

AVALIAÇÃO DA CONCENTRAÇÃO DE ELEMENTOS TRAÇO EM ÓLEO DIESEL (B7) POR ESPECTROMETRIA DE ABSORÇÃO ATÔMICA DE ALTA RESOLUÇÃO COM FONTE CONTÍNUA UTILIZANDO SISTEMAS EMULSIFICADOS COMO MÉTODO DE PREPARO DE AMOSTRA

Vanessa F. Fonseca, Márcia M. da Silva

INTRODUÇÃO

Óleo diesel Adição de 7% de Biodiesel

Biodiesel tem uma baixa estabilidade oxidativa

É necessário o controle de metais como Cu, Fe, Ni, Pb, Zn, Al, Cr e Sn Cu e Ni comprometem a
 eficiência do combustível
Fe, Cu, Al e Cr corroem
 motores e caldeiras

HR-CS F AAS

OBJETIVO

Desenvolvimento de um método simples e preciso para a avaliação das concentrações de Cu, Fe, Ni, Pb, Zn, Al, Cr e Sn em microemulsões de diesel (B7) por HR-CS F AAS.

EXPERIMENTAL

HR-CS F AAS: ContrAA modelo 300 (Analytik Jena)

Analito	Comprimento de onda (nm)	Sensibilidade relativa (%)	Altura da leitura (mm)	C ₂ H ₂ /air (L h ⁻¹)
Cu	324.754	100	5	0.085
Fe	248.327	100	6	0.128
Ni	232.003	100	6	0.096
Pb	217.000	100	6	0.138
Zn	213.857	100	6	0.096
Al	396.152	91	5	0.492
Cr	357.868	100	4	0.479
Sn	224.605	100	4	0.625

Preparo da microemulsão

- 3.3 g óleo diesel (B7)
- 300 μL de fase aquosa (água/HNO₃)
- Avolumar para 10 mL com *n*-propanol.

RESULTADOS

Testes de recuperação com padrões inorgânicos aquosos e orgânicos apresentaram valores entre 93-124%.

Parâmetros de mérito

Analito	Regressão linear	R ²	Co (mg L ⁻¹)	LOD (mg kg ⁻¹)	LOQ (mg kg ⁻¹)
Cu	y = 0.0960x + 0.0006	0.9983	0.04	0.01	0.02
Fe	y = 0.0403x + 0.0015	0.9983	0.10	0.01	0.04
Ni	y = 0.0380x + 0.0008	0.9990	0.11	0.01	0.04
Pb	y = 0.0247x + 0.0007	0.9995	0.18	0.01	0.05
Zn	y = 0.1316x + 0.0186	0.9867	0.03	0.02	0.06
Al	y = 0.0093x + 0.0016	0.9995	0.47	0.07	0.25
Cr	y = 0.0431x - 0.0025	0.9943	0.08	0.42	1.4
Sn	y = 0.0040x - 0.0004	0.9998	1.00	0.33	1.1

Resultados do material de referência certificado: Foi utilizado o material SRM 1084a, sendo estatisticamente concordante para todos os analitos a um nível de 95% de confiança (Teste t-Student)

Determinação em amostras de diesel (B7)

Concentração (mg kg ⁻¹) (n = 3)							
Amostra	Cu	Fe	Cr				
L 2693	0.18 ± 0.02	0.05 ± 0.02	< LOD				
L 3154	< LOD	< LOD	0.9 ± 0.2				
L 3040	< LOD	< LOD	0.8 ± 0.1				

Ni, Pb, Zn, Al e Sn: as concentrações foram menores que os LODs obtidos pelo método proposto.

CONCLUSÃO

O método proposto foi muito eficiente na determinação de Cu, Fe, Ni, Pb, Zn, Al, Cr and Sn em amostras de diesel (B7) por HR-CS F AAS, apresentando vantagens em relação ao método tradicional, sendo adequado para aplicação rotineira em laboratório.

AGRADECIMENTOS: CNPQ E LABCOM/CECOM/UFRGS