case the answer was not found. These were considered mistakes. A

survey tool (Lime Survey) was used to collect the time it takes a participant to answer

the questionnaire (metric M2). Finally, to measure the perceived ease of comprehension

(metric M3), each participant had to fill a post-test form in which they were asked to

provide a score for the perceived ease of comprehension.

5.1.2 Participants

The study involved 26 volunteer participants, graduate and undergraduate students

in Computer Science, who performed the study activities in a laboratory. Each participant

was exposed to the two techniques (ABStractLang and NetLogo), but with distinct sim-

84

ulation models (Haiti and TELL ME) to avoid model bias. In order to avoid carryover

effects, each participant was randomly assigned to one of four treatment groups1 and then

measured in two consecutive sessions, in which the treatments order was changed. The

treatment conditions of each group are shown in Table 5.2. The choice for the groups in

which six or seven participants were assigned was completely random. A two-hour slot

was estimated for the participants to complete both sessions, but there was no time limit.

Table 5.2: Core Metamodel and ABStractLang Study: Treatment Groups
Session 1 Session 2

Group N Model Technique Model Technique

A 7 Haiti ABStractLang TELL ME NetLogo
B 6 TELL ME ABStractLang Haiti NetLogo
C 7 Haiti NetLogo TELL ME ABStractLang
D 6 TELL ME NetLogo Haiti ABStractLang

Before the experiment, the participants were given a 10-minute explanation in

which we explained the concepts related to ABMS and the experimental procedure. In

addition to this talk session, each participant was asked to fill a background form. Re-

garding demographic characteristics of participants, 92.3% were male. 65.4% reported

age between 20–25. Education was reported as undergraduate (42.3%), master (38.5%),

and PhD (19.2%). We also asked participants to quantify their expertise in Programming,

ABMS, and NetLogo. Results are summarized in Figure 5.1. The expertise is a value

ranging from 1 to 9, where 1 means no expertise and 9 means high expertise.

Figure 5.1: Core Metamodel and ABStractLang Study: Expertise of Participants

0%

83%

92%

79%

4%

0%

21%

12%

8%

ABMS

Programming

NetLogo

100 50 0 50 100
Percentage

1: no expertise 2 3 4 5 6 7 8 9: expert

Participants expertise

As it can be seen from the expertise plot shown in Figure 5.1, all the participants

reported programming expertise above the intermediate level, which means they would

not have problems to understand the logic behind a NetLogo source code—considering

that its code describes elements and types in a structured textual way similar to other

1A set of participants that have received the same treatment, i.e., that have developed a particular
simulation with a particular technique.

85

programming languages, and some statements are indeed equal, such as if and for. Ex-

pertise in ABMS was reported as below the intermediate level by 83% of the participants.

Finally, expertise in NetLogo was reported above the intermediate level from 92% of the

participants and, from these, 85% reported no expertise. Therefore, no participant needed

to be excluded due to prior advanced knowledge in NetLogo.

5.1.3 Results and Discussion

Results are summarized in Figure 5.2 and detailed in Table 5.3. It can be seen that

ABStractLang achieved better results for our two measurements, in both scenarios. In

the Haiti simulation, participants using ABStractLang achieved, on average, a score that

is 1.57 point higher than using NetLogo, taking less time (3.58min, on average). In the

TELL ME simulation, the score difference is smaller, 1.47 on average, but still positive.

However, participants using NetLogo took much more time (15.8min, on average).

Figure 5.2: Core Metamodel and ABStractLang Study: Summary of Score and Time

ABStractLang NetLogo ABStractLang NetLogo

2

4

6

8

10

12
Overall Score

S
co

re

Haiti TELL ME

ABStractLang NetLogo ABStractLang NetLogo

10

20

30

40

50

60

70

80

Overall Time

T
im

e
 (

m
in

u
te

s)

Haiti TELL ME

(a) Overal Score (b) Overal Time

Table 5.3: Score and Time to Comprehend Simulations
Metric Simulation Technique Mean SD Min Max

Haiti
ABStractLang 7.80 2.13 4.66 10.83

M1: Score NetLogo 6.23 2.06 3.91 10.66

(0..12)
TELL ME

ABStractLang 8.35 2.74 2.00 11.75
NetLogo 6.88 1.77 4.58 10.25

Haiti
ABStractLang 29.72 12.18 10.32 47.91

M2: Time NetLogo 33.30 17.96 13.64 71.37

(minutes)
TELL ME

ABStractLang 21.08 6.49 13.12 33.02
NetLogo 36.88 15.55 17.50 82.29

86

With respect to time, a Kruskal-Wallis test2 revealed a significant difference among

the groups (χ2 = 10.233, p = 0.0167). A post hoc Dunn’s test with Holm correction

showed significant differences between ABStractLang and NetLogo in the TELL ME

simulation (p = 0.011). By using ABStractLang, the average comprehension time is

42.8% lower than by using NetLogo. However, results show no significant difference

between ABStractLang and NetLogo in the Haiti simulation. We believe such differences

are due to the complexity of each simulation. We consider TELL ME more complex

because it specifies more entities, attributes, and model parameters than Haiti. Given that

participants had previous expertise in programming, understanding a simple simulation

by using NetLogo may be as easy as by using ABStractLang. On the other hand, for

complex models with complex entities, many parameters, and many setup routines, the

comprehension time increases by using NetLogo.

Although the overall score of groups using ABStractLang is greater than those

using NetLogo, a Kruskal-Wallis test revealed no significant difference among groups

(χ2 = 7.565, p = 0.0559). Despite this not statistically significant for the overall score,

we observed that the higher score achieved by using ABStractLang is mainly due to

questions regarding parameters identification (for Haiti) and parameters initialization (for

TELL ME) and regarding entities and their attribute types (for Haiti) and entities creation

(for TELL ME). This indicates that, at least for some agent-based simulation aspects,

ABStractLang brings advantages with respect to correct comprehension.

Analyzing the mistakes made by participants, we noticed that some participants

misunderstood some concepts of ABStractLang, causing them to answer many questions

incorrectly. For instance, some did not understand that a spatial unit related to the spatial

abstraction is an entity. This caused them to provide wrong answers to questions associ-

ated with entities, specifically those asking for the existing entities (Q05), their attributes

(Q07) and how entities are created and situated (Q10 and Q11, respectively). Consider-

ing that these participants were not trained for interpreting ABStractLang elements (they

received only a reference card), but they had previous experience with programming (all

above the intermediate level), the familiarity with source code that describes their ele-

ments and types in a structured way might have helped understanding simulations using

NetLogo. A training session on ABStractLang can potentially reduce misunderstanding,

increasing its score, which is already higher, though not significant.

2Throughout this thesis, the Kruskal-Wallis test is used to compare more than two groups whenever the
normality of data and homogeneity of variance assumptions do not hold. If these assumptions hold, then
the ANOVA test is used. To compare only two groups, the Wilcoxon test is used.

87

Figure 5.3 shows the results regarding the perceived ease of comprehension con-

sidering 25 participants (one participant did not fill the post-test form). These results

express participants level of agreement, in a 5-point Likert scale, to the following state-

ment: “It was easy to comprehend the agent model using {ABStractLang, NetLogo}”. It

can be seen that participants agreed it is easy to comprehend agent-based simulation us-

ing ABStractLang (48% agree or strongly agree, 30% neutral), but disagreed that it is the

case using NetLogo (83% disagree or strongly disagree, 9% neutral). A Wilcoxon Signed-

ranks test indicates that the difference between ABStractLang (M = 3.36; SD = 1.15)

and NetLogo (M = 1.88; SD = 0.88) is statistically significant (W = 196.5, p < 0.01).

Figure 5.3: Perceived Ease of Comprehension

22%

83%

48%

9%

30%

9%NetLogo

ABStractLang

100 50 0 50 100
Percentage

1: Strongly disagree 2 3 4 5: Strongly agree

It was ease to comprehend the model using...

Results of the user study give evidence that ABStractLang decreases the time

to comprehend simulations having complex entities and many model parameters. In

these cases, the more expressive notation adopted for these elements led to a more ef-

fective comprehension of their specification, creation, and initialization. For simple

simulations, the comprehension time using ABStractLang seems to be about the same

in comparison with NetLogo, at least when participants have prior programming exper-

tise. This suggested the potential of using ABStractLang to comprehend simulations in

less time. Moreover, based on the subjective opinion of participants, we observed that

ABStractLang may also require less cognitive effort to understand simulations. Regard-

ing comprehension, given that there is no significant difference among the overall scores,

it was not possible to claim that ABStractLang increases the correct comprehension of

implemented simulations (although this is not the case for specific simulation aspects).

However, such a conclusion is valid under the particular setup of the experiment: partic-

ipants that did not receive extensive training in ABStractLang but have experience with

programming (which favors NetLogo).

88

5.1.4 Threats to Validity

This section discusses threats to study validity. An internal threat is that partic-

ipants could have become tired while taking part of our study, performing worse while

evaluating the second simulation. To address this, groups have distinct treatment orders,

as previously shown in Table 5.2. This also addresses carry-over effects, given that both

simulation model and technique were different in each development session.

An external threat is that our study was conducted only with computer scientists,

some of them with basic knowledge in NetLogo. As said previously, this favors NetLogo

and, therefore, differences would be even larger if this influenced the results.

5.2 Empirical Evaluation of Development Effort

In this section, we present an evaluation of the effectiveness of MDD4ABMS and

its ABStractLang language to develop simulations in the adaptive traffic signal control

application domain. The evaluation was conducted when aspects from this domain were

abstracted into our metamodel. It consists of an empirical study in which a software

engineering metric was used to assess the productivity of using MDD4ABMS to develop

agent-based simulations.

The goal of the study is to assess the productivity gains promoted by

MDD4ABMS. The metric we selected is the effort to develop agent-based simulation.

In many software cost estimation models, the effort is a function of the size of the system:

the smaller the size, the lower the effort required to develop it. Consolidated cost esti-

mation methods such as Function Points (ALBRECHT, 1979), COCOMO 2.0 (BOEHM

et al., 1995), SEER-SEM (JENSEN, 1983; Galorath Inc., 2017), and SLIM (PUTNAM;

MYERS, 1991) rely on size metrics to estimate the required effort as person-months or

calendar months. Other estimation models focused on web applications have considered

size metrics as input (ABRAHÃO; GÓMEZ; INSFRAN, 2010). Indeed, previous work

showed that system size is the most significant factor that affects development effort,

quality and construction time (AGRAWAL; CHARI, 2007).

Therefore, our evaluation considers the size of simulation models to measure the

effort required to produce them. More specifically, we use Lines of Code (LOC), which

is frequently used as a software size metric (BOEHM et al., 1995; JENSEN, 1983; Ga-

lorath Inc., 2017; PUTNAM; MYERS, 1991). In fact, LOC is a metric that has been

89

used to evaluate and compare design and development implementation effort in MDD

approaches (OSIS; ASNINA, 2010). This is also the case in MAS (CHALLENGER;

KARDAS; TEKINERDOGAN, 2015). ABStractLang adopts a graphical representation

for models. Thus, for a fair comparison, we use the Atomic Model Element (AME)

metric (BETTIN, 2002) to measure the design development effort of ABStractLang sim-

ulation models. An AME is a visual modeling element that is equivalent to a LOC.

5.2.1 Procedure

To evaluate the effectiveness of our MDD4ABMS approach for modeling adaptive

strategies recurrently used in traffic signal control simulations (adaptation, learning, and

state machines), we selected one existing simulation for each of them. As discussed in

the background chapter, existing MDD alternatives cover only conceptual simulation as-

pects and, consequently, existing simulations are usually implemented using agent-based

simulation platforms or general purpose programming languages to have a runnable sim-

ulation. We thus compared MDD4ABMS to alternatives with which a runnable simu-

lation can be developed. As we adopted a software size metric, availability of source

code is crucial for a fair comparison and thus was adopted as the criteria for selecting the

simulations of our study. Whenever available, simulations developed with NetLogo were

selected, given that our MDD4ABMS approach generates code for this platform.

Considering that a state machine represents a fixed decision policy, we selected a

simulation of fixed traffic signal plans (WILENSKY, 2003) for evaluating the effective-

ness of modeling them as state machine capabilities. The simulation of self-organizing

traffic lights (GERSHENSON, 2005) was selected to evaluate the adaptation capability.

Both simulations are available for NetLogo.34 Finally, to evaluate the effectiveness of

using learning for traffic signal control, we used the simulation of traffic signal control

agents with reinforcement learning (OLIVEIRA; BAZZAN, 2009). This simulation is

available for the ITSUMO simulation platform (SILVA et al., 2005).

The LOC metric was collected from the available source code of selected

simulations. When using LOC as input for effort estimation, a distinction between man-

ually produced and automatically generated lines of code should be made. The former

requires human effort for being produced, while the latter is produced by code generators.

3<http://ccl.northwestern.edu/netlogo/models/TrafficGrid>
4<http://turing.iimas.unam.mx/~cgg/sos/SOTL/SOTL.html>

http://ccl.northwestern.edu/netlogo/models/TrafficGrid
http://turing.iimas.unam.mx/~cgg/sos/SOTL/SOTL.html

90

Given that our focus is on traffic signal controller agents, our study considered only the

code blocks dedicated to implement them and their associated behaviors. Code related

to vehicle agents and the traffic network (simulated environment), as well as comments

and code block delimiters, were not considered in this evaluation. To collect the number

of AME in models created by using ABStractLang, we adapted the generous estimation

rule proposed for UML class diagrams (BETTIN, 2002). The following elements were

counted as AMEs: model parameters; entity or agent boxes; attributes and their corre-

sponding initialization and update; agent creation strategy and each of its parameters;

agent capabilities, their options, and parameters; actuator states and groups; and connec-

tions of agent capabilities.

5.2.2 Results and Discussion

Obtained results are shown in Table 5.4, separated by decision capability. Columns

indicate: (i) AME: the number of specified atomic model elements; (ii) MLOC: the num-

ber of manually written lines of code; (iii) Development Effort: the sum of AMEs and

MLOC, which is the (design and implementation) development effort of the manually

created portion of the simulation model; and (iv) GLOC: the number of lines of code

generated from AMEs. That table shows that the ABStractLang language requires less

development effort to produce simulation models for all the three simulations. The work-

load of developers was reduced by 60.00%, 81.93%, and 85.21%, respectively. By using

ABStractLang, all the human effort is employed to create diagram elements only (AME),

from which the simulation source code is automatically generated. Consequently, no

MLOC is required for MDD4ABMS. By using NetLogo, in addition to MLOC, one AME

was used to specify model parameters via graphical input components in each simulation,

producing some GLOC. On the other hand, for the simulation developed with ITSUMO,

all the human effort is employed to create MLOC because no graphical input component

was used in the existing simulation. We recall that results show in Table 5.4 considers only

model and code elements related to traffic signal controller agents, which corresponds to

approximately 50% of the complete model/code required to run a simulation. Vehicle and

visualization-related source code corresponds to the remaining 50%. These aspects were

not considered in this evaluation and therefore in order to run each simulation their source

code were reused from existing implementations.

It is also possible to observe that the total amount of lines of code (MLOC +

91

Table 5.4: Empirical Evaluation of Development Effort: Size Comparison
Simulation / AME MLOC Development GLOC

Technique Effort*

State Machine (Fixed Plan)/
NetLogo 1 34 35 1
MDD4ABMS 14 0 14 116

Adaptation (Self-organizing Traffic Lights)/
NetLogo 1 82 83 1
MDD4ABMS 15 0 15 103

Learning (Reinforcement Learning)/
ITSUMO 0 257 257 0
MDD4ABMS 38 0 38 298

*Development Effort = AME + MLOC

GLOC) produced by the MDD4ABMS approach for traffic signal controller agents and

their behavior is greater than the total amount of lines of code in the existing implemen-

tation, for all simulations. Given that the MDD4ABMS metamodel considers domain

independent abstractions (e.g., state machines and other decision capabilities), generated

code contains additional statements to implement these abstractions. Existing implemen-

tations, in turn, are built upon application-specific abstractions that may not generalize to

other domains. Nevertheless, GLOC is not considered as evidence of development effort,

because no human effort is required to produce them.

