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ABSTRACT

Functional programming languages are known for their ease of use and conciseness.
Pure functional languages are a subset of these languages and provide further improve-
ments in certain areas, such as making it easier to reason about programs due to refer-
ential transparency. One area in which pure functional languages usually lack, however,
is when manipulating records.
We present the V language, a purely functional programming language with a novel
approach to record manipulation. By using polymorphic accessors, V attempts to solve
issues commonly found when manipulating records in purely functional programming
languages. This approach required the use of traits to support ad-hoc polymorphism in
the language.
This work presents a complete picture of the V language. A formal speci�cation is given,
with syntax, semantics and a type-inference system. The current implementation, com-
prising of an interpreter with an interactive read-eval-print loop (REPL), is shown, along
with a brief analysis of some preliminary tests.

Keywords: Functional Programming Languages. records. traits.



A Linguagem V

RESUMO

Linguagens de programação funcionais são conhecidas por sua facilidade de uso e conci-
são. As linguagens funcionais puras são um subconjunto dessas linguagens e fornecem
melhorias adicionais em determinadas áreas, como facilitar raciocínio sobre programas
devido à transparência referencial. Uma área na qual linguagens funcionais puras geral-
mente pecam, no entanto, é a manipulação de registros.
Apresentamos a linguagem V, uma linguagem de programação puramente funcional com
uma nova abordagem a registros. Usando acessores polimór�cos, V tenta resolver pro-
blemas comumente encontrados quando manipulando registros em linguagens de pro-
gramação puramente funcionais. Essa abordagem exigiu o uso de traits para prover
polimor�smo ad-hoc para a linguagem.
Este trabalho apresenta uma visão completa da linguagem V. Uma especi�cação formal
é dada, com sintaxe, semântica e um sistema de inferência de tipos. A implementação
atual, composta de um interpretador com um read-eval-print loop (REPL), é mostrada,
juntamente com uma breve análise de alguns testes preliminares.

Palavras-chave: linguagens de programação funcionais, registros, traits.
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1 INTRODUCTION

Functional programming languages, or simply functional languages, are languages
in which programs are primarily written by means of the de�nition and combination
of functions. Haskell, Ocaml, Scheme, F#, Elm, and Scala are examples of functional
languages (or mostly functional in case of OCaml, Scheme, F# and Scala). Using fea-
tures such as higher-order functions and currying, functional languages can (generally)
express complex operations in fewer lines of code than imperative or object-oriented
languages. Also, a strong type system, featured in many functional languages, allows
the development of code that is free from some kinds of errors, such as missing cases
in switch statements or trying to perform an operation on a type that does not support
that operation.

Records (or structs) are one of the basic data structures in computer science. They
are one of the most common way to represent structured and heterogeneous data, since
having named �elds allow easy understanding and manipulation of each component of
the record. In most languages, access and manipulation of a single �eld in a record is
easy and straightforward, and complex data structures can be expressed using nested
records without becoming too unwieldy or cumbersome.

Purely functional languages (SABRY, 1998) are languages in which referential
transparency holds, meaning that the result of a function application is solely de�ned
by its arguments. There are few languages with this property, from which we can men-
tion Haskell (MARLOW et al., 2010) and Elm (CZAPLICKI; CHONG, 2013). A conse-
quence of referential transparency is the absence of implicit side e�ects during function
evaluation, which means, among other things, that values stored in memory be cannot
modi�ed. Because of this, purely functional languages are known for not being as con-
venient for dealing with records as languages that allow side e�ects. This limitation is so
serious that, at least in Haskell, the use of a library to work with large nested records is
practically required. Although many di�erent approaches have been suggested to mit-
igate this problem, they are usually limited. For instance, the popular Lenses (KMETT,
2012) approach for Haskell uses very complicated types (since it exploits a speci�c type
isomorphism) and requires template meta-programming for its notation. These prob-
lems come from the fact that lenses are implemented as a library and not as a primitive
construct of the language.

This paper presents V, a purely functional programming language inspired by
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Haskell, with a new approach to record manipulation. V introduces �rst-class accessors
that focus on a region of a given record. These accessors are used together with getter

and setter functions to read and modify records. It is important to clarify that, when a
modi�cation or update of a record is mentioned in a purely functional language, what
is meant is the construction of a new record based on an existing one. Accessors in V
can be combined using primitive operations, allowing to focus on very speci�c parts of
large, compound nested records. Accessors are polymorphic, allowing the access and
update of a record whenever the necessary �elds are present – which is veri�ed by a
trait-based type system.

Although the V language is still under development, its speci�cation and im-
plementation evolve in parallel with each other and are kept as consistent as possible
whenever changes occur. The speci�cation consists of a big-step operational semantics
and a type system, and the implementation consists of a working REPL (read-eval-print
loop) interpreter and an improvised library system (with a simple standard library), im-
plemented in F# (SYME et al., 2010). Both speci�cation and implementation can be found
on the project page on Github1. This work presents the current status of the language
and, in particular, the record subsystem and how traits are used in the type system.

1.1 Motivation

New programming languages are constantly being created, and the motivations
for their existence are as varied as the languages themselves. Some languages, like Ada
(TAFT; DUFF, 1997) and Algol (BACKUS et al., 1960), were designed by committees with
a top-down approach, fully specifying the language before any code had been written
in it. Others, such as Lua (IERUSALIMSCHY; FIGUEIREDO; FILHO, 1996) or Python
(ROSSUM; JR, 1995), were �rst created to satisfy a small and speci�c need, and then
grew in popularity from there. Some languages are created as a way to study program-
ming languages academically, while others are created with the intent of being used in
production. Some languages try to introduce novel concepts or propose a new syntax to
simplify the work of programming, while others try to be as e�cient as possible.

Out of all these scenarios, V evolved from a simple functional language called L1,
introduced in a project in Formal Semantics class, as a way to explore language design,
type systems and interpreters. The language started to evolve with new features such as

1<https://github.com/AvatarHurden/V>

https://github.com/AvatarHurden/V
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strings, lists, type inference, polymorphism, etc., always looking for inspiration in other
languages and trying to take the best parts of each.

For a while, the language was very similar to other functional languages, and its
value existed solely as a learning tool. This started to change when records were added
to the language. The author discovered that there is no universally accepted way to add
records to functional languages, with each one taking its own approach, and all of them
with serious limitations and drawbacks.

Because of this, the focus turned to �nding a better way to use records, trying
to reconcile the ease of use that exists in imperative or object-oriented languages with
the purity of a functional language. This led the author to not only change the core of
the language, but also drastically alter its original type system, making it distinct from
those normally found in functional programming languages.

The result of this journey is V, a purely functional programming language with
record accessors and a trait-based type system. The language is still being worked on as
a general language, but now the focus is on what accessors and traits can bring of value
to the programming language community.

The structure of this work is as follows. In Chapter 2, required background
knowledge is provided. In Chapter 3, the V language as a whole is introduced, explaining
its characteristics, type system and operational semantics while focusing on its record
and accessor system. In Chapter 4, details about the implementation of V are provided.
Finally, in Chapter 5, we conclude this work with the current state of the language, along
with known limitations and future work.

Furthermore, there are 4 appendices for the work. Appendix A provides the com-
plete syntax for the V language. Appendix B gives the rules governing operational se-
mantics for the language. Appendix C provides the rules for the language’s type system.
Appendix D gives information about the extended syntax of the language. Finally, Ap-
pendix E provides a simple implementation of accessors in Haskell.
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2 BACKGROUND

2.1 Pure Functional Programming Languages

Functional programming is a style of programming that focuses on functions,
with concepts such as function composition, currying and anonymous functions. Fur-
thermore, this style of programming treats functions as �rst-class values, allowing them
to be passed as arguments, used as return values of other functions, and manipulated
in multiple ways. In pure functional programming, all functions are pure mathematical
functions. This means that they do not have any side-e�ects, and their outputs are purely
dependent on their inputs. The lack of side-e�ects also means that there is no way to
change the state of a pure functional program, so the concept of mutable variables or
global state is non-existent in purely functional programming.

Although the precise di�erence between pure and impure functional languages
is a matter of controversy (SABRY, 1998), this text will call pure functional languages
those that incorporate all aspects of pure functional programming. Some languages,
such as F#, allow a programmer to create side-e�ects in a function (such as IO, mutating
state, etc) to facilitate an imperative style of programming. They are still considered
functional because they incorporate some aspects of functional programming, such as
�rst-class functions or function composition, but their multi-paradigm approach sepa-
rates them from pure functional languages. More modern languages, such as Kotlin or
Swift, although not considered functional, incorporate several characteristics of func-
tional languages, such as immutability and �rst-class functions.

Functional language programmers are among those with the highest paying salaries
now (STACKOVERFLOW, 2018), and the popularity of functional programming (be it
in pure or impure functional languages) is growing constantly. Among functional lan-
guages, Haskell and Elm are a couple of the more popular that can be said to be pure.

Haskell In 1987, a committee was formed to consolidate the more than a dozen ex-
isting functional languages that were created after the release of Miranda. In 1990, the
committee released the �rst version of the Haskell language, serving as a vehicle for
further research into functional programming. Despite an explicit stated goal of being
used as a basis for language design (HUDAK et al., 2007), Haskell has grown popular in
many di�erent �elds, including teaching and industry.

Haskell is a general purpose programming language, deriving its name from
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Haskell Curry (HUDAK et al., 2007). It features a type system with complete type in-
ference and has lazy evaluation (HENDERSON; MORRIS JR., 1976), which is a kind of
non-strict evaluation.

Being a functional language, it supports �rst-class functions, function composi-
tion and pattern matching. By virtue of being pure, without any side-e�ects in functions,
the language can use lazy evaluation as a means of representing very powerful abstrac-
tions, such as in�nite lists.

Its type system supports type polymorphism in two �avors: parametric poly-
morphism and ad-hoc polymorphism. Parametric polymorphism is obtained by using
Hindley-Milner (MILNER, 1978)(HINDLEY, 1969) type inference, while ad-hoc poly-
morphism (or overloading) is a result of type classes (HUDAK; FASEL, 1992)(WADLER;
BLOTT, 1989).

Elm Elm is a domain-speci�c programming language for creating simple MVC-based
web applications. It is purely functional, and its strong static type system makes it a
very robust language for the task. It was initially designed in Evan Czaplicki’s thesis in
2013 (CZAPLICKI; CHONG, 2013), with a compiler targeting HTML, CSS and Javascript.
It has since expanded to include a read-eval-print loop (REPL), package manager and
community-created libraries.

Because of its limited domain scope, it lacks support for many features that lan-
guages like Haskell provide, such as parametric polymorphism. Still, the advantages
provided by functional purity and type inference, together with its libraries and the
MVC app architecture, have allowed Elm to grow rapidly since its creation in 2013.

2.2 Records

Records, also called structs, are one of the basic data structures in computer sci-
ence. They are collections of �elds, where each �eld has a name and value. Typically,
the number of �elds in a record is �xed upon creation, and thus the only operations
that can be performed on a �eld are accessing the current value and updating the �eld
with a new value. Records are the most common way to represent structured and het-
erogeneous data in imperative languages, and objects (in object-oriented languages) are
essentially records with added functions (or methods).

One of the greatest advantages of records over other data structures is the fact
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that the programmer can easily access and update a single �eld in a record (at least in
most languages). This means that even large or nested records do not become unwieldy,
and thus they cover many di�erent uses, from simple pairs of values up to complex
hierarchies of nested records.

To support modifying a single �eld of a record, most languages make use of mu-
tability. A record is stored in a speci�c place of memory, and updating the value of a �eld
simply changes a portion of that memory. By doing this, the same variable can refer to
both versions of the record (before and after mutating).

Pure functional languages, however, do not allow this sort of memory mutation.
Even though most languages have a way of updating a single �eld of a record, they
require that a new variable be created to refer to this modi�ed record. This change
creates a series of issues when dealing with records in pure functional languages, and
many di�erent approaches have been taken by di�erent languages.

Below will be presented a brief overview of how Haskell and Elm allow the cre-
ation and use of records, and also some examples illustrating why their approaches are
not adequate for several uses.

Haskell In the Haskell language, the following code declares a new record type A

with two �elds (a and b) of type Int, along with a value x of type A. The Haskell lan-
guage automatically creates two getter functions, a :: A → Int and b :: A → Int,
to access the �elds a and b, respectively, within the same scope as that of the data type
itself.

data A = A { a :: Int,

b :: Int }

x = A { a = 3,

b = 5 }

-- Code below is automatically generated

a :: A -> Int

a (A a _) = a

b :: A -> Int

b (A _ b) = b

One of the problems with this approach is that getters are de�ned as simple func-
tions in the current namespace. This choice forbids two distinct record types from having
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the same �eld names, as occurs commonly in real applications. For this reason, the record
type B, de�ned below, cannot have a �eld named a, and the programmer is required to
use a variation of the name.

data B = B { a' :: A,

c :: Int }

-- record with another record as field

z = B { a' = A { a = 3,

b = 4 },

c = 6 }

Haskell o�ers a special syntax for record update. By providing a name and a
value (or multiple names and values separated by commas) between curly braces, one
can treat existing records as functions and “apply” any desired updates. The code below
creates a new record, y, which is created exactly the same as x, except for the �eld a,
which now has value 7.

y = x { a = 7 }

-- y = A { a = 7, b = 5 }

This syntax becomes cumbersome when inner �elds of records need to be up-
dated. For instance, the following code would be required in order to update the inner
�eld a of record z to have value 8.

z' = z { a' = (a' z) { a = 8 } }

As the example shows, we are forced to expose the intermediate updates when-
ever we are trying to update �elds within �elds. This can be even worse when dealing
with multiple levels of nested records, as it becomes necessary to extract and “repackage”
every nested record individually.

Elm Elm has no concept of named record types, but type aliases can be used to obtain
the same results as record types in Haskell.

type alias A = { a : Int,

b : Int }

x = { a = 3, b = 5 }
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Elm also creates getter functions for each �eld of the record: .a :: A -> Int

and .b :: A -> Int. Notice the function names are preceded by a dot, and in Elm one
can write x.a to access the �eld a in the record x. One advantage of Elm over Haskell
is that getters in Elm are not restricted to a single record type. This means that it is
possible to de�ne the B type as follows:

type alias B = { a : A,

c : Int }

-- record with another record as field

z = { a = { a = 3, b = 4},

c = 6 }

Like Haskell, there is a special syntax for record update. At the surface level, the
only di�erence is that the existing record is positioned inside the curly braces, separated
from the updated �elds by a pipe (|).

y = { x | a = 7 }

-- y = { a = 7, b = 5 }

This syntax, however, has a limitation that makes updating nested �elds even
more cumbersome than Haskell: it only accepts names before the pipe, not arbitrary
expressions (in other words, one cannot write { { a = 3, b = 5 } | a = 7 } in Elm).
This means that, to update an inner �eld, it is necessary to �rst bind the inner record to
a name.

let x = z.a in

z' = { z | a = { x | a = 8 } }

Lenses

One possible approach to manipulate records in functional languages is through
the use of Lenses (O’CONNOR, 2011), which are functional references to parts of a com-
plex structure. They allow both accessing and updating these parts and, since they are
functions, they can be composed to create lenses for more complex structures.
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Because they combine functional purity with the idea of accessing a speci�c part
of a structure, they can be used as a way to allow easier record manipulation in pure
functional languages.

Lenses in Haskell Haskell has a Lens package that brings lenses to the language, but
it is still experimental and is not a part of the language or standard libraries.

Since Lens is a non-standard library, it must be imported before being used in
a program. Furthermore, since creating lenses requires some meta-programming, a
pragma must be included in the language (this could be removed if one creates the lenses
by hand). In order to create lenses with the expected names a and b, the actual �eld
names of the data type must be preceded by an underscore.

