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Abstract

This dissertation investigates the impact that non-inertial effects predicted by quantum
field theory in curved spacetimes have on the phenomenon of CP violation by analyzing
the relative rate of CP -violating meson decays when the particles involved are accelerated.
The results obtained agree with previous analyses, in that an increase in decay rates with
increasing acceleration is predicted, and lead to the conclusion that the amplitude of
CP violation in meson systems decreases very slightly with increasing acceleration. The
problem of matter–antimatter asymmetry and its relationship with non-inertial effects and
CP violation are briefly discussed.

Keywords: CP violation. Unruh effect. Matter–antimatter asymmetry. Quantum field
theory in curved spacetimes.





Resumo

Esta dissertação investiga o impacto que efeitos não-inerciais previstos pela teoria quântica
de campos em espaços-tempos curvos têm sobre o fenômeno da violação CP ao analisar a
taxa relativa de decaimentos de mésons que violam a simetria CP quando as partículas
envolvidas são aceleradas. Os resultados obtidos estão em acordo com análises anteriores,
no sentido de que é previsto um aumento na taxa de decaimento com um aumento na
aceleração, e levam à conclusão de que a amplitude de violação CP em sistemas de
mésons diminui ligeiramente com um aumento na aceleração. O problema da assimetria
matéria–antimatéria e a sua relação com efeitos não-inerciais e violação CP são brevemente
discutidos.

Palavras-chave: Violação CP . Efeito Unruh. Assimetria matéria–antimatéria. Teoria
quântica de campos em espaços-tempos curvos.
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Introduction

Quantum field theory (QFT) is the physical–mathematical formalism that grounds
the Standard Model of particle physics (SM), composed of the Glashow–Salam–Weinberg
model with the Higgs mechanism and quantum chromodynamics (QCD), which are,
respectively, the best descriptions of the electroweak (EW) and strong interactions and
of the kinds of matter that interact via these forces. QFT unifies the ideas at the core of
classical field theory with quantum mechanics and special relativity, and its predictions
have been tested with incredible accuracy (see the various reviews in [1]).

General relativity (GR) is the theory that embodies our best understanding of the
gravitational interaction up to date. It subverts the very fundamental concepts of space
and time to describe gravity as a field theory and, consequently, calls for profound changes
in the ontologies espoused by most physical models. Its fantastic predictions have also
been tested extensively, particularly in the last few years (see [2–4]).

The void created by these two frameworks lies at their interface. It seems reasonable
to infer from QFT and GR that the fundamental entities of our Universe are fields, yet the
gravitational field (as described by GR) is not a quantum field, nor are the electroweak and
strong fields (as described by QFT) generally covariant1 fields. While a complete solution
to this incompatibility may be expected to arise from a theory of quantum gravity, it is
possible to tackle important aspects of this problem with less radical techniques, given
by the framework of quantum field theory in curved spacetimes. A semiclassical approach
where the gravitational field remains classical and spacetime remains a background, QFT
in curved spacetimes brings to light the effects of general covariance in QFTs, challenging
the conventional concepts of particle and vacuum. Some of the most celebrated predictions
of QFT in curved spacetimes are the Hawking effect—which predicts that black holes emit
thermal radiation when they interact with the (inertial) vacuum of a QFT (see [5])—the
phenomenon of particle creation from a vacuum state due to the expansion of the Universe
(see [6]) and the Unruh effect (see [7–9]). The latter is one of the focal points of this text.
Although a great deal of experimental evidence in favour of both QFT in flat spacetimes
and GR is available, there is, essentially, no direct evidence for the existence of any of the
effects predicted by QFT in curved spacetimes. If one is to trust these predictions based
solely on the level of verification achieved by GR and QFT in flat spacetimes, a strong
connection must be draw between these two frameworks and QFT in curved spacetimes,
especially at the conceptual level. It is for this reason that great emphasis is put on the
development of the basic tools of the formalism in what follows.

1 The meaning of general covariance is clarified in section 2.1.2.



18 Introduction

The existence of non-inertial effects in QFT in curved spacetime becomes apparent
with the Unruh effect. It predicts that accelerated observers do not agree with inertial
observers when it comes to the particle content of spacetime2: if an inertial observer
describes a quantum field as being in its vacuum state, an accelerated observer describes
it as being in a thermal state. Besides undermining the, often thought as fundamental,
notions of particle and vacuum, the Unruh effect leads to some very interesting conclusions
concerning particle decay. Investigations concerning the decay rate of accelerating particles
presented in [10, 11] conclude the that decay rate increases with increasing acceleration,
even allowing for inertially forbidden transitions like protons decaying into neutrons.

An effect arising in a QFT in Minkowski spacetime is the violation of the CP sym-
metry by the weak interaction. It was first observed in the Fitch–Cronin experiment
(see [12]) on kaon decays and one of its most important consequences was pointed out
in a theoretical analysis presented in [13]: it is a necessary condition for a universe with
differing amounts of matter and antimatter. Theoretical models that offer explanations
for the quantum mechanism responsible for the existence of CP violation and for the
cosmological processes leading to the observed matter–antimatter asymmetry are well
established, but, when combined, lead to the conclusion that the amount of CP violation
that is observed cannot account for the current asymmetry. It is for this reason that the
impact of non-inertial effects on CP violation are investigated in this dissertation.

The system of neutral kaons is one of the better understood sources of CP violation
and is the focus of the studies presented here. Two quantities are crucial in the analysis of
CP violation in this system: the decay rate Γ for the process K0

L → ππ, where a species of
neutral kaon decays into two pions3, and the ratio between this rate and the decay rate
for the process K0

S → ππ, called η. Employing an adaptation of the model for the decay of
accelerating particles mentioned above, the oscillations of these two quantities with respect
to the value of the acceleration is predicted. Furthermore, the possible impact of a change
in the rate of CP violation on the matter–antimatter asymmetry is analyzed with the use
of an analogy between the Unruh effect and the thermal state of the early Universe.

Each chapter of this dissertation covers a facet of the problem of describing the
influence of non-inertial effects on CP violation. Chapter 1 covers matters of notation and
convention in section 1.1 and expounds upon some of the mathematical ideas at the core of
GR and QFT in section 1.2. The basics of these two theories are introduced in chapter 2,
with GR being discussed in section 2.1 and QFT in section 2.2. The formalism of QFT
in curved spacetimes is presented in subsection 2.2.3 and the Unruh effect is described

2 The spacetime in question need not be curved. In fact, the Unruh effect was originally derived for
QFTs in Minkowski spacetime (see subsection 2.2.4).

3 Although there are differences in the processes whether the final state is composed of charged or
neutral pions, they are essentially irrelevant for the purposes of the investigation conducted below
(see subsection 3.2.2)
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and derived in subsection 2.2.4. Chapter 3 tackles CP violation and its relation to the
predictions of QFT in curved spacetimes. Section 3.1 contains a basic discussion on the
fundamentals of CP violation and section 3.2 connects this phenomenon with the Unruh
effect. The model for the decay of accelerated particles is presented in subsection 3.2.1
and its predictions are analyzed in subsection 3.2.2. Subsection 3.2.3 is composed of an
investigation on the relationship between the Unruh effect, CP violation and baryon
production as a model for explaining the matter–antimatter asymmetry.
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1 Mathematical Preliminaries

Both GR and QFT have their conventions and notational quirks, along with
complex underlying mathematical formalisms. QFT in curved spacetimes inherits these
characteristics. The purpose of this chapter is to establish the adopted conventions, clarify
notation and introduce the essential mathematical ideas that appear in this text.

1.1 Conventions and Notation

The conventions and notation used mostly follow those used in treatments of GR.
The convention concerning the sign of the metric of spacetime in particular leads to a
series of differences in definitions according to whether the “relativists’ convention” or the
“particle physicists’ convention” is adopted.

1.1.1 Conventions

In what follows, natural units, c = } = 8πG = kB = 1, are used (except where
explicitly stated otherwise). Here c is the speed of light4, } is the (reduced) Planck constant,
G is the gravitational constant and kB is the Boltzmann constant.

One of the fundamental mathematical structures of GR is a Lorentzian metric over
a manifold. Since this metric is indefinite, there is no preferred choice for its sign. Here
the spacelike convention, (−,+,+,+), is adopted.

Whenever an inner product 〈· | ·〉 on a complex vector space H is present, it is
linear in the second variable in order to make it compatible with bra-ket notation,

〈ψ′|ψ〉 = 〈ψ′| (|ψ〉), (1.1)

with |ψ〉 ∈ H and 〈ψ′| ∈ H∗, where H∗ is the dual space to H. The Riesz–Fréchet lemma
is the key result surrounding the bra-ket notation and this convention, since it gives
an isomorphism between the dual space H∗ and the complex conjugate space H (see,
e.g., [14]).

The Fourier transform f̂ of a function f : R→ C is defined in terms of the angular
frequency and normalized so as to be a unitary operator:

f̂(ω) :=
1√
2π

∫ ∞
−∞

dt f(t)eiωt. (1.2)

4 Or the Lorentz group parameter.
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1.1.2 Notation

Tensors are extensively used in this work, so a brief exposition with respect to
the notation used in dealing with them is in order. A tensor is an element of the tensor
products of vector spaces or, as implied by the fundamental property of tensor product
spaces, a multilinear map between vector spaces. Abstract index notation is used in this
text and a detailed treatment of it can be found in [15]. It differs from standard index
notation in that the symbol T a1···akb1···b` does not denote the components of a tensor of
type (k, `), but the tensor itself. Therefore, the expression

T a1···akb1···b` ∈
k⊗
i=1

V
⊗̀
j=1

V ∗, (1.3)

where V is a vector space, is well defined. Whenever tensor components must be addressed
they are denoted by underlined indices, so that vb is the b-th component of va.

Index contraction, also called the interior product, is given by the evaluation map
on the space corresponding to the pair of indices to be contracted, and the summation
convention of component notation is mirrored in the abstract notation:

T abb :=
∑
b

T abb . (1.4)

Tensor products are denoted by concatenation, so that

T abScd := T ab ⊗ Scd . (1.5)

Raising and lowering of indices is done using the musical isomorphisms induced by a
nondegenerate bilinear form G : V ×V → F and its inverse. Let gab be the tensor associated
to the bilinear form, i.e.5, G(v, w) = gabv

awb. Then the musical isomorphisms are given by

[ : V → V ∗ , va 7→ va = gabv
b; (1.6a)

] : V ∗ → V , va 7→ va = gabvb, (1.6b)

where gab is the inverse of gab, i.e., gacgcb = δab.

The symmetrization and antisymmetrization in the indices {a1, . . . , ak} of a tensor
are denoted, respectively, by

T(a1···ak) :=
1

k!

∑
π∈Sk

Tπ(a1)···π(ak) , (1.7a)

T[a1···ak] :=
1

k!

∑
π∈Sk

sgn(π)Tπ(a1)···π(ak) , (1.7b)

5 When a tensor is a variable of a function, it is conventional to leave out the indices to avoid confusion.
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where Sk is the symmetric group of order k. A tensor is said to be symmetric in the
indices {a1, . . . , ak} if T(a1···ak) = Ta1···ak and antisymmetric in the same indices if T[a1···ak] =

Ta1···ak . The symmetrization and antisymmetrization of the tensor product (note the lack
of normalization factors) are called, respectively, the symmetric tensor product and the
exterior product and denoted as

va ⊗s wb := va ⊗ wb + wb ⊗ va, (1.8a)

va ∧ wb := va ⊗ wb − wb ⊗ va. (1.8b)

A totally antisymmetric (antisymmetric in all indices) type (0, k) tensor is called a k-form,
while a totally antisymmetric type (k, 0) tensor is called a k-vector. The antisymmetrization
of the derivative of a k-form field ωa1···ak , called a differential k-form, is called the exterior
derivative and denoted, in the notation of exterior calculus (which suppresses indices), by

dω = (k + 1) ∂[a0
ωa1···ak]. (1.9)

It satisfies the graded Leibniz identity with respect to the exterior product,

d(η ∧ ω) = dη ∧ ω + (−1)kη ∧ dω, (1.10)

where η is a 1-form.

When dealing with tensor fields on a manifold, lowercase Greek letters, e.g., µ, ν, ρ,
are used for the indices. In the special case where the manifold is Minkowski spacetime
the indices are denoted by uppercase Latin letters, e.g., I, J , K. Submanifold indices are
denoted by lowercase Latin letters from the middle of the alphabet, e.g., i, j, k, while
indices indicating internal spaces, e.g., Fock Space, are denoted by lowercase Latin letters
from the beginning of the alphabet, e.g., a, b, c.

1.2 Geometrical Tools

Geometry has played a crucial role in GR, from its inception to modern develop-
ments, but it also turns out to be a very useful tool in the development of certain QFT
techniques. This section aims to introduce the ideas used in this development.

1.2.1 Fiber Bundles

A key concept in modern differential geometry is that of a fiber bundle. It generalizes
the idea of a product space and clarifies the definitions of various common geometric
objects. A series of definitions are given in what follows, but more comprehensive and
detailed introductions to differential geometry can be found in [16, 17]. A more in-depth
treatment of the theory of fiber bundles is presented in [18].
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Definition 1.1 (Differentiable manifold). An n-dimensional differentiable manifold M is
a Hausdorff topological space6 equipped with a differential structure, i.e., an equivalence
relation of atlases, which are, in turn, families of compatible differentiable charts—maps
to7 Rn—which cover M .

Definition 1.2 (Fiber bundle). A fiber bundle is a short exact sequence F ↪→ E
π−→→ M of

manifolds where E is called the total space, π is called the projection, M is called the base
space and F is called the standard fiber, subject to a local triviality condition, i.e., having
bundle charts—maps to M × F—that cover E and commute with the natural projection
of M × F .

Definition 1.3 (Principal fiber bundle). A principal fiber bundle is a pair (P,G) consisting
of a manifold P , called the total space, a Lie group G, called the structure group, and a
right action of G on P such that:

1. G acts freely on P , i.e., if g ∈ G and there is q ∈ P such that qg = q then g = e.

2. The canonical projection π : P →M to the quotient space of P by G, M = P/G, is
differentiable.

3. E is locally trivial, i.e., for every p ∈M there is a pair (U, ψ) such that U is a neigh-
borhood of p, ψ : π−1(U)→ M ×G and ψ(q) = (π(q), ϕ(q)), with ϕ : π−1(U)→ G

satisfying the condition that, for every q ∈ π−1(U) and g ∈ G, ϕ(qg) = ϕ(q)g.

It can be shown (under the assumption that the action is properly discontinuous)
that the quotient space M , called the base space, is a manifold (see [18]) and that
G ↪→ P

π−→→ M is a fiber bundle. The definition of principal bundles given above does not,
a priori, depend on a choice of base space. This allows for the interpretation that the
total space is a fundamental geometric entity while the base space is merely a consequence
of the action of G on P . The physical implications of this statement are elaborated in
section 2.1.3 and in [19].

The preimage π−1(p) = {pg : g ∈ G} of a point p ∈ M via the projection π is
called the fiber at p. Every fiber of a principal bundle is diffeomorphic to G. Given a group
G, a manifold for the base space and a set of bundle charts, it is possible to construct a
principal bundle (see [16, 18]).

Example 1.1 (Frame bundle). Let M be manifold and FM the disjoint union of all
frames (ordered bases of the tangent space at a point) at all points of M . The general
linear group GL(n,R) acts on FM freely via the change of basis. In fact, GL(n,R) is
6 A topological space consists of a set M with a topology τ . It is customary to call M the manifold

rather than the triple (M, τ,D), where D is a differential structure.
7 All definitions given in the chapter are for structures over the field of real numbers. Suitable

modifications can be made to contemplate other fields.
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isomorphic to the set of all frames at a point—the fiber—and FM can be made into a
principal bundle8, called the frame bundle.

Another important kind of fiber bundle is the bundle, with a certain standard fiber,
associated to a principal bundle.

Definition 1.4 (Associated bundle). Let G ↪→ P
π−→→ M be a principal bundle with

structure group G and F a manifold on which G acts on the left. Denote by E = P ×G F
the G-product of P and F , i.e., P ×G F = (P × F )/∼, where (q, f)g := (qg, g−1f)

and (q, f)g ∼ (q, f). Then the fiber bundle F ↪→ E
πE−−→→ M , where πE([q, f ]) = π(q)

and [q, f ] is the equivalence class of (q, f), is called the fiber bundle associated to P with
standard fiber F .

Associated bundles are a way of obtaining a fiber bundle E with a certain standard
fiber F on which the action of the principal bundle P is well defined. They play a crucial
role in gauge theories (see, e.g., [16, 20]) and can be used to construct very natural
geometric objects. A very special case is when F is a vector space.

Definition 1.5 (Vector bundle). Let ρ be a representation of a group G into GL(n,R)

and Rn ↪→ E
πE−−→→ M be the bundle associated to G ↪→ P

π−→→ M with fiber Rn on which
G acts via ρ. The bundle Rn ↪→ E

πE−−→→ M is called a vector bundle.

Example 1.2 (Tangent and cotangent bundles). The vector bundle associated to FM
with standard fiber Rn is called the tangent bundle TM , and the fiber at p ∈M of TM
is the tangent space TpM at p. The dual bundle9 to TM is the cotangent bundle T ∗M
whose fibers are the cotangent spaces T ∗pM at points p.

Example 1.3 (Tensor product bundle). The group GL(n,R) has a natural action on the
tensor product space of tensors of type (k, `) acting on Rn. The tensor bundle of type (k, `)

of TM and T ∗M is the bundle associated to FM whose fiber at a point p is the space of
tensor products of tangent and cotangent spaces TpM and T ∗pM .

The constructions above are particularly useful in the study of tensor fields. It is of
interest to see these objects as sections of bundles, a concept introduced below.

Definition 1.6 (Cross section). A cross section of a fiber bundle E is a continuous
map s : U → E, where U ⊂ M is open, such that π ◦ s = ι : U ↪→ M , the natural
embedding of U in M . If U 6= M , the section is said to be local, while if U = M the section
is said to be global10. The space of sections of a fiber bundle is denoted Γ(E).
8 Similarly to the case of manifolds (see footnote 6), one may refer to the total space of a principal

bundle as the bundle.
9 Vector bundles allow for constructions such as dual bundles and tensor bundles, obtained by taking

dual and tensor spaces as fibers.
10 If a principal bundle E has a global section, it is trivial, i.e., E = M × F . If E = TM is trivial, M is

said to be parallelizable.
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Example 1.4 (Tensor fields). A section of the tensor tensor bundle of type (k, `) over M
is a tensor field on M . Of particular interest are vector fields, i.e., sections of the tangent
bundle TM , and differential forms, i.e., sections of the cotangent bundle T ∗M .

Example 1.5 (Gauge transformations). Let P be a principal bundle with structure
group G. Sections of P may be called gauge transformations, since they may be seen as
local transformations of some associated bundle.

When a fiber bundle has some kind of extra structure it might be possible to reduce
its structure group to elements that preserve this structure.

Definition 1.7 (Reduction of the structure group). If the principal bundleG′ ↪→ P ′
π′−→→ M ′

is a subbundle of the principal bundle G ↪→ P
π−→→ M , i.e., there is a principal bundle

morphism (ψ, ρ, ϕ) satisfying the following commutative diagram,

G′ G

P ′ P

M ′ M

ρ

ψ

π′ π

ϕ

, (1.11)

M ′ = M and ϕ = id, it is said that the structure group G can be reduced to the subgroup G′

and that G′ ↪→ P ′
π′−→→ M is the reduced bundle.

Bilinear forms are common structures in geometry. Whenever one is present, the
study of transformations that preserve this structure is in order.

Example 1.6 (Reduction to the orthogonal group). Let GL(n,R) ↪→ FM
π−→→ M be the

frame bundle of M and let M be equipped with a nondegenerate symmetric bilinear
form—a section of the bundle of symmetric tensors of type (0, 2)—of signature (p, q). The
group of transformations that preserve this bilinear form (in every tangent space) is O(p, q),
the orthogonal group of signature (p, q). The reduction of GL(n,R) to O(p, q) results in
the bundle of orthogonal frames or simply the orthogonal bundle O(p, q) ↪→ OM

π−→→ M . A
further reduction from O(p, q) to the special orthogonal group, SO(p, q), allows for the
preservation of an orientation.

Example 1.7 (Triads and tetrads). A common tool in GR are triads and tetrads, i.e.,
orthonormal frame fields in 3 and 4-dimensional manifolds, respectively. These fields
map the metric on a manifold M to the Euclidean and Minkowski metrics and are the
mathematical counterparts to the physical statements that space is locally Euclidean and
spacetime is locally Minkowskian. As orthonormal frame fields, they are local sections of
the orthogonal bundle OM .
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1.2.2 Connections

When dealing with sections of a fiber bundle, e.g., vector fields, it is desirable to be
able to compare their values at different points of the base manifold. No natural definition
of a derivative operator on a fiber bundle is suitable for all purposes, so the whole class of
objects that can play this role, called connections, needs to be studied.

Definition 1.8 (Koszul connection). Let V ↪→ E
π−→→ M be a vector bundle. A Koszul

connection or linear connection on E is a linear map D: Γ(E)→ Γ(E)⊗Γ(T ∗M) satisfying
the Leibniz identity for all sa ∈ Γ(E) and11 f ∈ C∞(M):

Dµ(fsa) =
(
∂µf

)
sa + f Dµs

a. (1.12)

The object Dµs
a is called the covariant derivative of sa.