The presented results give evidence that our MDD4ABMS approach is effective

to reduce the effort required for developing agent-based simulations. The effort to design

models using ABStractLang is lower than the effort to implement code for NetLogo or

ITSUMO. Given that an AME is equivalent to an MLOC, the sum of AMEs and MLOC

produced by using MDD4ABMS is always lower than by using the simulation platforms.

Although the number of AMEs produced by using ABStractLang is the highest, it is

lower than the number of MLOC produced by using the simulation platforms, leading

to a reduction in the combined design and implementation effort. Furthermore, the rule

adopted for counting AMEs led to a fine-grained and platform independent evaluation.

Therefore, a few elements of ABStractLang were counted as AMEs, but their size is not

equivalent to, but lower than, a line of code (e.g., parameters of a learning technique).

As a consequence, the evaluation favored implemented simulations, giving us stronger

confidence that MDD4ABMS reduces the human effort required to develop agent-based

simulations in the traffic signal control domain.

92

5.2.3 Threats to Validity

An internal threat to study validity is that the AME metric is based on an estimation

rule to classify elements of ABStractLang as AMEs. As said, we adopted a generous es-

timation rule (BETTIN, 2002). In spite of a few elements of ABStractLang were counted

as AMEs, their size is indeed lower than a line of code. Therefore, differences would have

been even larger if a more strict estimation had been adopted.

An external threat to validity is that we considered one agent type (traffic signal

controller), which may raise issues with respect to the scalability of MDD4ABMS and

its modeling language. In fact, scalability can be a problem in languages with graphical

notation. We mitigated this problem in the ABStractLang language by introducing the

notion of concerns, as explained in Chapter 3. In this empirical evaluation, we focused

exclusively on adaptive traffic signal control simulations in which agents in charge of

managing traffic signal controllers are the main aspect considered. Therefore, we deal

exclusively with the concern of traffic signal controller agents. Additional aspects, such

as microscopic vehicle models, would be modeled as additional concerns within their own

diagrams (e.g., vehicles concern), and thus would not compromise the scalability of our

modeling language and the validity of our results.

The modeling of one simulation for each decision capability is another external

threat to validity. Additional simulations were enumerated when the evaluation was

planned, either related to learning (ABDOOS; MOZAYANI; BAZZAN, 2011; MAN-

NION; DUGGAN; HOWLEY, 2016; ROSSETTI et al., 2002) or adaptation (GERSHEN-

SON; ROSENBLUETH, 2012b; GERSHENSON; ROSENBLUETH, 2012a). When ex-

amining how these simulations deal with strategies for fixed traffic signal plans, adapta-

tion, and learning, we noticed that they differ not by the techniques adopted, but by its

setup. For example, both Mannion, Duggan and Howley (2016) and Oliveira and Baz-

zan (2009) use Q-Learning as reinforcement learning technique but adopt different state

representations and reward functions. Therefore, this gives evidence that the selected

simulations represent elements that are recurrent in agent-based adaptive traffic signal

control simulations that adopt one of the three adaptive strategies considered in this work,

thus mitigating the threat regarding our selected simulations.

93

5.3 User Study: Simulation Development with MDD4ABMS

In the evaluations described so far, elements of our MDD4ABMS approach were

considered separately. In this section, we describe a study with humans that considered

our MDD4ABMS approach as a whole. Following the GQM template, the goal of the

study is: to assess the benefits of using MDD4ABMS to develop agent-based simulations,

evaluate the MDD4ABMS approach in comparison with NetLogo from the perspective

of the researchers as it is used by mainstream software developers with little ABMS ex-

pertise to develop agent-based simulations in a multi-project study. The study considers

participants with little or no expertise in ABMS so as to be consistent with the hypothesis

considered in this thesis, of that an MDD approach improves productivity in agent-based

simulation development for developers with this level of expertise. Additionally, we con-

ducted the evaluation as a multi-project study to avoid domain biases.

To achieve the study goal, we derived three research questions, stated as follows.

RQ1. Does MDD4ABMS improve design quality of agent-based simulations?

RQ2. Does MDD4ABMS decrease the effort required to develop agent-based

simulations?

RQ3. How do developers evaluate MDD4ABMs with respect to usability, relia-

bility, productivity, and expressiveness?

One of the goals of MDD is to enhance software quality (STAHL et al., 2006b).

Therefore, RQ1 aims at verifying how MDD4ABMS affects the design quality of agent-

based simulations. Research question RQ2 is motivated by the claims of ABMS re-

searchers regarding the demand for alternatives that ease the development of agent-based

simulations and increase development productivity. As previously discussed, despite the

potential of ABMS, one who wants to build a simulation may have motivation impaired if

the required effort is high and therefore beyond his abilities or budget. Previous work on

the use of MDD in many domains showed that it is a productive and effortless alternative

for software development. Therefore, RQ2 intends to verify whether this is also observed

in the ABMS paradigm. Finally, RQ3 is focused on evaluating MDD4ABMS with respect

to the user experience. Existing methodologies for evaluating MDD approaches and their

DSLs point out that qualitative aspects such as those enumerated in RQ3 influence both

the success and adoption of such approaches (CHALLENGER; KARDAS; TEKINER-

DOGAN, 2015; KAHRAMAN; BILGEN, 2015).

94

We selected the following metrics to answer these research questions.

M1. Number of correct features in the simulation. (RQ1)

M2. Number of incomplete features in the simulation. (RQ1)

M3. Number of features with syntactical errors in the simulation. (RQ1)

M4. Number of inconsistent features in the simulation. (RQ1)

M5. Time spent to develop agent-based simulations. (RQ2)

Metrics M1 to M4 are related to the design quality of simulations. As Hoffert,

Schmidt and Gokhale (2011), we conceive design quality as the number of defects in a

simulation. Defects are accounted at the same granularity level of the simulation features.

Features correctly developed are considered as correct features (M1). The level at with

a feature is correct is determined by inspecting the simulation model (MDD4ABMS) or

implementation (NetLogo). To accomplish a particular feature, a set of elements must

be present in the simulation. Therefore, a feature is considered entirely correct if all its

expected elements are specified by the participant. Three types of defects are considered

in the study. Features requested but not fully developed (i.e., some element expected

for that feature is missing) are considered as defects of type incomplete features (M2).

Features developed with compilation errors are considered as defects of type syntactical

error (M3). Finally, features developed without compilation errors but that do not produce

the expected simulation results are considered as defects of type inconsistent features

(M4)—i.e., the participant endued the agent with a learning capability but specified wrong

learning parameters.

Metric M5 measures the time it took participants to develop an agent-based simu-

lation and to verify whether it produces the expected results. Existing evaluations of MDD

approaches have already considered time as a measure for development effort (HOFFERT;

SCHMIDT; GOKHALE, 2011).

To answer research question RQ3, we adopted the Framework for Qualitative As-

sessment of DSLs (FQAD) by Kahraman and Bilgen (2015). FQAD enumerates a set

of qualitative aspects relevant to the success of DSLs and provides an instrument (ques-

tionnaire) for assessing them. Though FQAD was conceived for evaluating DSLs, in this

study it reflects the assessment of MDD4ABMS as a whole.

95

5.3.1 Procedure

The user study was conducted as a final assignment of an agent-based simulation

mini-course. The mini-course had a total of 15 working hours, comprising a hands-on

tutorial5 and an experiment session (12 and 3 hours respectively). In the tutorial session,

participants were introduced to the ABMS paradigm as well as to the MDD4ABMS ap-

proach. Much of the tutorial session was dedicated to practice the development of agent-

based simulations in the domain of spread of disease and adaptive traffic signal control

so as to participants learn the languages and tools used in the experiment (ABStractLang

from MDD4ABMS, and NetLogo). Providing mini-courses instead of just experiment

sessions were the way we found to increase the number of volunteer participants.

In the experiment session, two agent-based simulations had to be developed in

steps, and in each of which participants were asked to develop a particular simulation fea-

ture. To avoid domain biases, one simulation explores the domain of spread of diseases,

and the other explores the domain of adaptive traffic signal control (hereafter referred to

as disease and traffic, respectively). Details on these simulations are described next.

The spread of disease simulation aims at reproducing the perpetuation of a dis-

ease in a population of agents (NATHANSON, 2005). Two agents are considered in this

simulation: natives and immigrants. Both are subject to the same disease, specified via

the SIR compartmental model. The way the disease affects an agent depends on its type,

and therefore the SIR model parameters (e.g., transmission and recovery rates) must be

set accordingly. The features developed by participants, and the associated development

task, are presented next. Details on the number of agents and the SIR model parameters

are presented in Appendix E.

DF1. Environment: creation of a grid with fixed size.

DF2. Native agent: creation of the native agents, which are positioned in the en-

vironment according to a GIS file and randomly move around the environment.

DF3. Disease in natives: incorporation of the SIR compartmental model into na-

tives, following a specification that gives the transmission, recovery, and mor-

tality rates, as well the immunity duration and how the disease is introduced in

the population of natives. Participants also had to specify outputs to observe

the number of susceptible, infected, and recovery natives during the simulation.

Finally, agents are colored according to their current compartment (provided as
5Available, in Portuguese, at <https://sites.google.com/view/simulacoescomagentes/>

https://sites.google.com/view/simulacoescomagentes/

96

an external agent capability to be added to the simulation).

DF4. Immigrant agent: creation of immigrant agents, which moves exactly as

natives, with a fixed population.

DF5. Disease in immigrants: the SIR compartmental model is incorporated into

immigrants (with specified parameters), as well as output and coloring similar

to natives. Now, the disease transmission can also take place between natives

and immigrants. Participants also had to specify outputs to observe immigrant

agents, as well as to add external agent capability for coloring immigrants.

In the adaptive traffic signal control simulation, the goal is to demonstrate and

evaluate how traffic signal control agents using reinforcement learning can learn a policy

for selecting a traffic signal plan that minimizes the number of stopped vehicles. Two

agents are considered: traffic signal controllers (TSCs) and vehicles. TSCs are provided

with three plans, each of which gives priority to vehicles moving in a particular direction.

By using a reinforcement learning technique that considers these plans in addition to

learning states and a reward function, TSCs can identify which plan is best suitable to

handle a particular traffic demand. Features developed by participants are presented next.

Details on the number of agents and reinforcement learning parameters are presented in

Appendix F.

TF1. Environment: creation of a graph (traffic network) from an OSM file.

TF2. Vehicle agent: inclusion of vehicle agents, following a given specification.

TF3. TSC agent: creation of TSC agents at each intersection node of the traffic

network.

TF4. Traffic signal plans: specification of three traffic signal plans to TSC

agents, and set up of them to control the flow of vehicles at intersections.

TF5. Reinforcement learning: addition of the reinforcement learning technique

(more specifically the Q-learning algorithm) to TSC agents, and set up of learn-

ing states, actions, reward function, and other learning parameters. The reward

function punishes TSCs according to the sum of the queue length at all the

incoming lanes (the more the number of stopped vehicles, the higher is the pun-

ishment; in the best case, with no stopped vehicles, the punishment value is

zero). Participants also had to specify an output to observe the overall number

of stopped vehicles during the simulation.

Once again, we chose the NetLogo platform as the baseline for evaluating the

97

benefits provided by MDD4ABMS. The NetLogo programming language provides high-

level statements for ordinary operations (e.g., moving agents and finding elements lo-

cated within a given radius) required in the considered simulations. Additionally, code

blocks of agent behaviors found in existing NetLogo models can be extended and reused

in simulations, fostering the adoption of this platform. Indeed, this was the case for the

traffic simulation in our study, in which source code of both the vehicle agent and the

Q-learning algorithm were reused from existing models (RODRÍGUEZ-HERNÁNDEZ;

BURGUILLO-RIAL, 2016; ROOP, 2006). In these cases, participants that developed

simulations with NetLogo received ready-to-use libraries with these features and had to

incorporate them into simulations. Finally, given that MDD4ABMS generates NetLogo

source code, participants have not had to learn how to use other simulation platforms.

However, elementary programming skills are expected from participants because teach-

ing programming logic is out of the scope of the user study.

To study the two independent variables considered in our study—simulation do-

main (disease or traffic) and development technique (MDD4ABMS or NetLogo)—four

treatment groups were adopted in the experiment session of the mini-course. Each par-

ticipant was randomly assigned to one of these groups. In each group, the time it took

participants to develop simulations (metric M5) is collected through two consecutive de-

velopment sessions, in which the treatment order was changed. A survey tool (Lime

Survey) was used to collect the time it took participants to develop each simulation fea-

ture.

Metrics M1 to M4 are calculated from the simulations finished by participants.

Each simulation was inspected to verify whether features were correctly developed. A

feature is considered correct if all the expected constructs for that feature were specified

by the participant. The expected constructs depend on the technique used to develop the

simulation. For example, to specify a disease by using MDD4ABMS, a disease model

capability element correctly configured is expected. By using NetLogo, it is expected

a set of code statements that implement all the disease-related processes (transmission,

recovery, mortality, and introduction).

To answer RQ3, by the end of the two development sessions participants were

asked to fill out the questionnaire provided by FQAD (KAHRAMAN; BILGEN, 2015).

In this questionnaire, participants agree or disagree on the presence of qualitative aspects

using a 5-point Likert scale, for both MDD4ABMS and NetLogo. The following qualita-

tive aspects were considered in this study: (i) usability: the degree at which the approach

98

can be used by participants to achieve their goals; (ii) reliability: whether the approach

aids producing simulations free of errors and mistakes; (iii) productivity: the degree at

which the approach promotes productivity; and (iv) expressiveness: the degree at which

it eases the development of simulations by providing elements at the right abstraction

level. Additionally, two open-ended questions asking participants to provide the most

positive and most negative aspects of both techniques were included in the questionnaire,

as suggested by Lund (2001).

5.3.2 Participants

Considering that having got programming skills is a prerequisite to attend the

mini-course, we targeted graduate and undergraduate students of Computer Science and

related courses. Three mini-course editions took place between May 5 and July 20, 2018,

in two distinct sites. The first site was the Universidade Regional de Blumenau (FURB),

in Blumenau/SC, and the second was the Instituto de Informática of the Universidade

Federal do Rio Grande do Sul (UFRGS), in Porto Alegre/RS.

Table 5.5 presents the number of participants in each site/edition of the mini-

course. In the UFRGS/1 edition, six participants dropped out from the tutorial session: 25

participants started, but only 19 finished the tutorial. In a follow-up interview with these

drop-outs, respondents pointed out that scheduling or health issues prevented them from

finishing the mini-course. There were drop-outs at the FURB/1 edition as well. Although

all participants finished the tutorial, six did not participate in the experiment session due

to scheduling issues.

Table 5.5: Participants of the Mini-course Editions
Tutorial Experiment

Site/Edition Date Started Finished Started Finished Considered

FURB/1 May 5 and 12 19 19 13 13 12
UFRGS/1 July 10 to 13 25 19 19 17 14
FURB/2 July 16 to 20 8 8 8 8 5

Total 52 46 40 38 31

With respect to the experiment session, drop-outs were registered only in the

UFRGS/1 edition, in which two participants started the experiment session, but instead

of developing the simulations, they started to work on some other activity (e.g., prepa-

ration for final exams). These two participants were kindly asked to drop-out from the

99

experiment session. Given that these drop-outs were caused neither by difficulties with

the techniques nor with the domains, they are not an indication of issues with a partic-

ular treatment. The last column in Table 5.5 shows the number of participants whose

simulations were indeed considered for evaluation. From the 38 participants that finished

the experiment, 7 were discarded from the study due to the reasons described next.

• Delayed start. Two participants in the UFRGS/1 edition arrived late at the experi-

ment session. They were authorized to participate in the session to fulfill the credit

hours and then receive the certificate of participation. However, these participants

were removed from the study because they missed the explanation of the experi-

mental procedure.

• Technical issues. Issues with the online survey tool were registered by one par-

ticipant in the FURB/1 and UFRGS/1 editions and by two in the FURB/2 edition.