{-# LANGUAGE TemplateHaskell #-}

import Control.Lens

data A = A { _a :: Int,

_b :: Int }

x = A { _a = 3,

_b = 5 }

makeLenses ''A

-- creates lenses a and b

These lenses can then be used both as getters and as setters. This uni�es the
syntax for these two operations, while also transforming the set operation into a �rst
class construct.

val = get a x

-- val = 3

y = set a 7 x

-- y = A { _a = 7, _b = 5 }

The issue of namespace remains, however. Because of this, the data type B must
still use a variation of the �eld name a.
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data B = B { _a' :: A,

_c :: Int }

-- record with another record as field

z = B { _a' = A { _a = 3,

_b = 4 },

c = 6 }

makeLenses ''B

Finally, lenses resolve the issue of exposing intermediate updates. Since lenses
are functions, they can be composed using the regular function composition operator
(.) to access inner �elds. Below, we compose the a’ and a lenses to update an inner
�eld.

z' = set (a' . a) 7 z

-- z' = B { _a' = A { _a = 7,

-- _b = 4 },

-- c = 6 }

Although lenses do solve some of the issues that Haskell has when dealing with
records, they are far from a perfect solution. They do not address the problem of repeat-
ing �eld names and namespaces, and they are notorious for being extremely di�cult
for beginners in the language. Not only do users have to understand Haskell meta-
programming, but, since lenses are created on top of complicated type isomorphisms
and manipulations, they can create tricky to understand type error messages.

2.3 Polymorphism

Polymorphism (STRACHEY, 2000) is a way to allow functions to operate on dif-
ferent types. There are many di�erent kinds of polymorphism, but the ones most com-
mon to functional languages are parametric polymorphism and ad-hoc polymorphism.

Parametric polymorphism is when a function operates uniformly on any type.
This kind of polymorphism is what allows a function such as map to operate on any list.
This kind of polymorphism restricts functions to work on the structure of data, without
any knowledge of the actual values contained in it.
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As an example, below is the de�nition of the map function in the V standard
library. Its type is ∀a,b.(a→ b)→ [a]→ [b], where a and b are type variables, which
means that it takes a function that maps values of type a to values of type b, and a list
of values of type a, returning a list of values of type b. Note that the de�nition does not
make any restriction on the types a or b, allowing them to be replaced by any concrete
type. This means that the same implementation can be used for lists of integers, strings
or any other value.

let rec map f ls =

match ls with

| [] -> []

| x :: xs -> (f x) :: (map f xs);

Ad-hoc polymorphism is when the same name is de�ned on multiple types, but
the behavior is di�erent for each type. This is used, for instance, in equality: the exact
behavior when testing for equality depends on the type of the values. Furthermore, ad-
hoc polymorphism is restricted to speci�c types; equality, for example, does not apply
to functions in general (due to known undecidability).

As an example, below are two implementations for the equality operation in V,
one for numbers and one for booleans. For every new type for which equality is desired,
a new function would have to be implemented, describing the expected behaviour for
that speci�c type.

let rec (==) n1 n2 =

match (n1, n2) with

| (0, 0) -> True

| (a, b) -> a - b == 0;

let (==) b1 b2 =

match (b1, b2) with

| (True, True) -> True

| (False, False) -> True

| _ -> False;

While parametric polymorphism is widely used and understood in functional lan-
guages through the Hindler-Milner-style type system (HINDLEY, 1969) (MILNER, 1978),
ad-hoc polymorphism is rarer and di�erent languages have taken di�erent approaches.
Haskell’s Type Classes are one way to implement ad-hoc polymorphism, and V imple-
ments Traits to achieve a similar e�ect.

Traits The term trait was �rst introduced by (UNGAR et al., 1991) to denote a par-
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ent object to which an object may delegate some of its behavior. Since then, the term
has been used to describe systems of delegating and de�ning behavior by many di�er-
ent languages, such as Squeak/SmallTalk (NIERSTRASZ; DUCASSE; POLLET, 2009) and
Scala (ODERSKY et al., 2004). Other languages have di�erent names for similar tools,
such as interfaces in Java (GOSLING et al., 2014) and protocols in Swift. Most instances
of traits occur in object-oriented languages, but Type Classes are a Haskell system that
also de�nes speci�c behavior for types.

In this work, traits are used to support ad-hoc polymorphism (or overloading). A
trait de�nes one or more behaviors or characteristics (such as equality, comparison or
accessing �elds in records), and is associated with a set of types. When a type exhibits
the behavior or characteristic de�ned by a trait (and, therefore, is associated with it), it
is said that the type conforms to the trait.

As an example, the Equatable trait de�nes the characteristic of being testable
for equality, and is associated to, among other types, integers and booleans. When the
equality (=) operator is used in the language, the types of its operands are tested for
conformance to the Equatable trait in order to check if a program is valid.

So, for instance, the program

3 = 4

would be valid, as 3 and 4 have type Int, and Int conforms to Equatable. However,
the program

(\x -> x + 1) = (\x -> x + 1)

would be invalid, since the operands are functions, and functions do not conform
to Equatable.

2.4 Formal Semantics and Type Systems

Formal semantics of programing (FLOYD, 1967) is concerned with precisely de�n-
ing the meaning of programs. It provides abstract entities that allow only the relevant
features of computation to be described. Other features more speci�c to implementation,
such as running time and storages addresses, can be ignored when specifying formal se-
mantics.

Semantics comes in two �avors: static semantics and dynamic semantics. Static
semantics refers to any checks that can be performed before running a program, and is
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usually referred to as type checking. Dynamic semantics, on the other hand, refers to
the behavior of programs when run.

There are many di�erent approaches to dynamic semantics, such as denotational
semantics and axiomatic semantics. In this work, we will focus on operational semantics,
in which computations are modeled explicitly. This modeling is done by way of rules
that specify transition relations from programs to programs and values.

There are two variants of operational semantics: small-step and big-step. Rules
given in small-step semantics evaluate expressions one computation step at a time. This
means that evaluation can be described as transitions between subsequent con�gura-
tions (system states). In big-step semantics, rules describe the computation of any ex-
pression in a single derivation. They relate expressions directly to their value and, as
such, are usually more concise. On the other hand, the representation of non-termination
is not as natural as when using small-step semantics.

In this work, the big-step style will be used to express the operational semantics
of V, as it is the most natural way to de�ne an interpreter (KAHN, 1987). This means
that the evaluation of expression will be given as a set of rules that map expressions to
values.

These rules will have the form:

prem1 · · · premn

env ` e ⇓ v
(Example)

where e is an expression; v is the resulting value; premi, for 1 ≤ i ≤ n, are any re-
quirements for the use of the rule; and env is an evaluation environment. The exact
de�nitions of expressions, values and environments will be given later.

Similarly, the type system of V will be expressed as a set of rules of the form:

pre-req

Γ ` e : T
(T-Example)

where e is an expression; T is the resulting type; pre-req are any requirements for the
use of the rule; and Γ is a typing environment. Again, exact de�nitions of each of these
terms will be given later in the text.

In practice, however, typing is done in V with a type inference system that uses
constraint collection and uni�cation. This means that rules given in the format above
do not capture the real way that V decides types for expressions. In actuality, the rules
for typing expressions are of the form given below:
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pre-req

Γ ` e : T | C
(T-Example2)

where C is a set of constraints generated by the typing rule.
Although the simpli�ed rules of the form of T-Example do not capture the ex-

act way that V’s type system works, they are much simpler to understand and do not
change much when constraint collection is introduced. Because of this, they will be
the preferred way to express typing rules, and only when necessary will the constraint-
collection version of these rules be used.
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3 THE V LANGUAGE

This chapter will focus on the design of the V language, �rst describing the lan-
guage informally and providing an in-depth exploration of its record system. Following
this, the chapter will provide, in a formal manner, the syntax (both core and extended)
of the language, its operational semantics, and its type system.

3.1 Overview

V is a purely functional strict general purpose programming language with a
strong and static type system. It draws heavily from Haskell, both in its syntax and
feature-set, although inspiration was also taken from F# to provide some of the syntax.

Being general purpose means that the language does not have any speci�c appli-
cations in which it excels. The language tries to provide the basic tools that are needed
by any programming scenario, and leaves the task of creating domain-speci�c tools to
the developer. That being said, V tries to improve upon other languages that already
exist in the �eld, especially in relation to record manipulation in functional languages.

The syntax of the language is divided into two parts: the core syntax, which
forms the basis for program evaluation and type inference; and the extended syntax,
which provides higher level expressions and can be translated into the core syntax.

Separating the syntax this way simpli�es the process of de�ning the language. By
having a small core syntax, the number of typing and evaluation rules can be greatly re-
duced, making the implementation of these components easier. Furthermore, by having
a higher level syntax, it is much easier to add new expressions to the language without
having to worry as much about breaking compatibility with existing expressions.

V’s type system has support for parametric polymorphism through Hindley-
Milner style let-polymorphism (PIERCE, 2002). It also uses the concept of traits, which
provide ad-hoc polymorphism, or overloading, to the language. This mechanism is the
basis for V’s approach to record manipulation, but it also has many other applications,
such as allowing a universal equality function.

V has full type inference, meaning that the type system is capable of determining
the type of every expression without depending on type annotations from the developer.
However, for clarity (or to restrict the type of an expression further than is required), V
allows type annotations in certain expressions.
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3.2 Record System

This section introduces, in an informal way, the approach V takes for records and
accessors. First, the structure and construction of records are given. Second, accessors
are described, explaining their use, construction and manipulation. Then, a few helper
de�nitions are provided, allowing easier use and manipulation of accessors. Finally, a
complete example of a small program in V which uses records and accessors is given.

Records Records are a comma-separated set of associations between �eld names (also
known as labels) and values enclosed in curly braces. Each �eld name can only appear
once in a given record. For example, the record below has three �elds named, respec-
tively, name, level and health.

{ name: "Hero",

level: 6,

health: 100 }

The type of a record is de�ned completely by its �eld names and associated types.
Because of this, a record can be constructed without declaring its type beforehand, as
opposed to what happens in Haskell. In the example above, the type of the record is
{name:String, level:Int, health:Int}.

Accessors In its most basic form, an accessor is a �eld name preceded by an octothorp
(#). To actually use accessors, two built-in functions, get and set, are de�ned:

1. get takes an accessor and a record, returning the value associated with the acces-
sor’s name in the record.

get #health {stamina: 30, health: 20}

// returns 20

2. set takes an accessor, a value and an initial record. It returns a new record, re-
placing the value associated with the accessor’s name in the initial record.

set #health 0 {stamina: 30, health: 20}

// {stamina: 30, health: 0}

An accessor can be used on any record that contains the �eld name associated to
it. In the example below, the #health accessor is used on two records of di�erent types,
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since both contain a �eld named health.

get #health { name: "P1",

level: 6,

health: 20 }

// 20

get #health { stamina: 30,

health: 100 }

// 100

ManipulatingAccessors V o�ers three ways to manipulate accessors: stacking, join-
ing and distorting. All of them take accessors as input and return a (composite) accessor
as output, which can then be used with the get and set functions.

Stacking Updating the �elds of a nested record in V by using only basic ac-
cessors is still cumbersome. This is illustrated by the following example, in which the
inner �eld name is updated to "John".

let player = { name: "Hero",

level: 6,

health: 100 };

let game = { player: player,

enemies: [] };

let oldPlayer = get #player game;

set #player

(set #name "John" oldPlayer)

game

// { player: { name: "John",

// level: 6,

// health: 100 },

// enemies: [] };

By using V’s stacked accessors, however, it is possible to hide the intermediate
updates for an inner �eld, making the respective update syntax much more convenient.
In the V language, accessors are stacked with the built-in stack function. The following
example presents how a stacked accessor is used to perform the same update shown in
the previous example.
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let player = { name: "Hero",

level: 6,

health: 100 };

let game = { player: player,

enemies: [] };

let playerName = stack #player #name;

set playerName "John" game

// { player: { name: "John",

// level: 6,

// health: 100 },

// enemies: [] };

In the example above, playerName is the composite accessor which results of
stacking accessors #player and #name. The stack function only receives two accessors
as inputs, but these can themselves be composite accessors, allowing to focus on an inner
�eld no matter how deep it is located within a nested record structure.

Joining Joined accessors operate on di�erent �elds of the same record. The
�eld values are treated as tuples, both for setting new values and for getting the current
�eld values. Below is a simple example of accessing the �elds level and health in a
record using a joined accessor.

get #(#level, #health) player

// (6, 100)

set #(#level, #health) (7, 80) player

// {name: "Hero", level: 7, health: 80}

When setting, joined accessors are “applied” from left to right. This means that, if
multiple components of the accessor refer to the same �eld, the last component is used.

set #(#level, #level) (6, 7) player

// {name: "Hero", level: 7, health: 100}

When updating a record, joined accessors provide the same functionality as the
update syntax in Elm and Haskell, allowing multiple updates to be performed simulta-
neously.
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Distorting It is possible to distort accessors, de�ning getter and modifier

functions to be applied on an existing �eld value. These functions allow a �eld to “store”
a value in a di�erent format (or even type) than the one used when operating on it
through accessors.

The modifier function receives two parameters: the value provided by the caller
of the accessor and the old value stored in the �eld. The function can then use both values
to generate a new value to be stored.

Distorting is most useful when the value in a �eld represents structured data that
is not a record, such as a list or a bitmask. By de�ning a function to destructure the data
(the getter function) and a function to reconstruct the data (the modifier function), it
is possible to create an accessor to manipulate only a speci�c portion of this data.

As an example, the code below allows editing the �rst enemy of a game.

let enemy = { stamina: 20,

health: 40};

let game = { player: player,

enemies: [enemy]};

let getter ls = head ls;

let modifier x ls = x :: (tail ls);

let firstEnemy = distort #enemies

getter

modifier;

get firstEnemy game

// { stamina: 20, health: 40 }

Another use for distortion is to allow a di�erent view of the data in a �eld, such
as transforming a number into a string. In these cases, usually the stored value is not
necessary to generate a new value (i.e the new value is generated purely based on the
provided value), and so the second parameter of the modifier function is ignored. As
an example, the accessor below shows health as a string, by using the built-in parseInt

and printInt functions.

let getter h = printInt h;

let modifier h _ = parseInt h;
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let healthString = distort #health

getter

modifier;

get healthString player

// "100"

Modify In addition to the base set function, a built-in modify function is also avail-
able. This function, instead of taking a value to be inserted into the record, takes a
function to modify the existing value in the �eld. Using it, it is possible to specify a new
value for a �eld taking into account the current value, such as in the following case:

let player' = modify #level

(\x -> x + 1)

player;

// player' = { name: "Hero",

// level: 7,

// health: 100 };

Dot Access Although the functions and expressions shown above provide all the
functionality needed to manipulate records and accessors, using pre�xed functions is
cumbersome. For this reason, a new syntax is provided that greatly simpli�es the most
common uses for accessors. This syntax is very similar to accessing attributes in object-
oriented languages, commonly referred to as dot notation.

To access a �eld of any identi�er bound to a record, simply put a dot after the
identi�er and write the name of the �eld being accessed. This removes both the use
of the octothorp and get function, and can also be used to access inner �elds. As an
example, the code below is used to access the name sub�eld of the player �eld:

let player = { name: "Hero",

level: 6,

health: 100 };

let game = { player: player,

enemies: [] };

game.player.name



28

// "Hero"

This syntax can also be used with joined accessors. In this scenario, what follows
the dot is between parentheses, and, just like with stacked accessors, does not need to
be preceded by an octothorp.

player.(level, health)

// (6, 100)

Inside the parentheses, every accessor can itself be stacked or joined. The exam-
ple, although contrived, is perfectly legal V code:

let getFields record = record.(company.(number, name), ceo.lastName);

The dot notation also works with accessors that have been bound to identi�ers. In
this case, it is necessary to precede the identi�er with a single quote ('). This is necessary
for using distorted accessors (such as healthString de�ned above), but can also be used
for stacked or joined accessors. In the example below, we use an alias for accessing a
nested �eld (notice how the dot notation can also be used on pure accessors, and these
must still start with an octothorp).

let playerName = #player.name;

game.'playerName

// "Hero"

Update There is also a special update command to allow simpler updates of �elds. An
update is written as a �eld (using the dot notation seen above), followed by a left-facing
arrow, and �nally the new value to be set in the �eld. An update can be used exactly like
a function, simply passing the record to be updated as its argument.

