HIMI

OZES
aw ..

D 1L

! e m
| ||||| |I|I|

Dl

B

” ||||'|||l

=

Il

S

SALAO DE
INICIACAO CIENTIFICA

A

15419

Uk
CANPUS DO VALE

$
UFRGS
PROPESQ

Meta-Data Management on Programmable Data Planes

Lucas Castanheira and Alberto Schaeffer-Filho

Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Introduction

Looking inside a network in order to detect suspicious behavior from an end user
is a difficult task (the amount of data is overwhelming).

Monitoring what happens in Software-Defined Networking (SDN) is usually the job
of the controller and involves a trade-off between high fidelity (gathering all data
we can to better understand things) and low impact (making our data collection
cause as little stress to the network as possible).

With programmable data planes we are able to employ all the distributed
hardware of data plane routers in monitoring the network to look for suspicious
behaviors.

However, since the data plane operates on a tight schedule, we cannot run most
detection solutions (techniques which follow up monitoring, such as machine
learning) on the routers directly.

We created a system that allows us to perform monitoring on the data plane and
efficiently shift the data to the control plane for extensive processing.

Our system, is composed of two subsystems: Monitoring and Gathering.

Gathering

Iy

SDN controller

Distributively consolidates all the information about the suspect flow that is inside
routers and stores it in the controller.

Separates the network into clusters.

Tries to minimize the impact on the controller of requesting data to multiple
routers.

Controller injects a Crawler Packet (CP) that makes routers talk to each other and
pass the request along, only sending the resulting data to the controller.

Filled CP is forwarded
oack to the controller

Full CP

Empty CF

_,-"""-H-H-Fr.-'-
Controller Injects CP
inta clusters.

™~

Empty CP

CP routed internally by
cluster routers, collecting data

A

—Full CF

Monitoring

Looks at every flow and tracks the amount of traffic it generates
(lightweight monitoring).

Whenever a flow starts creating larger amounts of traffic, the
system triggers monitoring on a more comprehensive scale for that
flow, locally storing all the timestamps and relative sizes for each
upcoming packet pertaining to the flow.

If the flow does not cease after this analysis, the monitoring phase
warns the controller about the flow.

The controller then triggers the gathering system.

Heavyweight Monitoring System

Encoded :
Data :
Fl Packet ‘
H |
ows Timestamps Size :
I
PAIPB 1001 |oooo ooool 0000 :
I
|
PV—-IPW 0110|1001 O100|1OUO :
u] :
u] I
1
u] i
1
I
IPX—-IPY 10 DlOOUO 1000|0000 :
N S l
Y
l‘: v
Large Packet @ time 0
Packet @

Results

Preliminary results indicate that we were able to capture all of the
desired timestamps and relative packet sizes correctly on the heavy
monitoring phase.

The constant Lightweight monitoring creates a small rise in overall
packet latency.

Conclusions and Future Work

Shifting a part of the monitoring responsibilities to the data plane
can have powerful advantages over traditional methods (e.g
snapshotting) in both efficiency and fidelity of collected data.

Our system provides us with meta-data about flows that is naturally
fit for building a data-set for Machine Learning detection
techniques.

We aim to continue our work by developing a detection system
running on the controller, based on data collected by our data
plane system.