In that cases, the survey tool either did not record the time they have taken to de-

velop simulation features (session timeout issues) or did not show the instructions

for developing a particular feature (page loading issues). A runtime error (memory

leak) in the ABStractme tool compromised the model created by a participant in

the FURB/2 edition.6 The error affected the time recorded for the participant, and

therefore this participant was removed from the study.

Table 5.6 presents demographic characteristics of the thirty-one participants con-

sidered. Participants were mostly male, undergraduate students in Computer Science.

Before the mini-course, participants were asked to quantify (9-point Likert scale) their

expertise in the following topics related to this study: programming; agent-based mod-

eling and simulation; traffic control and traffic lights; epidemiology, in particular, epi-

demics (e.g., compartmental models); reinforcement learning techniques and algorithms;

the NetLogo platform and its programming language; and UML class diagrams.

Figure 5.4 presents expertise reported by participants. It can be seen that almost

all participants reported no expertise in agent-based simulations (only a few reported ex-

pertise around the basic level in this topic). No participant reported expertise in NetLogo.

Therefore, the sample of participants conforms with the goal of this study, which is to as-

sess the benefits of MDD4ABMS for people with little expertise in ABMS. Participants

also reported little expertise in topics such as traffic, epidemiology, and reinforcement

learning. Consequently, no participant needed to be excluded due to prior knowledge of

6The error has already been fixed in the current release of the ABStracme tool.

100

Table 5.6: Demographic Characteristics of Participants
Characteristics N %

Gender Female 3 9.68
Male 28 90.32

Age 15 – 20 9 29.032
21 – 25 11 35.483
26 – 30 7 22.580
31 – 35 3 9.677
36 – 40 1 3.225

Area Computer Science 29 93.55
Computer Engineering 1 3.23
Information Systems 1 3.23

Education Undergraduated 25 80.65
Graduated 2 6.45
Specialization student 2 6.45
Master student 1 3.23
PhD student 1 3.23

Figure 5.4: Expertise of Participants

16%

19%

81%

97%

100%

100%

100%

62%

50%

9%

3%

0%

0%

0%

22%

31%

9%

0%

0%

0%

0%

Programming

UML class diagrams

Reinf. Learning

Epidemiology

Traffic

NetLogo

Agent−based Simulation

100 50 0 50 100
Percentage

0: no expertise 1 2: basic 3 4: intermediary 5 6: advanced 7 8: expert

the technologies under study. 50% of participants reported expertise in UML class dia-

grams above the intermediary level. Participants reported considerable expertise in pro-

gramming, as expected from Computer Science students. To better characterize program-

ming skills, Table 5.7 presents the number of years of programming expertise reported by

participants. With respect to programming, almost half of the participants reported 2–5

years of expertise. With respect to programming as professionals (e.g., working in indus-

try), in turn, there are participants with no such expertise, as well as participants with 5 or

more years of professional programming.

As detailed earlier, four treatment groups were considered in the study. Partici-

pants were randomly assigned to one of these four groups and developed the simulations

in the sequence and with the technique specified for that group. Table 5.8 shows the treat-

101

Table 5.7: Programming Expertise of Participants, in Years
Characteristics N %

Programming Expertise (in years) No expertise 0 0.00
< 1 0 0.00
1 – 2 5 13.13
2 – 5 13 41.94
5 – 10 11 35.48
> 10 2 6.45

Professional Programming Expertise (in years) No expertise 9 29.03
< 1 3 9.68
1 – 2 6 19.35
2 – 5 8 25.81
5 – 10 4 12.90
> 10 1 3.23

ment conditions and the number of participants of each group after drop-outs previously

described. Under this configuration, a total of 62 simulations were developed. For each

combination of domain and technique, the number of developed simulation is the fol-

lowing: Disease-MDD4ABMS: 15; Disease-NetLogo: 16; Traffic-MDD4ABMS: 16; and

Traffic-NetLogo: 15. Results of the experiment are presented and discussed next.

Table 5.8: Number of Participants per Treatment Group
Development Session 1 Development Session 2

Group N Domain Technique Domain Technique

A 9 Disease MDD4ABMS Traffic NetLogo
B 8 Traffic MDD4ABMS Disease NetLogo
C 8 Disease NetLogo Traffic MDD4ABMS
D 6 Traffic NetLogo Disease MDD4ABS

5.3.3 Results and Discussion

The results obtained are next presented and discussed by research question. We

first present results regarding design quality (RQ1), followed by results regarding devel-

opment effort (RQ2). Lastly, we present the subjective evaluation of MDD4ABMS with

respect to the user experience (RQ3).

5.3.3.1 Design Quality (RQ1)

The number of features correctly developed by participants in each simulation

(metric M1) is summarized in Figure 5.5 and detailed in Table 5.9, which shows the mean

102

Figure 5.5: Number of Correct Features

MDD4ABMS NetLogo MDD4ABMS NetLogo

0
1

2
3

4
5

Correct Features

N
um

be
r

of
 fe

at
ur

es

Disease Traffic

Table 5.9: Details on the Number of Correct Features
Domain / Number of simulations with N correct features
Technique Mean (SD) N=1 N=2 N=3 N=4 N=5

Disease /
MDD4ABMS 4.53 (0.64) 0 (0.00%) 0 (0.00%) 1 (6.66%) 5 (33.33%) 9 (60.00%)
NetLogo 3.69 (0.79) 0 (0.00%) 1 (6.25%) 5 (31.25%) 8 (50.00%) 2 (12.50%)

Traffic /
MDD4ABMS 4.56 (0.63) 0 (0.00%) 0 (0.00%) 1 (6.25%) 5 (31.25%) 10 (62.50%)
NetLogo 4.53 (0.64) 0 (0.00%) 0 (0.00%) 1 (6.66%) 5 (33.33%) 9 (60.00%)

and standard deviation, in addition to the number of simulations according to the number

of correct features. It can be seen that in the disease domain the average number of correct

features developed by using MDD4ABMS (4.53) is 25.14% higher than by using NetLogo

(3.69). In this domain, 60.00% of the simulations developed by using MDD4ABMS

(9 out of 15) were entirely correct (i.e., all 5 features correctly developed), while by

using NetLogo most of the simulations presented either 3 (31.25%) or 4 (50.00%) correct

features, and only 12.50% (2 out 16) were entirely correct. In the traffic domain, in

turn, results obtained for MDD4ABMS and NetLogo are similar. These observations are

confirmed by the significant difference among the groups that was revealed by a Kruskal-

Wallis test (χ2 = 14.04, p < 0.01), followed by a post hoc Dunn’s test with Holm

correction that showed a significant difference between MDD4ABMS and NetLogo in

the disease domain.

Features that were incorrectly developed were further analyzed and categorized as:

incomplete (metric M2); syntactical error (metric M3); and inconsistent (metric M4). Ta-

ble 5.10 shows the number of simulations in which these defects were found. There are in-

complete features in both domains. In the disease domain, by using NetLogo, the number

of simulations with incomplete features (31.25%) is higher than by using MDD4ABMS

(6.67%). By using NetLogo, the number of incomplete features per simulation is 1.20 on

103

Table 5.10: Number of Simulations and Features by Defect Type
Nb. of Nb. of features with error per simulation

Domain Technique Simulations Mean SD Min Max

Incomplete:

Disease
MDD4ABMS 1 (6.67%) 1.00 - 1 1
NetLogo 5 (31.25%) 1.20 0.45 1 2

Traffic
MDD4ABMS 3 (18.75%) 1.33 0.58 1 2
NetLogo 3 (20.00%) 1.00 0.00 1 1

Syntactical Error:

Disease
MDD4ABMS 0 (0.00%) - - - -
NetLogo 1 (6.25%) 1.00 - 1 1

Traffic
MDD4ABMS 0 (0.00%) - - - -
NetLogo 1 (6.67%) 1.00 - 1 1

Inconsistent:

Disease
MDD4ABMS 6 (40.00%) 1.17 0.41 1 2
NetLogo 13 (81.25%) 1.38 0.51 1 2

Traffic
MDD4ABMS 4 (25.00%) 1.00 0.00 1 1
NetLogo 4 (26.67%) 1.25 0.50 1 2

average, which means that there are simulations with more than one incomplete feature.

In such simulations, incompleteness is found in features DF3 and DF5, caused by miss-

ing code statements for initializing and managing the disease progression, and for using

the provided agent coloring routines. By using MDD4ABMS, only feature DF5 presents

incompleteness, caused by a missing element in the immunity duration specification. In

the traffic domain, the number of simulations with incomplete features is the same for

each technique (percentages are not the same due to different number of participants in

each group, as shown in Table 5.8). For both techniques, there are cases in which the

simulation output is missing in feature TF5. By using MDD4ABMS, there is a simulation

in which a particular traffic signal plan was not added (TF4), and another with a missing

connection between one plan state machine and the reinforcement learning agent capabil-

ity (TF5), causing the learning to consider only two out of the three traffic signal plans.

By using NetLogo, there are two simulations with missing code statements to activate the

reinforcement learning technique (TF5).

There are cases of features with syntactical errors only in simulations developed

by using NetLogo. Errors are due to syntax issues in assignment operations and the use

of agent attributes (e.g., wrong attribute names).

Finally, there are cases of inconsistent features in both domains. In the disease do-

main, the number of simulations with inconsistent features developed by using NetLogo

104

(81.25%) is twice as by using MDD4ABMS (40.00%). For both techniques, most of the

inconsistencies occurred while developing features DF3 and DF5, in which participants

had to specify the disease for the native and immigrant agents, respectively. The most

common problem is the wrong specification of transmission rates for DF5. While by using

MDD4ABMS this inconsistency is present in 3 out of the 6 simulations with inconsistent

features, by using NetLogo it occurs in 11 out of the 13 simulations. Other less frequent

inconsistencies are the following. By using MDD4ABMS: wrong mobility parameters,

wrong infection duration or disease introduction, and wrong outputs. By using NetLogo:

wrong environment size, and wrong infection and immunity durations. With respect to the

traffic domain, the number of simulations with inconsistent features is the same. For both

techniques, all inconsistencies occurred while developing features TF4 and TF5 (traffic

signal plans and reinforcement learning, respectively). In TF4, one simulation had state

machines for traffic signal plans incorrectly modeled by using MDD4ABMS, while by

using NetLogo there are three simulations with inconsistent cycle or plan durations. In

TF5, two simulations had output parameters incorrectly specified by using MDD4ABMS,

while two simulations had wrong learning parameters by using NetLogo. This indicates

that mixing programming logic with the specification of simulation parameters can pos-

sibly induce developers to make mistakes, even when the parameters are given.

So far, we discussed design quality from the point of view of the number of entirely

correct features. Given that portions of features may have been correctly developed by

participants, Figure 5.6 shows the percentage of correctness of features. These results are

detailed in Table 5.11 and discussed next.

We first discuss results associated with the disease domain, shown in Figure 5.6(a).

Figure 5.6: Percentage of Correctness of Features

0
20

40
60

80
10

0

Domain: Disease

%
 o

f c
or

re
ct

ne
ss

DF1 DF2 DF3 DF4 DF5
Features

MDD4ABMS
NetLogo

0
20

40
60

80
10

0

Domain: Traffic

%
 o

f c
or

re
ct

ne
ss

TF1 TF2 TF3 TF4 TF5
Features

MDD4ABMS
NetLogo

(a) Domain: Disease (b) Domain: Traffic

105

Table 5.11: Details on Percentage of Correctness of Features
Percentage of Correctness

Fea- Disease Traffic
ture Technique Mean SD Min Max Mean SD Min Max

1 MDD4ABMS 100.00 0.00 100.0 100.00 100.00 0.00 100.00 100.00
NetLogo 75.00 44.42 0.00 100.00 100.00 0.00 100.00 100.00

2 MDD4ABMS 97.78 8.61 66.67 100.00 100.00 0.00 100.00 100.00
NetLogo 100.00 0.00 100.0 100.00 100.00 0.00 100.00 100.00

3 MDD4ABMS 95.56 17.21 33.33 100.00 100.00 0.00 100.00 100.00
NetLogo 93.44 15.57 40.00 100.00 100.00 0.00 100.00 100.00

4 MDD4ABMS 100.00 0.00 100.00 100.00 95.43 13.70 46.15 100.00
NetLogo 100.00 0.00 100.00 100.00 93.33 16.76 40.00 100.00

5 MDD4ABMS 95.90 6.41 84.62 100.00 94.23 13.32 53.85 100.00
NetLogo 89.88 6.48 76.19 100.00 92.38 17.39 35.71 100.00

In feature DF1 participants only had to specify a grid environment. Despite being an easy

to develop feature, in some simulations, the percentage of correctness is below a hun-

dred percent by using NetLogo—75.00% on average, with a minimum of 0.00% (four

simulations). In feature DF2, the number of native agents and their locations was pro-

vided by a GIS file. Percentages of correctness are similar for this feature. In feature

DF3, participants had to implement all the logic to spread the disease among agents and

to recover or kill them after the infection duration by using NetLogo, leading them to

make more mistakes when developing this feature. By using MDD4ABMS, participants

only had to specify a disease capability and fill it with the disease parameters. In fea-

ture DF4, participants had to specify the immigrant agent and create a fixed population at

random locations. As for feature DF2, percentages of correctness are similar. Finally, in

feature DF5 participants had to subject the immigrant agent to the disease. Once again,

by using NetLogo participants had to implement all the transmission and recovery logic,

while by using MDD4ABMS participants were able to reuse the disease capability and

had only to specify additional disease parameters related to the immigrant agent. A re-

markable difference in the percentage of correctness is observed in this feature: 95.90%

for MDD4ABMS, and 89.88% for NetLogo, on average.

With respect to the traffic simulation—Figure 5.6(b), results are as follows. In

feature TF1, participants had to specify a graph for the environment and initialize if from

a OSM file. In features TF2 and TF3, participants had to specify the vehicle and the traffic

signal controller agent types, respectively. The percentage of correctness is 100.00% for

these three features. In features TF4 and TF5, participants had to develop the traffic signal

plans to control the flow of vehicles at intersections and to incorporate the reinforcement

106

learning technique, respectively. While these features demand writing many lines of code

by using NetLogo, MDD4ABMS provides built-in agent capabilities for these elements.

Although there were participants that made a few mistakes with both techniques, the

average of the percentage of correctness of features developed by using MDD4ABMS is

slightly greater than those developed by using NetLogo.

Findings: Design Quality (RQ1). The design quality of simulations developed by

using MDD4ABM is at least as good as those developed by using NetLogo. In the

particular case of the disease domain, design quality is superior considering the num-

ber of entirely correct features developed by using MDD4ABMS.

5.3.3.2 Development Effort (RQ2)

So far, we observed how correct the simulations developed by participants are.

Now, we focus on the time it took participants to perform development tasks (metric

M5). Results are summarized in Figure 5.7 and detailed in Table 5.12. Figure 5.7(a)

shows the time it to develop finished simulations, including those with either incomplete

or inconsistent features, as well as features with syntactical errors. Figure 5.7(b) shows

the time it took participants to develop only the entirely correct simulations, i.e., those in

which all the features are 100% correct. It can be seen that by using MDD4ABMS it took

participants less time to develop simulations in both domains.