Below is a simple example of updating a nested �eld:

(update player.name <- "John") game

// { player: { name: "John",

// level: 6,

// health: 100 },

// enemies: [] };

The update syntax supports updating multiple �elds at the same time by sepa-
rating each update with a semicolon (;) and wrapping them inside curly braces. Below
is an example updating both the name and level of a player:
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update {

name <- "John";

level <- 7

} player

// { name: "John",

// level: 7,

// health: 100 }

This syntax also allows using a function to modify an existing �eld. By replacing
the straight line of the arrow with a tilde (∼) you can pass a function to modify the
existing value in the �eld.

let player' = update { level <~ (\x -> x + 1) } player;

// player' = { name: "Hero",

// level: 7,

// health: 100 };

This syntax is especially intuitive for de�ning functions that operate on records.
As an example, the code above could be also written as:

let increaseLevel = update level <~ (\x -> x + 1);

let player' = increaseLevel player

// player' = { name: "Hero",

// level: 7,

// health: 100 };

Example

Maintaining the thematic of a game, Figure 3.1 presents a series of functions that
manipulate records which can constitute a library for a game. A few helper functions are
de�ned to allow easier manipulation of individual players and enemies, decreasing either
their stamina or their health. These functions are then used to compose the �nal game
manipulations: the player attacking either all enemies or a single enemy. As shown in
the comments, the functions that implement record types do not de�ne speci�c record
types as arguments. Instead, they require that the records have at least a speci�c set of
�elds. This is represented in the comments by adding ellipsis (...) to the end of the
record type, as in {health:Int,...}. The comments also display type information for
each function, and more details about the type system are provided in Section 3.5.
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Figure 3.1: A simple game in V.
let player = { health: 100,

level: 6,
name: "Hero",
stamina: 40 };

let enemies = [ { health: 20, stamina: 10 },
{ health: 30, stamina: 10 } ];

let game = { player: player,
enemies: enemies };

// This function takes any accessor that points to a field of type Int
// taking advantage of accessors being first-class expressions
// reduce :: X#Int -> Int -> (X -> X)
let reduce accessor byAmount = update 'accessor <~ (\x -> x - byAmount);

// damageBy :: Int -> (X -> X)
// X = { health: Int, ... }
let damageBy = reduce #health;

// staminaDrain :: Int -> (X -> X)
// X = { stamina: Int, ... }
let staminaDrain = reduce #stamina;

// Drains the stamina of an attacker and reduces the health of an attacked entity
// Both attacker and attacked can be players or enemies
// attack :: (X, Y) -> (X, Y)
// X = { stamina: Int, ... }, Y = { health: Int, ... }
let attack (attacker, attacked) =
(staminaDrain 10 attacker, damageBy 10 attacked);

// The player attacks all enemies in the game, draining all his stamina
// swipe :: X -> X
// X = { enemies: [{ health: Int, ... }], player: { stamina: Int, ... }}
let swipe =
update {
enemies <~ map (damageBy 10);
player.stamina <- 0

};

// The player attacks one specific enemy
// lungeAt :: Int -> X -> X
// X = { enemies: { health: Int, ... }, player: { stamina: Int, ... }}
let lungeAt number game =
let getter ls = ls !! number;
let modifier enemy ls = setNth number enemy ls;
let distortedEnemies = distort #enemies getter modifier;
update {
(player, 'distortedEnemies) <~ attack

} game;
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3.3 Syntax

Figure 3.2 shows a simpli�ed abstract core syntax of the V language. The �rst
few expressions are common to most functional programming languages. In order, we
have integers, booleans, characters, empty list, list construction, and tuples; then, identi-
�ers and let binding with patterns, followed by lambda abstraction (function), recursive
function, function application, and match expression; the error expression represents a
run-time error or exception. These expressions have the usual behavior, as seen in text-
books such as (PIERCE, 2002). The builtin meta-variable refers to any function that is
directly built into the language. This simpli�ed syntax only has functions that relate to
records and accessors, while the full language de�nes many more (such as arithmetic
operators, comparisons, etc). Every builtin function has a prede�ned arity, which repre-
sents the number of arguments it takes to become fully evaluated.

Records and Accessors The expression {l1 : e1, . . . , ln : en} denotes a record by ex-
plicitly presenting the association between labels and expressions. There are two ex-
pressions used to create accessors. The �rst, #l is the simple �eld accessor, while the
second, #(e1, . . . en) is used to create joined accessors. The other kinds of accessors,
stacked and distorted, are created by using the builtin functions stack and distort,
respectively.

Patterns Both match and let expressions use patterns, which are denoted by the let-
ter p in Figure 3.2. The four �rst patterns are straightforward: the �rst, x, is a pattern that
always succeeds and creates an identi�er binding; the second, _, always succeeds and
creates no bindings; the following are patterns for integers, booleans, characters, lists
(empty and constructed), and tuples. The last two patterns, record and partial record,
are noteworthy. Both match record expressions with �elds in any order, with the dis-
tinction that the partial record pattern matches records with at least the same �elds as
the pattern, while the record pattern only matches records with exactly the same �elds.

IO V has a very simple IO system, powered by the builtin functions read and write.
Both of these functions operate on a single character at a time, reading from the standard
input and writing to the standard output.

Although not fully developed, V uses a simple Monadic approach (LIANG; HU-
DAK; JONES, 1995) to support IO. The basis for this system are the return and bind

functions, and more detail can be found in Appendix A.
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Figure 3.2: The core V syntax.

e ::= n
| b
| c
| nil
| e1 :: e2
| (e1, . . . en) (n≥ 2)
| x
| let p= e1 in e2
| fn x⇒ e
| rec f x⇒ e
| e1 e2
| match e withmatch1, . . . ,matchn (n≥ 1)
| error
| builtin
| {l1 : e1, . . . ln : en} (n≥ 1)
| #l
| #(e1, . . . en) (n≥ 2)

match ::= p→ e
| p when e1→ e2

builtin ::= get (binary)
| set (ternary)
| stack (binary)
| distort (ternary)
| read (unary)
| write (unary)
| return (unary)
| bind (unary)
| = (binary)

p (pattern) ::= x
| _
| n
| b
| c
| nil
| p1 :: p2
| (p1, . . . pn) (n≥ 2)
| {l1 : p1, . . . ln : pn} (n≥ 1)
| {l1 : p1, . . . ln : pn, . . .} (partial record,n≥ 1)

x,x0,x1, . . . ∈ Ident (set of identi�ers)
l, l1, l2, . . . ∈ Label (set of record labels)
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Extended Language As a way to facilitate actual programming in V , an extended
language (syntactic sugar) is de�ned on top of the core terms and expressions outlined
previously. This language is then used as the basis for the parser, and a translation
algorithm is used to generate the syntax tree for the core V language.

The extended language provides constructions ranging from a simple if-then-else
expression to complex multi-parameter functions with pattern matching. It also provides
simpler syntax for list and tuple creation, and the extended language is where the special
syntax for record access is de�ned.

Although it will be only brie�y mentioned here, the full speci�cation of the ex-
tended language can be found in Appendix D.

3.4 Semantics

The operational semantics of V is speci�ed by means of an eager, big-step eval-
uation semantics with an evaluation environment and static scope. This environment
is a mapping from identi�ers to values. Besides basic data values (numbers, booleans,
characters, lists, tuples and records), closures and accessors are also considered values.

Figure 3.3: Environment and Values

env ::= x 7→ v

v ::= n
| b
| c
| nil
| v1 :: v2
| (v1, . . . vn) (n≥ 2)
| {l1 : v1, . . . ln : vn} (n≥ 1)
| 〈x,e,env〉 (closure)
| 〈f,x,e,env〉 (recursive closure)
| � builtin . v1, . . .vn� (n < arity of builtin)
| #path

path ::= l
| path . path
| (path1, . . . pathn) (n≥ 2)
| path [v1, v2]

Environment and Values The de�nitions for environments and values are depicted
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in Figure 3.3. We employ the notation x 7→ v to refer to an unordered mapping from
identi�ers (x) to values (v). Since V has static scope, a closure 〈x,e,env〉 represents a
function fn x⇒ e under environment env, captured at the moment of its evaluation.
This environment is then used to evaluate the function’s body when the function is
applied. The value� builtin . v1, . . .vn� represents partially applied built-in functions.
They are used when the arity of the function is greater than 1, because application is
performed one argument at a time.

Paths are values to which accessor expressions evaluate. This is because accessors
view records as trees and, therefore, paths describe how to traverse these trees, from the
outermost structure towards the innermost �elds. The basic accessor expressions #l
and #(e1, . . . en) produce l and (path1, . . . pathn) accessors, respectively. The built-in
stack function evaluates to path . path accessors. The distort function plays the same
role for the path [v1, v2] accessors, where v1 is the getter distortion and v2 is the modi�er
distortion.

Evaluation Rules The judgement env ` e ⇓ v denotes that the expression e evaluates
to value v under environment env. Below we present a few evaluation rules to give the
reader a sense of the semantics of the language. Appendix B contains the complete list
of evaluation rules.

The evaluation of functions is straightforward, producing closures as the follow-
ing rule shows.

env ` fn x⇒ e ⇓ 〈x,e,env〉 (BS-Fn)

Records require all �eld expressions to be fully evaluated in order to be considered
values. If, at any point in the evaluation, an exception is encountered (error), then the
whole expression evaluates to error. The following rules present record evaluation.

∀ k ∈ [1,n] env ` ek ⇓ vk

env ` {l1 : e1, . . . ln : en} ⇓ {l1 : v1, . . . ln : vn}
(BS-Record)

∃ k ∈ [1,n] env ` ek ⇓ error

∀ j ∈ [1,k) env ` ej ⇓ vj

env ` {l1 : e1, . . . ln : en} ⇓ error
(BS-RecordError)

Pattern Matching A new identi�er binding is added to the evaluation environment
whenever a pattern x is matched against a value. Pattern matching takes a pattern and
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a value to match against, returning an environment if successful. As was done for eval-
uation rules, only a few examples will be given here, and the full list can be found in
Appendix B.

Below is the matching rule for the simple x pattern.

match(x,v) = {x 7→ v}

If a match fails, it is represented by the following syntax:

¬match(p,v)

In single-pattern expressions, such as let expressions, failing to match a pattern
will result in a runtime exception and will evaluate to error. In case expressions, every
pattern is matched, from left to right. When the �rst match succeeds, the associated
expression is evaluated. If all patterns fail, then the whole case expression also evaluates
to error.

env ` e1 ⇓ v match(p,v) = env1

env1∪ env ` e2 ⇓ v2

env ` let p= e1 in e2 ⇓ v2
(BS-Let)

env ` e1 ⇓ v ¬match(p,v)

env ` let p= e1 in e2 ⇓ error
(BS-LetError)

Accessors As previously mentioned, accessors evaluate to paths. To illustrate this,
some of the rules for accessor evaluation are presented as follows.

env `#l ⇓#l (BS-Label)

env ` e1 ⇓� stack .#path1� env ` e2 ⇓#path2

env ` e1 e2 ⇓#path1 . path2
(BS-Stacked)

∀ k ∈ [1,n] env ` ek ⇓#pathk

env `#(e1, . . . en) ⇓#(path1, . . . pathn)
(BS-Joined)

Get and Set Although most evaluation rules will be omitted here for brevity, the
rules for get and set deserve special attention. Since these functions require multiple
arguments, their evaluation rules use partially applied built-in functions.
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env ` e1 ⇓� get .#path�
env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn}) = v′, r′

env ` e1 e2 ⇓ v′
(BS-Get)

env ` e1 ⇓� set .#path, v�
env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn},v) = v′, r′

env ` e1 e2 ⇓ r′
(BS-Set)

These rules use an auxiliary function, traverse, to evaluate the result of applying
the accessor to the record. The function takes three arguments: a path, a record and an
update value; and returns two values: the value associated with the �eld speci�ed by
the path; and an updated record. This updated record uses the value provided as input
to the function to update the �eld speci�ed by the path.

Traverse There are four cases for this function, one for each path type: simple,
stacked, joined and distorted.

Simple Path For simple paths, the function accesses the �eld l speci�ed by
the path, creating a new record by associating the same label to the input value.

1≤ k ≤ n
r = {l1 : v1, . . . lk : v, . . . ln : vn}

traverse(lk,{l1 : v1, ...ln : vn},v) = vk, r

Stacked Paths Stacked paths require three recursive calls to the traverse
function. The �rst call omits the update value, and is used to extract a record rec as-
sociated with the �rst component of the path. This record is then passed, along with
the second component of the path and the update value, to the second call of traverse.
Finally, the third call uses the return rec′ of the second call to update the internal record,
returning a new updated outer record r′.

traverse(path1,{l1 : v1, ...ln : vn}) = rec,r

traverse(path2, rec,v) = v′, rec′

traverse(path1,{l1 : v1, ...ln : vn}, rec′) = rec,r′

traverse(path1 . path2,{l1 : v1, ...ln : vn},v) = v′, r′
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Joined Paths Joined paths also require multiple calls to traverse, but the exact
number depends on the amount of paths joined. Pairing the paths with the components
of the tuple provided as the update value, each pair is passed as input to a call to traverse.
This happens from left to right, and each call returns a part of the old value and a partially
updated record. Every call uses the previous partially updated record, and the last call
to traverse returns the fully updated record.

path= (path1, . . . pathn) v = (v1, . . . vn)
r0 = {l1 : v1, ...ln : vn}

∀i ∈ [1, n] . traverse(pathi, ri−1,vi) = v′i, ri

traverse(path,{l1 : v1, ...ln : vn},v) = (v′1, . . . v′n), rn

Distorted Paths Distorted paths require two calls to traverse, one before and
one after applying the distortions. First, the current value of the �eld is extracted. This
value is then passed to the �rst component (v1) of the accessor, returning the distorted
current value. Then, the new distorted value v, along with the current value of the �eld,
is passed to the second component (v2) of the distorted accessor. This value is then
provided as the new update value for a call to traverse, returning the updated record.

traverse(path,{l1 : v1, ...ln : vn}) = vold, r

{} ` v2 v vold ⇓ v′ {} ` v1 vold ⇓ v′old

traverse(path,{l1 : v1, ...ln : vn},v′) = vold, r

traverse(path [v1, v2],{l1 : v1, ...ln : vn},v) = v′old, r

3.5 Type System

V has a Hindley-Milner type inference system, which means type annotations are
not necessary to properly type a term. With let-polymorphism, it also supports para-
metric polymorphism. In other words, it allows functions to be de�ned for all types
(such as the identity function). With the existence of traits, another type of polymor-
phism is allowed: ad-hoc polymorphism. This kind of polymorphism allows functions
to accept some types (such as the equality function or record accessor). Figure 3.4 shows
all available types and traits in the V language.

Types Most of the types, such as integers, tuples, functions, and record types, exist as
they are usually presented in other functional languages. The IO T type is used for all
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Figure 3.4: Types
T ::= Int

| Bool
| Char
| Void
| T list
| (T1, . . . Tn) (n≥ 2)
| IO T
| T1→ T2
| {l1 : T1, . . . ln : Tn} (n≥ 1)
| T1#T2 Accessor

| XT rait

Trait ::= Equatable
| Orderable
| {l : T} (Record Label)

X,X1,X2, . . . ∈ TypeV ar (set of type variables)

l, l1, l2, . . . ∈ Label

IO operations in the language. In it, T represents the type of the result of the operation:
for the read function, it will be Char; the write function results in a type of IO Void.

V introduces accessor types T1#T2, where T1 is a record type and T2 is the type
of the �eld being accessed. This allows us to de�ne the type signature of the get and
set function as follows:

1. get :: T1#T2→ T1→ T2

2. set :: T1#T2→ T2→ (T1→ T1)

Traits The traits Equatable and Orderable are used for equality (= and 6=) and compar-
ison (≥,>,<,≤) operations, respectively. The other traits, named Record Label, specify
a single label name and associated type that a record type must have. Below we present
some of the rules that de�ne the conforms relation between types and traits. As an exam-
ple, since integers can be ordered and tested for equality, we have the following axioms.

Int ∈ Equatable

Int ∈Orderable

Composite types such as tuples and records conform to Equatable if all of their
component types conform to Equatable, as the trait conformance rule for tuples, pre-
sented below, shows.
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∀i ∈ [1,n] . Ti ∈ Equatable

(T1, . . . Tn) ∈ Equatable

Functions, on the other hand, cannot be tested for equality. Therefore (T1 →

T2) /∈ Equatable and there is no conformance rule for Equatable regarding functional
types.