Other kinds of connections exist, such as the Ehresmann connection on a principal
bundle (see [18]), which induces a connection on associated bundles, but the Koszul
connection suffices for the purposes of this text. A very useful definition, especially for
computations, is that of the connection form.

Definition 1.9 (Connection form). Let D be a connection on the bundle E over M . Its
connection form A a

µ b is given by the difference between the covariant derivative and a
preferential connection, the flat connection, given by the derivative operator on M :(

Dµ − ∂µ
)
sa = A a

µ bs
b. (1.13)

The definition above rests on the fact that the difference of two connections D′−D

is C∞-linear (see [15]), i.e., (
D′µ −Dµ

)
(fsa) = f

(
D′µ −Dµ

)
sa. (1.14)

The connection form allows for the computation of the curvature F by the usual expression:

F a
bµν = 2 ∂[µA

a
ν] b + 2A a

[µ |c|A
c

ν] b, (1.15)

where the vertical bars indicate that the antisymmetrization does not affect the index c
(which should be clear). In terms of the exterior derivative, one has

F a
b = dAab + Aac ∧ Acb. (1.16)

Connections and curvatures play very special roles in gauge theory and GR, as
illustrated by the following examples.
11 The definition can be easily adapted for objects in other differentiability classes.
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Example 1.8 (Yang–Mills theory). One the most successful theories of interactions in
physics is the Yang–Mills theory, describing all the interactions that are part of the SM.
Let V ↪→ E

π−→→ M be the vector bundle associated to the principal bundle G ↪→ P
π−→→ M .

Then the connection form igA a
µ b of a certain connection on E can be written in terms of

the gauge potential A a
µ b, which takes values in the representation of the lie algebra g of G

associated to the representation with which G acts on V . The curvature is called the field
strength. The (free) theory has its dynamics given by the action

SYM =
1

2

∫
M

F a
b ∧ ?F b

a , (1.17)

where ? denotes the Hodge dual, and its dynamic equation is

D ? F = 0, (1.18)

where D denotes the exterior covariant derivative.

Example 1.9 (Levi-Civita connection). Let Rn ↪→ TM
π−→→ M be the tangent bundle

of M and gµν a metric on M . There is a unique connection ∇, called the Levi-Civita
connection, that preservers this metric, i.e.,

∇ρgµν = 0, (1.19)

and is torsion-free, i.e., for every f ∈ C∞(M),

∇[µ∇ν]f = 0. (1.20)

The Levi-Civita connection is commonly taken as the connection on the tangent bundle of
spacetime in GR.

1.2.3 Symplectic Geometry

Classical mechanics, notwithstanding the developments of physics in the 20th cen-
tury, remains a very important formalism, both as a description of the physical world
in everyday scales and as the limit of theoretical models under some regime. One of its
many reformulations, based on symplectic geometry, has applications to QFT methods. A
study of the geometric structure underlying this formalism makes itself necessary. A great
introduction to symplectic geometry and its role in physics is [21]. Another reference that
puts more emphasis on geometrical aspects is [22].

Definition 1.10 (Symplectic manifold). A 2n-dimensional manifold is called a symplectic
manifold if it is equipped with a symplectic form ωµν , i.e., a nondegenerate closed 2-form.
A 2-form ωµν is said to be closed if

dω = 3 ∂[ρωµν] = 0. (1.21)
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The requirement that the manifold be 2n-dimensional does not imply a loss of
generality, since every 2-form in an odd dimensional manifold is degenerate. A symplectic
manifold that arises quite naturally is the cotangent bundle of a manifold.

Example 1.10 (Cotangent bundle as a symplectic manifold). Let C be a manifold and Ω =

T ∗C its cotangent bundle. There is a special 1-form θ ∈ Γ(T ∗Ω), called the canonical
1-form, defined pointwise in terms of θs := π∗s = s ◦ dπ, where dπ : T (T ∗C) = TΩ→ TC
is the derivative of the projection π : T ∗C = Ω→ C and s ∈ Ω is a 1-form acting in Tπ(s)C.
The canonical 1-form is given by θ(s) = θs. To get a symplectic structure in Ω, define the
symplectic form ω as

ω = dθ. (1.22)

It is clear that this 2-form is closed, since

dω = d2θ = 6 ∂[ρ ∂µθν] = 0, (1.23)

a general property of the exterior derivative stemming from the commutativity of second
partial derivatives.

In any 2n-dimensional symplectic manifold there is a special set of coordinates(
qµ, pµ

)
, called Darboux coordinates or canonical coordinates, that diagonalizes the blocks

of ω. In this set of coordinates,

θ = −
n∑
µ=1

pµ dqµ, (1.24)

ω =
n∑
µ=1

dqµ ∧ dpµ. (1.25)

Classical physical systems are often dealt with using coordinates of this kind, with
qµ coordinatizing C, the configuration space of a system, and

(
qµ, pµ

)
coordinatizing

Ω = T ∗C, the phase space of the system.

The symplectic form, being nondegenerate, induces a set of musical isomorphisms
as in equations (1.6). A special notation is introduced for the following mapping:(

∂µf
)]

= ω−1(df, ·) = ωµν∂νf =: Xµ
f . (1.26)

The vector field Xµ
f is called the Hamiltonian vector field of f . The Lie derivative in the

direction of Xµ
f of the symplectic form, LXfωµν , is zero:

LXfωµν = Xρ
f ∂ρωµν + ωρν ∂µX

ρ
f + ωµρ ∂νX

ρ
f

= ωρσ∂σf ∂ρωµν + ∂µ
(
ωρνω

ρσ
)
∂σf − ωρσ ∂µωρν∂σf − ∂µ∂νf

+ ∂ν
(
ωµρω

ρσ
)
∂σf − ωρσ ∂νωµρ∂σf + ∂ν∂µf

= ωρσ
(
∂ρωµν − ∂µωρν − ∂νωµρ

)
∂σf = 3ωρσ ∂[ρωµν]∂σf = 0.

(1.27)
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This means that the symplectic form is invariant with respect to the flows generated
by Hamiltonian vector fields. Transformations that preserve the symplectic form are
called symplectomorphisms. That the flow generated by the Hamiltonian vector field of a
function H leaves H invariant (see [21]) is a consequence of this fact and corresponds to
the physical laws of conservation of energy and momentum.

A very important object in symplectic geometry is the Poisson bracket, which
establishes a homomorphism of the Lie algebra of functions on Ω onto the Lie algebra of
Hamiltonian vector fields on Ω.

Definition 1.11 (Poisson bracket). Let Ω be a symplectic manifold and f, g ∈ C∞(Ω).
The Poisson bracket {f , g} of f and g is defined by

{f , g} := ω(Xf , Xg) = ωµνX
µ
gX

ν
f . (1.28)

The following relations are readily verified:

{f , g} = ωµνX
µ
gX

ν
f = ωµνω

µρ∂ρgω
νσ∂σf = δ σ

µ ωµρ∂ρg∂σf = ωσρ∂ρg∂σf

= Xσ
g ∂σf = −Xρ

f∂ρg = LXgf = −LXfg,
(1.29)

Xµ
{f , g} = ωµν∂ν

(
Xρ
g ∂ρf

)
= ωµν

(
∂νX

ρ
g ∂ρf +Xρ

g ∂ρ∂νf
)

= ωµν
[
∂νX

ρ
gωρσX

σ
f +Xρ

g∂ρωνσX
σ
f +Xρ

gωνσ∂ρX
σ
f

]
= ωµν

[
ωνσ
(
Xρ
f ∂ρX

σ
g −Xρ

g ∂ρX
σ
f

)
+Xσ

g

(
Xρ
f ∂ρωνσ + ωνρ ∂σX

ρ
f + ωρσ ∂νX

ρ
f

)]
= ωµν

(
ωνσ [Xf , Xg]

σ +Xσ
g LXfωνσ

)
= [Xf , Xg]

µ,

(1.30)

Jac(f, g, h) = {f , {g , h}}+ {h , {f , g}}+ {g , {h , f}}

=
1

2

[
ωµνX

µ
{g , h}X

ν
f + ωρµX

ρ
{f , g}X

µ
h + ωνρX

ν
{h , f}X

ρ
g

−Xµ
f ∂µ

(
ωνρX

ν
gX

ρ
h

)
−Xρ

h ∂ρ
(
ωµνX

µ
fX

ν
g

)
−Xν

g ∂ν
(
ωρνX

ρ
hX

µ
f

)]
=

1

2

[
ωµνX

ν
f [Xg , Xh]

µ + ωρµX
µ
h [Xf , Xg]

ρ + ωνρX
ρ
g [Xh , Xf ]

ν

−Xµ
f ∂µ

(
ωνρX

ν
gX

ρ
h

)
−Xρ

h ∂ρ
(
ωµνX

µ
fX

ν
g

)
−Xν

g ∂ν
(
ωρνX

ρ
hX

µ
f

)]
=

3

2
∂[µ

(
Xµ
fX

ν
gX

ρ
h

)
ωνρ] −

3

2
∂[µ

(
ωνρ]X

µ
fX

ν
gX

ρ
h

)
= −3

2
Xµ
fX

ν
gX

ρ
h ∂[µωνρ]

= −1

2
dω(Xf , Xg, Xh) = 0,

(1.31)

{f , g} = ωµνX
µ
gX

ν
f = −ωνµXν

fX
µ
g = −{g , f}. (1.32)

Here [· , ·]µ is the commutator (or Lie bracket) of two vector fields and Jac is the Jacobi-
ator of three functions. Equation (1.31) is called the Jacobi identity and, together with
equation (1.32), establishes that C∞(Ω) equipped with the Poisson bracket forms a Lie
algebra. A homomorphism of this Lie algebra onto the Lie algebra of Hamiltonian vector
fields is given by equation (1.30).
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In Darboux coordinates a Hamiltonian vector field is given by Xf =
(
∂pµf,− ∂qµf

)
and the Poisson bracket takes the familiar form

{f , g} = ω(Xf , Xg) =
n∑
µ=1

(
∂f

∂qµ
∂g

∂pµ
− ∂g

∂qµ
∂f

∂pµ

)
. (1.33)

The Poisson bracket between the Darboux coordinates is then given by{
qµ , qν

}
= 0, (1.34a){

pµ , pν
}

= 0, (1.34b){
qµ , pν

}
= δ

µ
ν . (1.34c)

These relations are sometimes called fundamental.

The simplest concrete example of a symplectic manifold is an even dimensional
vector space, where some useful properties arise.

Example 1.11 (R2n as a symplectic manifold). The vector space Ω = R2n with a
symplectic structure can naturally be seen as a symplectic manifold. It is also isomorphic
to the cotangent bundle T ∗Rn of the vector space C = Rn. Since TΩ = Ω × Ω, the
symplectic form is now a map ω : Ω× Ω→ R and takes the form

ω
(
(qµ, pµ), (q′µ, p′µ)

)
=

n∑
µ=1

(
qµp′µ − q′µpµ

)
(1.35)

in Darboux coordinates. Since a bilinear form maps a vector space into its dual, the
action of the symplectic form on a vector y ∈ Ω, ω(y, ·), is a function on Ω and it is
meaningful to take the Poisson bracket of entities of this kind. It is, then, easy to check
that equations (1.34) can be written as{

ω
(
(qµ, pµ), ·

)
, ω
(
(q′µ, p′µ), ·

)}
= ω

(
(qµ, pµ), (q′µ, p′µ)

)
. (1.36)

In fact, defining yα = (qµ, pµ) and y′α = (q′µ, p′µ) and taking care not to confuse indices
tangent to C with those tangent to Ω,

{ω(y, ·) , ω(y′, ·)} = ωζεω
ζδωδβy

′βωεγωγαy
α = ωζεy

′ζyε = ω(y, y′). (1.37)
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2 Quantum Field Theory in Curved Space-
times

The theoretical framework underpinning the results of the present dissertation is
QFT in curved spacetimes, which calls for an account of its fundamentals and main results.
Short introductions to GR and QFT in flat spacetimes are presented with a focus on the
concepts that ground the basic ideas of QFT in curved spacetimes. A formulation of QFT
in curved spacetimes is expounded here and a derivation of the Unruh effect, one of the
centerpieces of this work, is given.

2.1 General Relativity

Gravitation is best described by GR, a theory renowned for its insights into the
nature of space and time. Despite being a centennial theory, much of its conceptual
foundation has only been built in the last few decades—in particular, the principle of
general covariance has been a point of contention [23]. This foundation is the source of
a wealth of phenomena in QFT in curved spacetimes, and, so, a brief exposition is in
order. Thorough references on technical aspects of GR are [15, 24]. Conceptual aspects are
discussed, from philosophical and physical standpoints, in [19].

2.1.1 The Structure of Spacetime

Spacetime is the main object of the traditional formulation of GR. It is the
combination of the concepts of space and time and possesses dynamical properties and a
geometric structure reflecting causality. In most treatments, spacetime is considered to be
a four-dimensional manifold M equipped with a Lorentzian metric gµν , representing the
set of physical events subject to causality conditions. This is the point of view introduced
in this section, for convenience. A slightly different approach revolving around the frame
bundle of spacetime, the one presented in [19], is introduced in subsection 2.1.3.

All gravitational phenomena may be seen as stemming from the metric tensor.
Objects that describe the geometry of spacetime are obtained from the metric and its
derivatives, and are introduced in what follows, along with brief descriptions of how to
interpret their role in the theory. This serves to make explicit the link between gravity
and the geometry of spacetime.

Causality is locally encoded in the metric tensor as in the context of special
relativity. A vector vµ ∈ TpM is called timelike if gµνvµvν < 0, null if gµνvµvν = 0 and
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spacelike if gµνvµvν > 0. The set of null vectors at a point p forms the light cone at p. The
light cone is oriented such that timelike vectors reside at its inside and spacelike vectors
at its outside. One of the halves of the region inside of the light cone may be chosen to
consist of future directed vectors, with the other consisting of past directed vectors, and
if this choice can be made continuously throughout M the spacetime is said to be time
orientable. Every spacetime to be considered in this work is time orientable.

Global causal considerations follow by extending the definitions given above to
curves. A curve in M has any of the properties defined above for vectors if its tangent
vector field has them. It is called causal if its tangent vector field is not spacelike at any
point. The chronological future (past) I±(p) of a point p is defined as the set of points
that can be connected to p with a future (past) directed timelike curve. The causal future
(past) J±(p) of p is defined analogously but with causal instead of timelike curves. These
definitions are extended to arbitrary sets via

I±

(⋃
α

Oα

)
=
⋃
α

I±(Oα), (2.1a)

J±

(⋃
α

Oα

)
=
⋃
α

J±(Oα), (2.1b)

where Oα is an arbitrary family of sets. A set Σ is said to be achronal if I+(Σ) ∪ Σ = ∅.

The Levi-Civita connection (q.v. subsection 1.2.2) associated to gµν is denoted
by ∇µ and its connection form, called the Christoffel symbol, is denoted12 by Γλµν . From
the torsion-free condition of the Levi-Civita connection, the symmetry on the lower indices,
Γλµν = Γλ(µν), may be deduced and an expression for the Christoffel symbol in terms of
the derivatives of the metric,

Γλµν =
1

2
gλα
(
∂νgαµ + ∂νgαµ − ∂αgµν

)
, (2.2)

can be derived from the metric preserving property.

Gravitational effects are associated to the Christoffel symbol with the notion of
parallel transport. A tensor field V α···

β··· on M is said to be parallel transported along a
curve γ with tangent vector field γµ if

γµ∇µV α···
β··· = 0. (2.3)

A curve is said to be a geodesic if its tangent vector field is parallel transported along
itself, i.e.,

γµ∇µγλ =
dγλ

ds
+ Γλµν

dγµ

ds

dγν

ds
= 0, (2.4)

12 The indices for the Christoffel symbol differ from the one introduced for connection forms in
section 1.2.2. Besides the internal indices now being tangent indices, the first lower index has its
position exchanged with the upper index.
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where s is an affine parameter for the curve, i.e., γµ∇µs = 1. It is clear, then, that
the Christoffel symbol corresponds to, in the classical limit, the gravitational force field
(see [24]). Likewise, inertial movement corresponds to geodesic trajectories in spacetime.

To describe the dynamics of the gravitational field, one needs the notion of the
curvature of spacetime. The Riemann curvature tensor plays this role and is defined as the
curvature (q.v. subsection 1.2.2) associated to the Levi-Civita connection and is denoted
by Rµ

νρσ. In terms of the Christoffel symbol,

Rρ
σµν = 2 ∂[µΓρν]σ + 2Γρ[µ|α|Γ

α
ν]σ. (2.5)

Since the Riemann curvature tensor is the linear approximation of the holonomy, the
operator mapping a vector field to its parallel transported vector field along a closed loop,
it can be associated to tidal effects, as evidenced by the geodesic deviation equation:

γµ∇µ
(
γσ∇σJλ

)
= Rλ

σµνγ
σγµJν , (2.6)

where Jλ is the Jacobi field

Jλ :=
dγu
du

∣∣∣∣
u=0

, (2.7)

i.e., the field giving the “infinitesimal” difference between a geodesic γ and family of
geodesics γu with γ0 = γ. The left side of equations (2.6) may be seen as the relative
acceleration between γ and some close geodesic (see [15]).

The dynamics of the gravitational field is given by the Einstein equation,

Rµν −
1

2
Rgµν + Λgµν = Tµν , (2.8)

where

Rµν := Rρ
µρν , (2.9)

R := Rµ
µ (2.10)

are, respectively, the Ricci curvature tensor and the Ricci curvature scalar, Λ is the
cosmological constant and Tµν is the energy-momentum tensor of matter. The Einstein
equation is a constraint on the geometry of spacetime, or gravity, related to its matter
content. The interpretation that the equation describes the dynamics of the gravitational
field is clear if a foliation of M into spacelike slices is taken (see [25]).

2.1.2 General Covariance

It is clear from section 2.1.1 that GR is very dissimilar to most other physical
theories, e.g., Yang–Mills theories, since it does not admit an a priori defined geometry
for spacetime—it is said to be background independent—by the nature of the Einstein
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equation. This raises a series of questions regarding the nature of spacetime and what
kinds of quantities can be measured, which may be partially answered in light of the
discussion presented in what follows.

The requirement of no prior geometry stems from the principle of general covariance,
which, roughly, states that the laws of physics are indifferent to a choice of frame of reference.
A more precise statement can be obtained using a more adequate language, provided by
modern differential geometry. A frame of reference is frequently identified with a choice
of coordinates on the spacetime manifold M , i.e., with an atlas of charts ϕ on M , and
the requirement of indifference then translates to invariance with respect to changes of
coordinates, i.e., diffeomorphisms h : R4 → R4 between the images (subsets of R4) of the
charts, as illustrated in the following commutative diagram:

M

R4 R4

ϕk ϕ`

h

. (2.11)

The meaning of invariance remains obscure but is clarified below.

Further refinements of the statement of general covariance can be obtained in the
spirit of the coordinate-free approach to geometry, replacing transformations between
coordinate charts with diffeomorphisms between manifolds. A diffeomorphism between
two manifolds M and N is an invertible map f : M → N such that the compositions ϕ′ ◦
f◦ ϕ−1 : R4 → R4, where ϕ and ϕ′ are charts onM andN respectively, are diffeomorphisms,
and is illustrated in the following commutative diagram:

M N

R4 R4

ϕ

f

ϕ′

ϕ′◦f◦ϕ−1

. (2.12)

The notion of change of coordinates can, then, be substituted by the notion of a diffeo-
morphism from M to itself in the statement of the principle.

A diffeomorphism f of M into N induces a transformation between the tangent
bundles TM and TN ,

TM TN

M N

π

df

π

f

, (2.13)

called the differential df of f . It maps the vector fields on M , sections of TM , into
vector fields on N . Intuitively, this map drags a vector over a point x of M along f to
its image f(x) on N . A precise definition of the action of the differential on a vector field
v ∈ Γ(TM) is given by

df(v)s := v(s ◦ f) = ∂νf
µvν ∂µs, (2.14)
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where the vector field df(v) acts on s : N → R by the directional derivative. The action of
the differential on vector fields is called the pushforward of v by f and denoted f∗v := df(v).
The composition s ◦ f , appearing in equation (2.14), is called the pullback of s by f and
denoted f ∗s. The pullback can be extended to a 1-form ω ∈ Γ(T ∗N) via

f ∗ω(v) := ω(f∗v) = ωµ ∂νf
µvν , (2.15)

and both maps can be extended to general tensor fields by demanding the compatibility
between the tensor product and the pushforward or pullback, e.g., f∗(v ⊗ w) = f∗v ⊗ f∗w.
Care must be taken when dealing with pushforwards and pullbacks, since the transforma-
tions induced by them differ considerably:

TM TN

M N

R
T ∗M T ∗N

π

f∗

πf

f∗s s

π

f∗

π

. (2.16)

These tools allow for the precise formulation of the principle of general covariance.

Principle of General Covariance. Let gµν (x) be a solution of the Einstein equation
and f a diffeomorphism of M into itself. Then13 g̃µν (x) := f−1∗gµν (x) is a solution of the
Einstein equation corresponding to the same physics, i.e., gµν (x) and g̃µν (x) are part of
an equivalence class of solutions corresponding to a single physical model.