With respect to the time it took to develop finished simulations in the disease

domain, by using MDD4ABMS it took participants 47.52% less time (42.27min, on av-

erage) than by using NetLogo (80.56min, on average). Similarly, in the traffic domain,

Figure 5.7: Time to Develop Simulations

0
20

40
60

80
10

0

Time (all simulations)

T
im

e
(m

in
ut

es
)

MDD4ABMS
NetLogo

MDD4ABMS
NetLogo

Disease Traffic

0
20

40
60

80
10

0

Time (correct simulations)

T
im

e
(m

in
ut

es
)

MDD4ABMS
NetLogo

MDD4ABMS
NetLogo

Disease Traffic

(a) Finished Simulations (b) Entirely Correct Simulations

107

Table 5.12: Summary of Time (in Minutes) to Develop Simulations
Domain Technique Mean SD Min Max

Finished Simulations:

Disease
MDD4ABMS 42.27 15.88 27.80 88.28
NetLogo 80.56 20.56 43.87 113.54

Traffic
MDD4ABMS 48.62 12.90 34.78 87.81
NetLogo 62.23 17.67 32.92 93.76

Entirely Correct Simulations:

Disease
MDD4ABMS 40.57 19.48 27.80 88.28
NetLogo 90.32 20.02 76.16 104.48

Traffic
MDD4ABMS 44.06 7.27 34.78 57.05
NetLogo 61.47 17.98 38.09 93.76

by using MDD4ABMS it took 21.87% less time (48.62min, on average) than by using

NetLogo (62.23min on average). A two-way ANOVA test showed a significant effect of

technique on time at the p < 0.05 level [F = 15.992, p < 0.001]. A Tukey post hoc

test revealed significant differences between MDD4ABMS and NetLogo in the disease

domain (p < 0.001). With respect to the entirely correct simulations, the time it took to

develop the disease simulation by using MDD4ABMS (40.57min, on average) is 55.08%

less than by using NetLogo (90.32min, on average). By using MDD4ABMS to develop

the traffic simulation it took participants 28.32% less time (44.06min on average) than by

using NetLogo (61.47min, on average). A Kruskal-Wallis test revealed significant differ-

ences among the groups (χ2 = 12.45, p < 0.01), and a post hoc Dunn’s test with Holm

correction showed significant differences on time between MDD4ABMS and NetLogo in

the disease domain.

Figure 5.8 summarizes the time it took participants to develop features, consider-

ing only the entirely correct simulations. These results are detailed in Table 5.13. It can be

seen that by using MDD4ABMS participants took less time, on average, to develop most

of the features. The more observable differences are in features that demand sophisticated

constructs.

With respect to the disease simulation—Figure 5.8(a)—feature DF1 was quickly

developed by using both techniques. However, as previously pointed out in the discussion

regarding design quality (Section 5.3.3.1), by using NetLogo participants made a few

mistakes when specifying the grid environment, while by using MDD4ABMS they did

not. In feature DF2, by using NetLogo participants had to write a couple of statements

to open the file, read its contents, and create the agents. By using MDD4ABMS, in turn,

participants had to specify a creational strategy and refer it to the file, which took less

108

Figure 5.8: Time to Develop Features in Entirely Correct Simulations

0
10

20
30

40
50

Time per Feature (Domain: Disease)
T

im
e

(m
in

ut
es

)

DF1 DF2 DF3 DF4 DF5
Features

MDD4ABMS
NetLogo

0
10

20
30

40
50

Domain: Traffic (correct simulations)

T
im

e
(m

in
ut

es
)

TF1 TF2 TF3 TF4 TF5
Features

MDD4ABMS
NetLogo

(a) Disease (b) Traffic

Table 5.13: Details on Time to Develop Features in Entirely Correct Simulations
Time (minutes) to Develop Features

Fea- Disease Traffic
ture Technique Mean SD Min Max Mean SD Min Max

1 MDD4ABMS 2.73 1.59 1.18 6.36 2.83 0.96 1.40 4.13
NetLogo 2.83 0.96 1.40 4.13 11.26 5.73 5.50 23.89

2 MDD4ABMS 4.79 2.21 3.50 10.55 2.97 1.14 1.66 5.43
NetLogo 16.55 2.94 14.47 18.63 4.29 3.79 2.38 14.29

3 MDD4ABMS 17.90 11.62 10.10 46.03 5.50 2.32 3.14 11.23
NetLogo 34.11 10.17 26.92 41.30 5.41 2.52 2.54 9.61

4 MDD4ABMS 4.19 2.92 2.32 11.61 17.79 3.95 11.49 24.54
NetLogo 6.01 0.14 5.91 6.11 15.44 4.00 10.38 22.09

5 MDD4ABMS 10.96 2.67 7.99 16.89 14.97 3.70 10.10 21.22
NetLogo 31.41 7.88 25.84 36.99 25.06 7.59 17.14 35.30

time on average. In feature DF3, by using NetLogo participants had to implement all

the disease-related logic. By using MDD4ABMS, participants had to specify a disease

capability, which took less time and led to a slightly higher percentage of correctness in

comparison to NetLogo. In feature DF4, participants quickly developed the immigrant

agent and the creation of a fixed population by using both techniques. Finally, in feature

DF5 (subject the immigrant agent to the disease), participants were able to reuse the

disease capability by using MDD4ABMS, which decreased the time it took to develop

this feature in comparison to by using NetLogo.

With respect to the traffic simulation—Figure 5.8(b)—by using MDD4ABMS, it

took participants less time to develop features TF1 and TF5, and similar time for the

remaining features. In feature TF1, by using NetLogo participants had to develop data

types for graph nodes and links, and write statements to open and read the file. In contrast,

MDD4ABMS provides a graph environment and participants had only to refer to the OSM

109

file, which took less time. In features TF2 and TF3, the time it took participants to develop

the vehicle and the traffic signal controller agents are similar. Also in feature TF4 it took

participants similar time to develop the traffic signal plans. Lastly, by using MDD4ABMS

it took participants less time to develop feature TF5 given that MDD4ABMS provides a

built-in learning capability.

For feature TF4, it took participants a modest higher time, on average, by us-

ing MDD4ABMS in comparison with NetLogo. To investigate this unexpected result,

we performed a follow-up interview with the participants. Among the respondents, many

pointed out that specifying traffic signal plans by using MDD4ABMS is not as straightfor-

ward as by using NetLogo. They mentioned difficulties in remembering how to create and

configure flow control and state machine agent capabilities—the former is the means of

controlling the flow of vehicles at intersections and the later the means of specifying traf-

fic signal plans. Indeed, results previously presented regarding defects in features showed

that they were mainly due to state machine issues. By using NetLogo, traffic signal plans

are implemented with quite a few lines of code to change traffic signal lights according to

each plan duration. Although this ad-hoc implementation fits the feature specification, it

may not be reusable in other domains. Flow control and state machine agent capabilities,

in MDD4ABMS, are domain-independent abstractions. Additionally, some participants

mentioned that due to their programming skills, it was easy to follow NetLogo examples

because they easily recognized code structures (e.g., conditional statements and function

calls). Given that this was their first contact with MDD4ABMS. Additional practice may

be necessary to become fluent in its modeling language and tool.

To investigate the effect of feature TF4 on the time it took participants to develop

traffic simulations, Figure 5.9 shows the overall time to develop only features TF1—TF3

and TF5. The difference between MDD4ABMS and NetLogo becomes more evident. The

time it took to develop these features by using MDD4ABMS (29.72min, on average) is

33.92% less than by using NetLogo (44.98min, on average) when finished simulations

are considered. When only the entirely correct simulations are considered, by using

MDD4ABMS it took participants 42.98% less time (26.27min, on average) than by using

NetLogo (46.03min, on average). A Kruskal-Wallis test revealed significant differences

between MDD4ABMS and NetLogo in the case of finished simulations (χ2 = 10.00,

p < 0.01) as well as in the case of the entirely correct simulations (χ2 = 9.63, p < 0.01).

This result emphasizes the importance of reducing the abstraction gap by means of lan-

guage constructs at the right abstraction level. Though flow control and state machine

110

Figure 5.9: Overall Time to Develop Features TF1–TF3 and TF5 in the Traffic Simulation

0
20

40
60

80
10

0

Traffic Time (without feature 4)

T
im

e
(m

in
ut

es
)

MDD4ABMS
NetLogo

MDD4ABMS
NetLogo

Finished Simulations Correct Simulations

capabilities are abstract representations for recurrent agent-based simulation aspects, re-

sults suggest that the provided notation may not have been enough to decrease the effort

to develop traffic signal plans.

Finally, Figure 5.10 presents the time it took participants to develop features con-

sidering finished simulations, which include those simulations that are not entirely cor-

rect. It can be seen that results resemble the development time of features from entirely

correct simulations, previously shown in Figures 5.8(a) and 5.8(b). Once again, the dif-

ference between MDD4ABMS and NetLogo is more observable in features that demand

sophisticated constructs.

Figure 5.10: Time to Develop Features Considering Finished Simulations

0
10

20
30

40
50

Domain: Disease (all simulations)

T
im

e
(m

in
ut

es
)

DF1 DF2 DF3 DF4 DF5
Features

MDD4ABMS
NetLogo

0
10

20
30

40
50

Domain: Traffic (all simulations)

T
im

e
(m

in
ut

es
)

TF1 TF2 TF3 TF4 TF5
Features

MDD4ABMS
NetLogo

(a) Disease (b) Traffic

111

Findings: Development Effort (RQ2). Results indicate that MDD4ABMS decreases

the development effort in comparison to NetLogo. The effort reduction is more

evident in features that require sophisticated code constructs when developed with

NetLogo. In these cases, abstractions provided by MDD4ABMS reduced the de-

velopment time, as the participants were able to focus on which elements should be

included in the simulation, instead of how to implement them.

5.3.3.3 Subjective Evaluation (RQ3)

The analysis performed in the previous sections focused on objective mea-

surements collected while participants performed the tasks of our study procedure.

Participants were later requested to subjectively evaluate the two target techniques,

MDD4ABMS and NetLogo, with respect to qualitative aspects. Obtained answers are

summarized in Figures 5.11 and 5.12. In the following plots, the bars indicate the level

of agreement with the presented sentences, which are grouped by the aspect being as-

sessed: usability, reliability, productivity, and expressiveness. Statistical tests revealed

that MDD4ABMS obtained significantly higher levels of agreement across all measure-

ments. A summary of the statistical tests is presented in Appendix G.

It can be seen that the levels of agreement with sentences associated with usability

characteristics are all greater for MDD4ABMS in comparison with NetLogo. More than

80% of participants agreed (above the intermediate level) that the effort for understanding

MDD4ABMS is reduced in comparison to a general purpose language (U1), it helps users

to achieve their tasks in fewer steps (U3), its users can recognize whether it is appropriate

for their needs (U4), it is easy to operate (U5) and provides compact representation of

models (U7)—the latter is the usability characteristic in which MDD4ABMS was best

assessed: for all the participants, the level of agreement is above the intermediate level.

Results also show that 74% of the participants agreed (above the intermediate level) that

MDD4ABMS concepts and symbols are easy to learn and remember (U2) and its symbols

are good-looking (U6). With respect to NetLogo, the levels of agreement on the presence

of characteristics U3 and U7 are the lowest, meaning that participants found it laborious

to develop simulations with NetLogo and that its model representation is less compact.

Similar results are observed in the other qualitative aspects, as shown in Fig-

ure 5.12. For MDD4ABMS the levels of agreement on reliability characteristics—model

checking to protect against errors (R1) and correctness (R2)—are above the intermediate

112

Figure 5.11: Subjective Evaluation: Usability

13%

45%

87%

29%

0%

26%

6%

29%

74%

26%

19%

45%

3%

68%

94%

16%

3%

16%

7%

25%

87%

46%

7%

29%

0%

45%

87%

29%

13%

26%

3%

41%

74%

21%

23%

38%

0%

52%

100%

26%

0%

22%

[U7] It provides mechanisms for compact representation of
models

[U6] Its symbols are good−looking

[U5] It has usability attributes that make it easy to
operate and control

[U4] Users can recognize whether it is appropriate for
their needs

[U3] It helps users achieve their tasks in a minimum number
of steps

[U2] Its concepts and symbols are easy to learn and
remember

[U1] The required amount of effort for understanding is
small, in comparison to a general purpose language

100 50 0 50 100

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

Percentage

1: strongly disagree 2 3 4 5: strongly agree

Usability

31

31

31

31

31

31

30

28

30

31

31

29

31

27

[U7]

[U6]

[U5]

[U4]

[U3]

[U2]

[U1]

0 10 20 30

n

NA Completed

level for more than 70% of participants. In contrast, the levels of agreement for NetLogo

show that, for many participants, it does not provide an effective means to avoid error

making. Results previously presented regarding the presence of features with syntactical

errors (Table 5.10) confirm this user perception, given that no syntactical error was found

in simulations developed with MDD4ABMS. The levels of agreement on the presence of

productivity characteristics show that both techniques improve the development time (P1)

and development effort (P2) in comparison to developing agent-based simulations using

general purpose languages. However, for both of these characteristics, the levels of agree-

ment for MDD4ABMS are greater than for NetLogo, which means that, from the point

of view of participants, MDD4ABMS improves time and effort more than NetLogo (i.e.

with MDD4ABMS simulations are developed in less time and with less effort), with re-

113

Figure 5.12: Subjective Evaluation: Reliability, Productivity, and Expressiveness

10%

55%

71%

13%

19%

32%

0%

65%

83%

10%

17%

26%

[R2] It prevents users to specify incorrect model elements
and relations between them

[R1] It protects users against making errors and mistakes

100 50 0 50 100

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

Percentage

1: strongly disagree 2 3 4 5: strongly agree

Reliability

31

31

30

31

[R2]

[R1]

0 10 20 30

n

NA Completed

0%

19%

100%

61%

0%

19%

0%

16%

100%

61%

0%

23%

[P2] It reduces the effort required to develop a
simulation, in comparison to a general purpose language

[P1] It reduces the amount of time required to develop a
simulation, in comparison to a general purpose language

100 50 0 50 100

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

Percentage

1: strongly disagree 2 3 4 5: strongly agree

Productivity

31

31

31

31

[P2]

[P1]

0 10 20 30

n

NA Completed

0%

23%

90%

35%

10%

42%

0%

37%

80%

30%

20%

33%

[E2] It is at the right abstraction level such that it is
no more complex or detailed than necessary

[E1] It eases the development of the elements required in
the simulation

100 50 0 50 100

NetLogo

MDD4ABMS

NetLogo

MDD4ABMS

Percentage

1: strongly disagree 2 3 4 5: strongly agree

Expressiveness

31

31

30

30

[E2]

[E1]

0 10 20 30

n

NA Completed

spect to general purpose programming languages. Finally, with respect to the presence of

expressiveness characteristics, 90% of participants agreed (above the intermediate level)

that MDD4ABMS eases the development of simulation elements (E1) and 77% agreed

that MDD4ABMS is at the right abstraction level (E2).

Lastly, the main positive aspects reported by participants for MDD4ABMS are

that it eases and promotes agility in the development of simulations, and that its abstrac-

tion level is higher than NetLogo. As negative aspects, they reported that abstractions

are limited to the considered application domains, and that the lack of tutorials, exam-

ples, and documentation may prevent users to learn how to develop simulations with

MDD4ABMS by themselves. With respect to NetLogo, participants reported it can be

114

used to develop simulations in other application domains and its programming language

resembles mainstream programming languages as its main positive aspects. As negative

aspects for NetLogo, they reported that it demands previous expertise in programming

logic and that the syntax adopted for some statements differs from mainstream program-

ming languages.

Findings: Qualitative Aspects (RQ3). Results give evidence that MDD4ABMS

meets qualitative aspects related to the user experience, namely usability, reliability,

productivity, and expressiveness. MDD4ABMS obtained significantly higher scores

with respect to all these measurements than NetLogo, when subjectively evaluated by

participants.

5.3.4 Threats to Validity

As in the study previously presented in Section 5.1, this study adopts distinct treat-

ment order for groups (as shown in Table 5.8) to address the threat of participants becom-

ing tired, as well as carry-over effects.

To mitigate the experimenter bias in the procedure adopted for determining at

which level features are correct, the set of elements expected for each feature was elabo-

rated prior to the inspection process. That way, all the simulations were inspected consid-

ering the same set of expected elements. For NetLogo simulations, the expected elements

were specified as logic operations instead of specific programming statements given that

developers were free to adopt their preferred coding style. That way, verification is not

biased by specific programming statements. For MDD4ABMS simulations, it is expected

exactly those metamodel elements that accomplish the simulation model.