Record types are the only types that can conform to Record Label traits. Fur-
thermore, the record must have a �eld with the same name and type as the one de�ned
in the trait. This means that a record type with n �elds automatically conforms to n
Record Label traits, one for every association between a name and a type, as shown by
the following rule.

∃ n ∈ [1,k] . ln = l ∧ Tn = T

{l1 : T1, . . . lk : Tk} ∈ {l : T}

To illustrate the use of traits and how they are deployed in the language, below
is the typing rule for the equality operator. It speci�es that the type T of the arguments
must conform to the Equatable trait.

Γ ` e1 : T Γ ` e2 : T T ∈ Equatable

Γ ` e1 = e2 : Bool
(T-=)

Type Variable The type XT rait, commonly referred to as a type variable, exists only
as a tool for the type inference system. In it, a type variable is used to represent unknown
types during the type inference algorithm. Each type variable is associated with a set of
traits which it must satisfy, limiting the types which it can represent. If this set is empty
(or if the type variable is shown without any associated traits), the type variable becomes
universally quanti�ed and can be substituted for any type available in the language.

Traits and Accessors The polymorphism observed in accessors is due to their use of
traits. Every basic accessor (that is, an accessor for a single �eld) has a corresponding
Record Label trait. By checking trait conformance, a basic accessor #l can be used with
any record that conforms to a record label trait (i.e has a �eld with the label l).

T2 ∈ {l : T1}

Γ `#l : T2#T1
(T-Accessor)
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Compound accessors, be they stacked, joined or distorted, do not create addi-
tional trait requirements, but instead create new accessor types based on existing ones.
As can be seen below, there is no premise testing for trait conformance in the rule for
stack.

Γ ` e1 : T2#T1 Γ ` e2 : T1#T3

Γ ` stack e1 e2 : T2#T3
(T-Stack)

Traits have no structure in common, and there is no way to compose traits. This
means that, while traits may be used in V to obtain a form of structural subtyping rela-
tionship between records, there are subtle distinctions between the two systems.

Type Inference For type inference, V uses a constraint-based approach, dividing the
algorithm into three parts: constraint collection, in which the abstract syntax tree is tra-
versed and both a type T and a list of type constraintsC is generated; constraint solving,
which returns a type substitution σ mapping type variables to types; and substitution
application, which applies the type substitution σ to the type T to obtain a principal
type. For the sake of clarity, only a brief overview will be given for each part of the
algorithm.

Constraint Collection The constraint collection stage takes, as input, an ex-
pression e and a typing environment Γ, and produces, as outputs, a type T and a set of
constraints C . Rules for constraint collection have the form

Γ ` e : T | C

The environment Γ used in constraint collection is a mapping from identi�ers to
type schemes. The de�nition of the environment, along with the two variations of type
associations, is given below.

Γ ::= x 7→ assoc

assoc ::= T (Simple Association)
| ∀X1, . . .Xn . T

(Universal Association)

Constraints are simply equations between two types. This allows creating exact
match between two types (i.e. type T is equal to type S), as is necessary when making
sure the �rst term of an application is a function, for example.
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However, regular type constraints cannot be used to express to trait conformance.
In order to adapt the constraint system to allow the creation of these di�erent types of
constraints, a slight workaround using type variables is employed. By default, types
in the V language do not carry trait conformance information with them. The only
exceptions to this are type variables, each one having a declared set of traits associated
with it. By using this fact, it is possible to create an equality constraint that only enforces
trait requirements.

As an example, we present the constraint collection rule for the equality function
=.

Γ ` e1 : T1 | C1 Γ ` e2 : T2 | C2 X
{Equatable}
1 is new

Γ ` e1 = e2 : Bool | C1∪C2∪{T1 = T2;X{Equatable}
1 = T2}

(T-=)

First, T1 and T2 are obtained as the types of e1 and e2, respectively. The assertion

X{Equatable}is new

states the creation of a new type variable X associated with the Equatable trait. Finally,
two new constraints are generated: the �rst guarantees that T1 is equal to T2; the second
creates an equality between T2 and X . Since X can represent any type that conforms to
the Equatable trait, this constraint will only be satis�ed if T2 is a type that conforms to
Equatable.

To illustrate the constraints that accessors introduce, we present below some of
the constraint collection rules for accessors.

X1 is new X
{{l:T1}}
2 is new

Γ `#l :X{{l:T1}}
2 #X1 | {}

(T-Label)

X1 is new X2 is new X3 is new

Γ ` stack :X1#X2→X2#X3→X1#X3 | {}
(T-stack)

X0 is new

∀ i ∈ [1,n] . Xi is new ∧ Γ ` ei : Ti | Ci

Γ `#(e1, . . . en) :X0#(Xi, . . . Xn) |
n⋃

i=1
Ci∪{Ti =X0#Xi}

(T-Joined)

The get and set built-in functions do not create constraints by themselves, as
their constraint collection rules, given below, show.
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X1 is new X2 is new

Γ ` get :X2#X1→X2→X1 | {}
(T-get)

X1 is new X2 is new

Γ ` set :X2#X1→X1→X2→X2 | {}
(T-set)

Constraint Solving Constraint solving is performed by the uni�cation algo-
rithm, which attempts to solve the set of equalities de�ned by the constraints collected
in the previous step. The algorithm takes, as input, a set of constraints C , and produces
a substitution σ as output. A substitution is a mapping from variable types to types.

σ ::= {} | {X 7→ T}∪σ

For most types, the uni�cation process is straightforward: if the types are the
same, they are considered uni�ed. If they are composite types (such as tuples and
records), constraints between their components are added to the end of the constraint
list as new constraints. If the types do not match, the uni�cation process stops and the
expression is badly formed. When it comes to variable types, however, uni�cation is
more complex. Since a variable type comes with a set of traits associated with it, the
conformance of the type to which it is being equaled must be checked. This process
might create more constraints, and these must be added to the end of the list. Every
iteration of the uni�cation process might create more constraints but, since the types
are reduced at each recursive call, the algorithm is guaranteed to terminate.

Application The last component of the type inference algorithm is the appli-
cation of a type substitution. This replaces all variable types that are speci�ed by the
substitution, resulting in a new instance of the input type. Application takes, as input, a
type T and a substitution σ, producing another type T ′ as output.

3.6 Comparing V to other Languages

V is similar to most functional languages in design, with most of the language
di�ering from existing ones only in syntax. The aspects of V that diverge from the norm
are its record system and type traits, and these are worth a closer inspection.
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3.6.1 Incorporating the record accessor system in other languages

The record system of V could be replicated in other pure functional languages.
The essential features that a language must have are parametric polymorphism, some
kind of ad-hoc polymorphism and a way to declare records. Although V has records as
anonymous constructions, this is not a necessity to support V’s record system. However,
the language should allow distinct record types to share the same �eld names.

As an example, let us look at how Haskell could go about incorporating V’s record
system. First, Haskell would need to allow the creation of di�erent record types with
the same �eld. This would be a necessity to allow the polymorphic behavior seen in V’s
accessors. Since the only reason Haskell currently does not allow this is because of the
generated getter functions, implementing accessors would remove this restriction.

Another requirement for implementing accessors is creating the accessor func-
tions themselves. One possible approach is the one taken in (HASKELLWIKI, 2018), in
which laziness and pattern matching are used to allow both getting and setting the �eld
of a record in a single function.

Finally, accessors must be generated automatically and be usable by multiple
records. This can be done by generating a type class for every �eld in any declared
record. By using pattern matching, multi-parameter type classes and functional depen-
dency, these type classes are simple and easy to generate. In the example below, the
compiler would need to generate code for creating an accessor for the �eld code in the
Record type (the same would need to be done for the age �eld).

type Accessor rec field = rec -> field -> (field, rec)

data Record = R {code :: String, age :: Int}

-- Generated automatically

class CodeLabel rec field | rec -> field where

codeAcc :: Accessor rec field

instance CodeLabel Record String where

codeAcc r@(R code _) string =

(code, r { code = string })

Any new record types that are declared with the same �eld name (i.e code) would
only require a new instance declaration, since the type class CodeLabel is already de-



44

clared. If desirable, it would be possible to allow the programmer to create custom in-
stances of the generated type classes, granting them the ability to use accessors on data
distinct from records.

Finally, implementing all accessor related functions is easy in Haskell. As an
example, below would be the basic implementations for get and set. A more complete
example, with implementations for stack and distort and some uses, can be found in
Appendix E.

get :: Accessor rec field -> rec -> field

get acc rec = fst $ acc rec undefined

set :: Accessor rec field -> field -> rec -> rec

set acc value rec = snd $ acc rec value

3.6.2 Limitations

As already mentioned, while traits allow some form of ad-hoc subtyping, they
are not a complete replacement for actual structural subtyping and all the �exibility it
provides.

With structural subtyping, the following function, for instance, could be de�ned
and applied to lists of records of di�erent record types (as long as these record types
have a lowest common record type).

let extractNames ls =

map (get #name) ls

With the current system of traits, however, it is impossible to create such a list.
This is because di�erent record types aren’t connected in any way, and a list requires
that the type of every element be the same.

If the language had subtyping relations, it would be possible to �nd a lowest
common type between every record type, thus allowing the creation of lists with distinct
types for every element.

A more nuanced analysis of the di�erences between traits and subtyping (or Type
Classes) could reveal more details about the advantages and disadvantages of each. Do-
ing this kind of analysis was outside the scope of this work, but some exploration could
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provide useful information in understanding how these di�erent systems behave in re-
lation to each other.
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4 V IMPLEMENTATION

The formal semantics of V was developed in parallel with a functioning inter-
preter, which allowed experimenting in usability during the development process. This
chapter will focus on this implementation, giving details of each component and deci-
sions made along the way.

4.1 Overview

The implementation of V was done in F#, itself a functional language (although
impure). This decision was made because of two main reasons. First, it was the language
in which the class project was implemented, so there was already a codebase to work
with. Second, functional languages lend themselves very well to implementing parsers
and compilers because of their recursive nature and strong type systems.

This implementation of V is interpreted, meaning that one cannot compile V code
into executable code. Instead, the interpreter takes an input syntax tree and executes the
program directly inside the F# runtime. Although there is no reason that V could not be
compiled, starting with an interpreted version of the language was more straightforward
and served the purpose of demonstrating the capabilities of the language.

The V interpreter has 4 stages, all of which will be explained in detail later:

1. Parsing
Takes source code and transforms it into an extended syntax tree

2. Translation (desugaring)
Transforms an extended syntax tree into a core syntax tree

3. Type Inference
Performs type inference and type checking for programs in V

4. Evaluation
Executes a program in V

In order to facilitate programming, it became necessary to de�ne a standard li-
brary of functions, such as function composition, transformation between strings and
integers, etc. To do this, an ad-hoc library system was implemented, which allows pro-
grams to import external code into a V source �le. This system by no means functions
as a complete library system, but it serves the purpose of providing a simple way to use
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functions and constants de�ned in another �le.

4.2 Parser

The parser takes as input source code in V and produces, as output, an extended
syntax tree. The parser was created using FParsec (TOLKSDORF, 2013), a parser combi-
nator library for F#. This decision means that the parsing is done in one stage, without
the need for tokenization beforehand.

For the most part, the parser analyzes the source code in a purely syntactic way.
This means that it catches errors such as using a reserved keyword as an identi�er, but
not using an identi�er before its declaration (this is done by the translator).

The only exception, and where the parser uses semantic information to perform
parsing, is for in�x operators. V allows the programmer to specify in�x operators with
a custom priority and associativity, and the only way for the parser to correctly parse
expressions that use in�x operators is to know these data.

The parser does this by maintaining a state while parsing. This state is simply a
collection of available in�x operator names and their priority and associativity. When-
ever the parser encounters an in�x operator declaration, it stores its name, priority and
associativity and the operator can then be used later in the code.

The parser is the single component that has su�ered the most changes through-
out the development process. As the language evolved, several additions and changes to
the de�nition of the language made the previous versions of the parser obsolete, and it
had to be rewritten from scratch.

The �rst functioning version of the parser (the �rst attempt was using regular
expressions, but that failed as soon as parentheses were introduced) was made by hand,
cleaning the input string manually and looking at the �rst characters to decide what term
it was parsing. This worked for correct programs and while the language was simple,
but it soon became unwieldy to work with.

In this stage, there was no concept of a core and extended language, so the parser
generated the same syntax tree that would be used by the type system. As I wanted to
add expressions that were easier to use for programmers, such as multi-parameter func-
tions and list syntax, the parser started to be responsible for translating these complex
expressions into the language’s core terms.

After having to deal with multiple di�erent translations and parsing in the same
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place, an extended language was created, making the parser deal only with creating this
extended syntax tree. This reduced the complexity of the parser a lot, but it still had
several drawbacks, such as no parsing environment and terrible error reporting.

After I decided to add custom in�x operators to the language, the lack of a parsing
environment and the complexities of manually doing parsing became untenable. I looked
into parsing libraries, and FParsec was the most recommended for F#. It copies most of
its API from Parsec, a Haskell library for parsing, and so is perfectly suited for functional
programming.

By composing di�erent parser components, it is simple to create a parser that
expands easily whenever new structures or expressions are added. With the addition of
an environment that follows the parsing, it became possible to allow the programmer
to de�ne custom in�x operators with di�erent priorities and have the parser correctly
associate terms with operators.

Another bene�t of changing the parser to use a parsing library was speed. The
manual parser took seconds to parse the standard library, making it the slowest compo-
nent in the interpreter. The new parser reduced this time to a few hundred milliseconds,
and now it is no longer the bottleneck in the interpreter pipeline.

4.3 Translation

As was described in the previous section, the extended language was added to
V as a way to allow creating easier to use programmer-facing API at the same time as
maintaining a simple and compact language core. As the language grew, most of the
new additions were made at the extended language level, and even some features that
were once in the core could be generalized and moved into the extended language, such
as conditionals, tuples and lists.

The translator works on two levels: �rst, it translates extended language expres-
sions into their equivalent expressions in the core language. This means transforming a
conditional into a match expression; changing a tuple into a series of function applica-
tions (with the tuple constructor); transforming a multi-parameter function into multiple
single-parameter functions; etc.

Second, the translator validates certain characteristics of its source program. One
of these is making sure that type aliases are declared before being used. Since the core
language has no concept of a type alias, it is the translator’s responsibility to �nd the
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actual type to which the alias refers.
Because of this, the translator requires an environment. Besides keeping track

of type aliases, this environment also maintains a list of identi�er substitutions. When
translating, any declared identi�er is replaced by a newly generated, unique identi�er,
and these must be kept track of to guarantee correct translation.

One of the main reasons for replacing declared identi�ers is that the transla-
tor must, on occasion, generate new identi�ers. This happens mostly when translating
functions. In the extended language, functions allow the use of patterns, while the core
language only allows binding of identi�ers in function arguments. This means that the
translator must create new unique identi�ers, and the easiest way to make sure that
every identi�er is unique is to always generate new identi�ers, even for user-declared
bindings.

4.4 Type Inference

This implementation uses the constraint-collection version of the type system
de�ned before. This means that there are 3 stages for type inference: constraint collec-
tion, solving constraint and substitution application. The �rst two stages (collection and
uni�cation) each have environments that are constructed while the abstract syntax tree
is traversed and constraints are collected.

The implementation of the type system is �exible enough to allow for the addition
of new types, traits and trait conformances, even though these features do not yet exist
in the language. This is done by placing most information about types in the constraint
collection and uni�cation environments, which allows the algorithms to react to new
types or traits.

Although there are 3 separate stages for the typing algorithm, the constraint col-
lection stage calls both the uni�cation and application stages in one scenario: typing a
let expression. Because of polymorphism, the constraint collection algorithm needs to
�nd the principal type of the value being bound, so it relies on uni�cation to do this.
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4.5 Evaluation

Much like the type inference system, evaluation is implemented in such a way
as to allow easy addition of new built-in functions and data constructors. Evaluation is
done under an environment that contains, in addition to a mapping from identi�ers to
values, a list of available constructors and the number of arguments they take.

