

Síntese e caracterização de óxidos do tipo Perovskita

E. J. DAMIANI¹, J. FERREIRA LEITE SANTOS¹

¹ Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, Brasil edu.damiani@hotmail.com

INTRODUÇÃO

A constante divulgação de resultados promissores mostrando a aplicação de perovskitas em células solares tem resultado em crescente interesse da comunidade científica neste material. Embora o mineral perovskita seja estudado há muitos anos, a pesquisa que envolve a síntese, caracterização e aplicação deste material é relativamente recente e um campo a ser explorado. Nesse trabalho, são estudadas as condições reacionais para a formação de perovskitas, buscando otimizar uma rota hidrotermal de síntese para o controle de tamanho e estrutura cristalina, bem como os possíveis defeitos na rede cristalina do material, que são capazes de provocar alterações nas propriedades ópticas do material.

RESULTADOS E DISCUSSÃO

- a) SrTiO 200 °C 20 (graus b) TiO₂ rutila • SrTiO b) r rutila # SrCO, 200 °C
- ✓ A obtenção de SrTiO₃ é favorecida quando se utiliza nanopartículas de TiO₂ na fase amorfa (c);
- Em todas as rotas é possível observar a fase cristalina cúbica do $SrTiO_3$
- Evidencia-se conversão parcial de Dióxido de Titânio -

Síntese de SrTiO₃

A síntese foi realizada através de reações hidrotermais, utilizando nanopartículas de TiO₂ amorfo, anatase e rutila. Como precursor de estrôncio foi utilizado Sr(OH)₂.

Figura 1: Difratogramas do Titanato de Estrôncio sintetizado a partir de diferentes fases de TiO_2 e respectivas imagens de MET.

Resultados – Dopagem por Vacâncias de Oxigênio

Figura 2: "band-gap" dos materiais dopados em diferentes temperaturas (linha colorida) em relação ao mesmo do material não dopado (linha preta).

Resultados – Produção de H₂

(a) e rutila anatase em (b) Titanato de Estrôncio através difratogramas das dos е diferenças de morfologia das partículas nas imagens de MET.

O aumento da estabilidade e ligações energia de das diferentes fases causa uma menor conversão do material.

> Material absorve luz na visível, região do promovendo saltos dos elétrons nas bandas de condução, importantes aplicações para em células voltaicas е fotocatálise.

- \checkmark Aumento na produção de H₂ de, pelo menos 3,5x, em relação à amostra não-dopada.
- As vacâncias provocam uma maior absorção no visível, diminuição do "band-gap" e maior produção de hidrogênio no máximo de 500°C.
- ✓ O material perde cristalinidades com o aumento do número de vacâncias.

Para as vacâncias de oxigênio, amostras de 500mg foram colocadas em uma barca de alumina e posicionadas no meio do tubo de quartzo dentro do forno com fluxo constante de gás Argônio. O processo de dopagem foi testado em temperaturas entre 300 – 1000 °C por 1 hora.

Figura 3: Produção de Hidrogênio nas diferentes amostras dopadas em atmosfera de Argônio em diferentes temperaturas.