Another internal threat is that a few participants dropped out of the study. Partici-

pants were free to drop-out from the study at any time. Many participants that have started

the mini-course had little or no background on agent-based simulation. Therefore, it was

expected that some participants lost their interest in the subject after figuring out exactly

what an agent-based simulation is and its purposes. These drop-outs did not compromise

the validity of the study because MDD4ABMS— like any other simulation platform—is

targeted to people indeed interested in developing agent-based simulations. Participants

of the experiment session are the sample that best represents this target audience.

115

An external threat to validity is that the study considered only two domains (traf-

fic and disease), which may raise issues with respect to the generalization of results. In

the presented results, we observed that in both domains there were features in which the

development effort reduction was evident due to the high-level abstractions provided by

MDD4ABMS. Such abstractions are associated with the creation of agents or the en-

vironment initialized with external files (GIS or OSM), and agent capabilities such as

reinforcement learning and disease models. This gives evidence that the benefits pro-

vided by MDD4ABMS do not depend on the simulation domain, but on the abstraction

level provided by the elements of its metamodel and domain-specific modeling language.

Despite such evidence, further studies should be carried out in other domains.

Another external threat is that we considered only participants with programming

expertise. However, our study goal is not to generalize results for humans in general, but

to developers with at least basic knowledge in programming, which matched the charac-

teristics of our sample. Additionally, note that programming expertise favors NetLogo

and, therefore, differences could be even larger if the study was performed with partici-

pants with less expertise in programming.

5.4 Final Remarks

In this chapter, we presented three empirical studies performed to evalu-

ate MDD4ABMS. Our first study evaluated whether the core metamodel and the

ABStractLang language ease the understanding of agent-based simulations. Results show

that ABStractLang decreases the time to comprehend agent-based simulations having

complex entities and many model parameters in comparison with NetLogo. Our sec-

ond study used a software engineering metric—effort as a function of the size of the

system—to assess the productivity of using MDD4ABMS to develop simulations. Results

show that the design and implementation effort required to develop simulation models us-

ing MDD4ABMS is lower than models created in the NetLogo or ITSUMO simulation

platforms. Finally, our third study evaluated whether the MDD4ABMS approach, when

applied to develop agent-based simulation in both the adaptive traffic signal control and

spread of disease domains, increases the design quality and decreases the development

effort. Results of this study showed that MDD4ABMS indeed promotes expressive mod-

eling, leading developers to create simulations with similar (sometimes better) design

quality than NetLogo in less time. Presented studies are novel contributions, given that

116

previous MDD approaches for ABMS were not evaluated with humans.

Given that the presented domain specific metamodel extensions were built through

our proposed domain analysis method, these results also provide evidence that the steps

of our domain analysis method are effective and can potentially be used to identify and

abstract concepts in other domains.

117

6 CONCLUSION

The ABMS paradigm has been used to simulate systems in many application ar-

eas due to its ability to deals with the complexity that arises from individual behavior and

interactions. Developing agent-based simulations is a challenging task. Technical exper-

tise, either in ABMS or in programming logic and simulation platforms may be an issue.

Available alternatives for developing simulations range from methodologies, processes,

and metamodels, to widely used agent-based simulation platforms. However, these al-

ternatives usually provide support for specifying only elementary aspects of simulations.

Sophisticated simulation aspects such as agent capabilities (e.g., learning), disease mod-

els, and topologies for the simulated environment, are rarely provided. Hence, developers

of agent-based simulation systems must usually implement these aspects from scratch,

which can affect productivity and potentially introduce inconsistencies in simulations.

MDD approaches for developing agent-based simulations have been proposed,

and this is the context of this thesis. Existing MDD approaches for ABMS cover only el-

ementary aspects of simulations and have issues with respect to expressiveness and code

generation. We thus propose MDD4ABMS, an MDD approach that promotes expressive

modeling and productivity in agent-based simulation development. The main element of

MDD4ABMS is its metamodel. Such a metamodel was built in a bottom-up fashion to

abstract aspects recurrently used in simulations. To extend the metamodel with domain-

specific aspects, we propose a domain analysis method that considers existing agent-based

simulations. In order to promote expressive modeling, we propose ABStractLang, a DSL

for modeling simulations. Model-to-code transformations were developed so as to gener-

ate code for the NetLogo simulation platform automatically. The ABStractme modeling

tool was created to allow specifying models using the ABStractLang language and to

generate code from them.

Empirical studies were conducted to evaluate whether MDD4ABMS provide ben-

efits to comprehend simulation models, as well as to develop simulations in two applica-

tion domains: adaptive traffic signal control and spread of disease. With respect to our

research question, obtained results showed evidence that MDD4ABMS reduces the effort

in agent-based simulation development with mainstream software developers that have

little expertise in ABMS. Regarding our hypothesis, we conclude that MDD is indeed

a promising alternative for developers with little expertise in ABMS to ease the devel-

opment and increase productivity in agent-based simulation development. These studies

118

also allowed us to identify shortcomings in the MDD4ABMS approach, which will help

us to improve our work further. Additional studies can be conducted to refine the results of

our studies, tackling identified threats to their validity. Finally, it is worth to mention that

this thesis contributed to the popularization of ABMS, given that prior to the mini-courses

participants reported little expertise in ABMS-related topics.

6.1 Contributions

As the result of the work presented in this thesis, a number of contributions can

be enumerated. Together, these contributions give form to MDD4ABMS, a model-driven

approach for developing agent-based simulations.

Metamodel for Agent-based Simulations. The metamodel, described in Chapter 3, is

composed of a core and extensions for two application areas: adaptive traffic signal con-

trol and spread of disease. The core abstracts elementary aspects of simulations, such

as topologies for the simulated environment, in particular grids, Cartesian spaces, and

graphs. Additionally, the core also abstracts entities and agents with attributes, as well

as basic agent capabilities (mobility and surviving) and data collection. The creation

and initialization of both agents and the environment are represented as creational strate-

gies. Strategies for creating those elements according to popular file formats are also

provided, such as geospatial files (SANTOS; NUNES; BAZZAN, 2017c). The core meta-

model was built considering a set of existing agent-based simulations whose domains are

social simulation, land use, epidemic dissemination, and natural disaster application ar-

eas. The metamodel was extended through a domain analysis process that considered

existing simulations in the adaptive traffic signal control and spread of disease applica-

tion areas. These extensions capture flow control and decision capabilities (SANTOS;

NUNES; BAZZAN, 2017b; SANTOS; NUNES; BAZZAN, 2017a; SANTOS; NUNES;

BAZZAN, 2018) and compartmental models that specify disease transmission and dy-

namics. It should be noted that although this thesis focuses on extensions to these two

application areas, our metamodel is not limited in that regard. Aspects abstracted into out

metamodel can potentially be adopted to develop simulations in other areas.

Domain Analysis Method. A domain analysis method is proposed to extend the meta-

model with aspects recurrently used in specific application areas. The method considers

as input existing agent-based simulations and produces as output a list of abstractions that

119

correspond to the domain model. In the proposed method, the ODD protocol is used to

guide the identification of aspects related to agent capabilities and the simulation execu-

tion. These aspects are then analyzed, and their underlying essence is abstracted into the

metamodel so as to provide ready-to-use building blocks for them. Given that the meta-

model extensions proposed in this thesis were constructed following this method, results

of the empirical studies also provide evidence that it is effective and can potentially be

used to identify and abstract concepts in other domains.

ABStractLang: Domain-specific Modeling Language. The modeling language, de-

scribed in Chapter 4, provides an expressive means of specifying agent-based simulation

models using the abstractions captured by the MDD4ABMS metamodel. ABStractLang

adopts a graphical notation and provides building blocks to instantiate elements of the

MDD4ABMS metamodel. Given its focus on ABMS, it reduces the abstraction gap and

allows expressing what, instead of how, to consider in models. By providing a modeling

language with building blocks for the high-level abstractions captured by the metamodel,

as suggested by ABMS researchers, our approach can foster the adoption of the ABMS

paradigm.

Model-to-code Transformations. We provided model-to-code transformations to gen-

erate code for the NetLogo simulation platform. These transformations, described in

Chapter 4, were specified as production rules, which transform elements of our meta-

model into NetLogo code statements and blocks. To promote productivity in our

MDD4ABMS approach, we automated the execution of such production rules to generate

the NetLogo code automatically. Pieces of code for recurrent structures and algorithms are

automatically generated, preventing developers from introducing inconsistencies caused

by implementing these elements from scratch.

Tool Support: The ABStractme Modeling Tool. We developed ABStractme, a mod-

eling tool that enables developers to create agent-based simulation models in

ABStractLang and to generate code from them through the execution of the model-to-

code transformations (MOREIRA et al., 2017). ABStractme provides a diagram editor

and a palette of components that provides the constructs of the ABStractLang language. 1

Empirical Evaluations. MDD4ABMS was evaluated by means of three empirical stud-

1We thank Deividi Moreira (former computer science undergraduate student), Matheus Cezimbra Bar-
bieri (former scientific initiation student), and Josué Keglevich (scientific initiation student) for their con-
tributions to the development of the modeling tool.

120

ies, described in Chapter 5 (SANTOS; NUNES; BAZZAN, 2017c; SANTOS; NUNES;

BAZZAN, 2018). Our first study was focused on the core metamodel, and considered

the graphical notation adopted by ABStractLang for instantiating the abstractions pro-

vided by the metamodel. The goal was to evaluate whether ABStractLang eases the com-

prehension of simulations by humans, and involved 26 participants. Results show that

ABStractLang decreases the time to comprehend agent-based simulations having com-

plex entities and many model parameters in comparison do NetLogo. Our second study

used a software engineering metric—effort as a function of the size of the system—to

assess the productivity of using MDD4ABMS to develop simulations. The effort to cre-

ate adaptive traffic signal control simulations with MDD4ABMS was compared to the

effort to create simulations with NetLogo and ITSUMO. Results show that the design and

implementation effort required to develop simulations with MDD4ABMS is lower than

with models created in these platforms. Finally, our third study involved 52 participants

to evaluate whether the MDD4ABMS approach, when used to develop agent-based sim-

ulation in both the adaptive traffic signal control and spread of disease domains, increases

the design quality and decreases the development effort. Results of this study showed that

MDD4ABMS indeed promotes expressive modeling, leading mainstream software devel-

opers to create simulations with similar (sometimes better) design quality than NetLogo

in less time. These studies are novel contributions given that previous MDD approaches

for ABMS were not evaluated with humans.

6.2 Future Work

The contributions presented in this thesis advance research on model-driven agent-

based simulation development. However, our work has limitations, leading to ongoing

and future work discussed as follows.

Metamodel Abstractions for MAS and AI Techniques. The metamodel proposed in

this thesis captures state machine and reinforcement learning techniques, as well as mo-

bility and surviving agent capabilities, found through the domain analysis processes con-

ducted in the adaptive traffic signal control and spread of disease domains. Plenty of addi-

tional MAS and AI techniques are available in the literature (e.g., organizational models,

multi-agent reinforcement learning, sentiment analysis, and deep learning). These are

currently not abstracted in our metamodel because they were not used in the simulations

121

considered in the domain analysis. A suggestion for future work is to extend the meta-

model to capture such abstractions, allowing developers to use these techniques in an

expressive and productive fashion. To use a given model or technique in a particular

context, its inputs, as well as any other element required, must be specified in terms of

that context. Consider for example the Q-learning reinforcement learning technique. The

specification of states and actions depends on whether reinforcement learning is adopted

for traffic signal controller or vehicle agents. Such a specification depends on the applica-

tion domain as well: the modeling of states and actions for human agents (e.g., drivers) in

the adaptive traffic signal control domain may not be the same for human agents (e.g., pa-

tients) in the spread of disease domain. Metamodel profiles can be adopted to handle this.

To build such profiles, a cross-domain analysis should be conducted to identify which and

how MAS and AI techniques are recurrently used in diverse application domains. Fur-

thermore, such a cross-domain analysis can potentially provide developers with principles

for choosing which technique is suitable to produce a particular simulation output. Lack

of such principles is pointed out by Wellman (2016) as an issue in the ABMS paradigm.

Metamodel Abstractions for Additional Aspects and Application Domains. In this

thesis, two application domains were analyzed to identify aspects recurrently used in

simulations and abstract them into the proposed metamodel. Although the provided

abstractions have promoted design quality and productivity as experimental evaluations

have shown, some aspects of these application domains were left out of the scope of this

thesis. For example, vector-borne diseases and intelligent driver models. Agent-based

simulations have been used in many other application areas, as mentioned in Chapter 2.

With additional domain-specific abstractions and ABStractLang constructs for using them

in models, our MDD4ABMS approach would potentially decrease the effort to develop

simulations in other application areas as well.

Reuse of Concerns. Reuse of features and behaviors is key to improve productivity in

software development. Aspects captured by the MDD4ABMS metamodel introduces the

reuse of environment topologies, creational strategies, and agent capabilities recurrently

used in simulations. Different simulations within an application domain may demand a

group of related elements. For example, a simulation to study the spread of disease over

two distinct populations would demand the specification of a concern composed of two

agents and a disease model. To provide reuse at the concern level is suggested as future

work. External files could be used to provide parameters and to initialize elements of the

122

reused concerns.

Metamodel and ABStractLang Improvements to Bridge Abstraction Gap Results

from the empirical study in which MDD4ABMS was used to develop simulations in

the traffic signal control domain—presented in Chapter 5—showed that, although all

the simulation aspects were correctly specified using the abstractions provided by the

metamodel and with the ABStractLang notation, the abstraction level adopted for some

of them (in particular, traffic signal plans specified as state machines) may not have been

enough to decrease the effort to develop simulations. In contrast, in the spread of disease

domain, a customized state machine was introduced into the metamodel to specify

disease models explicitly, and ABStractLang was extended with particular notation for

such state machine, bridging the abstraction gap between the simulation model and

the application domain. This should be considered when extending MDD4ABMS with

aspects from additional domains, reinforcing the demand for using a bottom-up domain

analysis method that departs from existing simulations.

Flexible Agent Behavior. MDD approaches for mainstream software are based on as-

sumptions regarding aspects inherent from the application domain. Our model-to-code

transformations are based on a particular assumption regarding agents: the behavior of an

agent results from the activation of its capabilities in a specific sequence at each timestep.

The activation sequence is as follows: decision capabilities, flow control (if exists), mo-

bility, surviving, and then other external capabilities. This specific sequence is derived

from the existing simulations considered in the domain analysis. When additional agent

capabilities were incorporated into the metamodel, to customize such activation sequence

may be necessary. For example, with a commute capability, the developer may want to

customize what activities the agent does before, during, and after commuting.

Multi-platform Model-to-code Transformations. Our model-to-code transformations

produce source code for the NetLogo simulation platform. Despite its popularity—

statistics show that the majority of agent-based simulations shared at the CoMSES model

library are written in NetLogo (ROLLINS et al., 2014)—other platforms are quite ac-

tive in the ABMS community as well, such as GAMA and Repast. With model-to-code

transformations that produce code for other platforms, our MDD4ABMS approach would

also promote portability of simulation models. This would benefit developers that prefer

running their simulations in platforms other than NetLogo.

Model-to-model Transformations and Model Checking. Support for specifying

123

models of systems and generating code from them is one of the aspects considered in

model-driven approaches. Given its focus on models, Model-driven Development (MDD)

opens up possibilities for model-to-model transformations and model checking. As we

were interested primarily in expressive modeling and productivity in simulation develop-

ment, these aspects are not in the scope of this thesis. Model-to-model transformations

would allow converting simulation models across simulation paradigms, such as from

the Discrete Event System Specification (DEVS) formalism to ABMS, and round-trip

engineering could be used to synchronize these models. Model checking would allow

validating the agent model to detect inconsistent behaviors before generating its source

code (basic checks performed by the ABStractme tool assert consistency of the model

structure only). Further formal metamodel specification may be required for that, for

example by using temporal logic (DIX; FISHER, 2013).

Tutorials and Model Library. As reported by participants of the user study, lack of

tutorials on how to develop simulations may hinder adoption of MDD4ABMS. Ongoing

work already addresses this issue.2 The provision of a model library, with a rich set of

examples of agent-based models, as well as wizards to specify basic, predefined, simula-

tion elements according to the application domain, certainly will help to foster adoption

of MDD4ABMS.