Since V has eager evaluation, all arguments are evaluated before being applied
to a function. This poses a problem for functions that should have short-circuit behav-
ior, such as the boolean AND and OR. For this reason, the implementation treats these
two functions di�erently, postponing the evaluation of the second argument only if it
is necessary. Unfortunately, this means that the user cannot create custom functions
with short-circuit natively, and so must use workarounds such as functions that accept
closures with a Void (or ignored) argument.

IO is implemented in a very rudimentary manner. When a read function is en-
countered, the F# runtime is called requesting a single character from the Console (stdin).
The same is performed on write, converting a V character into an F# character and writ-
ing it to the Console (stdout). Reading and writing complete lines was easily imple-
mented in the standard library.

4.6 REPL

The REPL (Read-Eval-Print Loop) is the best way to test the language and quickly
experiment with its features and syntax. It allows a user to write expressions that are
immediately evaluated and printed on the screen, while also declaring constants and
functions that can be used during the REPL session.

The REPL works in a very straightforward manner. First, it tries to parse the
code inserted by the user as an expression. If this succeeds, the code is evaluated and
the resulted is printed on the screen. If the parsing fails, the REPL then attempts to parse
the code as a library (i.e, as a declaration). If this succeeds, the resulting declaration is
added to the running environment. If both attempts at parsing fail (or a typing/evalua-
tion failure occurs), the error is printed on the screen and no changes are made to the
environment.

Besides allowing basic evaluation of expressions, the REPL also provides two
commands to the programmer. The �rst command, <type>, makes the REPL print, in-
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stead of the result of evaluating an expression, the type of the expression. This is infor-
mation that, normally, would not be accessible to the programmer, but can be useful to
understand what the type system is doing for any speci�c expression.

The second command, <clear>, removes all declarations from the environment.
Similar to this, the programmer can choose to create a REPL session that does not have
the standard library preloaded. This means that functions such as head, printInt or .
(function composition) will not be available to use.

4.7 Libraries

Libraries exist on two levels of the V language: parsing and translation. A library
is, essentially, a list of declarations and a list of operators with their priority and asso-
ciativity that can be imported into a source code. This system does not have the concept
of namespaces and can cause overriding of functions and constants if multiple libraries
are imported, but it serves the simple purpose of creating a set of functions that can be
reused in multiple programs.

Parsing supports libraries by having a mode that parses a sequence of declara-
tions, instead of parsing expressions. This means that the parser will reject source code
that ends in a value, and will instead only accept a sequence of let declarations.

Furthermore, the parser, when encountering an import expression, will immedi-
ately search for a �le with the requested name and insert the operators into the parsing
environment. The result of parsing an import is just a sequence of declarations, acting
as though the text of the library replaced the expression.

Although it serves the purpose of supporting a simple standard library, the whole
system will need to be rethought in order to actually be useful in a production environ-
ment. As it stands, the lack of namespaces is a major hindrance to e�ectively using
libraries, and this can only be done by a complete overhaul of the system.

Furthermore, the actual implementation of libraries also leaves a lot to be desired,
especially when it comes to translation. Currently, information about unique identi�ers
is lost when importing a library, and this can bring severe issues when importing mul-
tiple libraries into a single source �le. As the whole design of the library system needs
to be changed, �xing these issues is not a priority, and the system is still usable is most
cases.
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4.7.1 Standard Library

The standard library is a collection of functions and operators intended to facili-
tate programming in V. Some features that were once in the core or extended language
were moved to the library when the language became powerful enough to support their
implementation, and many other useful functions were implemented as a way to test the
language and provide sample code in V.

The standard library o�ers 64 de�nitions, most of them functions, a few oper-
ators, and a single type alias (from [Char] to String). These functions are diverse in
nature, with functions for manipulating lists, integers, tuples and even other functions.
Figure 4.1 shows a few functions that illustrate what the standard library has to o�er.

Figure 4.1: Sample of functions in the standard library

// Swaps the components of a tuple
let swap (x, y) = (y, x);

// Composes two functions
let compose f g x = f (g x);

// Infix version of composition. Allows the syntax "f . g" to be used
let infixr 9 (.) = compose;

// Returns the first element of a list (is a partial function)
let head (x :: xs) = x;

// Applies a function to every element of a list
let rec map f ls =

match ls with
| [] -> []
| x :: xs -> f x :: map f xs

;

// Writes a string to the output, followed by a new line
let rec writeLn line =

match line with
| [] -> write '\n'
| char :: rest ->

do {
write char;
writeLn rest

}
;
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4.8 Tests

In order to maintain sanity throughout the development process, a suite of tests
had to be created. Some of these tests were made after bugs were found in an ad-hoc
manner, while others were created to establish the expected behavior before any code
was written. They not only serve to make sure that language features are kept function-
ing throughout development, but also provide a way to create sample programs and see
how the language behaves in a number of scenarios.

Since the test suite was created in parallel with the implementation, the tests grew
organically as they were needed. This means that no metrics were used to evaluate the
tests or to decide which tests to implement, leading to possible duplication of tests or lack
of coverage. This lack of formalism did not have any noticeable downsides, however, as
the suite of tests was able to adequately serve its purpose.

The language has a suite of more than 400 tests, ranging from simple parser tests,
such as ensuring proper associativity and nested expressions, to complete system tests
that parse, translate, type check and evaluate whole programs. These tests help provide
con�dence when making changes to the language, as many bugs have been caught by a
single failing test in supposedly unrelated parts of the language.

Table 4.1 shows the distribution of these tests. The standard library is the com-
ponent with by far the most number of tests, comprising more than 60% of the test suite.
These tests exercise the high-level functioning of the language, as they test the parser,
type inference and evaluation at the same time.

The other tests are more directed, and so are useful for de�ning the expected
behavior of a single component in a speci�c circumstance. These include tests such
as wrong type declaration for the parser, repeated variables for the translation and the
correct application of polymorphism in the type inference.

Table 4.1: Test Suite
Type of Test Number of Tests
Evaluation 26
Type Inference 52
Translation 22
Parsing 45
Standard Library 254
Records 23
Total 422
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4.9 Statistics

This section is a collection of statistics about the current implementation of V.
Table 4.2 shows the amount of lines of code for every component in the inter-

preter. The core components (parser, translator, type inference and evaluator) comprise
only about 36% of the total line count, while tests are almost half of the entire codebase.
The rest of the code is comprised of miscellaneous �les, such as data de�nitions and the
code for the REPL.

Table 4.2: Lines of Code per Component

Component Lines of Code
Parser 726
Translator 368
Type Inference 856
Evaluator 591
Tests 3247
Others 1114
Total 6902

Although e�ciency was not a goal when implementing the interpreter, it is still
useful to illustrate how it behaves in varied scenarios. The tables below show execution
times for multiple programs, and all times shown were obtained by averaging 3 separate
executions of the same code to remove any variations. All of the tests were compiled
using Microsoft® F# Interactive version 10.1.0 for F# 4.1 and executed on a machine
running Windows 10 Pro (Version 1803), with an Intel® Core™ i5-4460 processor and 16
GB of RAM.

The �rst program to be tested is the smallest possible program in V:

return 0

This code was executed both with and without a standard library, and the time
taken for each stage of the interpreter is shown in Table 4.3. Without the standard library,
the stage that takes the most time is the parser, comprising 70% of the total runtime.
Adding the standard library completely changes the picture, however. Although every
stage takes longer to execute, type inference stands out with a 12x increase.

This is most likely caused by the fact that every function in the standard library
is implicitly typed. The type checker must then infer the type of every expression in the
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program, and this process grows with a time complexity larger than linear to the amount
of values. The runtime would possibly be reduced if the functions were explicitly typed,
but a better solution would be to improve the e�ciency of the implementation of the
type checker.

Table 4.3: Execution Time - Small Program

Stage Time (ms)
with stdlib without stdlib

Parser 186 154
Translator 13 5
Type Inference 590 44
Evaluator 21 17
Total 810 220

The next example is a program on the other extreme: 3000 lines of code. This
program was made by replicating the standard library 8 times, and the results of execu-
tion are shown in Table 4.4. As can be seen, the increase in time for most stages grows
at a manageable rate. The type inference stage is the single largest contributor to the
increase in execution times for larger programs.

Table 4.4: Execution Time - Large Program

Stage Time (ms)

Parser 386
Translator 41
Type Inference 33.600
Evaluator 21
Total 34.048

Although the program shown above was large, it did not actually compute any
values. The following examples are small programs to compute values, and so the most
time-consuming stage is the evaluation. Because of this, I have chosen to omit the times
for the other stages, focusing only on the Evaluator.

The �rst program is a naive implementation of the �bonacci numbers. The pro-
gram, shown below, is then executed with a number of di�erent input values. Table 4.5
shows the execution time for these inputs and. As expected, the time taken to execute
the code increases exponentially.

let rec fib n =
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match n with

| 0 -> 1

| 1 -> 1

| n -> fib (n - 1) + fib (n - 2)

;

Table 4.5: Execution Time - Fibonacci
Input Evaluation Time (ms)

1 32
2 32
4 32
8 32
16 46
18 68
20 130
22 280
24 690
26 1800
28 4677
30 12366

The last example is sorting a list. V implements a very naive version of quicksort
in its standard library, and the code for it is shown below:

let rec sort ls =

match ls with

| [] -> []

| pivot :: xs ->

(sort $ filter ((>) pivot) xs)

@ [pivot] @

(sort $ filter ((<=) pivot) xs)

;

Table 4.6 shows the execution time for sorting lists of di�erent sizes. Two varia-
tions of these lists were used: one that is already sorted, and one that is in reverse order.
As can be seen, these two variations produce di�erent execution times, as expected of
the quicksort algorithm.

As was said in the beginning of this section, e�ciency was not a goal of the
current implementation of the interpreter. That being said, the results shown here give
a general picture of the state of the current implementation and indicate a few areas that
could be improved.
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Table 4.6: Execution Time - Quicksort

Size Time (ms)
Ordered Reverse Ordered

10 30 30
50 51 58
100 140 155
150 243 335
200 430 590

The type inference system is one of the main bottlenecks when it comes to execu-
tion times, and so improving its implementation would yield the most bene�t. Further-
more, a few tests ran into stack-space issues during evaluation, and so reducing usage
of the stack (and any other memory space) could alleviate these problems.
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5 CONCLUSION

This work presented the V language, describing its creation and giving motiva-
tion for its existence. Then, an informal overview of the language’s record system was
given, focusing on accessors (and their manipulators) through the use of code examples.

A formal de�nition of the language followed, describing the syntax, semantics
and type system of V. The syntax is divided into a core language and sugar, with in-
spiration from Haskell and F#. The semantics is strict, inspired mainly by F#, with the
concept of paths for evaluating accessors. The type system uses a constraint collection
and uni�cation algorithm for type inference, modifying the basic Hindley-Milner to add
support for traits.

A functioning interpreter was implemented for the language, complete with parser,
type-inference, evaluation and a REPL. This implementation was created alongside the
de�nition of the language, so many parts of it evolved throughout the work. Almost
half the codebase of the implementation is comprised of tests, ranging from testing sin-
gle components to the whole program.

Although e�ciency was not a goal of this work, some preliminary tests were
made to analyze the runtime of the interpreter. These tests show that the implementation
of type-inference system was the main bottleneck, specially as the input program grows,
so it is one the main candidates for optimization work in the future.

5.1 Status and Future Work

The V language is completely open-source, both its de�nition and its implemen-
tation. There is extensive documentation available describing its syntax, semantics, type
system, and even its standard library. These projects can be found in the following repos-
itories:

https://github.com/AvatarHurden/V
https://github.com/AvatarHurden/V-Documentation

The language is still under development, with many possible fronts still to be
explored. Among these are language features such as list comprehensions and allowing
the declaration of new traits and types; and other meta-language features such as a
complete library system and more comprehensive error reporting.
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Currently, the language has support only for basic IO with the foundation for a
Monad system in place. The next step is to fully implement the Monad system, creating a
Monad trait and generic return and bind functions. This will also require some changes
to the evaluation system, since it currently only supports polymorphism based on the
input values.

One important aspect of language design is proving properties such as type safety.
Although the language was designed with type safety in mind — and, since the imple-
mentation went in stride with the de�nition, many tests were created to test the design
— proofs of type safety were neglected. Usually, these kinds of proofs are done using
small-step semantics, which would pose a problem given that V’s semantics is de�ned
with big-step semantics. However, work done in (SIEK, 2018) shows a technique that
could be used to prove type safety while using big-step semantics.

Finally, it would be necessary to implement a compiler in order to make V a
complete language. The interpreter serves as a way to test the language and showcase
its features, but, as was shown in Section 4.9, its e�ciency is subpar (especially the
type-inference system). By implementing a compiler, not only would the language be
faster, but certain issues, such as stack over�ow for non-terminating programs, would
not occur.

5.2 Publications

A paper about V and its record system was submitted to and presented at WEIT
2017, receiving the award of second best paper among 47 other works. This paper fo-
cused mostly on V’s approach to records, with only brief mentions of the language design
as a whole.

Because of the award, the author was invited to submit an extended version of the
paper to RITA (VEDANA; MACHADO; MOREIRA, 2018). This extended version gave
more details about V as a language, while still focusing heavily on the bene�ts of traits
and its the record system.
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APPENDIX A — ABSTRACT SYNTAX

A.1 Expressions

Programs in V are expressions. Each expression is a member of the abstract syn-
tax tree de�ned below. The syntax tree will be constructed in parts, with an explanation
of what each expression means and their uses. The full syntax tree can be obtained by
simply joining all the separate sections.

Functions V , as a functional language, treats functions as �rst class constructions.
This means that functions are expressions, and can be passed as arguments, bound to
identi�ers, etc. Below are the function expressions available in V , along with function
application.

e ::= · · ·

| func

| e1 e2

| x

func ::= fn x⇒ e

| rec f x⇒ e

| rec f : T x⇒ e

x ::= {x0,x1, . . .}

All functions in V take exactly one parameter, and so function application eval-
uates the function by providing a single argument to it.

The �rst type of function (fn x⇒ e) de�nes a simple unnamed function with a
parameter x. x is an identi�er from a set of name identi�ers.

The body of the function is the expression e, which may or may not contain
occurrences of the identi�er passed as the argument of the function.

The other two types of functions are both variants of recursive functions avail-
able in V . These functions have a name, f , which is also a member of the set of name
identi�ers, and this name is used to allow recursive calls from within their body (e).
Like unnamed functions, they take exactly one parameter, x, which may or may not be
present in their bodies.
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The di�erence between these variants is in their type declaration: the �rst vari-
ant is implicitly typed, while the second is explicitly typed. In the second variant, the
programmer speci�es the return type of the function as T (types will be shown later).

There are also expressions to use functions.
The �rst of them is function application: the �rst of the expressions is a function,

and the second is the argument being passed to the function.
The last expression is simply to allow the use of the parameter de�ned in a func-

tion. An identi�er x is only considered valid if it has been bound before (either by a
function or, as will be seen later, by let declarations or match expressions).

Built-in Functions V has a few built-in functions that provide basic behavior.
These are:

e ::= · · ·

| Builtin

Builtin ::= + (add, binary)
| − (subtract, binary)
| ∗ (multiply, binary)
| ÷ (divide, binary)
| − (negate, unary)

| < (less than, binary)
| ≤ (less than or equal, binary)
| > (more than, binary)
| ≥ (more than or equal, binary)
| = (equal, binary)
| 6= (not equal, binary)

| ∨ (Or, binary)
| ∧ (And, binary)

| get (binary)
| set (ternary)
| stack (binary)
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| distort (ternary)

Every function has its arity declared. The arity of a function de�nes how many
parameters it needs before it can be fully evaluated.

This behavior does not change the fact that functions receive only one parameter
at a time. These particular cases can be thought of as nested functions, each taking a
single parameter, until all the necessary parameters have been received.

This means that partially applied built-in functions are also treated as functions,
and, therefore, can be passed as arguments, bound to identi�ers, etc.

Most of these functions are basic and require no explanation. The last 4, however,
will only be explained later, after records and accessors have been introduced.

The boolean functions ∨ and ∧ are treated di�erently than others. Even though
they are binary, they have a short-circuit mechanism. This means that, if the result of the
application can be known by the �rst parameter (True in the case of∨ or False in the case
of ∧), the second parameter is not evaluated. This is in contrast to all other functions in
V , which evaluate all of their arguments before trying to evaluate themselves (This will
be explained in more detail in Appendix B).