An important remark must be made. The principle of general covariance should not
be confused with the statement of coordinate independence in the definitions of the various
geometric objects in GR, called the trivial identity in [19]. The trivial identity states that
the value of a field at a point is invariant if both are dragged by a diffeomorphism, i.e.,
f∗v(f(x)) = v(x). General covariance involves the dragging of fields and not points (or
vice versa). It also makes use of the dynamics of the field, in its evocation of the Einstein
equation, which elucidates it as a relation between solutions of the field equation, not
between generic geometric objects. It is in this sense that general covariance imposes the
requirement of background independence.

Historically, general covariance has been tied to the hole argument and to the point-
coincidence argument (see [26] for a review). The former was formulated as an argument
against general covariance, while the latter signifies a return to it, which culminated with
the proposal that the field equation of GR be (2.8) (see [27]). An outline of these arguments
(cf. [28]) may shine a light on the technical aspects of the principle of general covariance,
and is presented bellow.
13 See diagram (2.16) as to why the pullback by the inverse mapping must be used.
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Consider a solution gµν (x) of the Einstein equation on a manifold M . Suppose also
that there is a region H ⊂ M , called the hole, devoid of matter. There is some smooth
diffeomorphism f of M into itself such that f is the identity outside the hole (and on its
boundary) but differs from it on H, and the pullback g̃µν (x) = f−1∗gµν (x) of the solution
via f must also be a solution, according to the principle of general covariance. The hole
argument consist on the observation that g̃µν (x) = gµν (x) outside H but g̃µν (x) 6= gµν (x)

inside H, which implies a loss of determinism for the theory (the two solutions agree on
the causal past of H but disagree on H itself) if the requirement that these two solutions
belong to an equivalence class is dropped. The point-coincidence argument asserts that
physical observations are not affected by a choice between the solutions, i.e., GR has a
sort of gauge freedom (see [28]), since all physical fields must be dragged along with the
gravitational field. The situation is illustrated in figure 1.

M

g

t

M

g̃

f

x y x y

Figure 1 – The diffeomorphism f is such that the hole argument applies and f(x) = y.
The field originally at x is dragged to y, but so are any other physical objects,
e.g., the event corresponding to a crossing of worldlines. Adapted from [28].

Accepting the conclusion of the point-coincidence argument, that GR is a generally
covariant theory, puts into question the reality of points of spacetime and, therefore, of
spacetime itself. Statements referencing points such as x and y in figure 1, e.g., referring
to the value gµν (x) of the metric at a point, must be devoid of physical meaning if the
condition of diffeomorphism invariance (as stated in the principle) is respected, since the
quantities referenced will not be gauge invariant, e.g., different values of the metric at
the same point may correspond to the same solution of the Einstein equation. If points
of the manifold M can be individuated, on the other hand, general covariance must be
replaced by the trivial identity, which places no constraints on any physical theory with a
geometrical interpretation.

If spacetime is not fundamental, the elaboration of a formulation of GR that makes
no direct reference to the manifold M is desirable in light of the principle of ontological
parsimony. This can be achieved using the tools presented in section 1.2.
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2.1.3 Spacetime from Gravity and Observables

Spacetime may not be a fundamental entity of GR, but gravity is. The task tackled
in this subsection is, thus, finding the geometric structure that properly encodes the
information of the gravitational field and allows for the interpretation of spacetime as an
emergent entity. The structure in question is the bundle of oriented orthonormal frames,
introduced in subsection 1.2.1.

A tetrad eµI (cf. examples 1.1 and 1.7) corresponds to a set of 4 orthonormal vector
fields on M , i.e.,

gµνe
µ
Ie
ν
J = ηIJ , (2.17)

where ηIJ is the Minkowski metric. Along with its inverse e I
µ , which satisfies

ηIJ e
I
µ e

J
ν = gµν , (2.18)

the tetrad can be made into an isomorphism from the space of (local) vector fields on M
to the space of (local) vector fields on R4 and, therefore, can be used to exchange tangent
and Minkowski indices via

vI = e I
µ v

µ, (2.19a)

vµ = eµIv
I . (2.19b)

General relativity can be formulated with the tetrad taking the place of the metric, so
long as a spin connection14 Dµ with the torsion-free property with respect to e I

µ ,

D[µe
I

ν] = 0, (2.20)

is introduced, along with the curvature tensors that derive from it (see [28]). Tetrads can
naturally be associated with frames of reference and introduce an extra kind of gauge
freedom, since the metric is invariant with respect to the action of Lorentz transforma-
tions ΛI

J ∈ SO(3, 1) on the tetrad:

g′µν = e′ Iµ e
′ J
ν ηIJ = ΛI

Ke
K
µ ΛJ

Le
L
ν ηIJ = e K

µ e L
ν ηKL = gµν . (2.21)

Since the tetrad can now be taken as a dynamical field, GR can be interpreted as
theory of certain frame bundles rather than a theory of Lorentzian manifolds. Taking into
account the observation presented following definition 1.3, the spacetime manifold M can
be defined as the quotient of the bundle of oriented orthonormal frames by the Lorentz
group SO(3, 1). This allows for the interpretation that spacetime arises from the dynamics
of the gravitational field rather than being a fundamental entity. A better developed
version of this idea results in the philosophical position called dynamic structural realism,
discussed in [19].
14 A spin connection on TM is one that is associated to an Ehresmann connection on the spin bundle

Spin(3, 1) ↪→ E
πE−−→→ M . It takes values on spin(3, 1), the Lie algebra of the spin group.
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The position introduced above forces one to reevaluate what is meant by an
observable. These are entities that, in a given model, play the role of quantities that can
be obtained as the result of a measurement. In most physical theories, observables are
functions of elements of some set of background structures, usually taken to be spacetime,
possibly endowed with some additional structure. In GR, as argued above, observables
cannot depend exclusively on spacetime points, i.e., the value of some function at a point
cannot be an observable in GR. To elaborate on this point, a precise notion of an observable
must be introduced. The one to be considered is that of a Dirac observable, which requires
the definition of a gauge transformation in the sense of Dirac–Bergmann. Consider two
(mathematically) different solutions to a set of equations of motion evolving in some
parameter t that are, nonetheless, equal for every t < t̂. A mapping between these two
solutions is called a gauge transformation and a quantity that is invariant with respect
to gauge transformations is called a Dirac observable. This ensures that the system is
deterministic and introduces a mutual dependence on the solutions to the equations of
motion, the gauge transformations and the observables.

General covariance introduces the diffeomorphism group as a gauge transformation
group for GR, implying that all Dirac observables must be diffeomorphism invariant
quantities, which clarifies the statement that there are no local Dirac observables in
GR, i.e., that Dirac observables cannot be functions of spacetime points alone. There is,
however, another notion of locality that does apply to Dirac observables in GR. Describing
it requires the introduction of physical coordinates, in the spirit of the point-coincidence
argument. Consider four scalar matter fields (for more on field theory, see section 2.2)
coupled to the gravitational field and such that their configurations do not present so
many degeneracies as to make taking them as coordinates impossible. These fields can
be used to individuate spacetime points. i.e., as physical coordinates, and the value of
a scalar function of these fields is a Dirac observable, since diffeomorphisms drag the
gravitational and matter fields alike. Locality follows if the value of a scalar function at a
configuration s of the matter fields is determined (in the dynamical sense) entirely by the
configurations in J−(s), the causal past of s. This is the case with the GPS observables,
constructed in [29]. A more detailed discussion on observables and physical coordinates
can be found in [28], including the description of partial observables, which clarify the
relationship between observables and coordinates (see also [30]). For a more technical
approach, in the context of the canonical formalism of GR, see [31].

2.2 Quantum Field Theory

Every known physical interaction is well described by a field theory. Familiarity
with its fundamental entities, fields, is crucial to understanding the phenomena addressed
in this work. This section seeks to present the basics of QFT in flat and curved spacetimes.
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Standard references for QFT in flat spacetimes are, e.g., [32–34]. For QFT in curved
spacetimes, see [35–37] and especially [14], since the following sections are mostly based
on it.

2.2.1 Free Fields in Flat Spacetime

A field theory assigns dynamics to sections of some fiber bundle, usually associated to
a principal bundle. The ontology of most treatments of field theories includes a gravitational
field with trivial dynamics, that is, the dynamics of the fields described by the theory take
place on Minkowski or Newtonian spacetime, and are, hence, called field theories in flat
spacetimes.

A special class of field theories will be the one presented here: that of scalar fields.
A scalar field is a section of a line bundle, a vector bundle whose fiber is a one-dimensional
vector space, typically taken to be R or C. The field represents the spacial and temporal
configurations of a system since the base manifold is taken to be a spacetime M .

The dynamics of a scalar field φ in Minkowski spacetime can be specified in a
variety of manners. One is by specifying an action functional S, which can be obtained
from a Lagrangian density L via

S =

∫
R4

d4xL, (2.22)

whose stationary points correspond to solutions of the dynamics, i.e., such that

δS[φ] = 0, (2.23)

where δ is the functional differential, if φ solves the dynamic equations. Another consists
in giving a Hamiltonian functional15 H, written in terms of a Hamiltonian density H as

H =

∫
R3

d3xH, (2.24)

whose Poisson bracket generates the evolution of physical quantities. The latter is of-
ten called the canonical formalism, since symplectomorphisms may be called canonical
transformations (cf. [21]). The two densities are related by the Legendre transform,

H = φ̇π −L, (2.25)

where

φ̇ := ∂tφ, (2.26)

π := ∂
φ̇
L, (2.27)

15 Assumed here to be time-independent.
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are, respectively, the velocity and conjugate momentum of the field.

The only Poincaré invariant Lagrangian density for a real scalar field on Minkowski
spacetime yielding a second-order linear equation of motion is the Klein–Gordon (KG)
Lagrangian density

L = −1

2

(
∂Kφ ∂

Kφ+m2φ2
)
. (2.28)

Its associated equation of motion is the KG equation(
∂K∂

K −m2
)
φ = 0, (2.29)

and its solutions are said to be free KG fields. Fields with nonlinear equations of motion
are said to be interacting, and are treated at the end of this subsection. The conjugate
momentum is π = φ̇ and the Hamiltonian density is

H =
1

2

(
φ̇2 + ∂kφ ∂

kφ+m2φ2
)
. (2.30)

To obtain the time flow, the Poisson bracket must be defined. A canonical form θ

on the phase space Ω = H1(R3)× L2(R3) (where H1(R3) is the Sobolev space W 1,2(R3),
see [38]) of initial data of finite energy at some time t, e.g., t = 0, is given by

θ(φ0, π0)(φ, π) = −
∫
R3

d3x π0φ, (2.31)

from which arises a strong symplectic form ω given by

ω
(
(φ, π), (φ′, π′)

)
=

∫
R3

d3x (φπ′ − φ′π). (2.32)

To every functional F on Ω, since the symplectic form is strong, there is a corresponding
Hamiltonian vector field XF such that

ω(XF , ·) = δF. (2.33)

The Poisson bracket of two functionals F and G is, thus, defined as

{F ,G} := ω(XF , XG) =

∫
R3

d3x

(
δF

δφ

δG

δπ
− δG

δφ

δF

δπ

)
. (2.34)

The time flow is the flow generated by the Hamiltonian functional and the time derivative
of an observable16 is the Lie derivative with respect to this flow, which can be written in
terms of the Poisson bracket:

dF

dt
= {F ,H}. (2.35)

16 Taking observables to evolve in time is the classical equivalent of the Heisenberg picture, to be
adopted in what follows.
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The fundamental Poisson brackets given in equations (1.34) are then equivalent, in the
distributional sense, to17

{φ(t,x) , φ(t,x′)} = 0, (2.36a)

{π(t,x) , π(t,x′)} = 0, (2.36b)

{φ(t,x) , π(t,x′)} = δ(x− x′). (2.36c)

A concise introduction to symplectic geometry and Hamiltonian dynamical systems in
infinite dimensional manifolds, including the definitions of strong and weak symplectic
forms, can be found in [39]. A more detailed treatment with a wealth of results is [40].

The space of solutions of the KG equation can naturally be identified with the
phase space of initial data, since every solution corresponds to a pair (φ, π) of initial
data. The symplectic form defined on Ω induces a symplectic structure on S, the space of
solutions arising from initial data in Ω, given by

ω(φ, φ′) =

∫
R3

d3x (φ ∂tφ
′ − φ′ ∂tφ). (2.37)

It must be emphasized that the fields are now seen as functions on spacetime rather
than on Ω. An inner product on the complexification SC of S can be obtained from
the symplectic form using a standard procedure. Given a antisymmetric bilinear form ω

and a complex structure J , a conjugate symmetric sesquilinear form m may defined
as m(φ, φ′) := ω(φ∗, Jφ′). The inner product on SC is, thus, given by

〈φ|φ′〉KG := iω(φ∗, φ′) = i

∫
R3

d3x (φ∗ ∂tφ
′ − φ′ ∂tφ∗). (2.38)

The KG field may be treated as a family of harmonic oscillators. It can be written
in terms of its spatial Fourier transform,

φ(t,x) =
1

(2π)3/2

∫
R3

d3k φ̂(t,k)eik`x
`

, (2.39)

and the reality of φ implies φ̂∗(t,k) = φ̂(t,−k). The Hamiltonian may, thus, be rewritten
as

H =
1

2

∫
R3

d3k
(
| ˙̂φ|2 + ω2|φ̂|2

)
, (2.40)

where ω2(k) = k`k
` +m2, which may be seen as the Hamiltonian of a family of decoupled

harmonic oscillators. The fundamental Poisson brackets for the Fourier transforms can be
obtained from equations (2.36):

{φ̂(t,k) , φ̂(t,k′)} = 0, (2.41a)

{π̂(t,k) , π̂(t,k′)} = 0, (2.41b)

{φ̂(t,k) , π̂(t,k′)} = δ(k− k′), (2.41c)

17 The boldface letter x denotes the three-dimensional position vector, a convention adopted for other
three-dimensional vectors.
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where18 π̂(t, k) :=
˙̂
φ∗(t, k). It is useful to introduce the Fourier coefficients

a(t,k) :=

√
ω(k)

2
φ̂(t,k) + i

√
1

2ω(k)
˙̂
φ(t,k), (2.42)

so that
φ̂(t,k) =

1√
2ω(k)

[a(t,k) + a∗(t,−k)] (2.43)

and equations (2.41) are equivalent to

{a(t,k) , a(t,k′)} = 0, (2.44a)

{a∗(t,k) , a∗(t,k′)} = 0, (2.44b)

{a(t,k) , a∗(t,k′)} = −iδ(k− k′). (2.44c)

The Hamiltonian takes the form

H =

∫
R3

d3k a∗aω, (2.45)

which implies, using the equation of motion given by the Poisson bracket,

a(t,k) = a(k)e−iωt, (2.46)

where a(k) := a(0,k). The field is then split into parts of positive and negative frequencies,

φ(x) =
1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(k)eikLx

L

+ a∗(k)e−ikLx
L
)
, (2.47)

where k0 = ω. The plane wave modes

f(x, k) =
eikLx

L

(2π)3/2
√

2ω(k)
, (2.48)

which lay outside of SC, are orthonormal with respect to the KG inner product,

〈f(x, k)|f(x, k′)〉KG = δ(k− k′), (2.49)

and the coefficients a(t,k) satisfy

a(t,k) = 〈f(x, k)|φ(t,x)〉KG . (2.50)

Quantization adds extra structure to a field theory: quantum fields take values on
the space of operators over some Hilbert space, which must be constructed. Naturally,
for the fields in question, it should model a family19 of harmonic oscillators, but there is
18 Here π is the momentum conjugate to the Fourier transform of the field and not the Fourier transform

of the momentum conjugate to the field. They are related by complex conjugation.
19 Assumed here—pedagogically—to be a countable family of oscillators, in contrast with the implication

of equation (2.45).
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a caveat. If H is the Hilbert space of a 3-dimensional harmonic oscillator (one can take,
e.g., H = L2(R3)), the tensor product of infinitely many copies of H is well defined and a
natural but unsuitable choice for this type of QFT, since it is non-separable (see [41]). A
better choice is the symmetric Fock space Fs(H), defined20 as

Fs(H) :=
∞⊕
m=0

m⊗
s

n=1

H, (2.51)

where the empty tensor product is defined as C.

An element |Ψ〉 of a Fock space Fs(H) may be written as

|Ψ〉 = (ψ, ψa1 , ψa1a2 , . . . ), (2.52)

where ψa1···ak = ψ(a1···ak) is tensor of type (k, 0) over H. For every ξa ∈ H there are
operators a(ξ∗) and a†(ξ), called, respectively, the annihilation and creation operators
associated to ξa, given by

a(ξ∗) |Ψ〉 = (ξ∗aψ
a,
√

2ξ∗aψ
aa1 ,
√

3ξ∗aψ
aa1a2 , . . . ), (2.53a)

a†(ξ) |Ψ〉 = (0, ψξa,
√

2ξ(aψa1),
√

3ξ(aψa1a2), . . . ). (2.53b)

It is clear that a(ξ∗) depends linearly on ξ∗a (or antilinearly on ξa) and a†(ξ) depends
linearly on ξa. So long as the domains of the operators are defined appropriately (see [14]),
a†(ξ) is the adjoint of a(ξ∗). It is a simple computation to verify that

[a(ξ∗) , a†(ξ′)] = ξ∗aξ
′aI = 〈ξ|ξ′〉H I, (2.54)

where [· , ·] is the commutator of two operators, I is the identity and 〈· | ·〉H is the inner
product on H. Additionally, all annihilation operators commute amongst themselves, as
do creation operators. A special element of Fs(H) is the vacuum state |0〉, which can be
written as

|0〉 = (1, 0, 0, . . . ) (2.55)

and is in the kernel of all annihilation operators, i.e., for every ξ ∈ H:

a(ξ∗) |0〉 = 0. (2.56)

The vacuum is a cyclic vector for the set of creation and annihilation operators associated
to a basis of H, i.e., the successive application of creation and annihilation operators on |0〉
spans a dense subspace of Fs(H).

Canonical quantization is a prescription mapping the dynamics of a classical system
to those of a quantum system. This is accomplished by mapping the Poisson bracket of
20 The definition given here applies to a countable family of Hilbert spaces, e.g., a quantum field on a

compact manifold. Rigorous results on the properties of this space can be found in [42]. The results
for a field in, e.g., Minkowski space, where the spectrum of the momentum operator is continuous,
are simply adapted from these.
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observables in the classical phase space into the commutator of operators acting on on the
Hilbert space in question,

[F̂ , Ĝ] = i{F ,G}̂, (2.57)

where hatted variables are the self-adjoint operators corresponding to the classical, unhatted
observables. In the particular case of Darboux coordinates, dropping the hats (as will
be done from this point onward), the fundamental Poisson brackets are mapped into the
canonical commutation relations (CCR):

[φ(t,x) , φ(t,x′)] = 0, (2.58a)

[π(t,x) , π(t,x′)] = 0, (2.58b)

[φ(t,x) , π(t,x′)] = iδ(x− x′)I. (2.58c)

The time evolution is given by the analogue of equation (2.35),

i
dF

dt
= [F ,H], (2.59)

or in terms of the time evolution operator U(t, t′), defined by

F (t) = U †(t, t′)F (t′)U(t, t′) (2.60)

and satisfying the Schrödinger equation:

i
dU(t, t′)

dt
= HU(t, t′). (2.61)

This is the quantum analogue to the classical time flow on the phase space. It is then clear
that

U(t, t′) = e−iH(t−t′). (2.62)

One important property of U is that it is unitary, i.e.,

U(t, t′)U †(t, t′) = I, (2.63)

meaning that time evolution preserves probability amplitudes.

The quantization of the Fourier coefficients a and a∗ can be achieved by mapping
them into, respectively, annihilation and creation operators associated with the plane wave
modes21

f(k) =
eik`x

`

(2π)3/2
√

2ω(k)
, (2.64)

which satisfy a version of the CCR,

[a(t,k) , a(t,k′)] = 0, (2.65a)

[a†(t,k) , a†(t,k′)] = 0, (2.65b)

[a(t,k) , a†(t,k′)] = δ(k− k′)I, (2.65c)

21 It must be emphasized that f and f∗ do not lie in H. Nonetheless, their associated creation and
annihilation operators are well defined as operator-valued distributions.
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where a(t,k) := a(f ∗(k))(t) and a†(t,k) := a(f(k))(t). These correspond to equations
(2.44). The dynamics of these operators are obtained from equations (2.59),

a(t,k) = a(k)e−iωt, (2.66)

where, once again, a(k) := a(0,k). The quantized field can then be written as

φ(x) =
1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(k)eikLx

L

+ a†(k)e−ikLx
L
)
. (2.67)

Since the creation and annihilation operators do not commute, care must be taken when
quantizing the expression for Hamiltonian in equations (2.45). Any expression including
the ordering aa† of these operators gives an infinite value for the energy22 of the Fock
vacuum. To avoid problems of this kind, one must work with the normal ordering :O : of a
product O of creation and annihilation operators, obtained by changing the order of the
product so that all annihilation operators are to the right of all creation operators. The
normal ordered Hamiltonian is given by

:H : =

∫
R3

d3k a†aω, (2.68)

and thus the energy of the vacuum state is zero, since

:H : |0〉 =

∫
R3

d3k ωa†a |0〉 = 0. (2.69)

2.2.2 Interacting Fields in Flat Spacetime

The developments above concern free or noninteracting fields. To describe inter-
acting fields, a few extra concepts and results must be presented. A good introduction to
interacting fields in flat spacetimes is [43].