In summary, the work presented in this thesis advances work on model-driven

agent-based simulation development and pave the road towards effective use of MDD in

the ABMS paradigm. There is still much to do in order to fully exploit the benefits of

MDD for developing simulation in other application areas, as well as to use additional

MAS and AI techniques in simulations seamlessly, but our work consists of a significant

step towards this.

2<http://www.inf.ufrgs.br/prosoft/projects/mdd4abms/tutorials>

http://www.inf.ufrgs.br/prosoft/projects/mdd4abms/tutorials

124

REFERENCES

ABDOOS, M.; MOZAYANI, N.; BAZZAN, A. L. C. Traffic light control in non-
stationary environments based on multi agent q-learning. In: 2011 14th International
IEEE Conference on Intelligent Transportation Systems (ITSC). [S.l.: s.n.], 2011. p.
1580–1585. ISSN 2153-0009.

ABRAHÃO, S.; GÓMEZ, J.; INSFRAN, E. Validating a size measure for effort
estimation in model-driven web development. Information Sciences, v. 180, n. 20, p.
3932–3954, 2010.

AGRAWAL, M.; CHARI, K. Software effort, quality, and cycle time: A study of CMM
level 5 projects. IEEE Transactions on Software Engineering, v. 33, n. 3, March 2007.

ALBRECHT, A. J. Measuring application development productivity. In: Proceedings
of the joint SHARE/GUIDE/IBM application development symposium. [S.l.: s.n.],
1979. v. 10, p. 83–92.

ATKINSON, C.; KÜHNE, T. Model-driven development: A metamodeling foundation.
IEEE Software, IEEE, v. 20, p. 36–41, 2003.

BADHAM, J.; GILBERT, N. Personal protective behaviour during an epidemic. In:
Social Simulation Conference. Barcelona: [s.n.], 2014.

BANDINI, S.; MANZONI, S.; VIZZARI, G. Agent based modeling and simulation: An
informatics perspective. Journal of Artificial Societies and Social Simulation, v. 12,
n. 4, p. 4, 2009. ISSN 1460-7425. Available from Internet: <http://jasss.soc.surrey.ac.uk/
12/4/4.html>.

BASILI, V.; SELBY, R.; HUTCHENS, D. Experimentation in software engineering.
IEEE Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 12,
n. 7, p. 733–743, 1986. ISSN 0098-5589.

BAUER, B.; ODELL, J. UML 2.0 and agents: how to build agent-based systems with the
new UML standard. Engineering Applications of Artificial Intelligence, v. 18, n. 2, p.
141–157, 2005.

BAZZAN, A. L. C. Opportunities for multiagent systems and multiagent reinforcement
learning in traffic control. Autonomous Agents and Multiagent Systems, v. 18, n. 3, p.
342–375, June 2009.

BAZZAN, A. L. C.; KLÜGL, F. A review on agent-based technology for traffic and
transportation. The Knowledge Engineering Review, FirstView, p. 1–29, 4 2013. ISSN
1469-8005.

BELSARE, A. V.; GOMPPER, M. E. A model-based approach for investigation and
mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in
central india. Ecological Modelling, v. 296, p. 102–112, 2015.

BERNON, C. et al. A study of some multi-agent meta-models. In: International
Workshop on Agent-Oriented Software Engineering. New York, USA: Springer,
2004. (Lecture Notes in Computer Science), p. 62–77.

http://jasss.soc.surrey.ac.uk/12/4/4.html
http://jasss.soc.surrey.ac.uk/12/4/4.html

125

BETTIN, J. Measuring the potential of domain-specific modeling techniques. In: Second
Domain-Specific Modelling Languages Workshop (OOPSLA). Seattle, Washington:
[s.n.], 2002. p. 39–44.

BOCCIARELLI, P.; D’AMBROGIO, A. Model-driven method to enable simulation-
based analysis of complex systems. In: GIANNI, D.; D’AMBROGIO, A.; TOLK, A.
(Ed.). Modeling and Simulation-Based Systems Engineering Handbook. [S.l.]: CRC
Press, 2014. p. 119–148.

BOEHM, B. et al. Cost models for future software life cycle processes: COCOMO 2.0.
Annals of Software Engineering, v. 1, n. 1, p. 57–94, 1995.

BURGUILLO-RIAL, J. C. et al. History-based self-organizing traffic lights. Computing
and Informatics, v. 28, n. 2, p. 157–168, 2012.

CHALLENGER, M.; KARDAS, G.; TEKINERDOGAN, B. A systematic approach to
evaluating domain-specific modeling language environments for multi-agent systems.
Software Quality Journal, p. 1–41, 2015. ISSN 1573-1367.

CHEN, B.; CHENG, H. H. A review of the applications of agent technology in traffic and
transportation systems. IEEE Transactions on Intelligent Transportation Systems,
v. 11, n. 2, p. 485–497, June 2010. ISSN 1524-9050.

CoMSES Net. OpenABM Computational Model Library. 2018. <http://
www.openabm.org>, Acesso em: Jun/2018. Available from Internet: <http:
//www.openabm.org>.

CONSEL, C. et al. A generative programming approach to developing dsl compilers.
In: GLÜCK, R.; LOWRY, M. (Ed.). 4th International Conference Generative
Programming and Component Engineering (GPCE). Tallinn, Estonia: Springer
Berlin Heidelberg, 2005. p. 29–46. ISBN 978-3-540-31977-1.

COOLS, S.-B.; GERSHENSON, C.; D’HOOGHE, B. Self-organizing traffic
lights: A realistic simulation. In: PROKOPENKO, M. (Ed.). Advances in Applied
Self-Organizing Systems. London: Springer, 2013. p. 45–55.

COUTINHO, L. R. et al. Model-driven integration of organizational models. In: LUCK,
M.; GOMEZ-SANZ, J. J. (Ed.). Proceedings of the 9th International Workshop on
Agent-Oriented Software Engineering (AOSE 2008). Estoril, Portugal: Springer,
2009. p. 1–15.

CROOKS, A. GIS and Agent-Based Modeling: Exploring Geographical Information
Science (GIS) and Agent-Based Modeling (ABMS). 2018. <http://www.gisagents.org>,
Acesso em: Jun/2018. Available from Internet: <http://www.gisagents.org>.

CROOKS, A. T.; HAILEGIORGIS, A. B. An agent-based modeling approach applied to
the spread of cholera. Environmental Modelling & Software, v. 62, p. 164–177, 2014.

CROOKS, A. T.; WISE, S. GIS and agent-based models for humanitarian assistance.
Computers, Environment and Urban Systems, Elsevier, v. 41, p. 100–111, 2013.

DIX, J.; FISHER, M. Specification and verification of multi-agent systems. In: WEISS,
G. (Ed.). Multi-Agent Systems. 2. ed. [S.l.]: MIT Press, 2013. chp. 14, p. 641–694.

http://www.openabm.org
http://www.openabm.org
http://www.openabm.org
http://www.openabm.org
http://www.gisagents.org
http://www.gisagents.org

126

DUARTE, J. N.; LARA, J. de. ODiM: A model-driven approach to agent-based
simulation. In: Proceedings of the 23rd European Conference on Modelling and
Simulation. [S.l.: s.n.], 2009. p. 158–165.

EDMONDS, B. The use of models - making mabs more informative. In: International
Workshop on Multi-Agent-Based Simulation: Second International Workshop,
MABS 2000 Boston, MA, USA, July Revised and Additional Papers. Boston, USA:
Springer, 2001. (Lecture Notes in Computer Science), p. 15–32.

EISINGER, D.; THULKE, H.-H. Spatial pattern formation facilitates eradication of
infectious diseases. Journal of Applied Ecology, Blackwell Publishing Ltd, v. 45, n. 2,
p. 415–423, 2008.

EPSTEIN, J.; AXTELL, R. Growing Artificial Societies Social Science From The
Bottom Up. [S.l.]: MIT Press, 1996.

EPSTEIN, J. M. Why model? Journal of Artificial Societies and Social
Simulation, v. 11, n. 4, p. 12, 2008. ISSN 1460-7425. Available from Internet:
<http://jasss.soc.surrey.ac.uk/11/4/12.html>.

FENTON, N.; BIEMAN, J. Software metrics: a rigorous and practical approach. 3.
ed. Boca Raton: CRC press, 2014. 617 p.

FUENTES-FERNÁNDEZ, R. et al. Application of model driven techniques for
agent-based simulation. In: Proceedings of the 8th International Conference on
Practical Applications of Agents and Multiagent Systems (PAAMS). [S.l.]: Springer,
2010. p. 81–90.

GALÁN, J. M. et al. Errors and artefacts in agent-based modelling. Journal of Artificial
Societies and Social Simulation, v. 12, n. 1, p. 1, 2009. ISSN 1460-7425.

Galorath Inc. SEER by Galorath. 2017. <http://galorath.com/>.

GARRO, A.; PARISI, F.; RUSSO, W. A process based on the model-driven architecture
to enable the definition of platform-independent simulation models. In: PINA, N.;
KACPRZYK, J.; FILIPE, J. (Ed.). Simulation and Modeling Methodologies,
Technologies and Applications. [S.l.]: Springer Berlin Heidelberg, 2013, (Advances in
Intelligent Systems and Computing, v. 197). p. 113–129. ISBN 978-3-642-34335-3.

GARRO, A.; RUSSO, W. easyABMS: A domain-expert oriented methodology for
agent-based modeling and simulation. Simulation Modelling Practice and Theory,
Elsevier, v. 18, n. 10, p. 1453–1467, 2010.

GERSHENSON, C. Self-organizing traffic lights. Complex Systems, v. 16, n. 1, p.
29–53, 2005.

GERSHENSON, C.; ROSENBLUETH, D. A. Adaptive self-organization vs static
optimization. Kybernetes, Emerald, v. 41, n. 3/4, p. 386–403, Apr 2012. ISSN
0368-492X.

GERSHENSON, C.; ROSENBLUETH, D. A. Self-organizing traffic lights at multiple-
street intersections. Complexity, Wiley Subscription Services, Inc., A Wiley Company,
v. 17, n. 4, p. 23–39, 2012. ISSN 1099-0526.

http://jasss.soc.surrey.ac.uk/11/4/12.html
http://galorath.com/

127

GHORBANI, A. et al. MAIA: a framework for developing agent-based social
simulations. Journal of Artificial Societies and Social Simulation, v. 16, n. 2, p. 9,
2013. ISSN 1460-7425.

GHORBANI, A. et al. Model-driven agent-based simulation: Procedural semantics of a
MAIA model. Simulation Modelling Practice and Theory, v. 49, p. 27–40, dec 2014.
ISSN 1569190X.

GÓMEZ-SANZ, J. J.; FERNÁNDEZ, C. R.; ARROYO, J. Model driven development
and simulations with the INGENIAS agent framework. Simulation Modelling Practice
and Theory, v. 18, n. 10, p. 1468 – 1482, 2010. ISSN 1569-190X. Simulation-
based Design and Evaluation of Multi-Agent Systems. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S1569190X10001024>.

GÓMEZ-SANZ, J. J.; FUENTES-FERNÁNDEZ, R. Understanding agent-oriented
software engineering methodologies. The Knowledge Engineering Review, v. 30, p.
375–393, 9 2015. ISSN 1469-8005.

GRIMM, V. et al. A standard protocol for describing individual-based and agent-based
models. Ecological Modelling, Elsevier, v. 198, n. 1, p. 115–126, 2006.

GRIMM, V. et al. The odd protocol: a review and first update. Ecological modelling,
Elsevier, v. 221, n. 23, p. 2760–2768, 2010.

HAMILL, L. Agent-based modelling: The next 15 years. Journal of Artificial Societies
and Social Simulation, v. 13, n. 4, p. 7, 2010. ISSN 1460-7425.

HASSAN, S. et al. Reducing the modeling gap: On the use of metamodels in agent-based
simulation. In: In 6th conference of the european social simulation association
(ESSA 2009). [S.l.: s.n.], 2009. p. 1–13.

HETHCOTE, H. W. The mathematics of infectious diseases. SIAM Review, Society for
Industrial and Applied Mathematics, v. 42, n. 4, p. 599–653, 2000.

HOFFERT, J.; SCHMIDT, D. C.; GOKHALE, A. Productivity analysis of the distributed
qos modeling language. In: OSIS, J.; ASNINA, E. (Ed.). Model-Driven Domain
Analysis and Software Development: Architectures and Functions. Hershey, PA,
USA: IGI Global, 2011. chp. 8, p. 156–176.

HUTCHINSON, J.; ROUNCEFIELD, M.; WHITTLE, J. Model-driven engineering
practices in industry. In: Proceedings of the 33rd International Conference on
Software Engineering. New York, NY, USA: ACM, 2011. (ICSE ’11), p. 633–642.
ISBN 978-1-4503-0445-0.

IBA, T.; MATSUZAWA, Y.; AOYAMA, N. From conceptual models to simulation
models: Model driven development of agent-based simulations. In: Proceedings of the
9th Workshop on Economics and Heterogeneous Interacting Agents. [S.l.: s.n.],
2004. p. 1–12.

ISERN, D.; MORENO, A. A systematic literature review of agents applied in healthcare.
Journal of Medical Systems, v. 40, n. 2, p. 43, Nov 2015.

http://www.sciencedirect.com/science/article/pii/S1569190X10001024

128

JASSS. How to Submit a Paper to JASSS. 2017. <http://jasss.soc.surrey.ac.uk/admin/
submit.html>. Accessed: 2017-02-22.

JENSEN, R. An improved macrolevel software development resource estimation model.
In: Proceedings of the 5th ISPA Conference. [S.l.: s.n.], 1983. p. 88–92.

JIN, J.; MA, X. Adaptive group-based signal control using reinforcement learning
with eligibility traces. In: IEEE 18th International Conference on Intelligent
Transportation Systems. [S.l.: s.n.], 2015. p. 2412–2417.

KAHRAMAN, G.; BILGEN, S. A framework for qualitative assessment of domain-
specific languages. Software & Systems Modeling, v. 14, n. 4, p. 1505–1526, 2015.
ISSN 1619-1374.

KARDAS, G. Model-driven development of multiagent systems: a survey and evaluation.
The Knowledge Engineering Review, Cambridge Univ Press, v. 28, n. 04, p. 479–503,
2013.

KEELING, M. J.; ROHANI, P. Modeling infectious diseases in humans and animals.
[S.l.]: Princeton University Press, 2008.

KERMACK, W. O.; MCKENDRICK, A. G. Contributions to the mathematical theory of
epidemics. ii.—the problem of endemicity. Proc. R. Soc. Lond. A, The Royal Society,
v. 138, n. 834, p. 55–83, 1932.

KLÜGL, F.; BAZZAN, A. L. C. Agent-based modeling and simulation. AI Magazine,
v. 33, n. 3, p. 29–40, 2012.

KLÜGL, F.; DAVIDSSON, P. AMASON: Abstract meta-model for agent-based
simulation. In: KLUSCH, M.; THIMM, M.; PAPRZYCKI, M. (Ed.). Multiagent System
Technologies. [S.l.]: Springer Berlin Heidelberg, 2013, (Lecture Notes in Computer
Science, v. 8076). p. 101–114. ISBN 978-3-642-40775-8.

KLÜGL, F.; HERRLER, R.; FEHLER, M. SeSAm: Implementation of agent-based
simulation using visual programming. In: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems. New York, NY,
USA: ACM, 2006. (AAMAS ’06), p. 1439–1440. ISBN 1-59593-303-4. Available from
Internet: <http://doi.acm.org/10.1145/1160633.1160904>.

KOSAR, T. et al. Comparing general-purpose and domain-specific languages: An
empirical study. ComSIS–Computer Science an Information Systems Journal,
ComSIS Consortium, p. 247–264, 2010.

KRAVARI, K.; BASSILIADES, N. A survey of agent platforms. Journal of Artificial
Societies and Social Simulation, v. 18, n. 1, p. 11, 2015. ISSN 1460-7425.

