

Filmes Biodegradáveis com Sensor Colorimétrico de pH encapsulado via Sol-Gel

Brenda Barcelos Bonoto e João Henrique Z. dos Santos

Instituto de Química - UFRGS

brenda.bonoto@hotmail.com

INTRODUÇÃO

Polímeros Biodegradáveis são obtidos de fontes naturais e apresentam uma rápida degradação, e, consequentemente, baixo impacto ambiental. Deste modo, constituem uma alternativa aos polímeros tradicionais obtidos do petróleo. Neste contexto, no presente trabalho, foi avaliada a formação de filmes obtidos a partir de três diferentes tipos de matriz: Gelatina, PLA (ácido poliláctico) e Acetato de Celulose. Contendo Roxo de Bromocresol encapsulado pelo processo sol-gel para detectar mudanças de pH.

PROCEDIMENTO EXPERIMENTAL

Produção do indicador Roxo de Bromocresol (RBC) encapsulado na sílica via sol-gel com catálise ácida (HCl) Produção dos três diferentes tipos de Filmes Biodegradáveis com indicador encapsulado e não encapsulado.

Foi inserida uma padronização em relação a quantidade de matriz e de RBC após a realização da curva de calibração do encapsulado.

- Teste em soluções tampão;
- Teste com vapor de amônia;
- Teste com peixe;
- Análise de Espectroscopia de UV-Visível.

RESULTADOS E DISCUSSÃO

1. Teste com soluções tampão

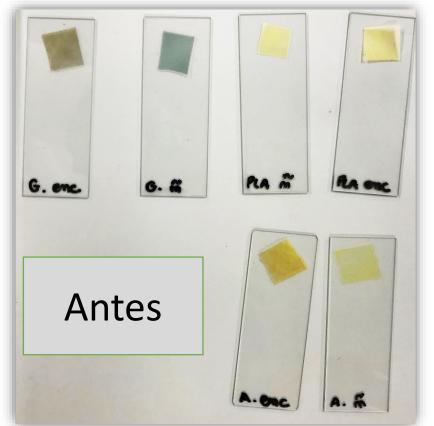


Figura 1 – Filmes antes do teste.

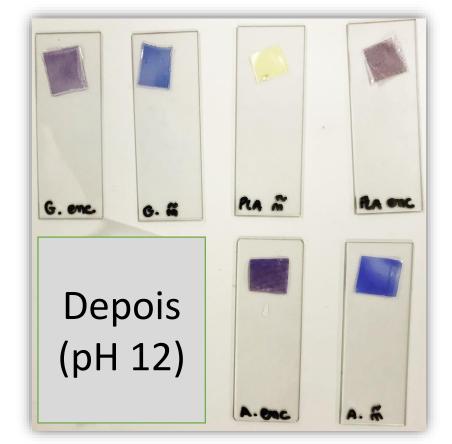


Figura 2 – Filmes após teste (pH 12).

Com exceção do Filme de PLA com indicador puro, todos os polímeros mudaram de cor em contato com solução tampão de pH 12 e pH 3,5. A mudança em pH ácido é sutil.

2. Teste com vapor de amônia

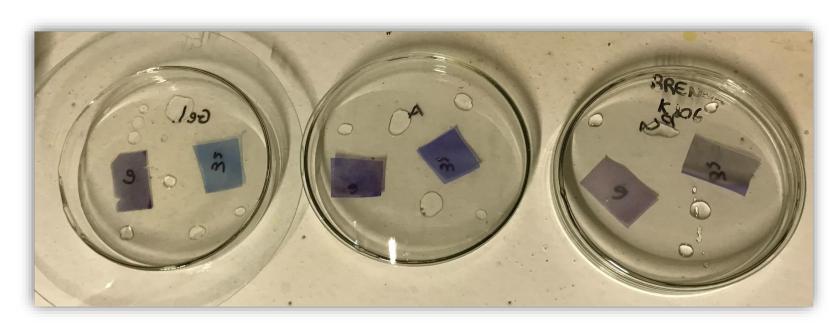


Figura 3 – Filmes após contato com vapor de Hidróxido de Amônio.

Análises CIELAB padrão	L	а	b	С	Hue (rad)
Gelatina RBC enc.	101,4793	1,5655	1,4249	2,1169	0,7384
Gelatina RBC puro	103,5312	0,2654	1,2735	1,3009	1,3653
PLA RBC encapsulado	96,3374	1,7721	0,2697	1,7925	0,1510
PLA RBC puro	86,1605	2,0009	-1,0045	2,2389	-0,4653
Acetato de Celulose enc.	108,1484	2,6207	-1,0286	2,8153	-0,3740
Acetato de Celulose puro	110,6728	0,4278	1,4138	1,4771	1,2770

Tabela 1 – Análise de Espectroscopia de UV-Visível.

3. Teste com peixe

Figura 4 – Filmes com peixe fresco.

Figura 5 – Filmes com o peixe após dois dias fora de refrigeração.

Após dois dias, foi observado a mudança de cor da maioria dos Filmes devido ao aumento de pH do peixe pela liberação de Aminas voláteis (conhecida pelo "cheiro de peixe podre").

Bolsa CNPq

Referências bibliográficas:

- 1 Z. Wu, Y. Jiang, H. Xiang, L. You J. Non-Crystalline Solids 352 (2006) 5498–5507
- 2 Q. Meng, T. Han, G. Wang, N. Zheng, C. Cao, S. Xie Sensors and Actuators B 196 (2014) 238–244