The action S for an interacting field φ can be decomposed in two parts, S = S0 +SI,
where S0 is the action for the free field and

SI =

∫
R4

d4xLI (2.70)

is the action for the interaction, written in terms of the interaction Lagrangian density LI.
The Hamiltonian H may also be decomposed as H = H0 +HI, where H0 is the Hamiltonian
of the free field and the interaction Hamiltonian HI is given in terms of its density HI,
related to the interaction Lagrangian by

HI = −LI. (2.71)
22 In quantum systems, the value of an observable at some state of the system (represented by a ray in

the Hilbert space) is the eigenvalue of the operator representing the observable associated to this
state (which is clearly only defined if the state is an eigenstate of the operator).
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Assuming LI does not depend on the derivatives of the field, the conjugate momentum π

is the same as the free field conjugate momentum,

π := ∂φ̇L = ∂φ̇L0, (2.72)

and the fundamental Poisson brackets remain unchanged, as do their quantum versions,
the CCR.

Most results concerning interacting quantum fields are obtained with perturbation
theory methods, where the dynamics of the free field are presumed to be an approximation
of the dynamics of the interacting field and corrections are introduced with increasing order
of complexity with respect to the coupling constant, a measure of the relative amplitude
between the free and interacting dynamics. A helpful tool when dealing with perturbation
theory is the interaction picture of time evolution (compare with the Heisenberg picture,
used throughout this section), which introduces the temporal evolution of states via the
interaction Hamiltonian and, therefore, delegates the temporal evolution of operators to
the free Hamiltonian. Let F (H) and |ψ〉(H) denote an operator and a state in the Heisenberg
picture and, similarly, F (I) and |ψ〉(I) an operator and a state in the interaction picture.
The relationship between these entities is

F (I)(t) = U †0(t)U(t)F (H)(t)U †(t)U0(t), (2.73)

|ψ(t)〉(I) = U †0(t)U(t) |ψ〉(H) , (2.74)

where U(t) := U(t, 0) and U0 is the time evolution operator associated to the free Hamilto-
nian. These two pictures are related at the time t = 0, since states and operators coincide
at it. The differential equations for the time flow are

i
dF (I)

dt
= [F (I) , H0], (2.75)

i
d|ψ〉(I)

dt
= HI |ψ〉(I) . (2.76)

From now on, superscripts indicating pictures will be dropped.

The prototypical problem tackled with QFT methods is the scattering of fields.
Solving this sort of problem essentially reduces to calculating probability amplitudes
corresponding to the process, a goal achieved with the S-matrix formalism. Given initial
and final states for the scattering process, denoted |ψ〉 and |ψ′〉, respectively, the probability
amplitude of interest A(ψ → ψ′) is obtained by evolving the initial state to the time at
which the final state is defined, t′, and taking their inner product:

A(ψ → ψ′) = 〈ψ′|ψ(t′)〉 . (2.77)

Since the scattering states are assumed to be asymptotically free, the S-matrix may be
formally defined as the limit of the time evolution operator (associated with the interaction
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Hamiltonian) in the distant past and future,

S = lim
t′→∞
t→−∞

U(t′, t), (2.78)

but a more accurate description of it is as a map between the spaces of initial and final
states, so that

A(ψ → ψ′) = 〈ψ′|S|ψ〉 . (2.79)

Frequently, only low order contributions to the S-matrix can be calculated explicitly. The
expansion23 up to first-order in the Hamiltonian may be written as

S = I− i
∫
R4

d4x :HI : +O
(
H2

I

)
= I + i

∫
R4

d4x :LI : +O
(
L2

I

)
. (2.80)

The expansion of the S-matrix into contributions of increasing order of complexity can
be interpreted in terms of Feynman diagrams, with the help of Wick’s theorem (see [43]).
The probability P that the process takes place is given by the square of the absolute value
of the amplitude,

P(ψ → ψ′) = |A(ψ → ψ′)|2, (2.81)

and its time derivative is called the rate Γ of the process:

Γ(ψ → ψ′) =
d

dt
P(ψ → ψ′). (2.82)

One of the simplest examples of field interactions is given by a Klein-Gordon field
and a two-level quantum mechanical system. Despite its simplicity, it is a model of extreme
importance, since it allows for the description of the particle interpretation of QFT, an
important tool to bridge the gap between theoretical and experimental developments and
a source of counterintuitive results in QFT in curved spacetimes. This system may be
described by the Hamiltonian H = HKG +HQ +HI, where HKG is the KG Hamiltonian,

HQ = σA†A (2.83)

is the Hamiltonian of the two-level system and

HI = ε(t)

∫
R3

d3xφ(t,x)
(
F (x)e−iσtA+ F ∗(x)eiσtA†

)
(2.84)

is the interaction Hamiltonian. In the definitions above, A and A† are ladder operators on
the Hilbert space of the two-level system, spanned by the energy eigenstates {|χ0〉 , |χ1〉},
i.e.,

A |χ0〉 = 0, (2.85a)

A |χ1〉 = |χ0〉 . (2.85b)

23 This expansion is valid even for time-dependent Hamiltonians, not addressed in this text.
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These operators evolve according to A(t) = Ae−iσt. The mode F and the coupling
constant ε belong to the spaces of smooth functions of compact support, i.e., F ∈ C∞0 (R3)

and ε ∈ C∞0 (R). If the system is in an initial state |ψi〉 = |χ〉 |nψ〉, where |χ〉 may be any
state in the Hilbert space of the two-level system and |nψ〉 is a state in the Fock space of
the KG field given by

|nψ〉 = (0, . . . , 0, ψa1 · · ·ψan , 0, . . . ), (2.86)

the final state |ψf〉 of the system, to first-order in ε, is given, according to equation (2.80),
by

|ψf〉 = |ψi〉 − i
∫ ∞
−∞

dtHI |ψi〉 = |ψi〉 − i
∫
R4

d4x ε(t)φ
(
Fe−iσtA+ F ∗eiσtA†

)
|ψi〉 . (2.87)

Putting f(x) = ε(t)e−iσtF (x), the integral above can be shown to yield (see [44] and
subsection 2.2.3)∫ ∞

−∞
dtHI =

(
ia†
(
λ(+)

)
− ia

(
λ(−)

))
A+

(
ia†
(
λ(−)∗)− ia(λ(+)∗))A†, (2.88)

where λ(+) and λ(−) are, respectively, the positive and negative frequency parts of λ, which
is the retarded minus advanced solution of the KG equation with source f , i.e.,

λ(t,x) =

∫
R4

d4x (GR(x− x′)−GA(x− x′))f(x′), (2.89)

where GR and GA are the Green functions of the KG equation. Assuming that ε(t) oscillates
much slower than e−iσt, the dominant contribution to f is its positive frequency part,
which implies the same to λ. Therefore,

|ψf〉 ≈
(
I + a†

(
λ(+)

)
A− a

(
λ(+)∗)A†) |ψi〉

≈ |χ〉 |nψ〉+
√
n+ 1‖λ(+)‖HA |χ〉 |(n+ 1)′〉 −

√
n 〈λ(+)|ψ〉HA

† |χ〉 |(n− 1)′〉 ,
(2.90)

where

|(n+ 1)′〉 = a†
(
λ(+)

)
|nψ〉 =

1

‖λ(+)‖H
(0, . . . , 0, ψ(a1 · · ·ψanλ(+)an+1), 0, . . . ). (2.91)

If the initial state of two-level system is |χ0〉, it is clear that the only allowed
transitions are the one where no interaction occurs, ψi → ψi, and the one to the
state |χ1〉 |(n− 1)ψ〉, whose probability is proportional to n. On the other hand, if the
two-level system is initially in the state |χ1〉, the only possible transitions are the noninter-
acting one and the the one to the state |χ0〉 |(n+ 1)ψ〉, whose probability is proportional
to n + 1. This makes this system a good model for the interaction of a field and a par-
ticle detector, where the state |χ0〉 corresponds to the unexcited state of the detector,
|χ1〉 to the excited one and |(n− 1)ψ〉, |nψ〉 and |(n+ 1)′〉 correspond, respectively, to
(n − 1)-, n- and (n + 1)-particle states of the field. This allows for the interpretation
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of N(k) := a†(k)a(k) as the number density operator, counting the number of particles
of the state with a certain wave vector k, and of its integral over all wave vectors, N , as
the number operator, counting the total number of particles of the state. The detection
of a particle is in correspondence to the absorption of a particle from the field by the
detector, which is accompanied by the excitation of the detector. The detector may also
emit a particle if it is initially in the excited space, even if the field is in the vacuum state,
illustrating the difference between a field in the vacuum state and the absence of a field.

2.2.3 Field Theory in Curved Spacetimes

To be able to describe a field theory when the dynamics of the underlying spacetime
are not trivial, a new set of tools must be introduced. This necessity is a consequence
of the lack of global symmetries in generic spacetimes. A host of phenomena with no
analogue in flat spacetime QFT24 are described by this formalism, challenging notions
that play prominent roles in many treatments of QFT in flat spacetimes.

While Minkowski spacetime has the structure of a metric vector space and a global
symmetry group, the Poincaré group, a spacetime which is a solution of GR has, generically,
the structure of a metric manifold but no global symmetry group. The lack of a global
symmetry implies that there is no preferred notion of time and, therefore, no preferred
Hamiltonian or vacuum state for a field. This leads to multiple, observer dependent notions
of particles, as illustrated by the Unruh effect, described in subsection 2.2.4.

The canonical formalism requires a split of spacetime into space and time, implicitly
used in subsections 2.2.1 and 2.2.2. Given a spacetime manifoldM , this split can be achieved
by specifying a foliation of M (see [22]) into a family of 3-dimensional submanifolds Σt

parameterized by t, called leaves, which represent spatial slices, with the transversals
related to the time evolution (see figure 2). The Lorentzian spacetime metric gµν induces
a Riemannian spatial metric hµν on Σt via

hµν = gµν + nµnν , (2.92)

where nµ is the unit normal vector field of Σt. The tangent vector field to the t-coordinate
curves, tµ, can be decomposed into its normal and tangential parts, respectively, the
lapse N and the shift Nµ:

tµ = Nnµ +Nµ. (2.93)

The time derivative of a function f is then derivative in the direction of tµ, i.e.,

ḟ := tµ∇µf = Nnµ∇µf +Nµ∇µf. (2.94)

24 Note, however, that some phenomena described by QFT in curved spacetimes concern fields in flat
spacetimes, as show in subsection 2.2.4.
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Σt

Σ0

t

Σt

Σ0

tµ

Nµ

Nnµ

Figure 2 – Illustrations of a typical foliation and of the decomposition of the time direction
vector.

Since the intention of this formalism is describing the temporal evolution of observ-
ables, the foliations of interest are the ones in which the transversals have the topology
of R, which implies that M has the topology of R×Σ for some 3-dimensional manifold Σ,
and are future directed timelike curves. There is a theorem (see [15, 45, 46]) that indicates
sufficient conditions on M such that a foliation of this kind can be obtained, which uses
the concept of a globally hyperbolic spacetime, i.e., a spacetime that admits a Cauchy
surface. A Cauchy surface Σ for a time orientable spacetime M is a closed achronal set
such that its domain of dependence D(Σ), i.e., the set of all points p such that every past
and future inextendible causal curve passing through p intersects Σ (see [15]), is equal to
M .

Theorem 2.1. A globally hyperbolic spacetimeM with a Cauchy surface Σ is diffeomorphic
to R× Σ and admits a foliation by a one-parameter family of smooth Cauchy surfaces Σt.

Globally hyperbolic spacetimes are natural choices for field theories, since an initial
value formulation for hyperbolic second-order linear differential equations is available. A
precise statement is given in the following theorem (see [15] for more details and [47] for
its proof).

Theorem 2.2. A globally hyperbolic spacetime (M, gµν ) with Cauchy surface Σ0 and
a connection ∇µ admits a unique solution for any system of differential equations of
n unknown functions φA of the form

gµν∇µ∇νφA +
n∑

B=1

AA µ
B ∇µφ

B +
n∑

B=1

BA
Bφ

B + CA = 0, (2.95)

where the coefficients gµν , A
A µ
B , BA

B , C
A are smooth. The solutions φA ∈ W k,∞(M)

depend continuously on the initial data (φA0 , n
µ∇µφ

A
0 ) ∈ Hk+3(Σ0)×Hk+3(Σ0) on Σ0 and

the restriction of a solution φA to D(S), where S is a closed subset of Σ0, depends only on
the restriction to S of its initial data.

The dynamics of real free scalar fields on a curved spacetime (M, gµν ) are described
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by the KG Lagrangian density,

L = −1

2

√
−g(∇µφ∇µφ+m2φ2), (2.96)

where ∇ is the Levi-Civita connection on M and g is the determinant of the metric, and
its associated equation of motion,

(∇µ∇µ −m2)φ = 0, (2.97)

which, according to theorem 2.2, has a well posed initial value formulation. The Hamiltonian
density is computed with respect to a chosen foliation,

H = Nµ∇µφπ +
1

2

N√
h
π2 +

1

2

√
hN

(
hµν∇µφ∇νφ+m2φ2

)
, (2.98)

where h is the determinant of the spatial metric and the momentum π is given by

π = ∂φ̇L =
√
hnµ∇µφ. (2.99)

As is the case with QFT in flat spacetimes, a symplectic form can be defined on
the phase space of the system, but the choice of phase space is different from the one of
the theory in flat spacetimes. Recall that C∞0 (Σt) denotes the space of smooth functions of
compact support on Σt and let Ω = C∞0 (Σt)× C∞0 (Σt) be the phase space of initial data
on Σt of compact support. A strong symplectic form ω on Ω may be defined by

ω
(
(φ, π), (φ′, π′)

)
=

∫
Σt

d3x (φπ′ − φ′π), (2.100)

and it induces a symplectic form on the space S of solutions of the KG equation with
initial data in Ω:

ω(φ, φ′) =

∫
Σt

d3x
√
hnµ(φ∇µφ′ − φ′∇µφ). (2.101)

From the symplectic form, the Poisson bracket can be defined as

{F ,G} := ω(XF , XG), (2.102)

and the time flow is generated by the Poisson bracket with the Hamiltonian. Since the
Fourier transform is available in flat spacetime, the fundamental Poisson brackets given in
equations (2.36) are in a particularly useful form. In curved spacetimes, however, there are
no preferred expansion modes and a better way of representing the fundamental brackets
is working with functionals on Ω, for which the analogue of equation (1.36) holds:{

ω
(
(φ, π), ·

)
, ω
(
(φ′, π′), ·

)}
= ω

(
(φ, π), (φ′, π′)

)
. (2.103)

Some solutions of the KG equation have properties of great usefulness in the
definition of the field operators in the quantum theory. These are the advanced and retarded
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solutions to the KG equation with a source. It can be shown (see [48]) that there exist
maps A : C∞0 (M) → C∞0 (M) and R : C∞0 (M) → C∞0 (M) taking a function f ∈ C∞0 (M)

to, respectively, the advanced Af and retarded Rf solutions of the KG equation with
source f , i.e., putting P := ∇µ∇µ −m2,

PAf = (∇µ∇µ −m2)Af = f, (2.104a)

PRf = (∇µ∇µ −m2)Rf = f, (2.104b)

with the property that supp(Af) ⊂ J+(supp(f)) and supp(Rf) ⊂ J−(supp(f)), where
supp denotes the support of a function. Additionally, Af and Rf are the only solu-
tions of equations (2.104) such that the intersection of their support with J−(supp(f))

and J+(supp(f)), respectively, is compact. It is clear that Af and Rf are given by

Af =

∫
M

d4x
√
−g GA(x, x′)f(x′), (2.105)

Rf =

∫
M

d4x
√
−g GR(x, x′)f(x′), (2.106)

where GA and GR are, respectively, the advanced and retarded Green functions of the KG
equation. The advanced minus retarded map may also be defined by E := A−R, and the
image of a function f with respect to E is a solution of the homogeneous KG equation.
Important properties of this map are summarized in the following theorem (see [14] for
the proof).

Theorem 2.3. The map E : C∞0 (M)→ S fulfills the following properties:

1. Every φ ∈ S can be written as φ = Ef for some f ∈ C∞0 (M), i.e., it is a surjective
map.

2. The kernel of E is ker(E) = PC∞0 (M), i.e., Ef = 0 if and only if f = Pf ′ for some
f ′ ∈ C∞0 (M). Therefore, S = EC∞0 (M) = C∞0 (M)/PC∞0 (M).

3. For every φ ∈ S and f ∈ C∞0 (M),

ω(φ,Ef) =

∫
M

d4x
√
−g fφ. (2.107)

The computation of Poisson brackets may be simplified with the use of property 3
from theorem 2.3. Defining

E(f, f ′) :=

∫
M

d4x
√
−g fEf ′ (2.108)

for all f, g ∈ C∞0 (M) and introducing the notation

φ(f) :=

∫
M

d4x
√
−g fφ (2.109)
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for the smearing functional taking φ to its smearing by f , it is simple to check that

{φ(f) , φ(f ′)} = {ω(·, Ef) , ω(·, Ef ′)} = ω(Ef,Ef ′) = −E(f, f ′). (2.110)

Note that the Poisson bracket computed here is defined for functionals on S rather than
on Ω, since it is the one defined by the symplectic form on S. Smearings also clarify the
meaning of equations (2.36). By passing from the Poisson bracket on S to the one on Ω

and denoting by φΣt(f) and πΣt(f
′) the functionals on Ω taking (φ, π) to the smearings of

φ by f ∈ C∞0 (Σt) and π by h−1/2f ′ ∈ C∞0 (Σt), respectively, the following Poisson bracket
can be calculated:

{φΣt(f) , πΣt(f
′)} =

∫
Σt

d3x
√
h ff ′. (2.111)

But, utilizing the linearity of the Poisson bracket, it is expected that, if all appearing
quantities are well defined,

{φΣt(f) , πΣt(f
′)} =

{∫
Σt

d3x
√
h(x)f(x)φ(t,x) ,

∫
Σt

d3x′ f ′(x′)π(t,x′)

}
=

∫
Σt×Σt

d3x d3x′
√
h(x)f(x)f ′(x′){φ(t,x) , π(t,x′)}.

(2.112)

If the Dirac delta distribution on the right-hand side of equation (2.36c) is interpreted as
a densitized Dirac delta distribution, the right-hand sides of equations (2.111) and (2.112)
are equal25. Similar interpretations can be given to equations (2.36a) and (2.36b).

The construction of the Hilbert space of the theory in flat spacetimes involves, even
if indirectly, specifying the positive frequency part of solutions of the KG equation (see [14]
for an explicit construction in flat spacetimes). Since no preferred notion of time exist in
generic spacetimes, an analogue of this process must be found. One possible construction
involves the specification of and inner product µ : S × S → R which satisfies, for every
ψ ∈ S,

µ(ψ, ψ) =
1

4
sup

ψ′∈S−{0}

(ω(ψ, ψ′))2

µ(ψ′, ψ′)
. (2.113)

This is shown to be equivalent to a Cauchy–Schwarz equality below. The space S equipped
with µ has the structure of a pre-Hilbert space, and, thus, must be Cauchy completed to
yield a Hilbert space Sµ′ , with inner product µ′ = 2µ. A complex structure J on Sµ′ can
then be specified by the inverse process of the one described in subsection 2.2.1, i.e., by

ω(ψ, Jψ′) = µ′(ψ, ψ′), (2.114)

since J† = −J by the antisymmetry of ω and JJ† = I by equation (2.113). The complexi-
fication of Sµ′ , Sµ

′

C , is endowed with an antisymmetric form ω, a symmetric form µ′ and a

25 The Dirac delta distribution on a manifold is, in general, not translation invariant, so a more
appropriate notation would be δ(x,x′).
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complex structure J , the complex linear extensions of the corresponding operators acting
on Sµ′ , and an inner product for this space can be defined via

〈ψ|ψ′〉Sµ′C := µ′(ψ∗, ψ′). (2.115)

The Hilbert space H from which the Fock space for the theory is to be obtained (the “single
particle” Hilbert space) is defined as one the eigensubspaces of J . More specifically, since
iJ is self-adjoint, J has two eigenvalues, i and −i, and the two orthogonal eigensubspaces
associated to these eigenvalues span Sµ

′

C . The space H is then defined as the eigensubspace
associated to i. It can be shown that H is a Hilbert space with inner product

〈ψ|ψ′〉H = 〈ψ|ψ′〉Sµ′C , (2.116)

and that Sµ
′

C = H ⊕H, i.e., the eigensubspace of J associated to −i is H. The Hilbert
space for the theory in curved spacetimes is then taken to be Fs(H).

A map K : S → H with dense range provides an analogue of the specification of a
positive frequency subspace of S. Such a map can be defined by the restriction to S of the
orthogonal projection from Sµ

′

C to H and it satisfies

〈Kψ|Kψ′〉H = µ(ψ, ψ′) +
i

2
ω(ψ, ψ′). (2.117)

The Cauchy–Schwarz inequality for the inner product on H is equivalent to

µ(ψ, ψ)µ(ψ′, ψ′) ≥ 1

4
(ω(ψ, ψ′))2, (2.118)

which justifies the assumption of equation (2.113). If that condition is relaxed to allow for
any µ satisfying the inequality, rather than the equality, similar results may be obtained
(see [49]). In flat spacetimes, the preferred choice for K is given by the Fourier transform
of a(k) (see equations (2.42) and (2.47)).