Constructors V has another type of special function: Data Constructors. Data Con-
structors are, as their name suggests, functions that construct values (data).

When fully evaluated, constructors de�ne a form of structured data, storing the
values passed to them as arguments. To access these values, it is possible to pattern
match (see Appendix A.1) on the constructor name when fully evaluated.

Like built-in functions, constructors can be in a partially evaluated state. Par-
tially evaluated constructors are treated as normal functions and, therefore, do not allow
matching on their name.

e ::= con

con ::= n (arity 0)
| b (arity 0)
| c (arity 0)
| nil (arity 0)
| :: (arity 2)
| Tuple n (arity n, n≥ 2)
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b ::= true | false

n ::= Z

c ::= ‘char′

char ::= ASCII characters

These functions are extra special, however, because they can have arity zero. This
means that they "construct" values as soon as they are declared. The basic zero-arity
constructors de�ned in the language are integers, booleans and characters.

The following two constructors (nil and ::) are related to lists. The �rst (with
arity 0) is the empty list. The second constructor has arity 2, and extends a list (its
second argument) by adding a new value (its �rst argument) to its head.

The last constructor is actually a family of constructors describing tuples. A con-
structor Tuple n de�nes a constructor that has n parameters and evaluates to a tuple
with n elements. It is also important to note that n ≥ 2. This means that only tuple
constructors with 2 or more parameters are valid.

Records and Accessors The record system in V is composed of two parts: records
and accessors.

Records are a type of structured data composed of associations between labels
and values called �elds. Each label is part of an ordered set of labels l, and can only
appear once in every record. The order in which the labels are declared in a record is
not important, as any operation that is done on a record �rst orders the �elds according
to the order int the set of labels.

Accessors are terms that allow access to �elds within a record. Accessors view
records as trees, where each non-leaf node is a record, and each edge has a name (the
label of the �eld). Accessors, then, de�ne a path on this tree, extracting the node at the
end of the path.

e ::= · · ·

| {l1 : e1, . . . ln : en} (n≥ 1)
| #l
| #(e1, . . . en) (n≥ 2)

l ::= {l1, l2, ...}
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The most basic type of path is a simple label #l. An accessor can also be made by
combining multiple accessors. The #(e1, . . . en) expression creates an accessor for mul-
tiple �elds of the same record. Another type of composition is vertical, and is obtained
by using the built-in function "stack".

Furthermore, paths can be distorted with the "distort" built-in function, specify-
ing a pair of functions to be applied when extracting or updating values in the �eld.

More details about how accessors (and paths) work will be provided in Appendix
B.

Let and Patterns The let expression is used to bind values to identi�ers, allowing
them to be reused in a sub-expression. A let expression is divided into 2 parts: the
binding and the sub-expression. The binding itself also has 2 parts: the left-hand side,
which is a pattern; and the right-hand side, which will be the value to be bound.

Patterns are used to "unpack" values, and can be either explicitly or implicitly
typed.

e ::= · · ·

| let p= e1 in e2

p ::= patt

| patt : T

patt ::= x

| _
| con p1, . . . pn (constructor pattern, n= arity con)
| {l1 : p1, . . . ln : pn} (n≥ 1)
| {l1 : p1, . . . ln : pn, . . .} (partial record,n≥ 1)

Much like functions, let expressions allow the use of identi�ers in an expres-
sion by attaching values to the identi�ers. Di�erently from functions, however, a single
let expression can bind multiple identi�ers to values by using patterns. Patterns are
matched against the values in the right-hand side of the binding, and can, depending on
their structure, create any number of identi�er bindings.

The pattern x is a simple identi�er pattern. It matches any value in the right-hand
side, and binds it to the identi�er.

The _ also matches any value, but it does not create any new bindings (this is
called the ignore pattern).
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The con pattern matches a completely applied constructor. This pattern is a com-
pound pattern, with the same number of components as the arity of the constructor. The
con pattern itself does not create any bindings, but its components might, since they are
themselves patterns and, as such, will be matched against the components of the con-
structor.

The next pattern is a record pattern. This matches a record with exactly the same
�elds as the pattern. Since all labels in a record are ordered, the �elds do not need to be
reordered for the matching.

For matching any record with at least the �elds l1, . . . ln, one can use the pattern
{l1 : p1, . . . ln : pn, . . .}. This pattern will match any record whose set of labels is a
superset of l1, . . . ln.

Match Expression A match expression attempts to match a value against a list of
patterns. Every pattern is paired with a resulting expression to be evaluated if the pattern
matches. Furthermore, it is possible to specify a boolean condition to be tested alongside
the pattern matching. This condition will only be tested if the match succeeds, so it can
use any identi�er bound by the pattern. The matching stops at the �rst pattern that
successfully matches (and any condition is satis�ed), and its paired expression is then
evaluated.

e ::= · · ·

| match e withmatch1, ... matchn (n≥ 1)

match ::= p→ e

| p when e1→ e2

IO The language supports simple input and output through the read and write built-
in functions. These functions operate on values constructed on the IO constructor, and
a new empty value (Void) is introduced to represent the result of evaluating the write

function.
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Builtin ::= · · ·

| read (unary)
| write (unary)

con ::= · · ·

| IO (arity 1)
| Void (arity 0)

Both IO functions operate on single characters; read receives one character from
the standard system IO (console), while write prints a single character to the system IO.

To allow composition of these functions, two monadic operations were intro-
duced to the language: return and bind.

Builtin ::= · · ·

| return (unary)
| bind (binary)

return is a function that takes any value and returns that value encapsulated
in the IO constructor. bind takes an IO value and a function, returning the result of
applying the function to the value that was encapsulated in the IO.

Exceptions This expression always evaluates to a runtime error.

e ::= · · ·

| raise

Runtime errors usually happen when an expression cannot be correctly evalu-
ated, such as division by zero, accessing an empty list, etc.

Sometimes, however, it can be necessary to directly cause an error. The raise
expression serves this purpose.

A.2 Types

Since V is strongly typed, every (valid) expression has exactly one type associated
with it. Some expressions allow the programmer to explicitly declare types, such as
patterns and recursive functions. Other expressions, such as e1 = e2, or even constants,
such as 1 or true, have types implicitly associated with them. These types are used by the
type system (see Appendix C) to check whether an expression is valid or not, avoiding
run-time errors that can be detected at compile time.
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Types Below are all the types available in V . The �rst type is a fully applied construc-
tor type. The second type is a function type. The third type is a record type and, �nally,
the last type is an accessor type.

T ::= · · ·

| conT T1, . . . Tn (n= arity conT )
| T1→ T2

| {l1 : T1, . . . ln : Tn} (n≥ 1)
| T1#T2 Accessor

Most of the types are compound types, and the only scenario in which a type is
not compound is for constructor types with arity 0. Function types specify the type of
the single parameter (T1) and the type of output (T2).

Record types are also compound types, but they associate every component to
its corresponding label. Just like record expressions, the �elds are ordered according to
the order of the labels.

Finally, accessor types de�ne the types of accessor expressions. They have two
components: T1, which is the type of the record being accessed; and T2, the type of the
value being accessed. It is read as T1 accesses T2.

Constructor Types These are types associated with constructors. Much like con-
structors, they can take any amount of arguments to be fully applied, and the number of
arguments they take is described by their arity. Instead of taking values as arguments,
however, constructor types take types as arguments.

conT ::= Int (arity 0)
| Bool (arity 0)
| Char (arity 0)
| List (arity 1)
| TupleT (arity n, n≥ 2)
| IOT (arity 1)
| VoidT (arity 0)

Variable Types These types represent an unknown constant type. Explicitly typed
expressions cannot be given variable types, but they are used by the type system for
implicitly typed expressions. In the course of the type inference, the type system can
replace variable types for their type.

It is important to realize that variable types already represent a unique type with
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an unknown identity. This means that a variable type may only be replaced by the spe-
ci�c type which it represents and not any other type. This distinction becomes impor-
tant when talking about polymorphism, which uses variable types, along with universal
quanti�ers, to represent a placeholder for any possible type.

T ::= · · ·

| XT raits

X ::= X1,X2, ...

A.3 Traits

Types can conform to traits, which de�ne certain behaviors that are expected of
said type. Regular types always have their trait information implicitly de�ned, since this
information is included in the language. Variable types, on the other hand, can explicitly
state which traits they possess, restricting the set of possible types they can represent
(this is represented by the superscript Traits in a variable type X).

Traits ::= ∅

| {Trait}∪Traits

Trait ::= Equatable

| Orderable

| {l : Type} (Record Label)

The information on which types conform to which traits is de�ned in the uni�-
cation environment (see Appendix C.2). When a type T conforms to a trait Trait, the
notation used is T ∈ Trait. The same notation can be used to describe when a type
conforms to a set of traits Traits (i.e. T ∈ Traits).

By default, the following rules hold for conformance:

Equatable If a type T is Equatable, expressions of type T can use the equality oper-
ators (=, 6=).

To de�ne the set of types that belong to Equatable, the following rules are used:

{Int,Bool,Char} ⊂ Equatable
T ∈ Equatable =⇒ List T ∈ Equatable

XT raits ∈ Equatable =⇒ Equatable ∈ Traits
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Orderable If a type T is Orderable, expressions of type T can use the inequality
operators (<,≤,>,≥). Any type that is Orderable is also Equatable.

To de�ne the set of types that belong to Orderable, the following rules are used:

{Int,Char} ⊂Orderable
T ∈Orderable =⇒ List T ∈Orderable

XT raits ∈Orderable =⇒ Orderable ∈ Traits

Record Label A type T1 conforms to a Record Label Trait {l : T2} if it is a record that
contains a �eld with the label l and the type T2.

If the type conforms to the trait {l : T2}, it can then use the accessor #l. This
ensures that accessor for a �eld can only be used on records that have that �eld.

To de�ne the set of types that belong to a record label {l : T}, the following rules
are used:

{l1 : T1, . . . ln : Tn, . . . Tk} ∈ {l : T} ⇐⇒ ln = l∧Tn = T (1≤ n≤ k)
XT raits ∈ {l : T} =⇒ {l : T} ∈ Traits
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APPENDIX B — OPERATIONAL SEMANTICS

The V language is evaluated using a big-step evaluation with environments. This
evaluation reduces an expression into a value directly, not necessarily having a rule of
evaluation for every possible expression. To stop programmers from creating programs
that cannot be evaluated, a type inference system will be speci�ed later.

Value A value is the result of the evaluation of an expression in big-step. This set
of values is di�erent from the set of expressions of V , even though they share many
similarities.

v ::= con v1, . . . vn (n= arity con)
| {l1 : v1, . . . ln : vn} (n≥ 1)
| #path
| 〈func,env〉

| �Builtin . v1, . . .vn� (n < arity Builtin)
| � con . v1, . . . vn� (n < arity con)

path ::= l

| path . path

| (path1, . . . pathn) (n≥ 2)
| path [v1, v2]

The value 〈func,env〉 de�nes closures. They represent the result of evaluating
functions (and recursive functions) and store the environment at the moment of evalua-
tion. This means that V has static scope, since closures capture the environment at the
moment of evaluation and V has eager evaluation.

The values�Builtin . v1, . . .vn� and� con . v1, . . .vn� are partial applica-
tions of built-in functions and constructors, respectively.

Once all the parameters have been de�ned, they evaluate either to the result of
the function (in the case of Builtin) or to a fully applied constructor con v1, . . . vn.

Environment An evaluation environment is a 2-tuple which contains the following
information:

1. Arity of constructors
If a constructor has arity n, it requires n arguments to become fully evaluated.

2. Associations between identi�ers and values
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A new association is created every time a value is bound. This happens in let

declarations, function application and match expressions.

env ::= (arities,vars)

arities ::= {} | {con 7→ n}∪arities (n ∈ N)
vars ::= {} | {x 7→ v}∪vars

B.1 Paths

Accessors possess structure when treated as values. This structure is built through
use of the operations available on accessors, such as the compose expression or the built-
in functions. Since accessors view records as trees, this structure is a path along a tree.

The most basic structure of a path is a single label. This path describes a �eld
immediately below the root of the tree (the root is viewed as the record itself, and every
child is a �eld of the record). This path is created by using the simple accessor expression
#l.

Two paths can be composed vertically, allowing access to sub�elds of a record. In
this scenario, the tree must have at least the same depth as the path (and along the correct
�eld names). Vertical composition is achieved by using the "stack" built-in function, and
always combines two paths.

Paths can also be composed horizontally, described as a tuple of paths. When
composed horizontally, all paths are used on the root of the record, and the end points
of the paths are joined in a tuple for extraction or updating.

Finally, paths can be distorted. This means that the path has two values (func-
tions) associated with it. These functions are then used to transform the values stored
in the �eld of the record (one for extraction, another for updating).

Path Traversal Rules As previously stated, accessors describe paths along a record
tree. To use these paths, an auxiliary traverse function is used. This functions receives
3 arguments: a path, a record and an update value. The function returns 2 values: the
old value associated with the �eld speci�ed by the path; and an updated record.

This updated record uses the value provided as input to the function to update the
�eld speci�ed by the path. This last argument of the traverse function can be omitted
and, in such a case, no update is done (that is, the updated record is the same as the input
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record).

The �rst rule is for a simple label path. The label must be present in the provided
record. A new record is created, associating the provided value with the label speci�ed
by the path.

1≤ ‖k‖ ≤ ‖n‖
r = {l1 : v1, . . . lk : v, . . . ln : vn}

traverse(lk,{l1 : v1, ...ln : vn},v) = vk, r

For vertically composed paths, three calls to traverse are needed.

traverse(path1,{l1 : v1, ...ln : vn}) = rec,r

traverse(path2, rec,v) = v′, rec′

traverse(path1,{l1 : v1, ...ln : vn}, rec′) = rec,r′

traverse(path1 . path2,{l1 : v1, ...ln : vn},v) = v′, r′

The �rst call omits the update value, and is used to extract a record associated
with the �rst component of the path. This record is then passed, along with the second
component of the path and the update value, to the second call of traverse. Finally, the
third call uses the return of the second call to update the internal record, returning a
new updated record.

Joined paths also require multiple calls to traverse, but the exact number de-
pends on the amount of paths joined.

r0 = {l1 : v1, ...ln : vn}

∀i ∈ [1, n] . traverse(pathi, ri−1,vi) = v′i, ri

traverse((path1, . . . pathn),{l1 : v1, ...ln : vn},(v1, . . . vn)) = (v′1, . . . v′n), rn

Pairing the paths with the components of the tuple provided as the update value,
each pair is passed as input to a call to traverse. This happens from left to right, and
each call returns a part of the old value and a partially updated record. Every call uses the
partially updated record provided, and the last call to traverse returns the fully updated
record.

Distorted paths require two calls to traverse, one before and one after applying
the distortions.
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traverse(path,{l1 : v1, ...ln : vn}) = vold, r

{} ` v2 v vold ⇓ v′ {} ` v1 vold ⇓ v′old

traverse(path,{l1 : v1, ...ln : vn},v′) = vold, r

traverse(path [v1, v2],{l1 : v1, ...ln : vn},v) = v′old, r

First, the current value of the �eld is extracted. This value is then passed to the
�rst component (v1) of the accessor, returning the distorted current value. Then, the
new distorted value v, along with the current value of the �eld, is passed to the second
component (v2) of the distorted accessor. This value is then provided as the new update
value for a call to traverse, returning the updated record.

B.2 Pattern Matching

For let and match expressions, it is necessary to match a pattern p to a value
v. This process, if successful, creates a mapping of identi�ers to their corresponding
elements of v. If v does not match the pattern p, the process fails.

In the case of a let expression, failing to match means the whole expression
evaluates to raise. For match expressions, a failed pattern causes the next pattern to be
attempted. If there are no more patterns, the expression evaluates to raise.

To aid in this matching, a auxiliary “match” function is de�ned. The function
takes a pattern p and a value v, returning a mapping of identi�ers to values (the vars of
an environment). If the matching fails, the function will return nothing.

