

IMPLEMENTAÇÃO DO MODELO SHALSTAB EM FERRAMENTA PARA QGIS

Anne Biehl, Gean Paulo Michel

Introdução

Desastres hidrológicos são uma das principais formas de desastres naturais, com destaque para os movimentos de massa, que representam risco de vida a população e também são responsáveis por grandes volumes de solo erodido e degradação da qualidade da água. Entre os movimentos de massa que apresentam maior perigo para a sociedade estão os escorregamentos translacionais rasos. Existem diversos modelos para a identificação de áreas suscetíveis a escorregamentos translacionais, dentre eles o Shallow

Landsliding Stability Model (SHALSTAB).

O SHALSTAB, em sua forma original, apresenta algumas limitações: está disponível em um software pouco utilizado, não inclui heterogeneidades dos parâmetros do solo e não considera

o efeito da vegetação na estabilidade de encostas.

Figura 1: Escorregamento translacional.

Objetivos

 Adaptar o SHALSTAB para o QGIS 3.0, ultrapassando as limitações das outras versões do modelo. • Considerar o efeito da vegetação no cálculo da estabilidade de encosta.

Metodologia

A ferramenta foi incorporada na plataforma de sistema de informação geográfica (SIG) através do Modelador Gráfico do QGIS, a partir de uma sequência de cálculos sobre arquivos em formato raster, o que permite a entrada de dados discretizados.

Dados de entrada da ferramenta:

declividade do terreno [graus], área de contribuição específica ou área de contribuição dividida pelo comprimento de célula [m], massa específica do solo

[kg/m³], profundidade do solo [m], coesão do solo [Pa], coesão das raízes [Pa], sobrecarga gerada pelo peso das árvores [Pa] e ângulo de atrito interno do solo [graus].

Ao final do processo serão gerados quatro arquivos principais:

mapa de áreas incondicionalmente instáveis, mapa de áreas incondicionalmente estáveis, mapa da recarga dividido pela transmissividade (q/T) e o produto final, o mapa de estabilidade de encostas.

Área de estudo

Encosta gaúcha da Serra Geral, município de São Vendelino, Rio Grande do Sul.

Local que possui histórico e área propensa a escorregamentos.

Resultados

A ferramenta foi comparada com o modelo original e com o adaptado para o software ArcGIS, ambos sem influência da vegetação. Para o teste de desempenho da ferramenta foram determinados dois índices: (i) o erro absoluto, que mostra as diferenças entre os modelos; e (ii) o erro relativo, que determina se a estabilidade é subestimada ou superestimada.

O erro absoluto foi menor ou igual a 1% entre 95% e 96% das células comparadas. Ao analisar o erro relativo, observou-se que há erros maiores nas bordas das áreas incondicionalmente instáveis e que erros entre -1 e 1% ocorrem ao longo de toda área condicionalmente estável

com distribuição aparentemente aleatória. Portanto, a ferramenta possui bom desempenho para a utilização do modelo SHALSTAB. Além de proporcionar a utilização do modelo em um software mais difundido e gratuito, a ferramenta permite a utilização de dados espacializados no modelo, sem restrição do número de pixeis e dispõe do efeito da vegetação sob a estabilidade de encostas.

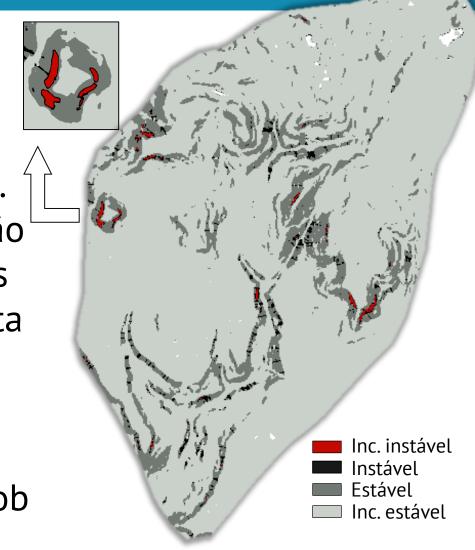


Figura 2: Mapa de estabilidade.