Quantization of the theory is achieved with the implementation of the CCR
corresponding to equation (2.110),

[φ(f) , φ(f ′)] = −iE(f, f ′)I. (2.119)

Defining the operator-valued functional

φ(f) := ia((KEf)∗)− ia†(KEf), (2.120)

it can be verified that the CCR are satisfied, i.e.,

[φ(f) , φ(f ′)] = [a((KEf)∗) , a†(KEf ′)]− [a((KEf ′)∗) , a†(KEf)]

= (〈KEf |KEf ′〉H − 〈KEf
′|KEf〉H)I = 2i Im(〈KEf |KEf ′〉H)I

= iω(Ef,Ef ′)I = −iE(f, f ′)I.

(2.121)
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An important quantity for the quantum theory is the Wightman function (also called the
two-point function) of a field, given by the vacuum expectation value of the product of
two fields at different points in spacetime. The smeared version of this function has a
particularly nice form,

〈0|φ(f)φ(f ′)|0〉 = 〈KEf |KEf ′〉H = µ(Ef,Ef ′) +
i

2
ω(Ef,Ef ′). (2.122)

This function, along with its generalizations, the n-point functions, play a key role in
constructive QFT, since it can be show that any QFT in flat spacetimes can be reconstructed
using only the information contained in these functions (see [41] for the statement and
proof of the reconstruction theorem).

The construction presented above can always be achieved in any globally hyperbolic
spacetime (see [14]), but multiple choices can be made for the inner products on S, so it
is natural to question whether different choices yield different physical predictions. Two
QFTs are said to be unitarily equivalent if there exists a unitary map U : F1 → F2 between
the Hilbert spaces F1 and F2 of each theory, here taken to be the Fock spaces F1 = Fs(H1)

and F1 = Fs(H2), such that the corresponding fields are related via

Uφ1(f)U−1 = φ2(f). (2.123)

If two theories are unitarily equivalent, all physical predictions obtained from them are
equal.

A necessary condition for unitary equivalence is the strong equivalence of the inner
products on H1 and H2. Two inner products, µ1 on H1 and µ2 on H2, are said to be
strongly equivalent if there exist constants C,C ′ > 0 such that, for every φ ∈ S,

Cµ1(φ, φ) ≤ µ2(φ, φ) ≤ C ′µ1(φ, φ). (2.124)

Strong equivalence of inner products implies strong metric equivalence and, in particular,
that every sequence which converges in the norm induced by µ1 also converges in the norm
induced by µ2, and vice-versa. Unitary equivalence relies on this convergence property
and, therefore, is impossible for Hilbert spaces with inequivalent inner products. If the
two Hilbert spaces in question are equipped with equivalent inner products, the Cauchy
completions of S in the norms induced by µ′1 and µ′2, defined as above, are equal (due to
strong metric equivalence) and denoted Sµ′ . It is then possible, in light of the constructions
above, to see H1 and H2 as subspaces of Sµ′ = H1 ⊕ H1 = H2 ⊕ H2. Comparing the
orthogonal projection maps Kk : Sµ

′

C → Hk and K∗k : Sµ
′

C → Hk, with k ∈ {1, 2} and
which satisfy Kk +K∗k = I, can be done by analyzing the restriction of these maps to the
Hilbert spaces of the other theory. Defining A : H2 → H1 to be the restriction of K1 to H2,
B : H2 → H1 the restriction of K∗1 to H2, C : H1 → H2 the restriction of K2 to H1 and
D : H1 → H2 the restriction of K∗2 to H1, it can be seen that the strong equivalence for
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the inner products implies that these operators are bounded and that, if ψ, χ ∈ H2,

〈ψ|χ〉H2
= iω(ψ∗, χ) = iω([(K1 +K∗1)ψ]∗, (K1 +K∗1)χ)

= ω((K1ψ)∗, J1K1χ)− ω((K∗1ψ)∗, J1K
∗
1χ)

= 〈Aψ|Aχ〉H1
− 〈Bψ|Bχ〉H1

,

(2.125)

since H1 is orthogonal to H2, which also gives, if ψ ∈ H2 and χ ∈ H2,

〈ψ|χ〉Sµ′C = iω(ψ∗, χ) = iω([(K1 +K∗1)ψ]∗, (K1 +K∗1)χ)

= ω((K∗1ψ
∗), J1K1χ)− ω((K1ψ

∗), J1K
∗
1χ)

= 〈B∗ψ|Aχ〉H1
− 〈A∗ψ|Bχ〉H1

= 0.

(2.126)

Similar relations also hold for C and D. Finally, for ψ ∈ H1 and χ ∈ H2,

〈ψ|Aχ〉H1
= iω(ψ∗, K1χ) = iω(ψ∗, (K1 +K∗1)χ) = iω(ψ∗, χ)

= iω([(K2 +K∗2)ψ]∗, χ) = iω((K2ψ)∗, χ) = 〈Cψ|χ〉H2
.

(2.127)

These relations give

A†A−B†B = I, (2.128a)

A†B∗ = B†A∗, (2.128b)

C†C −D†D = I, (2.128c)

C†D∗ = D†C∗, (2.128d)

A† = C, (2.128e)

B† = −D∗. (2.128f)

A unitary transformation satisfying equation (2.123), which can be reduced to

Ua1(χ∗)U−1 = a2((Cχ)∗)− a†2((Dχ)∗) (2.129)

for any χ ∈ H1, together with the operators A, B, C and D satisfying equations (2.128)
is called a Bogoliubov transformation. The conditions for the existence of a Bogoliubov
transformation can be found by considering the action of U on the vacuum state of F1,

Ψ = U |0〉1 = c(1, ψa, ψab, ψabc, . . . ), (2.130)

where c is a constant, and which, in conjunction with equation (2.129), gives

(a2(ξ∗)− a†2(Eξ∗))Ψ = 0, (2.131)

for every ξ ∈ H2, where ξ = Cχ for some χ ∈ H1 and E = D∗C∗−1. Expanding Ψ in terms
of its Fock space components, an infinite set of coupled equations is obtained, the first
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four of which are:

ξ∗aψ
a = 0, (2.132a)

√
2ξ∗aψ

ab = ξ∗a
′
Eb

a′ , (2.132b)
√

3ξ∗aψ
abc =

√
2ξ∗a

′
E

(b
a′ψ

c), (2.132c)
√

4ξ∗aψ
abcd =

√
3ξ∗a

′
E

(b
a′ψ

cd). (2.132d)

The solution to this system of equations is given by

Ψ = c(1, 0,

√
1!!

2!!
Eab, 0,

√
3!!

4!!
E(abEcd), . . . ), (2.133)

where n!! denotes the double factorial of n. This state is only well defined if E is symmetric,
which follows from equation (2.128d), and is inH2⊗H2, which requires that26 tr(E†E) <∞
and is equivalent27 to either tr(B†B) < ∞ or tr(D†D) < ∞. Alternatively, this second
condition can be described by the statement that the map Q : Sµ′ → Sµ′ , defined via

µ1(φ,Qφ′) = µ1(φ, φ′)− µ2(φ, φ′), (2.134)

fulfills tr(Q) <∞. The action of U on |0〉1 can be extended to the whole of F1, since |0〉1 is
cyclic, and U can be shown to be unitary if the constant c is defined by normalizing Ψ.

An important note is that all the conditions delineated above are satisfied in the
finite dimensional case, meaning that all representations of finite families of harmonic
oscillators are unitarily equivalent, in accordance with the celebrated Stone–von Neumann
theorem (see [50]). There are simple examples in infinite dimensions where unitarilly
inequivalent constructions can be found (see [14]). A physical application of the construc-
tion of the map U is when the spacetime in question is asymptotically stationary (see
subsection 2.2.4) in the future and the past, with U : Fs(Hin)→ Fs(Hout) corresponding to
the S-matrix mapping the Hilbert space of in-going states, Fs(Hin), to the one of out-going
states, Fs(Hout).

2.2.4 The Unruh Effect

One of the main predictions of QFT in curved spacetimes also applies to QFTs
in flat spacetimes: the Fulling–Davies–Unruh effect or, simply, Unruh effect. It states
that a uniformly accelerating observer in Minkowski spacetime perceives the state of a
field determined to be the vacuum state by inertial observers as a thermal state, i.e., a
thermal bath of particles. In this subsection, the effect is derived for a more general class of
spacetimes, stationary spacetimes. Emerging questions about the nature of particles may
26 This is known as the Hilbert–Schmidt condition, and is equivalent to the statement that the operator

is of finite norm with respect to the inner product 〈A|B〉 = tr(A†B).
27 Equations (2.128a) and (2.128c) imply that A−1 and C−1 exist and are bounded.
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be answered by careful analysis of the domain of validity of this concept. In chapter 3, the
consequences of the Unruh effect for particle decay will be presented. Historical references
on the Unruh effect are [7–9]. A comprehensive review can be found in [51] and the
derivation presented here is based on [14].

A uniformly accelerating trajectory28 in Minkowski spacetime is one with con-
stant proper acceleration. To define the proper acceleration (in a generic spacetime), the
4-acceleration aµ must be defined,

aµ := uν∇νuµ, (2.135)

where uµ is the 4-velocity of the trajectory, i.e., its tangent vector in the proper time
parametrization, satisfying uµu

µ = −1. The acceleration measures the failure of the
trajectory to be geodesic and indicates that some non-gravitational force fµ = maµ is
present. The magnitude a =

√
aµa

µ of the 4-acceleration is called the proper acceleration.
Returning to Minkowski spacetime and introducing an inertial coordinate system (t, x, y, z)

with a suitable choice for the origin and such that the x-direction is the direction of motion
of the trajectories of interest, it is evident that the 4-velocity of a family of uniformly
accelerating trajectories indexed by a is given by

uI = a[x(∂t)
I + t(∂x)

I ] (2.136)

and its integral curves are determined by uIuI = −1, which gives

x2 − t2 =
1

a2
. (2.137)

The trajectories are timelike curves only in the region defined by |x| > |t| and future
directed only in the region defined by x > |t|. Figure 3 illustrates the behaviour of these
objects.

The vector field uK introduced above is a Killing vector field for the Minkowski
metric ηKL, i.e., the flow generated by it is metric preserving (an isometry). This means
that the Lie derivative of the metric with respect to uK vanishes:

LuηIJ = uK ∂KηIJ + ηKJ ∂Iu
K + ηIK ∂Ju

K = 2 ∂(IuJ) = 0. (2.138)

The concept of a Killing field can be generalized to a generic spacetime (M, gµν ) by
imposing the condition above and noting that the Lie derivative in the direction of the
Killing field χµ is now taken with respect to the Levi-Civita connection:

Lχgµν = 2∇(µχν) = 0. (2.139)

Isometries have the special property that their action on a connected manifold M may
be completely recovered from their action on a point p and of their pushforward on TpM .
28 A trajectory is understood to be a timelike curve in spacetime.
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SΣII
II

ΣI
I

III

IV

hA

hB

Figure 3 – Minkowski diagrams illustrating the vector field uµ and its integral curves
(adapted from [14]). Labeled are the Cauchy surfaces, ΣI and ΣII, the Killing
horizons, hA and hB (which divide the diagram into regions I–IV), and their
intersection S.

Extending this property to Killing fields allows for the characterization of a one-parameter
group of isometries by its behaviour around a 2-dimensional spacelike surface S whenever
the Killing field vanishes on S (see [14]), which leads to the conclusion that the behaviour
of the field is locally well represented by figure 3. Two null surfaces orthogonal to S,
hA and hB, arise in this construction and constitute a bifurcate Killing horizon, separating
the spacetime (at least locally) into four regions, called wedges, enumerated I–IV as in
figure 3. Assuming global hyperbolicity for the spacetime, with a Cauchy surface intersecting
S, these regions are given by

wedge I = I−(hA) ∩ I+(hB), (2.140a)

wedge II = I+(hA) ∩ I−(hB), (2.140b)

wedge III = J+(S), (2.140c)

wedge IV = J−(S). (2.140d)

It can be seen that χµ is normal to the Killing horizon and, since the horizon is comprised
of null surfaces, that χµχµ = 0 on it, which implies that ∇µ(χνχ

ν) is also normal to the
Killing horizon. The function relating these two vector fields on the horizon is called the
surface gravity κ of the horizon, given by

∇µ(χνχ
ν) = −2κχµ. (2.141)

An explicit expression for κ can be found,

κ2 = −1

2
(∇µχν)(∇µχν), (2.142)

which can be rewritten as limit approaching the horizon,

κ2 = − lim
(χν∇νχµ)(χρ∇ρχµ)

χσχ
σ

. (2.143)
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The acceleration of the Killing field,

aµ =
χν∇νχµ

χσχ
σ
, (2.144)

can be recognized in the expression above, yielding

κ = lim aχ, (2.145)

where a =
√
aµa

µ and χ =
√
χµχ

µ may be identified with a sort of “gravitational redshift
factor” in the case of an asymptotically flat spacetime (see [15]), giving κ the interpretation
of the limit approaching the horizon of the redshifted proper acceleration. It can be shown
that κ is constant on the whole bifurcate29 Killing horizon.

A spacetime with a one-parameter group of isometries αt with timelike orbits is
called stationary. A special QFT can be constructed in globally hyperbolic spacetimes of
this kind, with the “single particle” Hilbert space corresponding to the space of positive
frequency solutions of the KG equation with respect to the Killing time t corresponding
to the family of isometries (an affine parameter for its orbits). It involves specifying an
inner product on SC with the use of the KG stress-energy tensor,

Tµν (φ, φ′) = ∇(µφ
∗∇ν)φ

′ − 1

2
gµν (∇ρφ∗∇ρφ′ +m2φ∗φ′). (2.146)

Defining the inner product 〈· | ·〉T : SC × SC → C by

〈φ|φ′〉T :=

∫
Σ

d3x
√
hTµν (φ, φ′)χµnν , (2.147)

where χµ is the Killing field corresponding to the family of isometries, Σ is a Cauchy
surface and nν is normal to Σ, it can be seen that it is independent of the choice of Σ and
invariant under Killing time translations, since

∇µ(T µνχν) = ∇µ(T (µν)χν) = ∇(µ(T µνχν)) = 0 (2.148)

and the Killing time translation τt : SC → SC of φ ∈ SC is defined by τtφ := φ ◦ α−t,
which implies that τtφ evaluated on Σ is equal to φ evaluated on α−tΣ. The Cauchy
completion of SC in the norm induced by this inner product is denoted H̃ and the Killing
time translation can be extended via continuity in the strong operator topology to H̃. It
clearly forms a one-parameter unitary group and, by Stone’s theorem (see [50]),

τt = e−iH̃t, (2.149)

where H̃ is the self-adjoint operator generating the time translations on H̃, i.e.,

Lχφ = H̃φ. (2.150)
29 This result can be extended to non-bifurcate Killing horizons (see [14]).
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Under suitable conditions, it can be shown that the spectrum of H̃ has a mass gap and
that H̃−1 is bounded. Putting H̃+ as the subspace of H̃ spanned by the eigenstates of H̃
with positive eigenvalues, the projection map K : H̃ → H̃+ may be defined alongside with
an inner product µ : S × S → R, given by

µ(φ, φ′) := 2 Re(〈Kφ|H̃−1Kφ′〉T ). (2.151)

This inner product can be used to repeat the process introduced in subsection 2.2.3
and the QFT obtained has as “single particle” Hilbert space the Cauchy completion of
H̃+ in the norm induced by the KG inner product, which may be interpreted as the
space of “positive frequency” solutions with respect to t. There is, thus, a notion of
particles corresponding to the Killing time t arising from the particle detector construction
introduced in subsection 2.2.2.

To derive the Unruh effect in the context of stationary spacetimes, the concepts
of accelerated and inertial trajectories must be delineated and the QFTs corresponding
to the choices of proper time along these trajectories must be constructed. Assuming the
existence of some Killing field χµ with a bifurcate Killing horizon on a globally hyperbolic
spacetime, it can be seen that wedges I and II, as defined above, are themselves globally
hyperbolic spacetimes with Cauchy surfaces ΣI = Σ∩wedge I and ΣII = Σ∩wedge II if Σ is
a Cauchy surface intersecting S, the surface where the Killing field vanishes. Choosing χµ

as the Killing field (assumed, furthermore, to be globally timelike on wedge I) for the
QFT on wedge I (seen as a stationary spacetime) and −χµ for the QFT on wedge II (since
χµ is past-directed on wedge II), a QFT on wedge I∪ wedge II can be constructed with
“single particle” Hilbert space given by H = HI ⊕HII, where HI and HII are the “single
particle” Hilbert spaces for the QFTs on wedges I and II, respectively. The states in the
Fock space of this QFT, Fs(H) = Fs(HI)⊗Fs(HII), are the ones described by observers
on the accelerated trajectories, i.e., the orbits of the Killing fields. An extension of the
idea of inertial trajectories can be found by considering the null geodesics tangent to the
Killing field generating one of the Killing horizons. Equation (2.141) implies

χν∇ν(χµ) = κχµ (2.152)

because χν is a Killing field, i.e., ∇(νχµ) = 0, but this equation is also the geodesic
equation for a nonaffinely parameterized curve with χµ as its tangent field. To find an
affine parameter V (also called affine time) for this geodesic (which is analogous to the
proper time for timelike geodesics), one must determine the change of parameter under
which this equation takes the form of the geodesic equation (2.4). A straightforward
calculation yields that

V = eκv, (2.153)

where v is the Killing time (the parameter for which the curve satisfies equation (2.152)),
is a valid choice for V > 0. The relation between the affine and Killing times can then be
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extended via
v =

1

κ
ln|V |. (2.154)

This choice is clearly adequate for the geodesics in the Killing horizon30 hA, while for the
ones on hB it is a parameter U such that

u = −1

κ
ln|U |, (2.155)

where u is, again, the Killing time on hB. The specification of trajectories only on the
horizon is enough for the purposes of this derivation because every solution of the KG
equation is uniquely determined by its value on hA ∪ hB, at least for most spacetimes of
interest (see [49] for more details).

Computing the S-matrix between QFTs with Killing time and affine time is sufficient
to demonstrate the existence of the Unruh effect. The first step of the process assuming
that there exists a QFT with a map K : S → H0, where H0 is the “single particle” Hilbert
space, such that Kφ restricted to the bifurcate horizon is a (nontrivial) solution of the KG
equation with positive frequency with respect to V on hA and with respect to U on hB.31

The second step is to add the hypothesis that there exists an isometry ι which reflects points
in wedge I to those on wedge II (and vice versa) and across the Cauchy surface Σ, leaving
Σ invariant, with the additional condition that ι commutes with the family of isometries
induced by the Killing fields in question.32 To compute the S-matrix, a family {ψIω} of
“plane wave” solutions of the KG equation, which oscillate with (positive) frequency ω
with respect to the Killing time on wedge I and characterized by its vanishing on wedge II,
is considered. This family spans HI, though it is not contained in it. Restricting ψIω to the
horizon hA gives the function

fIω(V, ξ) = h(ξ)e−iωvθ(V ), (2.156)

where ξ ∈ Σ, h is some function on hA and θ is the unit step function. The matrices A, B,
C, D and E for the Bogoliubov transformation may be obtained by performing Fourier
analysis on f ,

f̂Iω(σ, ξ) =
h(ξ)√

2π

∫ ∞
0

dV ei(σV−ω/κ ln(V )), (2.157)

since it can be shown that any solution of the KG equation is uniquely determined by
its restriction on the bifurcate horizon. Rotating the integration contour on the complex
plane and using the relation between branches of the logarithm, the following relation can
be obtained for σ > 0:

f̂Iω(−σ, ξ) = −e−πω/κf̂Iω(σ, ξ). (2.158)
30 This horizon is split into two parts, one laying in the causal past of S and one in the causal future

of S. The Killing time v takes values on the whole of R in each part, which explains why the relation
is not bijective. The same applies to the horizon hB and to the parameters u and U .

