
SÍNTESE DE ÁCIDOS CARBOXÍLICOS &DISSUBSTITUÍDOS ATRAVÉS DE ADIÇÃO CONJUGADA EM DERIVADOS ALQUILIDENOS DO ÁCIDO DE MELDRUM

Micaela Jardim e Silva* (IC); Diogo Seibert Lüdtke** (PQ)

Instituto de Química, Universidade Federal do Rio Grande do Sul *micaela.js@hotmail.com; **dsludtke@iq.ufrgs.br

INTRODUÇÃO

Os ácidos carboxílicos β -substituídos são substratos interessantes, podendo ser empregados como intermediários sintéticos na produção de importantes insumos para a indústria farmacêutica, como fármacos com atividade antidiabética¹ e anticâncer², anti-inflamatórias e anti-oxidantes³. Dentro desse contexto, o uso de reações de adição conjugada com reagentes organometálicos do tipo ArZnEt, em derivados alquilidenos do ácido de Meldrum, possibilita a obtenção do produto de arilação, que será posteriormente descarboxilado para obtenção de ácidos carboxílicos β -dissubstituídos (Fig 1).

Figura 1. Rota sintética proposta para obtenção dos ácidos carboxílicos β -dissubstituídos.

RESULTADOS E DISCUSSÕES

Para a obtenção dos produtos de arilação, foram avaliados diversos parâmetros reacionais, tais como as quantidades de ácido borônico e dietilzinco, o tempo reacional e o solvente mais adequado (Tabela 1).

Tabela 1. Estudo das condições reacionais.

Entrada	PhB(OH) ₂ (X equiv.)	Et₂Zn (X equiv.)	Tempo (h)	Solvente	Rend. (%)*
1	2,4	7,2	2	THF	82
2	1,2	3,6	2	THF	78
3	1,2	3,6	2	DMF	14
4	1,2	3,6	2	CPME	49
5	1,2	3,6	2	MTBE	46
6	2,4	7,2	4	THF	95
7	1,6	4,8	4	THF	94

^{*} Rendimento calculado por RMN com padrão interno (mesitileno)

O estudo de otimização forneceu a entrada 7 como melhor condição, obtendo-se 94% de rendimento do produto de arilação. A partir das condições otimizadas foram sintetizados 6 exemplos do produto de interesse em ótimos rendimentos (Figura 2). A reação tolerou a presença de grupos doadores, como *p*-OMe (**3d**), e grupos retiradores de elétrons, como *p*-F, *p*-Cl e *p*-CF₃ (**3c**, **3f**, e **3e**).

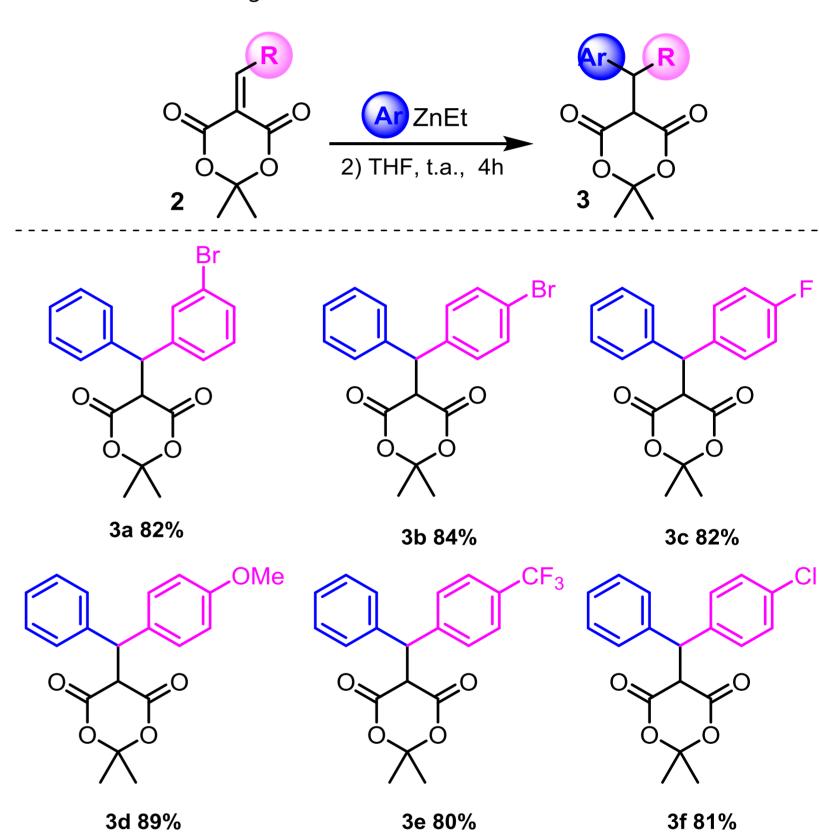


Figura 2. Exemplos isolados e seus respectivos rendimentos.

CONCLUSÃO E PERSPECTIVAS

A partir da reação de arilação dos alquilidenos derivados do ácido de Meldrum, foram obtidos os produtos de interesse em altos rendimentos (80-89%).

As etapas seguintes envolvem o aumento do escopo dos produtos de arilação e as reações de descarboxilação para a obtenção dos ácidos carboxílicos β -dissubstituídos.

REFERÊNCIAS

- 1 Mattei, P. et al. Bioor. Med. Chem. Lett. 2013, 23, 4627.
- 2 Aidhen, I. S.; Tiwari, P. K. Eur. J. Org. Chem. 2016, 2637.
- 3 Gu, Y.; Xue, K. *Tetrahedron Lett.* **2010**, *51*, 192.

Científico e Tecnológico

