

EFEITOS DA PRÁTICA DE EXERCÍCIO FÍSICO ANAERÓBICO DURANTE O PERÍODO GESTACIONAL SOBRE O DESENVOLVIMENTO DA PROLE

Natália Felix Gasperini ¹, Simone Marcuzzo ²

- 1 Natália Felix Gasperini, Enfermagem, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Grupo de Pesquisa em Plasticidade do Neurodesenvolvimento.
- 2 Prof^a Dr^a Simone Marcuzzo, Universidade Federal do Rio Grande do Sul, Departamento de Ciências Morfológicas, Grupo de Pesquisa em Plasticidade do Neurodesenvolvimento.

INTRODUÇÃO

A prática de exercício físico aeróbico por mulheres grávidas é recomendada e causa vários benefícios no desenvolvimento físico e cognitivo dos descendentes.¹ No entanto, ainda não é possível afirmar que o exercício físico do tipo anaeróbico realizado durante o período gestacional cause desfechos positivos semelhantes na prole.² Avaliar as repercussões na prole dessa modalidade de exercício físico realizada na gestação é de suma importância já que, cada vez mais, tem sido observado essa prática na rotina de mulheres grávidas.

OBJETIVO

Avaliar os efeitos do exercício físico anaeróbico gestacional sob o sistema nervoso central e desenvolvimento físico da prole no período neonatal.

METODOLOGIA

Ratas Wistar provenientes do CREAL (estudo aprovado pelo Comitê de Ética CEUA/UFRGS-29840) foram submetidos aos seguintes procedimentos:

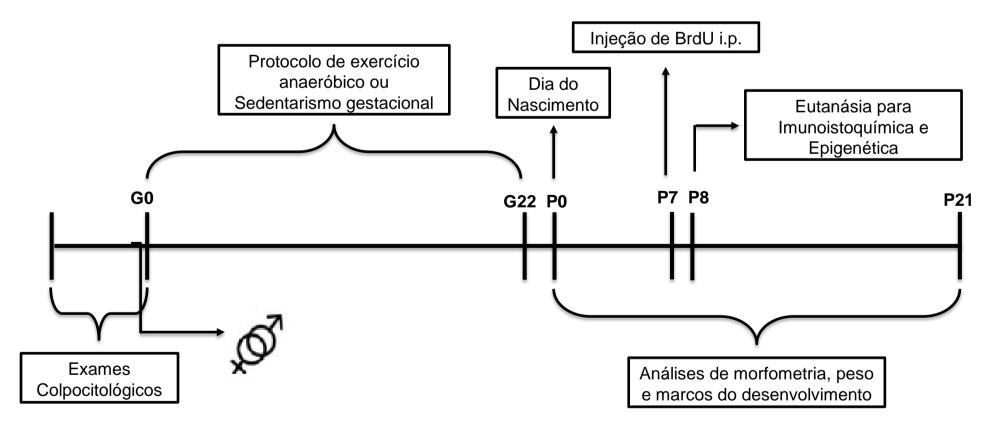
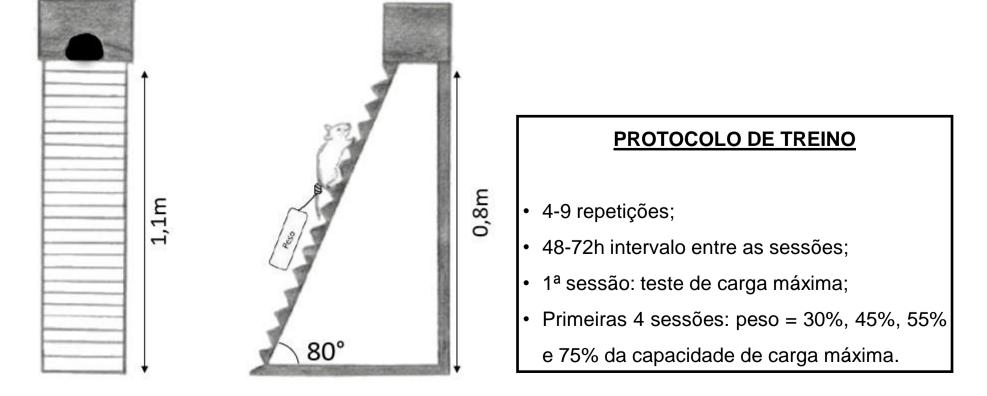
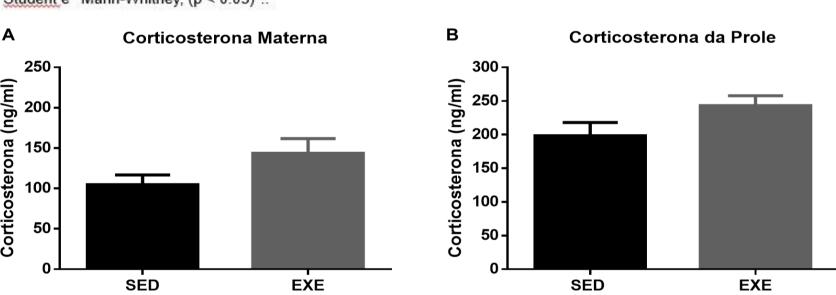
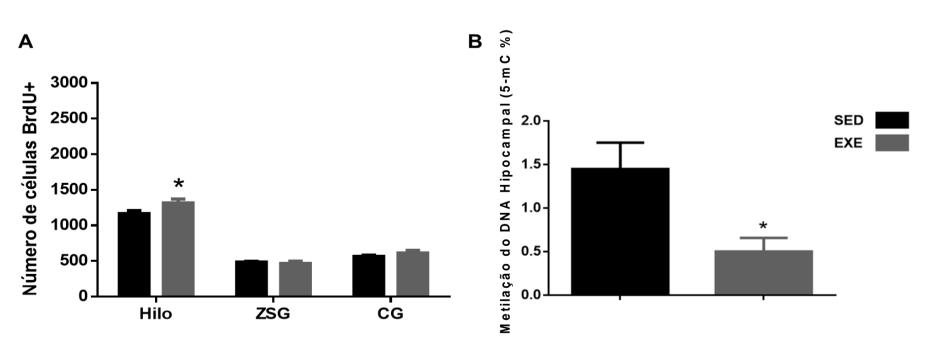