31 This is strongly motivated by results on Hadamard states, which can be found in [49].
32 This hypothesis turns out to be somewhat tame, as discussed in [49].
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The isometry ι induces a mapping between {ψIω} and a similar family of harmonically
oscillating solutions with frequency ω and vanishing on wedge I, denoted {ψ∗Iω}, which
spans HI. The restriction of one of these functions to hA is given by

f ∗IIω(V, ξ) = h(ξ)e−iωvθ(−V ), (2.159)

and its Fourier transform is given by

f̂ ∗Iω(σ, ξ) = f̂Iω(−σ, ξ), (2.160)

since ι commutes with the isometries generated by the Killing fields. This implies that the
function

Fω(V, ξ) := fIω(V, ξ) + e−πω/κf ∗IIω(V, ξ) (2.161)

oscillates with purely positive frequency with respect to V . The same procedure can be
applied to functions on hB, from where it can be concluded that

F ′ω(V, ξ) := fIIω(V, ξ) + e−πω/κf ∗Iω(V, ξ) (2.162)

oscillates with purely positive frequency with respect to U . If Fω and F ′ω are the restrictions
of solutions Ψω and Ψ′ω of the KG equation, the action of the matrices C, D and E on Ψω

may be obtained, even if only formally33:

CΨω = ψIω, (2.163a)

CΨ′ω = ψIIω, (2.163b)

DΨω = e−πω/κψ∗Iω, (2.163c)

DΨ′ω = e−πω/κψ∗IIω, (2.163d)

EψIω = e−πω/κψ∗Iω, (2.163e)

EψIIω = e−πω/κψ∗IIω. (2.163f)

The action of the S-matrix U on the vacuum state of the QFT defined by the affine
time, |0M〉, is then given purely in terms of Eab and may be written as:

U |0M〉 =
∏
ω

∞∑
nω=0

e−πnωω/κ |nIω〉 ⊗ |nIIω〉 , (2.164)

where |nIω〉 ∈ Fs(HI) and |nIIω〉 ∈ Fs(HII) are the “n-particle” states corresponding to the
modes ψIω and ψIIω, respectively. The restriction of this state to wedge I is represented
by the density matrix ρ = tr(U |0M〉〈0M |U †), where the trace is taken over the states in
wedge II:

ρ =
∏
ω

∞∑
nω=0

e−2πnωω/κ|nIω〉〈nIω|. (2.165)

33 This action can be made rigorous by considering suitable wavepackets constructed from the “plane
wave” modes instead of those modes.
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This state is easily recognized to be a bosonic thermal state with temperature

T =
κ

2π
, (2.166)

called the Unruh temperature, if it is “normalized” by the partition function, yielding

ρ =
∏
ω

(1− e−2πω/κ)
∞∑

nω=0

e−2πnωω/κ|nIω〉〈nIω|. (2.167)

This indicates that accelerated observers in wedge I perceive themselves to be immersed
in a thermal bath of particles when the field is in the vacuum state as described by the
inertial observers. The temperature of this thermal bath is measured by the accelerated
observers to be

T =
κ

2πχ
, (2.168)

where χ is the gravitational redshift factor, and, having equation (2.145) in mind, it can
be seen that, near the horizon, the measured temperature is actually

T ≈ a

2π
, (2.169)

where a is the acceleration of their orbits. In particular, when the spacetime is taken to be
the Minkowski spacetime coordinatized by (t, x, y, z), χµ is taken to be the 4-velocity uI

of a uniformly accelerated observer moving in the x-direction and the isometry ι is taken
to be the mapping (t, x, y, z) 7→ (−t,−x, y, z), the original statement of the Unruh effect
is recovered, with the temperature of the thermal state being exactly

T =
a

2π
. (2.170)

A few remarks on the physical interpretation of the Unruh effects must be made.
Firstly, the effect should be detectable only on extremely high acceleration scales, as can
be seen by restoring the SI units to equation (2.170):

T =
}a

2πkBc
≈ a× 4.055× 10−21 K s2

m
. (2.171)

The prediction that different observers disagree on the particle content of spacetime may
also be worrying if QFT is seen as a theory of quantum particles, but, as its name suggests,
QFT describes quantum fields. This prediction just leads to the conclusion that a global
particle number operator is not a Dirac observable, although proper detection rates for
particle detectors are (see [51]). Particles are not a fundamental concept in the theory
but a (very useful) frame dependent interpretation of special states on Fock space, and
no mention of this interpretation must be made in order to introduce the formalism.
References to particles made above were either explicit about how this interpretation arises
or used as shorthand for ideas that rely only on the concept of fields. There is also no
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disagreement between observations made, e.g., by inertial and accelerated observers in
Minkowski spacetime: if the accelerated observer absorbs a particle from the thermal bath,
the inertial observer sees that a particle is emitted by the accelerated observer (see [44]
for details), which illustrates that any interaction between the field and the accelerated
observer is perceived to happen by both observers (although their interpretations might
differ). Finally, the correlations between the causally disconnected regions wedge I and
wedge II appearing in equation (2.164) are not alarming since the Wightman function of
the KG field in Minkowski spacetime, which measures correlations in the vacuum state, is
nonvanishing at spacelike separations.

Some problems of mathematical nature are present in this derivation, the main
one being that the state given in the right-hand side equation (2.164) is not a state
in Fs(H) = Fs(HI) ⊗ Fs(HII), as it is clearly non-normalizable. This implies that the
computation of the S-matrix is only a formal one, since the two QFTs are unitarily
inequivalent. Though the Unruh effect (in Minkowski spacetime) can be derived rigorously
in the context of constructive QFT (see [52]), the algebraic approach is the most commonly
used tool to investigate phenomena like the Unruh effect. The central object in this approach
is the algebra of physical observables, rather than the Hilbert space, which facilitates
dealing with unitarily inequivalent constructions and clarifies some of the questions that
may arise from the derivation of the Unruh effect. A detailed reference on the algebraic
approach is [53]; for its application to QFT in curved spacetimes, see [14].
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3 CP Violation

In this chapter are presented the main results of this dissertation, and one of the
phenomena that motivated them, CP violation, is discussed. The observation that the
weak interaction violates the CP symmetry forces the introduction of some modifications
to the usual descriptions of the CP -violating processes, briefly presented in section 3.1.
The impact of the Unruh effect on the decay of accelerated particles—in particular, of
CP -violating species—is derived, and its impact on a very interesting physical phenomenon
related to CP violation, the matter-antimatter asymmetry, is discussed in section 3.2.

3.1 CP Violation and Kaons

Fundamental results on the CP symmetry are described in this section. The first
evidence for CP violation by the weak interaction was the detection of the decay of two
neutral kaons of a certain species into two pions, forbidden by the CP symmetry, in the
Fitch–Cronin experiment (see [12]). Decay channels of this kind will be of interest due to
the wealth of experimental results available, so a study of them is presented. A complete
reference on CP violation is [54], while details on the weak interaction can be found in [55].

3.1.1 The CP Symmetry

A symmetry of a system is, in general, a transformation of the system that does
not affect its description. For a QFT, symmetries may be implemented by operators acting
on a Fock space in such a way that probabilities are conserved. Therefore, it is clear that
symmetries must correspond to unitary or antiunitary operators, i.e., if O is the operator
corresponding to some symmetry,

|〈ψ|O†O|ψ′〉|2 = |〈ψ|ψ′〉|2, (3.1)

which implies that either O†O = I or O†O = K†K, where K : F(H) → F(H) is the
complex conjugation map between the Fock space F(H) of the QFT and its complex
conjugate space. Since a field φ is operator valued, the transformed field φ′ has the form

φ′ = OφO−1. (3.2)

For a QFT to be invariant with respect to O, its vacuum, its action and the CCR must
be invariant. The condition over the action, in particular, implies that O is a constant of
motion.

The QFT of interest in this work is the one describing pseudoscalar fields in
Minkowski spacetime, which is very similar to the QFT constructed as in subsection 2.2.1,
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describing scalar fields. All developments presented here will be based on the latter and
may be generalized to the former (see, e.g., [54]). The symmetries of interest are the
charge conjugation symmetry C, the parity symmetry P and time reversal symmetry T .
For the charge conjugation symmetry to act nontrivially it is required that the fields in
question be able to describe charged species. A real scalar field cannot describe a charged
species, so complex fields must be considered. Fortunately, generalizing the construction of
subsection 2.2.1 to complex fields is a simple task. All that has to be done is to substitute
the binomial expressions on the field in the Lagrangian given in equation (2.28) by products
of the corresponding expressions for the field and its complex conjugate, and to take both
fields as independent fields. This leads to the conclusion that the (quantum) field φ can
be represented as

φ(x) =
1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(k)eikLx

L

+ b†(k)e−ikLx
L
)
, (3.3)

where b(k) is an annihilation operator defined very similarly to a(k),

b(t,k) :=

√
ω(k)

2
φ̂†(t,k) + i

√
1

2ω(k)
˙̂
φ†(t,k), (3.4)

where φ̂† is the Fourier transform of the adjoint field34. It is clear that this operator must
satisfy the CCR, i.e.,

[b(k) , b†(k′)] = δ(k− k′)I. (3.5)

A natural way to compute the action of C on the fields is to consider the KG
norm35 of φ multiplied by a coupling parameter q for some interaction (which gives the
scale of the charge) as the charge Q of the field, i.e,

Q(φ) = iq

∫
R3

d3x (φ† ∂tφ− φ ∂tφ†) = q(Na −Nb), (3.6)

where Na and Nb are the number operators36 corresponding to the annihilation operators a
and b, respectively. It is then simple to obtain

Cφ(t,x)C−1 = φ†(t,x). (3.7)

Invariance of the vacuum can be investigated by noting that the expressions for the induced
transformation of the annihilation operators are given, if postulated that C is unitary, by

Ca(k)C−1 = b(k), (3.8)

34 Note that this differs from the adjoint of the the Fourier transform of the field. They are related by a
change of sign of k in their arguments.

35 This quantity is clearly a constant of motion, since the symplectic form is preserved by the Hamiltonian
flow.

36 The number operators appear in this expression because Q is normally ordered.
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since C2 = I. Then it is clear that the vacuum state of the theory is invariant, given
that it is the unique state annihilated by all annihilation operators. Invariance of the
action is easily obtained if the appropriate transformation for the current of the field is
verified. Since the the current density J I is the 4-vector with the density of Q as its time
component, it is natural to put

J I(φ) = iq(φ ∂Iφ∗ − φ∗ ∂Iφ). (3.9)

The current transforms via
CJ IC−1 = −J I , (3.10)

which implies that any action coupling some field that changes sign when acted upon by C
to φ by the current is C invariant, as is the case with Yang–Mills couplings (see [54]). The
CCR are invariant only if C is unitary, which justifies the assumption made above. Their
invariance come from the fact that the momentum of the adjoint field is the adjoint of
the momentum of the field and the CCR for the adjoint field are equivalent to the CCR
for the field. The requirement of unitarity appears because the CCR establish that the
commutator of the field with its momentum is proportional to iI.

The parity transformation on Minkowski spacetime is a reflection through the
origin, inducing the following transformation on the fields:

Pφ(t,x)P−1 = φ(t,−x). (3.11)

Vacuum invariance stems from the transformation rules for annihilation operators which
may, again, be obtained from:

Pφ(t,x)P−1 = φ(t,−x)

=
1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(k)e−i(k`x

`+ωt) + b†(k)ei(k`x
`+ωt)

)
=

1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(−k)eikLx

L

+ b†(−k)e−ikLx
L
)
.

(3.12)

Thus, if P is unitary,

Pa(k)P−1 = a(−k), (3.13)

Pb(k)P−1 = b(−k), (3.14)

which establishes the vacuum invariance. Verifying the invariance of the action is trivial,
since P ∂IP−1 = − ∂I . So is verifying the invariance of the CCR, since the Dirac delta
distribution is parity invariant. Once again, invariance of the CCR implies unitarity for P .

Time reversal is also a symmetry of Minkowski spacetime and, thus, induces a
transformation on the fields:

Tφ(t,x)T−1 = φ(−t,x). (3.15)
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Checking invariance of the vacuum again reduces to obtaining the expressions for the
transformations of the annihilation operators from

Tφ(t,x)T−1 = φ(−t,x)

=
1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(k)ei(k`x

`+ωt) + b†(k)e−i(k`x
`+ωt)

)
=

1

(2π)3/2

∫
R3

d3k
1√

2ω(k)

(
a(−k)e−ikLx

L

+ b†(−k)eikLx
L
)
,

(3.16)

which yields different results whether T is taken to be unitary of antiunitary. Assuming
the latter to be true,

Ta(k)T−1 = a(−k), (3.17)

Tb(k)T−1 = b(−k), (3.18)

proving the invariance of the vacuum. Invariance of the action is once again trivial,
since T ∂IT−1 = ∂I . Invariance of the CCR now implies that T is antiunitary, since the
momentum π transforms via Tπ(t,x)T−1 = −π(t,x).

By combining C and P transformations, one obtains the CP transformation, acting
on fields as

CPφ(t,x)(CP )−1 = φ†(t,−x). (3.19)

The physical interpretation of this transformation is that the application of P induces
a parity transformation on space and C transforms particles into antiparticles. The
interpretation for C is clear from the creation operator transformation law. A very
important result relating the three symmetries mentioned above is the CPT theorem,
which states the transformation CPT is always a symmetry of any QFT37. In particular, it
implies that any violation of one these symmetries must be accompanied by the violation
of the combination of the two others. If CP violation is to be considered, T violation must
also be taken into account. CPT invariance is very well tested experimentally (see [56]).

3.1.2 The Kaon to Pion Decay Channels

The kaon to pion decay channels are of interest not only because they were the first
detected source of CP violation, but also because a great deal of experimental data about
them is available. A model for a system with kaons is presented below, which enlightens the
connection between eigenstates of the strong and weak interactions and the experimental
results on CP violation. More details on this model can be found in [55].

Kaons comprise a family of strange pseudoscalar mesons, i.e., quark-antiquark pairs
with nonzero strangeness. The four kaon eigenstates of the strong force are: K+ = (us),
37 “Any QFT” here means any QFT satisfying the Wightman axioms (see [41]), which essentially encode

that the theory is relativistic and satisfies microcausality.
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K− = (su), K0 = (ds) and K0
= (sd), where u, d and s are, respectively, the up, down

and strange quarks, and u, d and s are their antiparticles. Note that K− is the antiparticle
of K+ and K

0 is the antiparticle of K0. The CP -violating decay channel is the one
where a certain kind of neutral kaon decays into two pions, denoted K → ππ. Since
they involve neutral kaons, charged kaons will not be discussed. Pions also comprise a
family of pseudoscalar mesons and the strong eigenstates are: π+ = (ud), π− = (du) and
π0 = 1/

√
2(uu−dd). Note that while π− is the antiparticle of π+, π0 is its own antiparticle.

To understand the decay of a neutral kaon into a two pions, a basis of CP eigenstates
for the neutral kaon space must be found, since

CP |π+π−〉 = (−1)2C |π−π+〉 = |π+π−〉 , (3.20a)

CP |π0π0〉 = (−1)2C |π0π0〉 = |π0π0〉 . (3.20b)

The neutral kaons K0 and K0, however, are not CP eigenstates, since

CP |K0〉 = −C |K0〉 = − |K0〉 , (3.21a)

CP |K0〉 = −C |K0〉 = − |K0〉 . (3.21b)

Taking linear combinations of theses states yields the CP eigenstates,

|K1〉 =
1√
2

(|K0〉 − |K0〉), (3.22a)

|K2〉 =
1√
2

(|K0〉+ |K0〉), (3.22b)

which span the neutral kaon space and satisfy CP |K1〉 = |K1〉 and CP |K2〉 = − |K2〉. This
implies that the kaon K2 cannot decay into two pions, and that the transition K1 → ππ

contains all the information on the decay channel.

Strangeness is conserved by the strong and electromagnetic interactions, so the
decay of a kaon into pions cannot be mediated by them. The weak interaction, however,
violates conservation of strangeness. The dynamics of a neutral kaon system may then
be described by a quantum mechanical system with Hamiltonian H = H0 +HW, where
H0 describes the dynamics of the free field and the strong and electromagnetic interactions,
and HW describes the weak interaction. Results in perturbation theory imply that the
restriction of the time flow to the subspace38 HK of neutral kaons is generated by the
effective Hamiltonian

Heff = HW +
∑
|ψ〉/∈HK

HW|ψ〉〈ψ|HW

mK0 − Eψ
, (3.23)

here expanded up to second order. The neutral kaon mass39 is denoted mK0 and Eψ is the
energy eigenvalue of |ψ〉. The effective Hamiltonian may be decomposed as

Heff = M − i

2
Γ, (3.24)

38 The total space is spanned by all states that can result from the time evolution of the neutral kaons,
e.g., states with pions, neutrinos, etc.

39 That is, the eigenvalue of H0 associated to |K0〉 and |K0〉.
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where M and Γ are self-adjoint and correspond, respectively, to the time flows resulting in
oscillations and decays. CPT symmetry imposes constraints on M and Γ:

M11 := 〈K0|M |K0〉 = 〈K0|(CPT )†(CPT )−†M(CPT )−1(CPT )|K0〉

= 〈K0|K†K(CPT )M(CPT )−1|K0〉 = 〈K0|M |K0〉
∗

= 〈K0|M |K0〉 =: M22,
(3.25a)

Γ11 := 〈K0|Γ|K0〉 = 〈K0|(CPT )†(CPT )−†Γ(CPT )−1(CPT )|K0〉

= 〈K0|K†K(CPT )Γ(CPT )−1|K0〉 = 〈K0|Γ|K0〉
∗

= 〈K0|Γ|K0〉 =: Γ22.
(3.25b)

If the theory is assumed to be CP invariant or, equivalently, T invariant, more constraints
can be obtained:

M12 := 〈K0|M |K0〉 = 〈K0|(CP )†(CP )−†M(CP )−1(CP )|K0〉

= 〈K0|(CP )M(CP )−1|K0〉 = 〈K0|M |K0〉 =: M21,
(3.26a)

Γ12 := 〈K0|Γ|K0〉 = 〈K0|(CP )†(CP )−†Γ(CP )−1(CP )|K0〉

= 〈K0|(CP )Γ(CP )−1|K0〉 = 〈K0|Γ|K0〉 =: Γ21.
(3.26b)

These constraints imply that the CP eigenstates, |K1〉 and |K2〉, diagonalize Heff, with

Heff |K1〉 =
[
(M0 − M̃)− i

2
(Γ0 − Γ̃)

]
|K1〉 , (3.27a)

Heff |K2〉 =
[
(M0 + M̃)− i

2
(Γ0 + Γ̃)

]
|K2〉 , (3.27b)

where M0 := M11, M̃ := M12, Γ0 := Γ11 and Γ̃ := Γ12. This implies that the species
K1 and K2 have different masses and decay rates, with M1 := M0 − M̃ < M0 + M̃ =: M2

and40 Γ1 := Γ0− Γ̃ > Γ0 + Γ̃ =: Γ2. As shown above, only one of the weak eigenstates, |K1〉,
can decay into two pions (which partially explains the difference in the decay rates) if
CP is assumed to be a symmetry of the system.

Experimentally, the decay of two weak eigenstates of neutral kaons into two pions
is detected. Calling the higher mass eigenstate |K0

L〉 and the lower mass eigenstate |K0
S〉,

the ratios between measured decay amplitudes are

η00 :=
A(K0

L → π0π0)

A(K0
S → π0π0)

= (2.220± 0.011)× 10−3ei(43.52± 0.05)°, (3.28a)

η+− :=
A(K0

L → π+π−)

A(K0
S → π+π−)

= (2.232± 0.011)× 10−3ei(43.51± 0.05)°, (3.28b)

according to [1]. This indicates that there is violation of the CP symmetry in the decays
and, consequently, the eigenstates of the weak interaction are not |K1〉 and |K2〉 but
rather the “K-long” (or “K-large”) kaon state |K0

L〉 and the “K-short” (or “K-small”) kaon

40 While M0, M̃ and Γ0 are positive, Γ̃ can be show to be negative (see [55]).
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state |K0
S〉, given by

|K0
L〉 =

1√
1 + |q|2

(|K0〉+ q |K0〉), (3.29a)

|K0
S〉 =

1√
1 + |q|2

(|K0〉 − q |K0〉), (3.29b)

where q is some complex mixing parameter, to be written in terms of the components
of Heff. The names for these species come from the difference in the decay rates and masses.
Experimental results on the mass difference mK0

L
−mK0

S
,

mK0
L
−mK0

S
= (3.484± 0.006)× 10−12 MeV

c2 , (3.30)

can be found in [1]. This difference is clearly very small, given that the mass of the neutral
strong eigenstate is mK0 = (497.611± 0.013) MeV/c2 according to [1].

By dropping the requirement of CP invariance and diagonalizing Heff, the following
expression for q is obtained:

q =

√
M∗

12 − i
2
Γ∗12

M12 − i
2
Γ12

. (3.31)

The decay amplitudes can be obtained by the projection into |K〉1,

η00 =
〈π0π0|S(|K1〉〈K1|+ |K2〉〈K2|)|K0

L〉
〈π0π0|S(|K1〉〈K1|+ |K2〉〈K2|)|K0

S〉
=
〈π0π0|S|K1〉〈K1|K0

L〉
〈π0π0|S|K1〉〈K1|K0

S〉
=
〈K1|K0

L〉
〈K1|K0

S〉
, (3.32a)

η+− =
〈π+π−|S(|K1〉〈K1|+ |K2〉〈K2|)|K0

L〉
〈π+π−|S(|K1〉〈K1|+ |K2〉〈K2|)|K0

S〉
=
〈K1|K0

L〉
〈K1|K0

S〉
, (3.32b)

since I = |K1〉〈K1|+|K2〉〈K2| in the current approximation and since |K2〉 cannot transition
to a 2-pion state. Computing the projection is simple:

〈K1|K0
L〉 =

1√
2(1 + |q|2)

(〈K0| − 〈K0|)(|K0〉+ q |K0〉) =
1− q√

2(1 + |q|2)
, (3.33a)

〈K1|K0
S〉 =

1√
2(1 + |q|2)

(〈K0| − 〈K0|)(|K0〉 − q |K0〉) =
1 + q√

2(1 + |q|2)
. (3.33b)

Then, putting η := η00 = η+−,

η =
1− q
1 + q

. (3.34)

It must be noted that the experimental data suggests a difference between η00 and η+−.
In fact, putting η+− =: ε + ε′ and η+− =: ε − 2ε′, the value of ε′ is nonzero but three
orders of magnitude smaller then the value of ε. This can be accounted for theoretically
by considering certain isospin transitions neglected here (see [54, 55] for greater details).
Inverting equation (3.34) allows for the estimation of the value of q from the experimental
data,

q =
1− η
1 + η

= 0.99677± 0.00001− i(0.00306± 0.00001), (3.35)
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using η ≈ ε = (η00 + 2η+−)/3.

