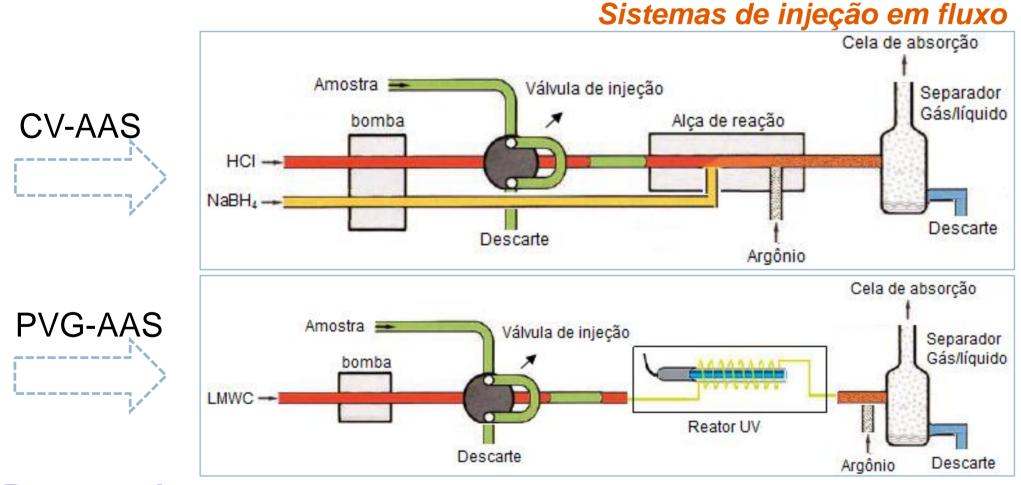


OTIMIZAÇÃO MULTIVARIADA DE MÉTODOS PARA DETERMINAÇÃO DE MERCÚRIO UTILIZANDO TÉCNICAS DE GERAÇÃO DE VAPOR ACOPLADAS À ESPECTROMETRIA DE ABSORÇÃO ATÔMICA

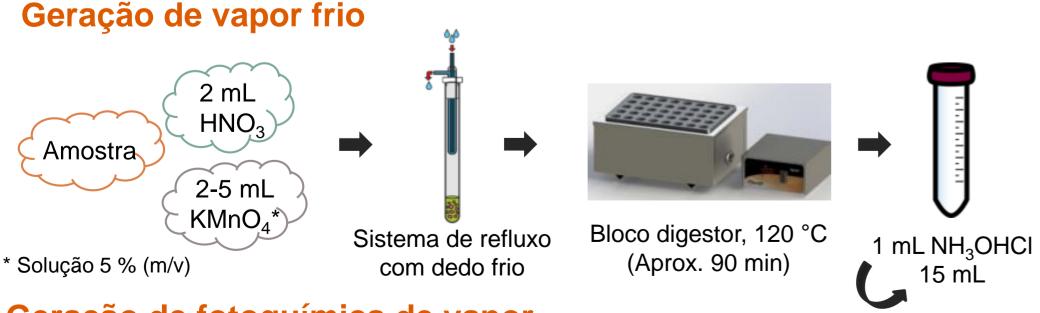
Carla Fernanda Grasel Frois (IC), Márcia Messias da Silva (PQ) Instituto de Química, Universidade Federal do Rio Grande do Sul

OBJETIVO

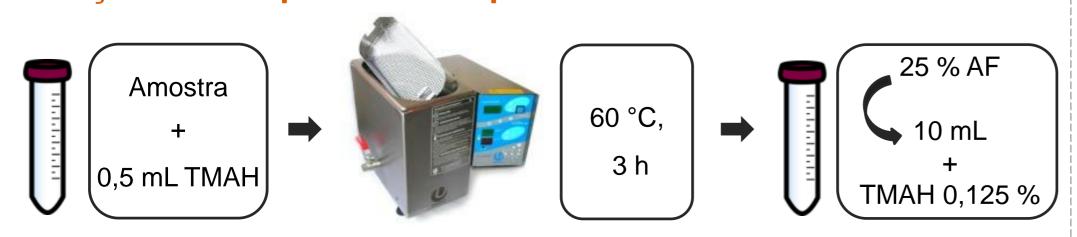
Otimização multivariada de métodos, empregando planejamento fatorial e matriz de Doehlert (MD), para a determinação de Hg pelas técnicas CV-AAS e PVG-AAS.