Figura 1. Design experimental. G: dia gestacional. P: dia pós-natal.




Figura 2. Protocolo de exercício anaeróbico.

RESULTADOS


Tabela 1. Peso corporal, paquimetria e marcos do desenvolvimento das proles de mães exercitadas e sedentárias.

		SED		EXE	
	n	Média ± EP	n	Média ± EP	р
PESO (P2)	16	9,35 ± 0,11	16	9,15 ± 0,11	0.207
P7	16	18,94 ± 0,12	16	17,93 ± 0,36	0.019
P14	16	36,35 ± 0,21	16	$34,64 \pm 0,43$	0.002
P21	16	55,84 ± 0,57	16	54,68 ± 0,71	0.217
PAQUIMETRIA (P2)	12		10		
Eixo Anteroposterior da cabeça		17,16 ± 0,21 mm		17,97 ± 0,19 mm	0.013
Eixo Latero-lateral da cabeça		13,48 ± 0,15 mm		13,01 ± 0,16 mm	0.050
Medida Longitudinal do Corpo		56,42 ± 0,56 mm		56,10 ± 0,07 mm	0.726
Tamanho da Cauda		17,89 ± 0,23 mm		$18,72 \pm 0,46 \text{ mm}$	0.136
P21	12		10		
Eixo Antero-posterior da cabeça		34,23 ± 0,60 mm		36,59 ± 0,51 mm	0.008
Eixo Latero-lateral da cabeça		24,16 ± 0,52 mm		25,22 ± 0,41 mm	0.143
Medida Longitudinal do Corpo		119,29 ± 0,79 mm		120,46 ± 0,75 mm	0.304
Tamanho da Cauda		76,19 ± 0,36 mm		75,98 ± 0,58 mm	0.931
MARCOS MOTORES	15		7		
Endireitamento		$1.06 \pm 0.06 d$		1.00 ± 0.00 d	0.495
Colocação do Membro Posterior		$5.80 \pm 0.31 d$		$6.28 \pm 0.42 d$	0.164
Geotaxis Negativo		$5.80 \pm 0.41 d$		$4.7 \pm 0.64 d$	0.379
Aversão a Queda		$1.80 \pm 0.22 d$		1.28 ± 0.28 d	0.099

Valores em Média ± EP. Abreviações: SED, sedentário; EXE, exercício; P, dia pós-natal; d, dia de aparecimento. Testes T-Student e *Mann-Whitney, (p < 0.05)*..

Figura 3. Concentração plasmática de corticosterona em mães exercitadas e sedentárias (A) (n =5 / grupo) e nas suas proles (B) (n=4 / grupo). SED (sedentário); EXE (exercitado). Valores estão expressos em Média ± EP.

Figure 4. (A) Número de células BrdU+ no giro denteado do hipocampo das proles (n= 8-9 / grupo); (p=0.040). (B) Metilação Global do DNA hipocampal das proles (n=4 / grupo); (p=0.032). SED, grupo sedentário; EXE, grupo exercitado; ZSG, Zona Subgranular; CG, Camada Granular. Teste t de Student para amostras independentes. Valores expressos em média \pm EP e porcentagem da média.

CONCLUSÃO

Os dados apontam que a prática de exercício de resistência em grávidas não altera a trajetória de desenvolvimento físico e motor dos filhotes, porém, induz importantes modificações hipocampais que precisam ser estudadas profundamente.

REFERÊNCIAS

- 1. DAYI, A. et al. Maternal aerobic exercise during pregnancy can increase spatial learning by affecting leptin expression on offspring's early and late period in life depending on gender. **The scientific world journal**, [S.L.], ago. 2012.
- 2. WHITE, Erin; PIVARNIK, Jim; PFEIFFER, Karin. Resistance training during pregnancy and perinatal outcomes. **Journal of physical activity and health,** [S.L.], v. 11, n. 6, p. 1141-1148, ago. 2014.