A better description of kaon mixing is achieved by introducing the Cabibbo–
Kobayashi–Maskawa (CKM) matrix, coupling to the SM (see [54]). It describes quark
mixing in a way that relates the states that couple to the weak interaction with the strong
eigenstates. The approximation for kaon mixing introduced in equations (3.29) is valid
when the fields are sufficiently localized (as will be the case with the applications presented
in section 3.2). Outside this domain, certain problems arise, as pointed out in [57, 58].

There are similar systems presenting some evidence of CP violation, namely, the
neutral B, Bs andD mesons (see [1] and [59]). The description of the mechanism responsible
for CP violation in the meson species is very similar to the one given above, but they are
not discussed in more detail in this text, since the best established experimental results
are for the kaon decays.

3.2 CP Violation and Accelerated Particles

Taking the Unruh effect into account when describing particle decay leads to a very
interesting conclusion: proper decay rates increase when a particle is accelerated. This was
first described by Muller in [10], which models the scalar case, and further investigated by
Matsas and Vanzella in [11, 60–62], which model the spinorial case. Adapting the model
presented in [10] allows for the description of K → ππ decays when the kaon is accelerated.
The consequences of this effect on the behaviour of the CP violation parameter η is
investigated and some considerations on its impact on the matter–antimatter asymmetry
are presented.

3.2.1 Decay of Accelerated Particles

The Unruh effect states that accelerated observers perceive the inertial vacuum as
a thermal bath of particles. It seems, then, that accelerated particles should have increased
proper decay rates, as they would if immersed in a thermal bath. A model for the decay of
an accelerated scalar particle is presented below, justifying this assertion.

Consider the QFT describing scalar fields in Minkowski spacetime (with inertial
coordinates (t, x, y, z)) as constructed in subsection 2.2.1. To model the decay of a massive
field into two other massive fields, e.g., the K → ππ decays, an interaction Lagrangian
must be introduced. Its form is taken to be41

LI(x) = GΓΦ(x)φ1(x)φ2(x), (3.36)

41 This action is nonrenormalizable but this should not be an alarming source of concern for the
predictions of interest.
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where Φ is a real scalar field of mass M , φ1 and φ2 are complex scalar fields of mass m and
GΓ is the coupling parameter of the interaction. Although kaons and pions are described
by pseudoscalar fields, it is assumed that scalar fields provide approximate descriptions of
their behaviour. The decay rate may then be obtained from the decay amplitude, i.e., the
transition amplitude for the process Φ→ φ1φ2, given, up to first order in GΓ, by

A(k1,k2) = 〈k1,k2| ⊗ 〈0|S |i〉 ⊗ |0〉 = GΓ

∫
R4

d4x 〈0|Φ(x)|i〉
2∏
j=1

〈kj|φj(x)|0〉 , (3.37)

where the final state consists of two particles with momenta k1 and k2. The decay
probability can be computed from the amplitude,

P =

∫
R3×R3

d3k1 d3k2 |A(k1,k2)|2

= G2
Γ

∫
R4×R4

d4x d4x′ 〈0|Φ(x)|i〉 〈i|Φ(x′)|0〉
2∏
j=1

〈0|φ†j(x)

∫
R3

d3kj |kj〉〈kj|φj(x′)|0〉

= G2
Γ

∫
R4×R4

d4x d4x′ f ∗(x)f(x′)
2∏
j=1

〈0|φ†j(x)φj(x
′)|0〉 ,

(3.38)

where f(x) is the mode associated to the initial state |i〉. The Wightman function of a
scalar field appears above and is given, for a scalar field φ, by

〈0|φ†(x)φ(x′)|0〉 = i
m

8π

H
(2)
1 (m∆s)

∆s
, (3.39)

where H(2)
1 is a Hankel function of the second kind and ∆s is the proper time interval

of the timelike separated events xI and x′I . The computation of this function and the
definition of ∆s are presented in appendix A.

Assuming that f is peaked over a trajectory x(τ) parameterized by its proper
time τ , i.e., over the trajectory of a particle, it can be written as

f(x) = h(x(τ))e−iMτ (3.40)

in the instantaneous rest frame. Assuming, furthermore, that the decay products do not
deviate much from this trajectory, the decay probability can be written as

P = G2
Γκ

∫ ∞
−∞

∫ ∞
−∞

dτ dτ ′ eiM(τ−τ ′)
2∏
j=1

〈0|φ†j(t(τ),x(τ))φj(t
′(τ ′),x′(τ ′))|0〉

= −G
2
Γκ

64π2
m2

∫ ∞
−∞

∫ ∞
−∞

dτ dτ ′ eiM(τ−τ ′)
[
H

(2)
1 (m∆s)

]2
|∆s2|

,

(3.41)

where κ is given by

κ =

∣∣∣∣∫
R3

d3xh(x)

∣∣∣∣2. (3.42)
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A change of variables of the form v := τ − τ ′ leads to

P = −G
2
Γκ

64π2
m2

∫ ∞
−∞

∫ ∞
−∞

dv dτ eiMv

[
H

(2)
1 (m∆s)

]2
|∆s2|

. (3.43)

Since the Wightman function depends only on the difference xI − x′I , the integral over τ
is trivial (and infinite). “Dividing out” this integral gives the following expression for the
proper decay rate,

Γ = −G
2
Γκ

64π2
m2

∫ ∞
−∞

dv eiMv

[
H

(2)
1 (m∆s)

]2
|∆s2|

, (3.44)

which is a Dirac observable (q.v. the discussion at the end of subsection 2.2.4).

A uniformly accelerated particle’s trajectory satisfies the constraint imposed by
equation (2.137) and may be parameterized in terms of the proper time as

t(τ) =
1

a
sinh(aτ), (3.45a)

x(τ) =
1

a
cosh(aτ), (3.45b)

y(τ) = 0, (3.45c)

z(τ) = 0, (3.45d)

where a is the magnitude of the proper acceleration. The squared spacetime interval ∆s2

at a certain values τ and τ ′ of the proper times is given by

∆s2 = −(t(τ)− t′(τ ′))2 + (x(τ)− x′(τ ′))2

=
1

a2
(− sinh2(aτ)− sinh2(aτ ′) + 2 sinh(aτ) sinh(aτ ′)

+ cosh2(aτ) + cosh2(aτ ′)− 2 cosh(aτ) cosh(aτ ′))

= − 2

a2
[cosh(a(τ − τ ′))− 1] = − 4

a2
sinh2

(a
2

(τ − τ ′)
)
,

(3.46)

which implies that ∆s = 2/a sinh(a/2(τ −τ ′)). Introducing the variable u := a(τ − τ ′)/2 =

av/2 and inserting the expression for ∆s2 in equation (3.44) gives the decay rate for
uniformly accelerated scalar particles:

Γ = − G2
Γκ

128π2
m2a

∫ ∞
−∞

du ei2Mu/a

[
H

(2)
1

(
2m
a

sinh(u)
)]2

sinh2(u)
. (3.47)

3.2.2 Acceleration and CP - Violating Decays

The expression for the proper decay rate Γ of an accelerated massive particle given
in equation (3.47) depends on the value of the acceleration a. In fact, the conclusion
presented in [10] is that, for very similar models, Γ increases with a. Since Γ also depends
on the masses of the particles and K0

L and K0
S have different masses, it may be expected

that the decay rates for the processes K0
L → ππ and K0

S → ππ increase with a at different
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rates, which, in light of the result presented in the previous subsection, could imply that
the amplitude of CP violation varies with a. Investigating this proposal is the goal of this
subsection. A similar examination for the case of oscillating neutrinos has been presented
in [57].

The cases to be considered are the ones that model the processes K0
L → π0π0

and K0
S → π0π0, in which M = mK0 = 497.611 MeV/c2 (since mK0

L
≈ mK0 ≈ mK0

S
)

and m = mπ0 = 134.9770 MeV/c2, and K0
L → π+π− and K0

S → π+π−, in which
M = mK0 = 497.611 MeV/c2 and m = mπ± = 139.57061 MeV/c2 (cf. [1]). Addition-
ally, the units to be used are the ones in which Γ0 := G2

Γκ/(128π2) = 1 and mK0 = 1,
which implies that mπ0 = 0.271250, mπ± = 0.280481 and mK0

L
−mK0

S
= 7.001× 10−15.

The computation of the integral appearing in equation (3.47) presents several challenges
and is detailed in appendix B. Its results are summarized in figure 4.
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Figure 4 – The plot of Γ (in units of Γ0) as a function of a (in units of mK0) for the case
where M = mK0 and m = mπ0 (solid line) or m = mπ± (dashed line).

The figure indicates that there is an increase in the rates of both processes, but also
that it could be (directly) detected only at very high values for the acceleration. In the
units used, a = 1 corresponds to a ≈ 2× 1032 m/s2 in SI units, or a ≈ 2× 1031g, where
g is the standard gravity. By comparison, the Texas Petawatt Laser is able to accelerate
electrons up to energies of 2 GeV over distances of just 1 cm–2 cm (see [63]), which, at
best, gives

aTPL ≈
E

me∆x
≈ 3.5× 1022 m/s2, (3.48)

where E is the energy of the electrons and ∆x = 1 cm is the distance traveled by them.
For any increase in the decay rate to be experimentally detectable with currently available
setups, an increase of at least 0.5% should be expected (the uncertainty in the values for
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the decay rates of K0
L given in [1] fluctuate around 0.5% and 0.7%), which would require

accelerations greater than 1030 m/s2.

To evaluate the impact of the increase of the decay rate on CP violation, the
behaviour of η must be investigated. Since η is the ratio of the decay amplitudes,

|η|2 =
|A(K0

L → ππ)|2

|A(K0
S → ππ)|2

=
Γ(K0

L → ππ)

Γ(K0
S → ππ)

. (3.49)

Care must be taken, however, as GΓ(K0
L → ππ) and GΓ(K0

S → ππ) must be different
to yield different results for Γ(K0

L → ππ)(a = 0) and Γ(K0
L → ππ)(a = 0). In fact, the

information about isospin transitions, responsible for the difference in the decay rates
(see [54]), must be contained in the coupling parameter. Thus, η must be rewritten as

η = βη′, (3.50)

where β = GΓ(K0
L → ππ)/GΓ(K0

S → ππ), so that β contains the information coming from
experimental sources and η′ encodes the behaviour predicted by the theoretical model.
Since there are now two different masses for the initial particles involved in the calculation
of η, the labels M1 and M2 for the numerator initial mass and the denominator initial
mass, respectively, are adopted.
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Figure 5 – The plots of |η′|2 − 1 as a function of a (in units of mK0) for the cases
where M1 = mK0 + (mK0

L
− mK0

S
), M2 = mK0 and m = mπ0 (solid line)

or m = mπ± (dashed line).

Figure 5 implies that |η| decreases with a (since |η′|2 also decreases), although very
slightly (note that the plot displayed in figure 5 gives the values for |η′|2 − 1 as a function
of a, not |η′|2). For the decrease in |η| to be experimentally detectable, a difference of,
again, at least 0.5% in |η′| would be needed (the uncertainty for the values of η00 and η+−

is about 0.5%). This is impossible even if incredibly high accelerations were in reach, since
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the dominant part (see below) of |η′| tends to 1 in the a → ∞ limit, constraining the
oscillation amplitude of |η′|2 to less than 5× 10−14.

The dependency of η on the mass difference of the two kaons is particularly
interesting. By approximating |η′|2 by the ratio of the dominant parts42 of Γ (stemming
from the integral I ′0, defined in appendix B) and computing it for different values of the
mass difference M1 −M2, it can be seen that, although the behaviour of |η| with respect
to a does not change appreciably, the oscillation amplitude increases (somewhat linearly)
with an increase on the mass difference. It follows that the detection of CP violation in a
system similar to the one investigated, but with a greater mass difference, would facilitate
experimental detection. The results for m = mπ0 are shown in figure 6.
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Figure 6 – The plots of an approximation of |η′|2 − 1 as a function of a (in units of mK0)
and with m = mπ0 for different values of the mass difference M1 −M2 (also in
units of mK0).

Even if the required accelerations could be obtained in a laboratory setting and
the mass difference was high enough for the detection of the effect, traditional techniques
depend on the particle subject to the acceleration being electrically charged, while the
kaons in question are neutral. Furthermore, the other known sources of CP violation are

42 This was done because the dominant parts are the fastest to compute.



82 Chapter 3. CP Violation

also neutral particle systems. The detection of CP violation in charged particle species
would be a possible solution this problem.

There is one more avenue that may be pursued if experimental tests are sought.
Some proposals concerning the Unruh effect have been presented (see [51] for a review
and [64]) and, if any of them are executed, could lend some credence to the predictions
presented, given the intimate connection between them and the Unruh effect.

3.2.3 Matter–Antimatter Asymmetry

One of the biggest unsolved problems in physics has a profound relationship
with CP violation: that of the matter–antimatter asymmetry. It arises from the simple
observation that, although antimatter can be produced in laboratory conditions, matter
dominates the contents of the Universe. A classic analysis presented in [13] concludes that
CP violation is a fundamental ingredient in explaining the observed asymmetry, the basic
idea being that the difference in the behaviour of matter and antimatter would lead to
their concentrations being different. The impact of the prediction presented above—that
the amplitude of CP violation decreases with increasing acceleration—on this problem is
investigated here. For a reference on the cosmological aspects, see [65].

The best cosmological models available are based on the Friedmann–Lemaître–
Robertson–Walker (FLRW) solutions of the Einstein equation. They describe expanding
universes and the Big Bang, the origin of the Universe as a singularity in the scale factor,
which, in turn, measures the relative size of the Universe. The Friedmann equations (the
set of constraints on the family of FLRW solutions that come from the Einstein equation)
impose certain relations between the quantities that characterize the matter content of the
Universe and the scale factor. Of chief interest is the temperature of matter, which can be
shown to be given, close to the Big Bang and under appropriate assumptions (see [65]), by

T =
A

S
, (3.51)

where A is some constant and S is the scale factor. The dependence of S on the cosmic
time t is given by

S = A

(
4π2

45

)1/4

t1/2, (3.52)

which implies that

T =

(
45

4π2

)1/4

t−1/2. (3.53)

Thus, the temperature increases as one approaches the Big Bang.

At very high temperatures, the matter content of the Universe may be described as
a “plasma” of particles and radiation in (local) thermal equilibrium, with matter–antimatter
annihilation occurring abundantly. As it cools down, particles species start to decouple
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from it, as the typical time scale of interactions dips below the time scale of expansion,
and the number of particles freezes. Decoupling is fundamental for the formation of stable
structures such as nucleons and atomic nuclei (a process know as baryogenesis), and it is at
this stage that the matter–antimatter asymmetry is expected to manifest itself, especially
for baryons. What the analysis in [13] concludes is that all of the following must be satisfied
if baryonic matter is to dominate over baryonic antimatter:

1. There is some interaction that violates the conservation of baryon number.

2. There is some interaction that violates the C and CP symmetries.

3. There was an epoch when the contents of the Universe departed from thermal
equilibrium.

As described in [66], conditions 2 and 3 are essentially guaranteed by cosmological con-
siderations and the SM, but condition 1 presents some difficulties if no “new physics” is
assumed. In the perturbative regime, all interactions of the SM conserve baryon number
(and lepton number), but nonperturbative effects in the electroweak sector present a source
of violation, namely, the sphaleron processes (see [67] for a review). The effectiveness
of these processes in baryogenesis, however, is often put into question, given that their
temperature scale Tsph is much higher than the CP violation scale determined by the
Jarlskog determinant D, the lowest order CP noninvariant combination of the parameters
of the CKM matrix (see [54, 68]). Specifically,

D

T 12
sph
≈ 10−20 � 10−10 ≈ ηbγ, (3.54)

where ηbγ is the baryon to photon ratio. This reveals the impact that the amplitude of
CP violation has on baryogenesis.

A connection between the temperature of matter in the Universe and QFT in
curved spacetimes is drawn by Parker in [69]. Based on earlier work predicting particle
creating in expanding universes (see [6, 36]), Parker concludes that the matter created
due to the expansion of the Universe is in a thermal state with temperature

T ≈ 1

4π

S1

S
, (3.55)

where S1 is the past asymptotic value of the scale factor43. This temperature is clearly
consistent with the thermodynamical considerations implied by the Friedmann equations
(see equation (3.51)). Given that the model presented in this work is based on the Unruh
effect, an analogy can be traced between the two effects. Since an accelerated observer in
Minkowski spacetime perceives the inertial vacuum as a thermal state and the analysis
43 This value is nonzero because the cosmological model used consists of a FLRW universe smoothed

out near the Big Bang.
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in question predicts that the matter created is in a thermal state, an acceleration can be
associated to each value of the scale factor by combining equations (2.169) and (3.55) into

a ≈ 1

2

S1

S
. (3.56)

It must be made clear that this connection stems from an analogy between two very
distinct effects, the Unruh effect in Minkowski spacetime and the effect of particle creation
in expanding universes. The acceleration in equation (3.56) has no physical interpretation
other than as the acceleration at which the Unruh temperature is equal to the temperature
of matter in the universe in question, but it may be expected that the results obtained
for the change in decay rates with varying acceleration can be translated to results on
the change of decay rates with varying temperatures. This situation is very similar to
other analogies between effects of QFT in curved spacetimes, such as the one between the
Unruh effect and the Hawking effect. The Hawking effect predicts that the vacuum state
in the asymptotic past of a spacetime with a black hole evolves to a thermal state with
temperature

TH =
κ

2π
, (3.57)

where κ is the surface gravity of the black hole, in the asymptotic future (see [14]). The
analogy between the two phenomena arises because an observer that maintains themselves
near the event horizon of the black hole must be accelerating at a rate a = κ, i.e., an
accelerating observer very close to the black hole measures the same temperature as an
observer in the asymptotic future. It is clear that, however different the effects (see, once
again, [14]), reasonably accurate results can be obtained using this kind of analogy.

To examine the behaviour of the amplitude of CP violation in the early Universe,
the temperature at which massive scalar particles (the ones that are well described by the
model presented) decouple from the “plasma” must be determined. Since most massive
scalar particles are mesons, if should suffice to determine at which temperature that
happens to quarks. Calculations in the framework of lattice QCD (see [70]) returns the
value of TQCD ≈ 155 MeV for this process, called the QCD crossover. The corresponding
Unruh acceleration can be found using equation (2.170) (equation (3.56) is, fortunately,
not needed here). A simple computation yields a(TQCD) ≈ 4× 1032 m s−2. Equation (3.54)
places a stringent constraint on the effect of CP violation on baryogenesis which is
not appreciably affected by the phenomenon predicted by the model introduced here.
Furthermore, the temperature scale at which baryogenesis is expected to take place is that
of the EW crossover, TEW ≈ 159 GeV (see [71]). This investigation, however, is not fruitless,
since the early Universe may serve as a substitute for very high energy experiments and
some signature of the effect could be found in astronomical observations. As can be inferred
from figure 6, the only cases where the decrease is significant is those where the mass
difference is not much smaller than the initial masses. The plot for the case of a particle
species with mass equal to the neutral kaon’s (utilizing the same approximation used for
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the plots in figure 6) but with a much larger mass difference can be found in figure 7 and
shows that |η|2 decreases by about a third in the range presented, which implies a decrease
of almost 18% in |η|. This could be enough to cause some noticeable effect if some particle
species with a naturally high value for η were to exist.
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Figure 7 – The plot of an approximation of |η′|2 as a function of the temperature T ,
with m = mπ0 .

The discussion above illustrates that two conditions are needed for the prediction
of decrease in η with increasing acceleration to yield a noticeable effect in the cosmological
context:

1. The mass of the particle species with CP -violating decay channels must be lower
than a(TQCD) = 2πTQCD.

2. The scale of the mass difference between states analogous to K0
L and K0

S must be
near the scale of their masses.

It seems unreasonable, at the present time, to expect this, since a species satisfying condi-
tion 2 would be too dissimilar to species which are sources of CP violation. Additionally,
condition 1 implies that contributions to CP violation stemming from higher mass particles
(like, say, the Bs meson) are not affected as much as the ones coming from kaons. This
can be seen by analyzing the plot in figure 8, which presents the results for the case of a
particles species similar to Bs.
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Conclusion

The developments presented above establish a connection between the Unruh effect—
a prediction of QFT in curved spacetimes that illustrates, very clearly, the importance
of the notion of Dirac observables—and the phenomenon of CP violation—a necessary
ingredient in explaining the matter content of the Universe. The mathematical structures
introduced in chapter 1 play a crucial role in the task of understanding the fundamental
aspects of GR, QFT and their relationship, the focus of chapter 2. General covariance
and its consequences, discussed in subsection 2.1.2, have a great impact on the process
of adapting techniques of QFT in flat spacetimes to the kinds of spacetime described by
GR. The study of CP violation, particularly in neutral kaon systems, reveals important
properties of the weak interaction, as is shown in chapter 3.