KUBERA, Y.; MATHIEU, P.; PICAULT, S. Interaction-oriented agent simulations:
From theory to implementation. In: Proceedings of the 18th European Conference on
Artificial Intelligence (ECAI 2008). Amsterdam: IOS Press, 2008. p. 383–387.

LI, J.; WILENSKY, U. NetLogo Sugarscape 3 Wealth Distribution model.
Evanston, IL: [s.n.], 2009. Center for Connected Learning and Computer-
Based Modeling, Northwestern University. Available from Internet: <http:
//ccl.northwestern.edu/netlogo/models/Sugarscape3WealthDistribution>.

http://jasss.soc.surrey.ac.uk/admin/submit.html
http://jasss.soc.surrey.ac.uk/admin/submit.html
http://doi.acm.org/10.1145/1160633.1160904
http://ccl.northwestern.edu/netlogo/models/Sugarscape3WealthDistribution
http://ccl.northwestern.edu/netlogo/models/Sugarscape3WealthDistribution

129

LUKE, S. et al. Mason: A multiagent simulation environment. Simulation, Sage
Publications, v. 81, n. 7, p. 517–527, 2005.

LUND, A. M. Measuring usability with the USE questionnaire. Usability Interface,
v. 8, n. 2, p. 3–6, 2001.

MACAL, C.; NORTH, M. Introductory tutorial: Agent-based modeling and simulation.
In: Proceedings of the 2014 Winter Simulation Conference. Piscataway, NJ, USA:
IEEE Press, 2014. (WSC ’14), p. 6–20.

MACAL, C. M. Everything you need to know about agent-based modelling and
simulation. Journal of Simulation, v. 10, n. 2, p. 144–156, 2016.

MACAL, C. M.; NORTH, M. J. Tutorial on agent-based modelling and simulation.
Journal of simulation, Taylor & Francis, v. 4, n. 3, p. 151–162, 2010.

MANNION, P.; DUGGAN, J.; HOWLEY, E. An experimental review of reinforcement
learning algorithms for adaptive traffic signal control. In: MCCLUSKEY, L. T. et al.
(Ed.). Autonomic Road Transport Support Systems. [S.l.]: Springer, 2016. p. 47–66.

MERNIK, M.; HEERING, J.; SLOANE, A. M. When and how to develop domain-
specific languages. ACM computing surveys (CSUR), ACM, v. 37, n. 4, p. 316–344,
2005.

MINAR, N. et al. The swarm simulation system: A toolkit for building multi-agent
simulations. Santa Fe, 1996.

MOHAGHEGHI, P.; DEHLEN, V.; NEPLE, T. Definitions and approaches to model
quality in model-based software development – a review of literature. Information and
Software Technology, v. 51, n. 12, p. 1646–1669, 2009. ISSN 0950-5849.

MOODY, D. The “physics” of notations: Toward a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng., IEEE Press, Piscataway,
NJ, USA, v. 35, n. 6, p. 756–779, nov. 2009. ISSN 0098-5589. Available from Internet:
<http://dx.doi.org/10.1109/TSE.2009.67>.

MOREIRA, D. et al. ABStractme: Modularized environment modeling in agent-based
simulations. In: DAS, S. et al. (Ed.). Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems. São Paulo: IFAAMAS, 2017. p.
1802–1804.

MÜLLER, B. et al. Standardised and transparent model descriptions for agent-based
models: Current status and prospects. Environmental Modelling & Software, Elsevier,
v. 55, p. 156–163, 2014.

MURPHY, J. T. CoMSES Digest: Fall 2015. 2015. Available from Internet:
<https://www.openabm.org/files/CoMSES_Digest_v3_No3.pdf>.

NATHANSON, N. Virus perpetuation in populations: biological variables that determine
persistence or eradication. In: PETERS, C. J.; CALISHER, C. H. (Ed.). Infectious
Diseases from Nature: Mechanisms of Viral Emergence and Persistence. Vienna:
Springer, 2005. p. 3–15.

http://dx.doi.org/10.1109/TSE.2009.67
https://www.openabm.org/files/CoMSES_Digest_v3_No3.pdf

130

NORTH, M. J.; COLLIER, N. T.; VOS, J. R. Experiences creating three implementations
of the Repast agent modeling toolkit. ACM Transactions on Modeling and Computer
Simulation (TOMACS), ACM, New York, NY, USA, v. 16, n. 1, p. 1–25, jan. 2006.
ISSN 1049-3301.

OLIVEIRA, D. de.; BAZZAN, A. L. C. Multiagent learning on traffic lights control:
effects of using shared information. In: BAZZAN, A. L. C.; KLÜGL, F. (Ed.).
Multi-Agent Systems for Traffic and Transportation. Hershey, PA: IGI Global, 2009.
p. 307–321. ISBN 978-160566226-8.

OSIS, J.; ASNINA, E. Model-Driven Domain Analysis and Software Development:
Architectures and Functions. 1st. ed. Hershey, PA, USA: IGI Global, 2010. ISBN
1616928743, 9781616928742.

OZIK, J. et al. Repast simphony statecharts. Journal of Artificial Societies and
Social Simulation, v. 18, n. 3, p. 11, 2015. ISSN 1460-7425. Available from Internet:
<http://jasss.soc.surrey.ac.uk/18/3/11.html>.

PARKER, M. Agent Modeling Platform. 2010. The Eclipse Foundation. Available from
Internet: <https://wiki.eclipse.org/Agent_Modeling_Platform>.

PARUNAK, H. V. D.; SAVIT, R.; RIOLO, R. L. Agent-based modeling vs. equation-
based modeling: A case study and users’ guide. In: SICHMAN, J. S.; CONTE,
R.; GILBERT, N. (Ed.). International Workshop on Multi-Agent Systems and
Agent-Based Simulation. Paris, France: Springer, 1998. (Lecture Notes in Computer
Science), p. 10–25.

PAVÓN, J.; GÓMEZ-SANZ, J. Agent oriented software engineering with INGENIAS.
In: MAŘÍK, V.; PĚCHOUČEK, M.; MÜLLER, J. (Ed.). International Central and
Eastern European Conference on Multi-Agent Systems. Prague, Czech Republic:
Springer, 2003. (Lecture Notes in Computer Science), p. 394–403.

PUTNAM, L. H.; MYERS, W. Measures for Excellence: Reliable Software on Time,
Within Budget. 1. ed. [S.l.]: Prentice Hall Professional Technical Reference, 1991.
ISBN 0135676940.

RAILSBACK, S. F.; LYTINEN, S. L.; JACKSON, S. K. Agent-based simulation
platforms: Review and development recommendations. SIMULATION, v. 82, n. 9, p.
609–623, 2006.

RODRÍGUEZ-HERNÁNDEZ, P. S.; BURGUILLO-RIAL, J. C. HB-SOTL. 2016.
Sourceforge. Available from Internet: <https://sourceforge.net/projects/hb-sotl/>.

ROLLINS, N. D. et al. A computational model library for publishing model
documentation and code. Environmental Modelling & Software, v. 61, n. 0, p. 59 –
64, 2014. ISSN 1364-8152. Available from Internet: <http://www.sciencedirect.com/
science/article/pii/S1364815214001959>.

ROOP, J. Reinforcement Learning Maze. NetLogo User Community Models, 2006.
Aerospace Systems Design Laboratory (ASDL), Georgia Institute of Technology.
Available from Internet: <http://ccl.northwestern.edu/netlogo/models/community/
Reinforcement%20Learning%20Maze>.

http://jasss.soc.surrey.ac.uk/18/3/11.html
https://wiki.eclipse.org/Agent_Modeling_Platform
https://sourceforge.net/projects/hb-sotl/
http://www.sciencedirect.com/science/article/pii/S1364815214001959
http://www.sciencedirect.com/science/article/pii/S1364815214001959
http://ccl.northwestern.edu/netlogo/models/community/Reinforcement%20Learning%20Maze
http://ccl.northwestern.edu/netlogo/models/community/Reinforcement%20Learning%20Maze

131

ROSSETTI, R. J. et al. Using {BDI} agents to improve driver modelling in a
commuter scenario. Transportation Research Part C: Emerging Technologies,
v. 10, n. 5–6, p. 373–98, 2002. ISSN 0968-090X. Available from Internet:
<http://www.sciencedirect.com/science/article/pii/S0968090X0200027X>.

SANSORES, C.; PAVÓN, J. Agent-based simulation replication: A model driven
architecture approach. In: Proceedings of the 4th Mexican International Conference
on Artificial Intelligence (MICAI). Monterrey, Mexico: [s.n.], 2005. (Lecture Notes in
Computer Sience), p. 244–253.

SANSORES, C.; PAVÓN, J.; GÓMEZ-SANZ, J. Visual modeling for complex
agent-based simulation systems. In: International Workshop on Multi-Agent Systems
and Agent-Based Simulation. [S.l.]: Springer, 2005. p. 174–189.

SANTOS, F.; NUNES, I.; BAZZAN, A. L. C. A case study of the development of an
agent-based simulation in the traffic signal control domain using an MDD approach.
In: Proceedings of the 5th International Workshop on Engineering Multi-Agent
Systems (EMAS 2017). São Paulo: [s.n.], 2017. p. 97–112.

SANTOS, F.; NUNES, I.; BAZZAN, A. L. C. Model-driven engineering in agent-based
modeling and simulation: a case study in the traffic signal control domain. In: DAS, S. et
al. (Ed.). Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2017). São Paulo: IFAAMAS, 2017. p. 1725–1727.

SANTOS, F.; NUNES, I.; BAZZAN, A. L. C. Supporting the development of agent-based
simulations: a DSL for environment modeling. In: Proceedings of the IEEE Computer
Software and Applications Conference (COMPSAC 2017). Torino: [s.n.], 2017.
170–179.

SANTOS, F.; NUNES, I.; BAZZAN, A. L. C. Model-driven agent-based simulation
development: a modeling language and empirical evaluation in the adaptive traffic signal
control domain. Simulation Modelling Practice and Theory, v. 83, p. 162–187, April
2018. Available from Internet: <authors.elsevier.com/a/1WiS7,ZhUEIEQf>.

SCHMIDT, D. Model-driven engineering. Computer-(IEEE Computer Society, v. 39,
n. 2, p. 25–31, feb 2006. ISSN 0018-9162.

SHAO, P.; HU, P. Product diffusion using advance selling strategies: An online social
network perspective. Journal of Artificial Societies and Social Simulation, v. 20, n. 2,
2017.

SICHMAN, J. S. ao. Operationalizing complex systems. In: FURTADO, B. A.;
SAKOWSKI, P. A. M.; TÓVOLLI, M. H. (Ed.). Modeling Complex Systems for Public
Policies. [S.l.]: IPEA, 2015. p. 85––123.

SILVA, B. C. da. et al. ITSUMO: an intelligent transportation system for urban mobility.
In: Proceedings of the Optimization of Urban Traffic Systems. Guadalajara, Mexico:
Springer-Verlag, 2005. (Lecture Notes in Computer Science), p. 224–235. Available from
Internet: <www.inf.ufrgs.br/maslab/pergamus/pubs/4-Silva+2005OUTS.pdf.tar.gz>.

SPRINKLE, J. et al. Guest editors’ introduction: What kinds of nails need a
domain-specific hammer? IEEE Software, v. 26, n. 4, p. 15–18, July 2009. ISSN
0740-7459.

http://www.sciencedirect.com/science/article/pii/S0968090X0200027X
authors.elsevier.com/a/1WiS7,ZhUEIEQf
www.inf.ufrgs.br/maslab/pergamus/pubs/4-Silva+2005OUTS.pdf.tar.gz

132

STAHL, T. et al. Model-driven software development: technology, engineering,
management. [S.l.]: John Wiley & Sons, 2006. 446 p.

STAHL, T. et al. Model-driven software development: technology, engineering,
management. [S.l.]: John Wiley & Sons, 2006. 446 p.

STREMBECK, M.; ZDUN, U. An approach for the systematic development of
domain-specific languages. Software: Practice and Experience, John Wiley & Sons,
Ltd., v. 39, n. 15, p. 1253–1292, 2009. ISSN 1097-024X.

TAILLANDIER, P. et al. GAMA: A simulation platform that integrates geographical
information data, agent-based modeling and multi-scale control. In: DESAI, N.; LIU,
A.; WINIKOFF, M. (Ed.). 13th International Conference International Conference
Principles and Practice of Multi-Agent Systems (PRIMA 2010. Kolkata, India:
Springer, 2010. p. 242–258.

TOLVANEN, J.-P.; KELLY, S. Model-driven development challenges and solutions:
Experiences with domain-specific modelling in industry. In: Proceedings of the 4th
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2016). [S.l.: s.n.], 2016. p. 711–719.

VOELTER, M. et al. DSL engineering: Designing, implementing and using
domain-specific languages. CreateSpace Independent Publishing Platform, 2013. 558 p.
Available from Internet: <http://dslbook.org>.

WATKINS, C. J. C. H.; DAYAN, P. Q-learning. Machine Learning, Kluwer Academic
Publishers, Hingham, MA, USA, v. 8, n. 3, p. 279–292, 1992. ISSN 0885-6125.

WELLMAN, M. P. Putting the agent in agent-based modeling. Autonomous Agents and
Multi-Agent Systems, v. 30, n. 6, p. 1175–1189, 2016. ISSN 1573-7454.

WEYNS, D. et al. Agent environments for multi-agent systems–a research roadmap. In:
WEYNS, D.; MICHEL, F. (Ed.). Agent Environments for Multi-Agent Systems IV.
[S.l.]: Springer, 2015, (Lecture Notes in Computer Science, v. 9068). p. 3–21.

WEYNS, D.; OMICINI, A.; ODELL, J. Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems, v. 14, n. 1, p.
5–30, 2007. ISSN 1573-7454.

WIERING, M. Multi-agent reinforcement learning for traffic light control. In:
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000). [S.l.: s.n.], 2000. p. 1151–1158.

WILENSKY, U. NetLogo. 1999. Center for Connected Learning and Computer-
Based Modeling, Northwestern University. Evanston, IL. Available from Internet:
<http://ccl.northwestern.edu/netlogo/>.

WILENSKY, U. NetLogo Traffic Grid model. Evanston, IL: [s.n.], 2003. Center for
Connected Learning and Computer-Based Modeling, Northwestern University. Available
from Internet: <http://ccl.northwestern.edu/netlogo/models/TrafficGrid>.

http://dslbook.org
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/TrafficGrid

133

WILENSKY, U.; RAND, W. An introduction to agent-based modeling: modeling
natural, social, and engineered complex systems with NetLogo. [S.l.]: MIT Press,
2015. 504 p.

WOHLIN, C. et al. Experimentation in Software Engineering. [S.l.]: Springer, 2012.
236 p.

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: Theory and practice.
Knowledge Engineering Review, Cambridge Univ Press, v. 10, n. 2, p. 115–152, 1995.

YANG, C.; WILENSKY, U. NetLogo epiDEM Basic model. Evanston, IL: [s.n.], 2011.
Center for Connected Learning and Computer-Based Modeling, Northwestern University.
Available from Internet: <http://ccl.northwestern.edu/netlogo/models/epiDEMBasic>.

YUAN, X.; CROOKS, A. From cyber space opinion leaders and the diffusion of
anti-vaccine extremism to physical space disease outbreaks. In: LEE, D. et al.
(Ed.). Proceedings of the 2017 International Conference on Social Computing,
Behavioral-Cultural Modeling and Prediction and Behavior Representation in
Modeling and Simulation. Washington: Springer, 2017. (Lecture Notes in Computer
Science), p. 114–119.

http://ccl.northwestern.edu/netlogo/models/epiDEMBasic

134

APPENDIX A — MDD4ABMS METAMODEL: ABSTRACT STATE MACHINE

Figure A.1 shows the abstract state machine elements incorporated into the

MDD4ABMS metamodel—highlighted with blue. These are essentially an Ecore repre-

sentation of a subset of the UML Statemachines metamodel described in the UML spec-

ification1. In addition to the standard trigger kinds, an additional PROBABILITY trigger

kind was incorporated to allow specifying probabilistic transitions. Elements from the

MDD4ABMS core metamodel described in Section3.2 are highlighted with gray.

