

Aprendizado do Método de Isótopos Estáveis de ¹³C e ¹⁸O em Carbonatos Cretácicos: Dados Preliminares

INTRODUÇÃO

Compreender o método dos isótopos estáveis nas suas diferentes etapas (conceitos teóricos, processos de fracionamento, práticas analíticas e de coleta de amostras, interpretação) é fundamental para sua adequada aplicação em geociências.

Os isótopos estáveis, dos quais neste presente trabalho se destacam o ¹³C e o ¹⁸O, pode ser uma ferramenta extremamente útil em estudos estratigráficos e paleoambientais. Com a preparação adequada e uma interpretação correta dos dados de isótopos estáveis, é possível fazer correlações quimioestratigráficas e até inferências acerca do ambiente de formação das rochas estudadas.

OBJETIVOS

Com este trabalho pretende-se desenvolver a técnica de isótopos estáveis em formações carbonáticas cretácicas para que, aliada a outros métodos, sejam feitas determinações que permitam interpretar o paleoambiente.

MATERIAIS E MÉTODOS

A formação carbonática El Molino em Torotoro, Potosí, Bolívia (Fig.3) de idade cretácica, foi escolhida para testar a aplicação do método dos isótopos estáveis. A amostragem foi feita de forma a evitar o máximo possível as contaminações diagenéticas e supergênicas que pudessem ser identificadas a olho nu, ou com auxílio de lupa de mão. Foram coletadas 10 amostras para as análises preliminares de isótopos tentando sempre amostrar da base para o topo da camada (Fig.2). A coleta das amostras foi realizada ao longo de um perfil de 600m (Fig. 4 e 5). Desta forma, espera-se que as amostras representem de forma mais variada possível as mudanças climáticas e deposicionais registradas nos isótopos. Foi utilizada a equação de Shackleton e Kennet, dada por: $T = 16,9 - 4(\delta^{18}O_{carbonato} - \delta^{18}O_{água}), para determinação de paleotemperaturas.$

Fig. 1: Amostras preparadas para a análise isotópica.

RESULTADOS

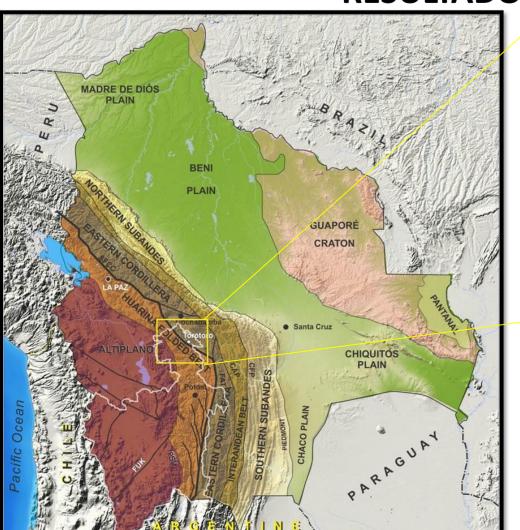


Fig . 3: Mapa das províncias geológicas da Bolívia.

Fig. 2: Método de amostragem da base para o topo

Fig. 5: Orientação das camadas das quais foram retiradas as amostras e o sentido de caminhamento relativo à estratigrafia.

João Ilha

RESULTADOS

Os dados de δ^{18} O foram reduzidos e aplicados na equação de paleotemperatura de Shackleton e Kennet como teste do método. Percebe-se que a variação do δ^{18} O assume tendências entre o membro inferior e o superior, levando a estimativas de paleotemperatura mais baixas neste e mais altas naquele.

naqueie.					
		Amostra	$\delta^{13}C_{VPDB}\%$	$\delta^{18}O_{VPDB}$ %	Т
Fm. El Molino	Membro Superior	TT104B	-0,75	-0,13	13,35
		TT110A	-1,60	0,71	10,11
		TT114A	-1,64	-3,07	26,17
		TT132	-1,56	-1,62	19,57
	Membro Inferior	TT083C	-2,05	-3,65	28,93
		TT 124A	-3,30	-4,31	32,25
		TT125A	-3,18	-4,58	33,58
		TT125B	-1,76	-4,93	35,44
		TT125C	-1,05	-2,06	21,49
		TT125D	-1,68	-4,82	34,84

Fig. 7: Tabela com os dados isotópicos das amostras analisadas e das temperaturas calculadas.

PTT 124 PTT 124 PTT 124

Fig. 6: Coluna estratigráfica da região, levantada pela equipe durante o trabalho de campo..

PTT 125

CONCLUSÕES

O resultado das análises nos permite inferir que possivelmente haja uma variação ambiental significativa entre o membro inferior e o membro superior. Também verifica-se uma tendência no aumento de ¹³C neste ciclo do membro inferior ao superior.

Uma análise mais detalhada dos resultados se torna necessária. As variações nos valores de δ^{18} O e de δ^{13} C observadas neste trabalho preliminar não permitem tecer considerações finais sobre o paleoambiente do mar no Cretáceo desta região. Pode haver ocorrido processos diagenéticos e remineralizações supergênicas dos

carbonatos. Em conclusão propõem—se a realização de novas coletas de amostras, mas com maior controle, acoplando outras técnicas como análises de Fluorescência de raios X e Difratometria de Raios X que permitam identificar a composição dos carbonatos (calcíticos ou dolomíticos), a presença de minerais que sejam produtos de processos supergênicos e

carbonatos.

REFERÊNCIAS

diagenéticos e utilização de isótopos de Sr para verificar a origem dos

Pomerol, Charles, et al. *Princípios de geologia: técnicas, modelos e teorias*. Bookman, 2013. Catuneanu, Octavian. *Principles of sequence stratigraphy*. Elsevier, 2006. Tucker, Maurice E. "Rochas sedimentares: guia geológico de campo. 4ª edição." (2014). AlBARÈDE, F. "Geoquímica: uma introdução." *São paulo: oficina de textos* (2011): 167-192. Schlesinger, W. H. "An analysis of global change. Biogeochemistry." *Academic Press: San Diego, CA, USA* (1997). Rankama, Kalervo. "Isotope geology." *GFF* 77.4 (1955): 635-636.

Rollinson, Hugh R. *Using geochemical data: evaluation, presentation, interpretation.* Routledge, 2014. Faure, Gunter, and Teresa M. Mensing. *Isotopes: principles and applications.* John Wiley & Sons Inc. 2005.

Hoefs, Jochen. *Stable isotope geochemistry*. Springer Science & Business Media, 2008. Attendorn, H-G., and Robert Bowen. *Radioactive and stable isotope geology*. Springer Science & Business Media, 2012.

BARRAL, Abel et al. Evolution of the carbon isotope composition of atmospheric CO2 throughout the Cretaceous. **Palaeogeography, Palaeoclimatology,**

Palaeoecology, v. 471, p. 40-47, 2017.