Quantitative results on CP violation in non-inertial settings are obtained by
adapting the model for the interaction mediating the decay of massive scalar, presented
in [10], for the case of one massive scalar field decaying into two other massive scalar
fields and computing the proper decay rate, given in equation (3.47). This is done in
subsection 3.2.1. An explicit computation of the decay rate requires analytic manipulations
and the execution of numerical computations, both described in appendix B. The results
for the case reflecting the decay of the kaon species K0

L and K0
S into two pions are found

in figure 4 and indicate a clear increase in the rate of these processes. Direct experimental
tests seem out of reach due to the incredibly high accelerations required. Since CP violation
implies a nonzero rate for the decay channels involving K0

L, this could be taken as a sign
that CP violation increases in amplitude for accelerating systems. Equation (3.35) indicates
that this is not enough. The dependence of the CP violation parameter q on η—with
vanishing η implying q = 1, i.e., no CP violation, and unbounded η implying q = −1, i.e.,
inversion of the CP eigenstates—favours the argument that the increase in the decay rate
of K0

S must also be taken into account. This is accomplished by analyzing the behaviour
of the ratio η of the decay rates in these conditions.

Since the increase in decay rates is sensible to the mass of the decaying particle,
η must present some variation with increasing acceleration. This is one of the results
obtained with the model, presented in figure 5. The amplitude of oscillation of η in the
range examined is, however, very small and obtaining experimental evidence for this
phenomenon would require an enormous increase in precision. Figure 6 indicates that
the mass difference between the two kaon species essentially determines the oscillation
amplitude of η, implying that the effect is much more pronounced when the two species
have a large difference in their masses.
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CP violation plays a crucial role in understanding the puzzle of matter–antimatter
asymmetry via the mechanism of baryogenesis. Since this process takes place in the
early stages of the Universe, a brief exposition of its cosmological aspects is presented in
subsection 3.2.3. Utilizing an analogy between the Unruh effect and the effect of particle
creation in curved spacetimes, the behaviour of CP -violating systems as their temperature
changes is extrapolated. Figures 7 and 8 support the existence of two necessary conditions
imposed on the particle species for any effect on η to be noticeable, which seem unrealistic
given the properties of known CP -violating species.

Further investigations of this kind of effect in the context of quark mixing (via the
CKM matrix) are warranted and would probably yield results comparable to the ones
on neutrino mixing presented in [57]. Comparing the results obtained here with models
describing the impact of thermal effects on CP violation could bring insights on the validity
of the model for accelerated particle decay and on the analogy between the Unruh effect
and particle creating on curved spacetimes. The detection of new CP -violating species
could create scenarios in which the predictions presented here would be easier to observe
with currently available technology, but this would require rather remarkable differences
on the properties of these new species when compared to the known ones. There is also
some indirect evidence against the existence of a fourth quark generation (see the review
on the number of light neutrinos in [1]), which could limit (within the framework of the
SM) the number of species yet to be discovered.
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APPENDIX A – The Wightman Function
of a Massive Scalar Field

The Wightman function 〈0|φ(x)†φ(x′)|0〉 of a complex scalar field φ with mass m in
Minkowski spacetime is computed for timelike separations of xL and x′L in this appendix.
Choosing a frame where x = x′ and assuming t > t′, it follows from the definition of the
Wightman function that

〈0|φ†(x)φ(x′)|0〉 =
1

(2π)3
〈0|
∫
R3

d3k
1√

2ω(k)

(
b(k)eikLx

L

+ a†(k)e−ikLx
L
)

∫
R3

d3k′
1√

2ω(k′)

(
a(k′)eik

′
Lx
′L

+ b†(k′)e−ik
′
Lx
′L
)
|0〉

=
1

(2π)3

∫
R3×R3

d3k d3k′
1√

2ω(k)2ω(k′)
〈0|b(k)b†(k′)|0〉 ei(kLxL−k′Lx′L)

=
1

(2π)3

∫
R3×R3

d3k d3k′
1√

2ω(k)2ω(k′)

〈0|(b†(k′)b(k) + δ(k− k′)I)|0〉 ei(kLxL−k′Lx′L)

=
1

(2π)3

∫
R3

d3k
1

2ω(k)
eik`(x

`−x′`)−iω(t−t′)

=
1

(2π)3

∫
R3

d3k
1

2ω(k)
e−iω(t−t′) =

1

(2π)3

∫
R3

dΩ dk
k2

2ω(k)
e−iω(t−t′)

=
4π

(2π)3

∫ ∞
0

dk
k2

2ω(k)
e−iω(t−t′) =

1

(2π)2

∫ ∞
m

dω
√
ω2 −m2e−iω(t−t′)

=
1

(2π)2

∫ ∞
m

dω
√
ω2 −m2[cos(ω(t− t′))− i sin(ω(t− t′))]

=

√
π

2(2π)2

2m

(t− t′)
Γ

(
3

2

)
[−Y−1(m(t− t′))− iJ−1(m(t− t′))]

= −i mπ

2(2π)2

H
(2)
−1 (m(t− t′))

(t− t′)
= i

m

8π

H
(2)
1 (m(t− t′))

(t− t′)
,

(A.1)

where J−1 is the Bessel function of first kind of order −1, Y−1 is the Bessel function of
second kind of order −1 and H(2)

1 is the Hankel function of second kind of order 1. Integrals
3.771–7 and 3.771–9 of [72] were used above. Since t− t′ =

√
−∆s2 in this frame, where

∆s2 is the squared spacetime interval, and the Wightman function is Lorentz invariant44,
this expression takes the form

〈0|φ†(x)φ(x′)|0〉 = i
m

8π

H
(2)
1 (m

√
−∆s2)√

−∆s2
(A.2)

44 It is clear that the field expansion is Lorentz invariant, since it is an integral with Lorentz invariant
measure of a Lorentz invariant expression. The vacuum state is also clearly Lorentz invariant.
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in a frame where x = x′ does not hold. If it is assumed that t′ > t, then

〈0|φ†(x)φ(x′)|0〉 =
1

(2π)2

∫ ∞
m

dω
√
ω2 −m2[cos(ω(t− t′))− i sin(ω(t− t′))]

=
1

(2π)2

∫ ∞
m

dω
√
ω2 −m2[cos(ω(t′ − t)) + i sin(ω(t′ − t))]

=

√
π

2(2π)2

2m

(t′ − t)
Γ

(
3

2

)
[−Y−1(m(t′ − t)) + iJ−1(m(t′ − t))]

= −i mπ

2(2π)2

H
(1)
−1 (m(t′ − t))

(t− t′)
= −i m

8π

H
(2)
−1 (m(t− t′))

(t− t′)

= i
m

8π

H
(2)
1 (m(t− t′))

(t− t′)
.

(A.3)

In this case, however, t′ − t =
√
−∆s2, which implies that, for frames where x = x′ does

not hold,

〈0|φ(x)†φ(x′)|0〉 = i
m

8π

H
(2)
1 (−m

√
−∆s2)

(−
√
−∆s2)

. (A.4)

To combine equations (A.2) and (A.4) into a single equation, valid whether t′ < t or t′ > t,
the proper time interval is defined as45 ∆s := sgn(x0 − x′0)

√
−∆s2. Thus,

〈0|φ†(x)φ(x′)|0〉 = i
m

8π

H
(2)
1 (m∆s)

∆s
. (A.5)

45 The proper time interval ∆s should not be confused with the square root of the symmetric of the
squared spacetime interval ∆s2, which is equal to |∆s|.
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APPENDIX B – Numerical Treatment of
the Decay Rate

In this appendix, the numerical treatment46 of the decay rate obtained in subsec-
tion 3.2.1 is presented. Recall the expression for this decay rate:

Γ = − G2
Γκ

128π2
m2a

∫ ∞
−∞

du ei2Mu/a

[
H

(2)
1

(
2m
a

sinh(u)
)]2

sinh2(u)
. (B.1)

Call the integral appearing in this expression I, i.e.,

I =

∫ ∞
−∞

du ei2Mu/a

[
H

(2)
1

(
2m
a

sinh(u)
)]2

sinh2(u)
. (B.2)

It is difficult to tackle this expression analytically, so the numerical approach
is favored. Problems in the implementation of the numerical methods appear due to
singularities in this expression, which means that the singular parts of the integral must
be separated into an integral I0 and treated analytically, so that I can be computed as

I = (I − I0)︸ ︷︷ ︸
treated

numerically

+ I0︸︷︷︸
treated

analytically

, (B.3)

The singular part of I can be determined using the power series of the Bessel
functions of first and second kind, J1 and Y1, given in equations 10.2.2 and 10.8.1 of [73], up
to third order to determine the singular parts of the Hankel function of second kind H(2)

1 :

H
(2)
1 (z) = J1(z)− iY1(z)

=
z

2

(
1

Γ(2)
− z2

4Γ(3)

)
− i
{
− 2

zπ
+

2

π
ln
(z

2

)z
2

(
1

Γ(2)
− z2

4Γ(3)

)
− z

2π

[
−γ − γ + 1−

(
−γ + 1− γ + 1 +

1

2

)
z2

8

]}
+O(z4)

=

(
z

2
− z3

16

)
− i

π

{
−2

z
+

3z3

32
+

(
z − z3

8

)[
ln
(z

2

)
− 1

2
+ γ

]}
+O(z4)

=
2i

πz
− 3iz3

32π
+

(
z − z3

8

){
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}
+O(z4),

(B.4)

where γ is the Euler–Mascheroni constant. Since this function appears squared in the

46 Nearly all the developments presented here were introduced in [10].
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expression for the decay rate, the square of the equation above is obtained below:

[
H

(2)
1 (z)

]2
=

[
2i

πz
− 3iz3

32π
+

(
z − z3

8

){
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}]2

+O(z4)

= − 4

π2z2
+

3z2

8π2
+

4i

πz

(
z − z3

8

){
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}
+

(
z − z3

8

)2{
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}2

+O(z4)

= − 4

π2z2
+

3z2

8π2
+

4i

π

(
1− z2

8

){
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}
+ z2

{
1

2
− i

π

[
ln
(z

2

)
− 1

2
+ γ

]}2

+O(z4).

(B.5)

The expression also involves a division by a second order polynomial on the argument of
function, 2m sinh(u)/a. Therefore, the following expression is computed:

[
H

(2)
1

(
2m
a
z
)]2

z2
= − a2

π2m2z4
+

3m2

2π2a2
+

2i

π

(
1

z2
− m2

2a2

)
+

4

π2

(
1

z2
− m2

2a2

)[
ln
(m
a
z
)
− 1

2
+ γ

]
− 4m2

a2

{
1

2
− i

π

[
ln
(m
a
z
)
− 1

2
+ γ

]}2

+O(z2)

= − a2

π2m2z4
+

3m2

2π2a2
+

2i

π

(
1

z2
− m2

2a2

)
+

4

π2

(
1

z2
− m2

2a2

)[
ln
(m
a
z
)
− 1

2
+ γ

]
+
m2

a2
− 4i

π

m2

a2

[
ln
(m
a
z
)
− 1

2
+ γ

]
− 4m2

π2a2

[
ln2
(m
a
z
)

+ 2

(
γ − 1

2

)
ln
(m
a
z
)

+

(
γ − 1

2

)2
]

+O(z2)

= − a2

π2m2

1

z4
+ 2

[
i

π
+

2

π2

(
γ − 1

2

)]
1

z2
+

4

π2

1

z2
ln
(m
a
z
)

+
2m2

π2a2
(1− 4γ − 2iπ) ln

(m
a
z
)
− 4m2

π2a2
ln2
(m
a
z
)

+O(1).

(B.6)

The integral I0 of the singular parts is then given by

I0 =
5∑
j=1

Ij, (B.7)
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where

I1 := − a2

π2m2

∫ ∞
−∞

du
ei2Mu/a

sinh4(u)
, (B.8a)

I2 := 2

[
i

π
+

2

π2

(
γ − 1

2

)]∫ ∞
−∞

du
ei2Mu/a

sinh2(u)
, (B.8b)

I3 :=
4

π2

∫ ∞
−∞

du
ei2Mu/a

sinh2(u)
ln
(m
a

sinh(u)
)
, (B.8c)

I4 :=
2m2

π2a2
(1− 4γ − 2iπ)

∫ ∞
−∞

du ei2Mu/a ln
(m
a

sinh(u)
)
, (B.8d)

I5 := − 4m2

π2a2

∫ ∞
−∞

du ei2Mu/a ln2
(m
a

sinh(u)
)
. (B.8e)

The integrals I1 and I2 can be calculated using the residue theorem,

I1 ∝
∫ ∞
−∞

du
ei2Mu/a

sinh4(u)
=

1− e−2πM/a

1− e−2πM/a

∫ ∞
−∞

du
ei2M(u)/a

sinh4(u)

∝ lim
ε→0

lim
R→∞

1

1− e−2πM/a

[ ∫ R

−R
du

ei2M(u−iε)/a

sinh4(u− iε)
+

∫ −R
R

du
ei2M(u−iε+iπ)/a

sinh4(u− iε+ iπ)

+ i

∫ π−ε

−ε
du

e−2M(u−iR)/a

sinh4(iu+R)
+ i

∫ −ε
π−ε

du
e−2M(u+iR)/a

sinh4(iu−R)

]
∝ lim

ε→0
lim
R→∞

1

1− e−2πM/a

∫
C

du
ei2Mu/a

sinh4(u)
= lim

u→0

2πi

3!

1

1− e−2πM/a

d3

du3

[
u4 e

i2Mu/a

sinh4(u)

]
∝ 8πM

3a3

a2 +M2

1− e−2πM/a
,

(B.9)

I2 ∝
∫ ∞
−∞

du
ei2Mu/a

sinh2(u)
=

1− e−2πM/a

1− e−2πM/a

∫ ∞
−∞

du
ei2Mu/a

sinh2(u)

∝ lim
ε→0

lim
R→∞

1

1− e−2πM/a

[ ∫ R

−R
du

ei2M(u−iε)/a

sinh2(u− iε)
+

∫ −R
R

du
ei2M(u−iε+iπ)/a

sinh2(u− iε+ iπ)

+ i

∫ π

0

du
e−2M(u−iR)/a

sinh2(iu+R)
+ i

∫ 0

π

du
e−2M(u+iR)/a

sinh2(iu−R)

]
∝ lim

ε→0
lim
R→∞

1

1− e−2πM/a

∫
C

du
ei2Mu/a

sinh2(u)
= lim

u→0
2πi

1

1− e−2πM/a

d

du

[
u2 e

i2Mu/a

sinh2(u)

]
∝ −4πM

a

1

1− e−2πM/a
,

(B.10)

if the integration contour C is taken to be the one pictured in figure 9, given that
1/ sinh(u) has singularities at ikπ for every k ∈ Z. Of note is that the contributions
of I1 and I2 to the decay rate correspond to the decay rates of the processes Ψ→ ψ1ψ2

and Ψ → ψ1 respectively, where Ψ is a massive scalar field and ψ1 and ψ2 are massless
scalar fields, since the Wightman function of a massless scalar field over an accelerated
trajectory is proportional to 1/ sinh2(u) (see [10] for an explicit calculation involving
massless fields).
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Re

Im

C

−iε

iπ − iε

R−R

Figure 9 – The integration contour C for the integrals I1 and I2. The singularities
of 1/ sinh(u) are indicated by points.

The integrals I4 and I5 can be approximated by integrals I ′4 and I ′5 with similar
singularity structures,

I ′4 :=
2m2

π2a2
(1− 4γ − 2iπ)

∫ ∞
−∞

du e−2M |u|/a ln
(m
a
|u|
)

=
4m2

π2a2
(1− 4γ − 2iπ)

∫ ∞
0

du e−2Mu/a ln
(m
a
u
)

=
4m2

π2a2
(1− 4γ − 2iπ)

[
− a

m

m

2M

(
γ + ln

(
2M

m

))]
= − 2m2

π2aM
(1− 4γ − 2iπ)

(
γ + ln

(
2M

m

))
,

(B.11)

I ′5 := − 4m2

π2a2

∫ ∞
−∞

du e−2M |u|/a
[
ln2
(m
a
|u|
)

+ 2iπθ(−u) ln
(m
a
|u|
)]

= − 4m2

π2a2

∫ ∞
0

du e−2Mu/a
[
2 ln2

(m
a
|u|
)

+ 2iπ ln
(m
a
|u|
)]

= − 8m2

π2a2

a

m

m

2M

[[
π2

6
+

(
γ + ln

(
2M

m

))2
]
− iπ

(
γ + ln

(
2M

m

))]

= − 4m2

π2aM

[[
π2

6
+

(
γ + ln

(
2M

m

))2
]
− iπ

(
γ + ln

(
2M

m

))]
,

(B.12)

since sinh(x) = x + O(x3) and the singular parts of ln(u) = ln(|u|) + iπθ(−u) and
its square ln2(u) = ln2(|u|) + 2iπθ(−u) ln(|u|) − π2θ(−u), for u ∈ R − {0}, are ln(|z|)
and ln2(|z|) + 2iπθ(−u) ln(|u|), respectively. Solving these integrals makes use of the parity
of the integrands and equations 4.331–1 and 4.335–1 of [72].

Computing I3 is more cumbersome, but can be achieved using the following identity
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for the logarithm,

ln(z) =
d

dw
zw|w=0 = lim

w→0

zw − 1

w
, (B.13)

and the series expansion of 1/ sinh2(u),

1

sinh2(u)
=

1

u2
− 1

3
+O(u). (B.14)

Then,

I3 =
4

π2

∫ ∞
−∞

du ei2Mu/a ln
(m
a

sinh(u)
)( 1

u2
− 1

3
+O(u)

)
. (B.15)

This implies that I3 can be approximated by two other integrals, as in equations (B.11)
and (B.12),

I ′3 :=
4

π2

∫ ∞
−∞

du
ei2Mu/a

u2
ln
(m
a
u
)

(B.16)

I ′′3 := − 4

3π2

∫ ∞
−∞

du e−2M |u|/a ln
(m
a
u
)

(B.17)

The solution for the integral I ′′3 follows directly from equation (B.11),

I ′′3 =
4a

3π2M

(
γ + ln

(
2M

m

))
, (B.18)

while the one for I ′3 requires the use of equation (B.13):

I ′3 :=
4

π2

∫ ∞
−∞

du
ei2Mu/a

u2
ln
(m
a
u
)
∝ lim

w→0

∫ ∞
−∞

du
ei2Mu/a

u2

(
m
a
u
)w − 1

w

∝ lim
w→0

(−i)w−2

w

(m
a

)w∫ ∞
−∞

du ei2Mu/a(iu)
w−2 − lim

w→0

(−i)−2

w

∫ ∞
−∞

du
ei2Mu/a

(iu)2
.

(B.19)

The solutions to the integrals appearing above can be found in equations 3.382–6 and
3.382–7 of [72]. Therefore,

I ′3 ∝ − lim
w→0

1

w

(
−im
a

)w(2M

a

)1−w
2π

Γ(2− w)
+ lim

w→0

1

w

2M

a

2π

Γ(2)

∝ −4πM

a
lim
w→0

1

w

(
− im

2M

)w
(1 + (1− γ)w) + lim

w→0

1

w

4πM

a

∝ −4πM

a
lim
w→0

(
1

w

[(
− im

2M

)w
− 1
]

+
(−im

2M

)w
(1− γ)

)
∝ −4πM

a

(
ln
(
− im

2M

)
+ 1− γ

)
= −4πM

a

(
ln
( m

2M

)
− iπ

2
+ 1− γ

)
,

(B.20)

where it was used that 1/Γ(2− w) = 1 + (1− γ)w

The strategy introduced at the beginning of this appendix can now be executed,
but the singular integral I0 must be substituted by

I ′0 =
2∑
j=1

Ij +
5∑
j=3

I ′j + I ′′3 , (B.21)
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where

I1 = − a2

π2m2

∫ ∞
−∞

du
ei2Mu/a

sinh4(u)
= − 8M

3πam2

a2 +M2

1− e−2πM/a
, (B.22a)

I2 = 2

[
i

π
+

2

π2

(
γ − 1

2

)]∫ ∞
−∞

du
ei2Mu/a

sinh2(u)

= −8πM

a

[
i

π
+

2

π2

(
γ − 1

2

)]
1

1− e−2πM/a
,

(B.22b)

I ′3 =
4

π2

∫ ∞
−∞

du
ei2Mu/a

u2
ln
(m
a
u
)

= −16M

πa

(
ln
( m

2M

)
− iπ

2
+ 1− γ

)
, (B.22c)

I ′4 =
2m2

π2a2
(1− 4γ − 2iπ)

∫ ∞
−∞

du e−2M |u|/a ln
(m
a
|u|
)

= − 2m2

π2aM
(1− 4γ − 2iπ)

(
γ + ln

(
2M

m

))
,

(B.22d)

I ′5 = − 4m2

π2a2

∫ ∞
−∞

du e−2M |u|/a
[
ln2
(m
a
|u|
)

+ 2iπθ(−u) ln
(m
a
|u|
)]

= − 4m2

π2aM

[[
π2

6
+

(
γ + ln

(
2M

m

))2
]
− iπ

(
γ + ln

(
2M

m

))] (B.22e)

I ′′3 = − 4

3π2

∫ ∞
−∞

du e−2M |u|/a ln
(m
a
u
)

=
4a

3π2M

(
γ + ln

(
2M

m

))
(B.22f)

so that I can be computed as

I = (I − I ′0)︸ ︷︷ ︸
treated

numerically

+ I ′0︸︷︷︸
treated

analytically

. (B.23)

The integral (I − I ′0) is highly oscillatory with a rapidly decaying integrand, requiring
special techniques to be used in its computation, done in Wolfram Mathematica 11.2.
The dominating contribution to Γ comes from I ′0, especially for high values of a (see
equation (B.6)). The results also present very small imaginary parts (at their largest,
2 orders of magnitude smaller than their real parts) that can be attributed to numerical
errors. They are presented in subsection 3.2.2.
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