

Evento	Salão UFRGS 2018: FEIRA DE INOVAÇÃO TECNOLÓGICA DA
	UFRGS - FINOVA
Ano	2018
Local	Campus do Vale - UFRGS
Título	Desenvolvimento de nanocápsula de extrato de Achyrocline
	Satureioides (Marcela) como adjuvante no tratamento da
	diabetes.
Autores	HENRIQUE MAUTONE GOMES
	KARLA SUZANA MORESCO
Orientador	JOSE CLAUDIO FONSECA MOREIRA

RELATÓRIO

ATIVIDADES DO ALUNO DE INICIAÇÃO TECNOLÓGICA E INOVAÇÃO 2017-2018

[máximo duas páginas]

TÍTULO DO PROJETO: Desenvolvimento de uma nanocápsula de extrato de marcela (Achyrocline satureioides) como adjuvante no tratamento da diabetes.

Orientador: José Cláudio Fonseca Moreira

Aluno: Henrique Mautone Gomes

Período integral das atividades: 01/08/2017 a 30/07/2018

RELATÓRIO DE ATIVIDADES

Introdução: Trabalhos desenvolvidos em nosso grupo de pesquisa mostraram que o extrato hidro alcóolico de inflorescências de Achirocline satureoides , conhecida como marcela , planta típica da região sul do pais , foi muito eficaz em reduzir a glicemia em animais submetidos a modelos de diabetes tanto tipo I como tipo II. No entanto, o gosto e cheiro do extrato não são agradáveis para serem utilizados in natura, portanto se faz necessário o desenvolvimento de um produto que aumente a absorção do mesmo e que diminua as reações adversas ao gosto do extrato. Este projeto tem portanto com o objetivo desenvolver nanoestruturas de coração lipídico que contenham o extrato ou seus componentes purificados e que mantenham as características do extrato in natura com relação a inibição de glicosidases e a redução da glicemia em modelos de diabetes visando a proposição de uma formulação comercial do mesmo. A metodologia de produção do extrato já se encontra patenteada pelo grupo em conjunto com professores da faculdade de Farmácia da UFRGS.

Atividades realizadas:

- 1) Foram Testadas varias formulações de encapsulamento lipídico do extrato e de seus componentes isolados com relação a tamanho, estabilidade, viabilidade, e absorção. Para tanto realizaremos o encapsulamento do extrato e de seus componente principais (quercitina, 3-0-metil-quercitina, luteolin e aquirobichalcona) isolados com poli(E-caprolactona) cobertas com polisorbato 80 e avaliaremos o potencial Zeta, o tamanho, o índice de polidispersidade, o teor de droga a eficiência de encapsulamento e o pH.
- 2) Tratamos ratos Wistar machos de 60 dias de vida com varias doses de nanocápsulas via oral e via i.v. e avaliamos por HPLC os níveis dos componentes do extrato na corrente sanguínea de animais a cada 30 minutos por 12 h.
- 3) Tratamos animais uma vez ao dia com as nanocápsulas nas mesmas doses já testadas com extratos livres e em doses 5 e 10 vezes menores , por 7 dias ,14 dias e 30 dias e então averiguamos os efeitos do tratamento nos níveis glicemia , nos níveis de hemoglobina glicada e de frutosamina. Estes são atualmente os principais maios de averiguação de propriedades antiglicemiantes. Nos utilizaremos como controle antiglicemiantes disponíveis no mercado.
- 4) Determinamos os níveis de indicadores de toxicidade nos animais tratados: níveis e atividade de ALT e AST no plasma , níveis de atividade de creatinina no plasma e também analise histológica do rim , figado e estomago dos animais.

Objetivos atingidos:

Nosso objetivo principal parece ter sida atingido uma vez que o nano-encapsulamento diminuiu a necessidade de extrato utilizado para atingir os mesmos benefícios vistos anteriormente com o extrato não manipulado.

Resultados obtidos:

- 1) O encapsulamento foi efetivo e que foi possível produzir nanocápsulas de qualidade tanto com o extrato como com a mistura de componentes na mesma proporção do extrato, ou seja conseguimos estabelecer a metodologia para um produto de qualidade.
- 2) O nano-encapsulamento aumentou em 23% a biodisponibilidade dos componente do extrato , nos observamos um pico de componentes no soro em 3 h com o nanoencapsulamento e em 4,5 h sem o encapsulamento.
- 3) Nossos resultados mostraram que tanto extratos nanoencapsulados como seus componentes foram efetivos em reduzir a glicemia em 30% e foram tão eficientes quanto os antiglicemiantes encontrados no mercado em todos os tempos observados.
- 4) As analises toxicológicas séricas e as analises histológicas não mostraram nenhuma alteração toxicológica significante com o uso dos extratos nano-encapsulados ou de seus componentes.

Conclusão:

Devido aos resultados já observados com os trabalhos feitos em nosso grupo com o extrato na forma *in natura*, vimos que a formulação proposta aumentou a absorção e portanto a eficiência do mesmo, reduzindo a glicemia dos ratos adultos diabéticos sem interferir nos animais saudáveis e sem induzir danos colaterais ao figado e ao rim. A formulação provavelmente reduzira as características desagradáveis sensoriais do extrato facilitando a sua utilização. Podemos inclusive propor que as partes isoladas do extrato poderão ser utilizadas em formulações mais ativas e de custo menor para a produção de um hipoglicemiante de origem natural.

[Considerar apenas as atividades realizadas pelo estudante] [Relatórios de Projetos da Linha de Pesquisa não serão aceitos]