EXPERIMENTAL

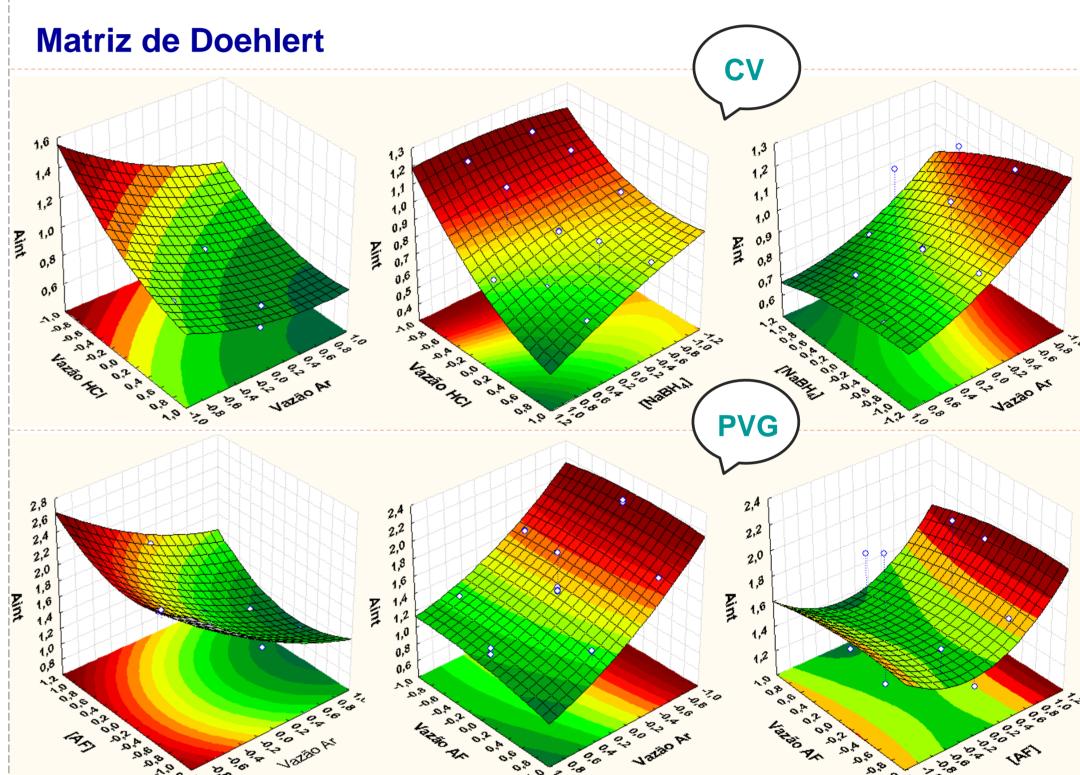
Instrumentação



Analisador de Hg, Perkin Elmer, modelo FIMS 400 Fonte de radiação: lâmpada de baixa pressão de Hg $\lambda = 253,7$ nm


Cela de absorção: tubo de quartzo (24 cm)

Preparo de amostras


Geração de fotoquímica de vapor

RESULTADOS

Planejamento 2ⁿ

Planejamento 2⁴ para a CV: O fator [HCI] não foi significativo. Planejamento 2³ para a PVG: todos fatores foram significativos.

Condições otimizadas

	CV			PVG	
V _{Ar} /	V _{HCI} /	[NaBH ₄] /	V _{Ar} /	V _{AF} /	[AF]/
mL min ⁻¹	mL min ⁻¹	% (m/v)	mL min ⁻¹	mL min ⁻¹	% (v/v)
40	3	0,15	40	8	25

Parâmetros de mérito

Técnica		ca Regressão linear	R ²	LD / pg	LQ/pg	m ₀ /pg	RSD/%
i !	CV	A_{int} =0,372m (ng) + 0,0267	0,9992	12	41	12	0,2 - 4,3
į	PVG	A_{int} =0,358m (ng) + 0,0150	0,9992	6	19	13	0,1 - 6,8

Avaliação da exatidão do método

Matria	Certificado /	Determinad	t _{calculado}		
Matriz	μg g ⁻¹	PVG	CV	PVG	CV
CRM DOLT - 4	2,58 ± 0,22	2,43 ± 0,11	2,65 ± 0,045	2,44	2,69
Músculo de peixeb	1,03 ± 0,26	1,07 ± 0,031	1,08 ± 0,078	2,31	1,11
Tecido de atum ^b	$3,03 \pm 0,22$	$3,00 \pm 0,11$	$3,32 \pm 0,34$	0,46	1,52
^a média ± desvio padr	rão (n=3) b mate	eriais de referência	$t_{crítico} = 4,30$		

CONCLUSÕES

A otimização multivariada dos métodos permitiu a determinação simples, exata e precisa de Hg em amostras de peixe através das técnicas CV-AAS e PVG-AAS. O planejamento por MD forneceu modelos matemáticos quadráticos com bons ajustes e pontos críticos de sela nos dois casos.

Agradecimentos: FAPERGS; CNPq