The following are the rules for the match function:

match(x,v) = {x 7→ v}

match(_,v) = {}

con1 = con2 ∀ i ∈ [1,n] match(pi,vi) = varsi

match(con1 v1, . . . vn, con2 p1, . . .pn) =
n⋃

i=1
varsi

k ≥ n ∀ i ∈ [1,n] ∃ j ∈ [1,k] l1i = l2j ∧match(pi,vj) = varsi

match({l11 : p1, . . . , l1n : pn, . . .},{l21 : v1, ...l2k : vk}) =
n⋃

i=1
varsi



76

∀ i ∈ [1,n] l1i = l2i ∧match(pi,vi) = varsi

match({l11 : p1, . . . , l1n : pn},{l21 : v1, ...l2n : vn}) =
n⋃

i=1
varsi

Any other inputs provided to the match function will result in a failed matching.
This is represented by:

¬match(p,v)

B.3 Big-Step Rules

Function Expressions Every function evaluates to a closure. This basically stores
the function de�nition and the current environment in a value, allowing the evaluation
environment to be restored on function application.

env ` func ⇓ 〈func,env〉 (BS-Fn)

Built-in functions evaluate to a partially applied built-in without any arguments.

env `Builtin ⇓ �Builtin . � (BS-Builtin)

Similarly, constructors, if they need at least one argument, evaluate to a partially
applied constructor. If, however, they do not take any arguments, they immediately
evaluate to a fully applied constructor.

env.arities(con)> 0

env ` con ⇓ � con . �
(BS-Con)

env.arities(con) = 0

env ` con ⇓ con
(BS-Con0)

Application An application expression requires either a closure, a partially applied
built-in function or a partially applied constructor for its left-hand operand.

In the case of a closure, there are two di�erent behaviors, depending on whether
the function is recursive or not.

When applying non recursive functions, a new association between the parame-
ter identi�er (x) and the argument (v2) is added to the environment stored in the closure
(env1). The body of the function (e) is then evaluated using this new environment.
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env ` e1 ⇓ 〈fn x⇒ e,env1〉 env ` e2 ⇓ v2

{x 7→ v2}∪ env1 ` e ⇓ v

env ` e1 e2 ⇓ v
(BS-AppFn)

Recursive functions, besides associating the identi�er to the argument, also create
an association between the function name and its value (i.e the closure itself). This allows
the body of the function to call itself, creating a recursive structure.

For operational semantics, there is no di�erence between the typed and untyped
versions of recursive functions, so both have the same evaluation rules.

env ` e1 ⇓ 〈rec f x⇒ e,env1〉 env ` e2 ⇓ v2

{x 7→ v2,f 7→ 〈rec f x⇒ e,env1〉}∪ env1 ` e ⇓ v

env ` e1 e2 ⇓ v
(BS-AppFnRec)

env ` e1 ⇓ 〈rec f : T x⇒ e,env1〉 env ` e2 ⇓ v2

{x 7→ v2,f 7→ 〈rec f : T x⇒ e,env1〉}∪ env1 ` e ⇓ v

env ` e1 e2 ⇓ v
(BS-AppFnRec2)

Application on partially applied constructors can behave in two di�erent ways,
depending on how many arguments have been already applied.

If the arity of the constructor is larger than the number of arguments already ap-
plied (plus the new one being applied), the result of the application is a partially applied
constructor with the new value added to the end.

env ` e1 ⇓ � con . v1, . . . vn�

n+ 1< env.arities(con) env ` e2 ⇓ v

env ` e1 e2 ⇓ � con . v1, . . .vn, v�
(BS-AppCon)

If the arity of the constructor is equal to 1 more than the number of already
applied arguments, the application results in a completely applied constructor.

env ` e1 ⇓ � con . v1, . . . vn�

n+ 1 = env.arities(con) env ` e2 ⇓ v

env ` e1 e2 ⇓ con v1, . . . vn, v
(BS-AppConTotal)

Application on partially applied built-in functions works similarly, having di�er-
ent rules depending on the number of arguments.
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env ` e1 ⇓ �Builtin . v1, . . .vn�

n+ 1< arity Builtin env ` e2 ⇓ v

env ` e1 e2 ⇓ �Builtin . v1, . . . vn, v�
(BS-AppBuiltin)

The result of applying the last argument of a built-in function varies depending
on what the function does (and what kind of arguments it accepts). These rules will be
provided later.

Application propagates exceptions (raise). If the �rst sub-expression of an ap-
plication evaluates to raise, the whole expression evaluates to raise. This is true for the
second expression in most scenarios, but there are a couple of exceptions (see B.3) that
do not necessarily evaluate this sub-expression for complete evaluation.

env ` e1 ⇓ raise

env ` e1 e2 ⇓ raise
(BS-AppRaise)

env ` e1 ⇓ v env ` e2 ⇓ raise

env ` e1 e2 ⇓ raise
(BS-AppRaise2)

Identi�er The evaluation of an identi�er depends on the environment in which it is
evaluated. If the environment has an association between the identi�er and a value, the
value is returned. If it does not, the program is malformed and cannot be evaluated (this
will be caught in the type system).

env.vars(x) = v

env ` x ⇓ v
(BS-Ident)

Records A record construction expression {l1 : e1, . . . ln : en} evaluates each of its
sub-expressions individually, resulting in a record value. The order of evaluation is de-
�ned by the order of the labels and is done from smallest to largest.

∀ k ∈ [1,n] env ` ek ⇓ vk

env ` {l1 : e1, . . . ln : en} ⇓ {l1 : v1, . . . ln : vn}
(BS-Record)

If any of the sub-expressions evaluate to raise, the whole record also evaluates to
raise.

∃ k ∈ [1,n] env ` ek ⇓ raise

env ` {l1 : e1, . . . ln : en} ⇓ raise
(BS-RecordRaise)
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Accessors There is a di�erent evaluation rule for each type of path available to ac-
cessors.

The simplest rule is for a label accessor, which is in itself a value.

env `#l ⇓#l (BS-Label)

Joined accessors evaluate each of their sub-expressions, expecting an accessor
value as a result.

∀ k ∈ [1,n] env ` ek ⇓#pathk

env `#(e1, . . . en) ⇓#(path1, . . . pathn)
(BS-Joined)

To create a stacked accessor, the built-in function "stack" must be used. This
function has arity 2, and requires both arguments to be accessors. The paths of the
accessors are then composed in a stacked accessor, which is the result of the evaluation.

env ` e1 ⇓ � stack .#path1� env ` e2 ⇓#path2

env ` e1 e2 ⇓#path1 . path2
(BS-Stacked)

Similarly, creating distorted accessors requires the built-in function "distort". This
function takes 3 arguments, the �rst being an accessor, and the remaining two being
functions. When fully evaluated, the path of the accessor is combined with the function
values, creating a distorted accessor.

env ` e1 ⇓� distort .#path, v1� env ` e2 ⇓ v2

env ` e1 e2 ⇓#path [v1, v2]
(BS-Distorted)

Using Accessors There are two built-in functions that take accessors as arguments.
Get takes 2 arguments: an accessor and a record. The traverse function is then

called with the accessor’s path and the record (the third argument is omitted), and the
�rst return (i.e. the value associated with the path) is used as the result of the evaluation.

env ` e1 ⇓ � get .#path� env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn}) = v′, r′

env ` e1 e2 ⇓ v′
(BS-Get)

Set takes 3 arguments: an accessor, a generic value and a record. The traverse
function is then called with the arguments, using the generic value as the update value
of the call. The result of the evaluation is the second return of the traverse function (i.e.
the updated record).
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env ` e1 ⇓ � set .#path, v� env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn},v) = v′, r′

env ` e1 e2 ⇓ r′
(BS-Set)

Numerical Operations The V language only supports integers, so all operations are
done on integer numbers. This means that the division always results in a whole number,
truncated towards zero.

env ` e1 ⇓ � + . n1� env ` e2 ⇓ n2 ‖n‖= ‖n1‖+‖n2‖

env ` e1 e2 ⇓ n
(BS-+)

env ` e1 ⇓ � − . n1� env ` e2 ⇓ n2 ‖n‖= ‖n1‖−‖n2‖

env ` e1 e2 ⇓ n
(BS–)

env ` e1 ⇓ � − . � env ` e2 ⇓ n1 ‖n‖=−‖n1‖

env ` e1 e2 ⇓ n
(BS– (unary))

env ` e1 ⇓ � ∗ . n1� env ` e2 ⇓ n2 ‖n‖= ‖n1‖∗‖n2‖

env ` e1 e2 ⇓ n
(BS-∗)

env ` e1 ⇓ � ÷ . n1� env ` e2 ⇓ 0

env ` e1 e2 ⇓ raise
(BS-÷Zero)

env ` e1 ⇓ � ÷ . n1� env ` e2 ⇓ n2

‖n2‖ 6= 0 ‖n‖= ‖n1‖÷‖n2‖

env ` e1 e2 ⇓ n
(BS-÷)

Equality Operations The equality operators (= and 6=) test the equality of fully ap-
plied constructors and records.

env ` e1 ⇓ �= . (con v1
1, . . . v

1
n)� env ` e2 ⇓ (con v2

1, . . .v
2
n)

∀ k ∈ [1,n] env ` (= v1
k) v2

k ⇓ true

env ` e1 e2 ⇓ true
(BS-=ConTrue)

env ` e1 ⇓ �= . (con v1
1, . . . v

1
n)� env ` e2 ⇓ (con v2

1, . . .v
2
n)

∃ k ∈ [1,n] env ` (= v1
k) v2

k ⇓ false

env ` e1 e2 ⇓ false
(BS-=ConFalse)
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env ` e1 ⇓ �= . (con v1
1, . . .v

1
n)� env ` e2 ⇓ (con′ v2

1, . . .v
2
k)

con′ 6= con

env ` e1 e2 ⇓ false
(BS-=ConFalse2)

env ` e1 ⇓ �= . {l11 : v1
1, . . . l

1
n : v1

n}� env ` e2 ⇓ {l21 : v2
1, . . . l

2
n : v2

n}

∀ k ∈ [1,n] l1k = l2k ∧ env ` (= v1
k) v2

k ⇓ true

env ` e1 e2 ⇓ true
(BS-=RecordTrue)

env ` e1 ⇓ �= . {l11 : v1
1, . . . l

1
n : v1

n}� env ` e2 ⇓ {l21 : v2
1, . . . l

2
n : v2

n}

∃ k ∈ [1,n] l1k = l2k ∧ env ` (= v1
k) v2

k ⇓ false

∀ j ∈ [1,k) env ` v1
j = v2

j ⇓ true

env ` e1 e2 ⇓ false
(BS-=RecordFalse)

env ` e1 ⇓ � 6= . v1� env ` e2 ⇓ v2

env ` (= v1) v2 ⇓ false

env ` e1 e2 ⇓ true
(BS- 6=True)

env ` e1 ⇓ � 6= . v1� env ` e2 ⇓ v2

env ` (= v1) v2 ⇓ true

env ` e1 e2 ⇓ false
(BS- 6=False)

Inequality Operations The inequality operators function much in the same way
as the equality operators. The only di�erence is that they do not allow comparison of
certain kinds of expressions (such as booleans) when such expressions do not have a
clear ordering to them.

To reduce the number of rules, some rules are condensed for all inequality oper-
ators (<,≤,>,≥). The comparison done on numbers is the ordinary numerical compar-
ison. For characters, the ASCII values are compared numerically.

env ` e1 ⇓ n1 env ` e2 ⇓ n2 ‖n1‖opIneq‖n2‖

env ` e1 opIneq e2 ⇓ true
(BS-IneqNumTrue)
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env ` e1 ⇓ n1 env ` e2 ⇓ n2 ¬‖n1‖opIneq‖n2‖

env ` e1 opIneq e2 ⇓ true
(BS-IneqNumFalse)

env ` e1 ⇓ c1 env ` e2 ⇓ c2 ‖c1‖opIneq‖c2‖

env ` e1 opIneq e2 ⇓ true
(BS-IneqCharTrue)

env ` e1 ⇓ c1 env ` e2 ⇓ c2 ¬‖c1‖opIneq‖c2‖

env ` e1 opIneq e2 ⇓ true
(BS-IneqCharFalse)

env ` e1 ⇓ nil env ` e2 ⇓ nil

env ` e1 < e2 ⇓ false
(BS-<Nil)

env ` e1 ⇓ nil env ` e2 ⇓ nil

env ` e1 ≤ e2 ⇓ true
(BS-≤Nil)

env ` e1 ⇓ nil env ` e2 ⇓ nil

env ` e1 > e2 ⇓ false
(BS->Nil)

env ` e1 ⇓ nil env ` e2 ⇓ nil

env ` e1 ≥ e2 ⇓ true
(BS-≥Nil)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ nil

env ` e1 < e2 ⇓ false
(BS-<ListNil)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ nil

env ` e1 ≤ e2 ⇓ false
(BS-≤ListNil)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ nil

env ` e1 > e2 ⇓ true
(BS->ListNil)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ nil

env ` e1 ≥ e2 ⇓ true
(BS-≥ListNil)

env ` e1 ⇓ nil env ` e2 ⇓ v1 :: v2

env ` e1 < e2 ⇓ true
(BS-<NilList)
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env ` e1 ⇓ nil env ` e2 ⇓ v1 :: v2

env ` e1 ≤ e2 ⇓ true
(BS-≤NilList)

env ` e1 ⇓ nil env ` e2 ⇓ v1 :: v2

env ` e1 > e2 ⇓ false
(BS->NilList)

env ` e1 ⇓ nil env ` e2 ⇓ v1 :: v2

env ` e1 ≥ e2 ⇓ false
(BS-≥NilList)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ v3 :: v4

env ` v1 = v3 ⇓ false env ` v1 opIneq v3 ⇓ b

env ` e1 opIneq e2 ⇓ b
(BS-IneqListHead)

env ` e1 ⇓ v1 :: v2 env ` e2 ⇓ v3 :: v4

env ` v1 = v3 ⇓ true env ` v2 opIneq v4 ⇓ b

env ` e1 opIneq e2 ⇓ b
(BS-IneqListTail)

Boolean Operations The built-in functions ∨ (OR) and ∧ (AND) are treated di�er-
ently from all other functions in V . They are binary functions, but they only evaluate
their second argument if strictly necessary. This is done to provide them a short-circuit
behavior, keeping in line with expectations from other programming languages.

env ` e1 ⇓ � ∧ . false�

env ` e1 e2 ⇓ false
(BS-∧False)

env ` e1 ⇓ � ∧ . true� env ` e2 ⇓ b

env ` e1 e2 ⇓ b
(BS-∧True)

env ` e1 ⇓ � ∨ . true�

env ` e1 e2 ⇓ true
(BS-∨True)

env ` e1 ⇓ � ∨ . false� env ` e2 ⇓ b

env ` e1 e2 ⇓ b
(BS-∨False)

Let Expressions These expressions are used to associate an identi�er with a speci�c
value, allowing the value to be reused throughout the program. Since V is a functional
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language, these are not variables, and the values assigned to an identi�er will be constant
(unless the same identi�er is used in a new let expression).

After evaluating the expression that is to be associated to the identi�er (that is,
e1), resulting in v, the let expression evaluates e2. For this evaluation, the association of
p to v is added to the environment. The result of this evaluation (that is, v2) is the �nal
result of the evaluation of the entire let expression.

env ` e1 ⇓ v match(p,v) = env1

env1∪ env ` e2 ⇓ v2

env ` let p= e1 in e2 ⇓ v2
(BS-Let)

env ` e1 ⇓ v ¬match(p,v)

env ` let p= e1 in e2 ⇓ raise
(BS-Let2)

If the sub-expression e1 evaluates to raise, the whole expression also evaluates
to raise.

env ` e1 ⇓ raise

env ` let p= e1 in e2 ⇓ raise
(BS-LetRaise)

Match Expression The match expression receives a input value and a list ofmatches,
attempting to pattern match against each one. The �rst match which correctly matches
terminates the processing, and its corresponding expression is evaluated as the result of
the whole expression.

If no match returns a valid result, the whole expression evaluates to raise.

env ` e ⇓ v
∃j ∈ [1..n]multiMatch(v,env,matchj) = vj

∀k ∈ [1..j)¬multiMatch(v,env,matchk)

env ` match e withmatch1, ... matchn ⇓ vj

(BS-Match)

env ` e ⇓ v
∀j ∈ [1..n]¬multiMatch(v,env,matchj)

env ` match e withmatch1, ... matchn ⇓ raise
(BS-Match2)

In order to properly evaluate a match expression, it is necessary to de�ne an
auxiliary function, here called multiMatch. This function receives an input value, an
environment and a match.
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If the match has a conditional expression, it must evaluate to true for the match
to be considered valid.