Figure A.1: Abstract State Machine Metamodel

1<http://www.omg.org/spec/UML/2.5/>

http://www.omg.org/spec/UML/2.5/

135

APPENDIX B — MDD4ABMS COMPLETE METAMODEL

Figures B.1 and B.2 shows the complete MDD4ABMS metamodel described in

this thesis. The adopted color scheme is as follows.

Basic elements from the core metamodel

Spatial abstraction and spatial units

Relationships

Sources

Creational strategies

Outputs

External agent and agent capability

Surviving agent capability

Mobility agent capability

Flow control agent capability

Decision capabilities

Disease model agent capability

Abstract state machine (Appendix A)

136Figure B.1: Complete MDD4ABMS Metamodel: Part 1

137

Figure B.2: Complete MDD4ABMS Metamodel: Part 2

138

APPENDIX C — ABSTRACTLANG CONCRETE SYNTAX FOR MODELING

DISEASE ASPECTS

In addition to the elements for modeling the compartmental model and transmis-

sions due to interactions (presented in Section 4.1), the ABStractLang concrete syntax

includes elements for modeling disease progression, mortality, and infection introduction.

Figure C.1 shows the concrete syntax for disease progressions. For a given agent

disease model dm, a progression specification includes the compartment i that is subject to

the duration, and the next compartment j. As previously described in Section 3.3.3, this

progression is specified as a transition i → j in the disease state machine. At least one

pair duration type and duration value (probabilistic, deterministic, conditional) specifies

the compartment duration as the transition trigger. A custom duration is specified as more

than one pair duration type and duration value. Specified progressions are shown in a

tabular fashion.

Figure C.1: Concrete Syntax of Disease Elements: Progression View

Figure C.2 shows the concrete syntax for specifying deaths caused by the disease.

A mortality specification includes the compartment i in which the agent may die due to the

disease and a death rate. As previously described in Section 3.3.3, mortality is specified as

transitions to the additional, Dead, pseudo-state (here represented with the letter D). The

mortality type element model the circumstance in which mortality occurs (at every

timeunit, at specific timeunit, when condition holds, or when leaving compartment), and

it is supplemented with its corresponding value. Specified mortalities are shown in a

tabular fashion.

139

Figure C.2: Concrete Syntax of Disease Elements: Mortality View

Figure C.3 shows the concrete syntax for modeling infection introduction. An in-

fection introduction specifies periodicity, quantity, and selection criterion according to the

predefined types described in Section 3.3.3. Modeled infection introductions are shown

in a tabular fashion.

Figure C.3: Concrete Syntax of Disease Elements: Introduction View

140

APPENDIX D — EXAMPLE OF NETLOGO SOURCE CODE GENERATED BY

PRODUCTION RULES

D.1 Source Code for Setting up and Running a Simulation

Listing D.1 shows the NetLogo routines generated to setup and run a simulation.

The setup routine invokes the generated procedures that create and initialize agents and

their capabilities, while the go routine, which is activated at every step of the simulation,

invokes generated procedures that update agent attributes and activate the agent behavior.

Listing D.1 – NetLogo Generated Routines to Setup and Run the Simulation
1 to setup

2 clear−all

3 reset−ticks

4 createSpatialAbstraction

5 initializeGlobals

6 initializePatches

7 createAgents

8 initializeEntityAndAgentBreeds

9 initializeCapabilities

10 VehiclesSetup

11 end

12

13 to go

14 tick

15 updateSpatialUnits

16 updateAgentBreeds

17 ask Traffic_Signal_Control_Agents [

18 Traffic_Signal_Control_Agents−act

19]

20 VehiclesGo

21 end

22

23 to Traffic_Signal_Control_Agents−act

24 set activation rl−plan_learning−decide

25 applyFlowControlActivationToActuators activation

26 end

D.2 Source Code for the State Machine gamma plan

Listing D.2 shows a fragment of the code generated for the state machine gamma

plan. It is a NetLogo reporter that determines the decision option that must be chosen by

the state machine according to the current state and transitions. Any decision capability

141

of type state machine follows this code structure.

Listing D.2 – Fragment of the Generated Code for the gamma plan State Machine
1 to−report sm−beta_plan−decide

2 let next_state nobody

3 let next_state_init_procedure nobody

4 ; finding the transition that is triggered in the current state and its target state

5 if sm_beta_plan_0_green = sm_beta_plan_selected_option [

6 set next_state eval−transitions sm_beta_plan_0_green_transitions

7 set next_state_init_procedure sm_beta_plan_0_green_init_procedure

8]

9 if sm_beta_plan_1_green = sm_beta_plan_selected_option [

10 set next_state eval−transitions sm_beta_plan_1_green_transitions

11 set next_state_init_procedure sm_beta_plan_1_green_init_procedure

12]

13 ; if any transition held, update the current option and its timer

14 ifelse next_state != sm_beta_plan_final_state [

15 ifelse next_state = nobody[

16 set sm_beta_plan_timer_selected_option sm_beta_plan_timer_selected_option + 1

17][

18 set sm_beta_plan_timer_selected_option 1 ; restart at 1 because the current timestep should be considered

19 set sm_beta_plan_selected_option next_state

20 run next_state_init_procedure ; initialize the selected option

21]

22][

23 set sm_beta_plan_selected_option nobody

24]

25 ; reporting the current option

26 ifelse is−anonymous−reporter? sm_beta_plan_selected_option [

27 report runresult sm_beta_plan_selected_option

28][

29 report sm_beta_plan_selected_option

30]

31 end

D.3 Source Code for the Learning Capability plan learning

Listing D.3 shows a fragment of the code generated for the learning capability

plan learning. It is a NetLogo reporter that determines the decision option that must be

chosen by the learning capability whenever it is activated. As it can be seen, the decision

takes into account the computed reward and the current state. Additionally, the q-table

data structure is updated to reflect what was learned from the last action performed—in

other words, the last decision option chosen. Finally, the next decision option is chosen.

Because the decision options of this learning capability are state machines, the chosen

state machine is activated (with the runresult statement) and its decision is reported.

142

Listing D.3 – Fragment of the Generated Code for the Learning Capability plan learning.

1 to−report rl−plan_learning−decide

2 ; a learning capability whose options are state machines only takes a new decision

3 ; when no state machine is active, i.e., when the active state machine reaches a terminal state

4 if (word rl_plan_learning_selected_option) = (word [[] −> sm−gamma_plan−decide]) [

5 let stateMachineDecision runresult rl_plan_learning_selected_option

6 if stateMachineDecision != nobody [

7 set rl_plan_learning_timer_selected_option rl_plan_learning_timer_selected_option + 1

8 report stateMachineDecision

9]

10]

11 ; the same verification (ommited here) is performed for each state machine that is decision option of the learning

12 ; if no state machine is active, then the learning is activated to report a new decision

13 report rl−plan_learning−new−decision

14 end

15

16 to−report rl−plan_learning−new−decision

17 ; computing the reward

18 let r rl−plan_learning−reward

19 ; determining the current state and its position in the states data structure

20 let s rl−plan_learning−current−state−from−definition

21 set rl_plan_learning_s_idx position s rl_plan_learning_states

22 if rl_plan_learning_s_idx = false [

23 ; ommited: the state is stored in the q−table if it has not been visited yet

24]

25 ; updating the q−table considering...

26 rl−plan_learning−update−qtable

27 rl_plan_learning_sprev_idx ; previous state s

28 rl_plan_learning_aprev_idx ; previous action a

29 rl_plan_learning_s_idx ; current state s’

30 r ; reward

31 ; action selection, based on the current state s’

32 set rl_plan_learning_a_idx rl−plan_learning−select−action rl_plan_learning_s_idx

33 ; updating previous state/action

34 set rl_plan_learning_sprev_idx rl_plan_learning_s_idx

35 set rl_plan_learning_aprev_idx rl_plan_learning_a_idx

36 ; finding the concrete action based on the action’ index

37 let next_decision item rl_plan_learning_a_idx rl_plan_learning_actions

38 let next_decision_init_procedure item rl_plan_learning_a_idx rl_plan_learning_action_init_procedures

39 ; updating the current action and its timer

40 ifelse next_decision != rl_plan_learning_selected_option [

41 set rl_plan_learning_timer_selected_option 1 ; restart at 1 since the current timestep should be considered

42 set rl_plan_learning_selected_option next_decision

43][

44 set rl_plan_learning_timer_selected_option rl_plan_learning_timer_selected_option + 1

45]

46 ; ommited: if the selected option is a state machine, then it must be restarted

47 report runresult rl_plan_learning_selected_option ; reporting the action

48 end

143

APPENDIX E — DETAILS OF THE SPREAD OF DISEASE SIMULATION

DEVELOPED IN THE USER STUDY

Feature Details

Environment Grid of 35x35 cells without wrapping.

Native agent Movement: at each timestep, it moves to a cell within a radius of two.
Creation and initialization: provided by a GIS file. The file specifies a number of
600 native agents with their initial locations.

Disease in natives Disease parameters:
• Compartmental model: SIR.
• Transmission by contact, β = 0.4.
• Infection duration (τ of the I compartment): 20 timesteps.
• Mortality: death rate µ = 0.2 when the infection duration has elapsed.
• Immunity duration (τ of the R compartment): 33 timesteps.
• Infection introduction: aperiodic, 25 random agents

Simulation outputs:
• Number of native agents,
• Number of susceptible native agents,
• Number of infected native agents,
• Number of recovered native agents,
• All of these observed at every step of the simulation.

Agent coloring: routines provided as a NetLogo library file .nls

Immigrant agent Movement: same as the Native agent.
Creation and inicialization: a fixed number of 50 agents are created at random
locations.

Disease in immigrants Disease parameters:
• Compartmental model: SIR.
• Transmission depends on agents’ interaction:

Agent Interaction
Susceptible Infected β Characterization
Native Native 0.4 Contact
Native Immigrant 0.2 Contact
Immigrant Native 0.1 Proximity (distance: 2)
Immigrant Immigrant 0.3 Proximity (distance: 1)

• Infection duration (τ of the I compartment): 15 timesteps.
• Mortality: there is no mortality for the immigrant agents.
• Immunity duration (τ of the R compartment): 40 timesteps.
• Infection introduction: no introduction (all got infected via interactions).

Simulation outputs:
• Number of susceptible immigrant agents,
• Number of infected immigrant agents,
• Number of recovered immigrant agents,
• All of these observed at every step of the simulation.

Agent coloring: routines provided as a NetLogo library file .nls

144

APPENDIX F — DETAILS OF THE ADAPTIVE TRAFFIC SIGNAL CONTROL

SIMULATION DEVELOPED IN THE USER STUDY

Feature Details

Environment Graph that represents a traffic network. The traffic network is provided by an OSM file. It
has 9 intersection nodes arranged in a 3x3 grid, in addition to 6 input and 6 output nodes
through which vehicles enter and exit the network. 24 one-way links interconnect these
nodes. Each intersection node has 2 incoming and 2 outgoing links.

Vehicle agent Vehicles move horizontally or vertically through the network linkss. The vehicle agent is
provided as a NetLogo library file. Its attributes and behavior were adapted from the HB-
SOTL model by Burguillo-Rial et al. (2012) available at the NetLogo community models
library1. Additionally, that library implements the creation and insertion of new vehicles
in the network according to the following traffic demand: 1200 vehicles/hour are inserted
at the north input nodes and move to the south output nodes; and 240 vehicles/hour are
inserted at the east input node and move to the east output node.

Traffic signal
controller
agent

Creation and initialization: 9 agents are created, one at each intersection node. The lanes
managed by a particular traffic signal controller are set according the incoming links of
the node it is located on.

Traffic signal
plans

Three signal plans:

Reinforcement
learning

Learning parameters:
• Technique: Q-learning.
• Learning states: each state is a pair (queueLength[1], queueLength[2]), where

queueLength[i] is the number of stopped vehicles on the ith incoming lane.
• Learning actions: each signal plan is considered a learning action. The execution

of an action corresponds to the activation of its associated signal plan.
• Reward function: 0− (queueLength[1] + queueLength[2])
• Learning rate: 0.08; Discount factor: 0.25.
• Selection policy: Epsilon-greedy.
• Epsilon: 0.9; Epsilon-decay: 0.99993 (each step, epsilon decays 0.00007%).

Simulation outputs:
• Number of stopped vehicles on all lanes, observed at every cycle (60 steps).

145

APPENDIX G — SUMMARY OF STATISTICAL TESTS: QUALITATIVE

ASSESSMENT OF USABILITY ASPECTS

Table G.1: Wilcoxon Signed-rank Tests Comparing MDD4ABMS and NetLogo
Characteristic V p-value

U1 305.0 < 0.0009
U2 222.0 < 0.0017
U3 378.0 < 0.0001
U4 179.0 < 0.0050
U5 341.0 < 0.0001
U6 245.0 < 0.0001
U7 325.0 < 0.0001

R1 290.0 < 0.0001
R2 401.5 < 0.0001

P1 231.0 < 0.0001
P2 268.5 < 0.0001

E1 331.5 < 0.0001
E2 349.0 < 0.0008

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Existing Work
	1.2 Proposed Solution and Contributions Overview
	1.3 Thesis Outline
	1.4 Disclaimer

	2 Background and Related Work
	2.1 Agent-based Modeling and Simulation
	2.1.1 Foundations
	2.1.2 Applications

	2.2 Model-driven Development
	2.3 Related Work
	2.3.1 Metamodels
	2.3.2 Platforms for Agent-based Simulation

	2.4 Final Remarks

	3 Model-driven Agent-based Simulation Development
	3.1 MDD4ABMS Overview
	3.2 Core Metamodel
	3.2.1 Basic Simulation Aspects
	3.2.2 Creation of Entities and Initialization & Update of Attributes
	3.2.3 Data Collection
	3.2.4 Basic Agent Capabilities

	3.3 Domain-Specific Extensions
	3.3.1 Domain Analysis Method
	3.3.2 Traffic Signal Control and Decision-making Extensions
	3.3.3 Spread of Disease Extensions

	3.4 Final Remarks

	4 The ABStractLang Language and Tool Support
	4.1 The ABStractLang Language
	4.1.1 Overview Diagram
	4.1.2 Concern Diagram
	4.1.2.1 Core Elements
	4.1.2.2 Traffic Signal Control and Decision-related Elements
	4.1.2.3 Disease-related Elements

	4.2 Model-to-Code Transformations
	4.3 ABStractme Modeling Tool
	4.4 Final Remarks

	5 Evaluation
	5.1 User Study: Core Metamodel and the ABStractLang Language
	5.1.1 Procedure
	5.1.2 Participants
	5.1.3 Results and Discussion
	5.1.4 Threats to Validity

	5.2 Empirical Evaluation of Development Effort
	5.2.1 Procedure
	5.2.2 Results and Discussion
	5.2.3 Threats to Validity

	5.3 User Study: Simulation Development with MDD4ABMS
	5.3.1 Procedure
	5.3.2 Participants
	5.3.3 Results and Discussion
	5.3.3.1 Design Quality (RQ1)
	5.3.3.2 Development Effort (RQ2)
	5.3.3.3 Subjective Evaluation (RQ3)

	5.3.4 Threats to Validity

	5.4 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	References
	Appendix A — MDD4ABMS Metamodel: Abstract State Machine
	Appendix B — MDD4ABMS Complete Metamodel
	Appendix C — ABStractLang Concrete Syntax for Modeling Disease Aspects
	Appendix D — Example of NetLogo Source Code Generated by Production Rules
	D.1 Source Code for Setting up and Running a Simulation
	D.2 Source Code for the State Machine gamma plan
	D.3 Source Code for the Learning Capability plan learning

	Appendix E — Details of the Spread of Disease Simulation Developed in the User Study
	Appendix F — Details of the Adaptive Traffic Signal Control Simulation Developed in the User Study
	Appendix G — Summary of Statistical Tests: Qualitative Assessment of Usability Aspects