¬match(p,v)

¬multiMatch(v,env,p→ e)

¬match(p,v)

¬multiMatch(v,env,p when e1→ e2)

match(p,v) = env1 env∪ env1 ` e1 ⇓ false

¬multiMatch(v,env,p when e1→ e2)

match(p,v) = env1 env∪ env1 ` e ⇓ v2

multiMatch(v,env,p→ e) = v2

match(p,v) = env1 env∪ env1 ` e1 ⇓ true

env∪ env1 ` e2 ⇓ v2

multiMatch(v,env,p when e1→ e2) = v2

IO Expressions Evaluating any IO expression requires interaction with an operating
system, and how this is done is left as a matter of implementation. The only requirement
imposed by the operational rules is that reading and writing be done one character at a
time.

env ` e1 ⇓� read .� env ` e2 ⇓ Void
c is the next character in the standard input

env ` e1 e2 ⇓ IO c
(BS-Read)

env ` e1 ⇓ �write .� env ` e2 ⇓ c

c is written to the standard input

env ` e1 e2 ⇓ IO Void
(BS-Write)

Composing IO In order to compose IO operations, two monadic functions were in-
troduced in the language: return and bind. Currently, the only kind of value that can be
manipulated with these functions is IO, but this system can be extended to support any
monadic type in the future.
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env ` e1 ⇓ � return .� env ` e1 ⇓ v

env ` e1 e2 ⇓ IO v
(BS-Return)

env ` e1 ⇓ � bind . IO v1� env ` e1 ⇓ v2

env ` v2 v1 ⇓ v3

env ` e1 e2 ⇓ v3
(BS-Bind)

Exceptions Some programs can be syntactically correct but still violate the semantics
of the V language, such as a dividing by zero or trying to access the head of an empty
list. In these scenarios, the expression is evaluated as the raise value.

Besides violation of semantic rules, the only other expression that evaluates to
the raise value is the raise expression, using the following rule:

env ` raise ⇓ raise (BS-Raise)

This value propagates upwards through the evaluation tree if a “regular” value
is expected. This means that expressions that need well-de�ned sub-expressions, such
as numerical and equality operations, evaluate to raise if any of these sub-expressions
evaluate to raise.
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APPENDIX C — TYPE SYSTEM

Like many programming languages, V has a type system. A type system is a
way of statically analyzing programs to decide whether they are well-formed or not.
To do this, every expression in the abstract syntax tree has, associated with it, type
information.

Typing rules are then used to check that a program is correctly constructed. If
a program passes the type check, guarantees are made about its execution. V ’s type
system is not secure in the sense that correctly typed programs will always have correct
execution.

Examples of programs that pass the type system but fail to execute are division
by zero and accessing the head of an empty list. In general, however, these errors are
caused by incomplete pattern matching on algebraic data types, and most errors are still
caught by the type system.

V ’s type system is a Hindley-Milner style type system, with support for implicit
type annotations and let polymorphism. Furthermore, traits allow ad-hoc polymorphism
and, used with records, a kind of structural subtyping (more details will be provided
later).

The Type Inference Algorithm Since V allows implicitly typed expressions (that is,
expressions without any type annotations provided by the programmer), it is necessary
to infer, and not only check, the type of expressions. A constraint-based inference system
is used, which divides the algorithm into three parts: constraint collection, in which the
abstract syntax tree is traversed and both a type and a list of type equality constraints
is generated; constraint uni�cation, in which the list of constraints is condensed into
a type substitution; and substitution application, which applies the substitution to the
type to obtain a principle type.

C.1 Constraint Collection

The �rst step of the type inference algorithm is the collection of type constraints.
A type constraint is an equality between two types, and so the result of the constraint
collection is a system of equations.

The constraint collection algorithm takes, as input, an expression e and a typing
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environment Γ (de�ned below), and produces, as an output, a type T , a set of constraints
C and a uni�cation environment γ (de�ned in C.2). The algorithm is given as a set of
rules of the form:

Γ ` e : T | C | γ (T)

Constraints As described above, a set of constraints C is composed of equalities
between two types.

C ::= ∅ | {T1 = T2}∪C

Environment The type inference environment is a 2-tuple with the following com-
ponents:

1. Mapping between constructors and their type
Every constructor has a type associated with it. This type will be a function if the
constructor has arity greater than 0, and can contain variable types.

2. Mapping between identi�ers and type associations
An identi�er can be either simply or universally bound to a type. The di�erence
between these associations will be explained later.

Γ ::= (constructors,vars)

constructors ::= {} | {con 7→ T}∪ constructors

vars ::= {} | {x 7→ assoc}∪vars

assoc ::= T (Simple Association)
| ∀X1, . . .Xn . T (Universal Association)

Type Associations When identi�ers are bound in a program (with pattern matching,
for example), an association between the identi�er and its type is added to the typing
environment. Depending on the type of binding, however, this association can be one
of two kinds: simple or universal.

A simple association binds a name to a monomorphic type. This type can be
"simple", such as Int, or it can contain variable types, such as X → Bool. In either case,
however, the type is "constant", and it is returned unchanged from the environment.

A universal association binds a name to a type scheme. A type scheme is com-
posed of a type T and any number of type variables X1, · · ·Xn. These variables are free
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in the type T , and a new instance of them is generated every time the association is
returned from the environment.

Universal associations allow for polymorphic functions in the language, so each
use of the function does not add constraints to other uses. The only expressions that
create universal associations are let-expressions. This means that function parameters
cannot be polymorphic, since function parameters are bound to simple type associations.

Free Variables Type variables can either be bound or free relative to an environment.
Bound variable types are those that are associated to an identi�er. This association must
be a simple association, but the variable type can occur anywhere in the type tree. As
an example, the type variable X1 is bound in the environment below:

Γ = {x 7→ (Int,X1,Char)}

Inversely, free type variables are all those that do not occur bound in the envi-
ronment.

A helper function, Γ ` free(T ), returns the set of all free type variables in the
type T . Another function, Γ ` fresh(T ), returns a type T ′ in which all free type vari-
ables in T are replaced by new, unbound type variables. Both of these functions require
an environment Γ with which to judge whether type variables are free or not.

Pattern Matching One way to bind identi�ers is by pattern matching. When a pat-
tern is encountered (such as a let expression), it is necessary to match the type of the
pattern with the type of the value.

To do this, two auxiliary match functions are de�ned. Both take, as input, a
pattern p and a type T , returning a list of constraints and a modi�ed typing environment.

The �rst of the functions, match, only creates simple type associations and is
used in match expressions. The second, matchU , can create both simple and universal
associations, being used in let expressions.

The following are the rules for the match function:

Γ `match(x,T ) = {},{x 7→ T}∪Γ

Γ `match(x : Tpat,T ) = {Tpat = T},{x 7→ T}∪Γ

Γ `match(_,T ) = {},Γ

Γ `match(_ : Tpat,T ) = {Tpat = T},Γ
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Γ(con) = T ′ Γ ` fresh(T ′) = T ′′

T ′′ = T1→ ·· · → Tn Γ0 = Γ
∀i ∈ [1,n] Γi−1 `match(pi,Ti) = Ci,Γi

Γ `match(con p1, . . . pn,T ) = {Tn = T}∪
n⋃

i=1
Ci,Γn

Γ(con) = T ′ Γ ` fresh(T ′) = T ′′

T ′′ = T1→ ·· · → Tn Γ0 = Γ
∀i ∈ [1,n] Γi−1 `match(pi,Ti) = Ci,Γi

Γ `match(con p1, . . . pn : Tpat,T ) = {Tpat = T,Tn = T}∪
n⋃

i=1
Ci,Γn

∀i ∈ [1,n] Γi−1 ` fresh(X) =Xi∧Γi−1 `match(pi,Xi) = Ci,Γi

match({l1 : p1, . . . , ln : pn},T ) = {{l1 :X1, . . . , ln :Xn}= T}∪
n⋃

i=1
Ci,Γn

∀i ∈ [1,n] Γi−1 ` fresh(X) =Xi∧Γi−1 `match(pi,Xi) = Ci,Γi

match({l1 : p1, . . . , ln : pn} : Tpat,T ) = {{l1 :X1, . . . , ln :Xn}= T,Tpat = T}∪
n⋃

i=1
Ci,Γn

∀i ∈ [1,n] Γi−1 ` fresh(X) =Xi∧Γi−1 `match(pi,Xi) = Ci,Γi X
{{li:Xi},...{ln:Xn}}
0

match({l1 : p1, . . . , ln : pn, . . .},T ) = {X0 = T}∪
n⋃

i=1
Ci,Γn

∀i ∈ [1,n] Γi−1 ` fresh(X) =Xi∧Γi−1 `match(pi,Xi) = Ci,Γi X
{{li:Xi},...{ln:Xn}}
0

match({l1 : p1, . . . , ln : pn, . . .} : Tpat,T ) = {X0 = T,Tpat = T}∪
n⋃

i=1
ci,Γn

The rules for the matchU are similar, but with a few key di�erences. Since uni-
versal matching is always called with a completely uni�ed type in a let expression,
certain concessions can be made. Furthermore, other di�erences arise due to the ability
for the matchU function to create universal type associations.

BecausematchU can create universal associations, it checks for any free variable
types in the type T . If free variable types are found, then a universal association is made
based on these variable types. If there are no free variable types, a simple association is
created instead.

Γ ` free(T ) = {}

Γ `matchU (x,T ) = {},{x 7→ T}∪Γ
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Γ ` free(T ) = {X1, . . . ,Xn}

Γ `matchU (x,T ) = {},{x 7→ ∀X1, . . .Xn . T}∪Γ

Γ ` free(T ) = {}

Γ `matchU (x : Tpat,T ) = {Tpat = T},{x 7→ T}∪Γ

Γ ` free(T ) = {X1, . . . ,Xn}

Γ `matchU (x : Tpat,T ) = {Tpat = T},{x 7→ ∀X1, . . .Xn . T}∪Γ

Γ `matchU (_,T ) = {},Γ

Γ `matchU (_ : Tpat,T ) = {Tpat = T},Γ

The next di�erence comes when matching against constructor patterns. Instead
of creating a fresh instance of the type associated with the constructor by replacing all
variable types with fresh variable types, the type T (passed as paramenter to matchU )
is used.

This function is called Γ ` rebase(T1,T2), creating a new instance of T1 based
on T2. Informally, this means that both the type T1 and T2 are traversed simultaneously
and, when a variable type is encountered in T1, it is replaced by the equivalent type in
T2.

Γ(con) = T ′ Γ ` rebase(T ′,T ) = T ′′

T ′′ = T1→ ·· · → Tn Γ0 = Γ
∀i ∈ [1,n] Γi−1 `matchU (pi,Ti) = Ci,Γi

Γ `matchU (con p1, . . . pn,T ) = {Tn = T}∪
n⋃

i=1
Ci,Γn

Γ(con) = T ′ Γ ` rebase(T ′,T ) = T ′′

T ′′ = T1→ ·· · → Tn Γ0 = Γ
∀i ∈ [1,n] Γi−1 `matchU (pi,Ti) = Ci,Γi

Γ `matchU (con p1, . . . pn : Tpat,T ) = {Tpat = T,Tn = T}∪
n⋃

i=1
Ci,Γn

Finally, pattern matching on records in also slightly di�erent. For complete record
patterns, we know that the type T is a record type with the necessary �elds, and so the
matching rule becomes much smaller.
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T = {l1 : T1, . . . , ln : Tn}

∀i ∈ [1,n] Γi−1 `matchU (pi,Ti) = Ci,Γi

match({l1 : p1, . . . , ln : pn},T ) =
n⋃

i=1
Ci,Γn

T = {l1 : T1, . . . , ln : Tn}

∀i ∈ [1,n] Γi−1 `match(pi,Ti) = Ci,Γi

match({l1 : p1, . . . , ln : pn} : Tpat,T ) = {Tpat = T}∪
n⋃

i=1
Ci,Γn

For partial record patterns, however, a little more care must be taken. Since there
may be fewer �elds in the pattern than the type, a search must be done to match the
correct sub-patterns with the sub-types.

T = {l′1 : T1, . . . , l′k : Tk}

k ≥ n ∀ i ∈ [1,n] ∃ j ∈ [1,k] li = l′j ∧Γi−1 `match(pi,Tj) = Ci,Γi

match({l1 : p1, . . . , ln : pn, . . .},T ) =
n⋃

i=1
Ci,Γn

T = {l′1 : T1, . . . , l′k : Tk}

k ≥ n ∀ i ∈ [1,n] ∃ j ∈ [1,k] li = l′j ∧Γi−1 `match(pi,Tj) = Ci,Γi

match({l1 : p1, . . . , ln : pn, . . .} : Tpat,T ) = {Tpat = T}∪
n⋃

i=1
Ci,Γn

Constraint Collection Rules Every expression in V has a rule for constraint collec-
tion, similar to how every expression has a rule for its semantic evaluation.

If a rule does not create any constraints or uni�cation environment (i.e. they
are both empty), then these will be omited to improve readability. As an example, the
following rule:

Γ `+ : Int→ Int→ Int | {} | {} (T-+)

will be written as:

Γ `+ : Int→ Int→ Int (T-+)

Functions The rules for function expressions are all similar, though with a few dif-
ferences between them. All of them create a fresh type variableX1 to represent the type
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of their argument, and the resulting type is always X1→ T1, where T1 is the type of the
body of the function.

When calling the collection algorithm on the body of the function (i.e. e), the
typing environment Γ is modi�ed by addind a new association between the identi�er x
and the type X1.

Γ ` fresh(X) =X1 {x 7→X1}∪Γ ` e : T1 | C1 | γ1

Γ ` fn x⇒ e :X1→ T1 | C1 | γ1
(T-Fn)

Recursive functions add the same association between x and X1, but they also
create a new association for the name of the function, f . If the function is implicitly
typed, a new type variable, X2, is used to represent the type of the function. Thus, f is
associated to X2, and a new constraint between X2 and X1→ T1 is created.

Γ ` fresh(X) =X1 Γ ` fresh(X) =X2

{f 7→X2,x 7→X1}∪Γ ` e : T1|C1 | γ1

Γ ` rec f x⇒ e :X1→ T1 | C1∪{X2 =X1→ T1} | γ1
(T-Rec)

If the function is explicitly typed, however, no new type variables are created. In-
stead, f is associated directly toX1→ T , and a constraint to guarantee that the provided
type is correct is created (that is, that T is equal to T1).

Γ ` fresh(X) =X1 {f 7→ (X1→ T ),x 7→X1}∪Γ ` e : T1 | C1 | γ1

Γ ` rec f : T x⇒ e :X → T1 | C1∪{T1 = T} | γ1
(T-Rec2)

Built-in Functions None of the built-in functions create any constraints or uni�ca-
tion environment, nor do their types depend on a typing environment. Some functions,
because of their polymorphic nature, require creation of fresh type variables.

Numerical Functions These functions all manipulate Int values, with negate
(−) being the only function with a single argument.

Γ `+ : Int→ Int→ Int (T-+)

Γ ` − : Int→ Int→ Int (T–)

Γ ` ∗ : Int→ Int→ Int (T-*)

Γ ` ÷ : Int→ Int→ Int (T-÷)
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Γ ` − : Int→ Int (T-Negate)

Equality Functions These functions do not require a speci�c type for their
arguments, but they both must be equal and conform to the Equatable trait.

Γ ` fresh(X{Equatable}) = T

Γ `=: T → T → Bool
(T-=)

Γ ` fresh(X{Equatable}) = T

Γ `6=: T → T → Bool
(T- 6=)

Inequality Functions Similar to equality, both arguments must have the same
type and conform to the Orderable trait.

Γ ` fresh(X{Orderable}) = T

Γ `<: T → T → Bool
(T-<)

Γ ` fresh(X{Orderable}) = T

Γ `≤: T → T → Bool
(T-≤)

Γ ` fresh(X{Orderable}) = T

Γ `>: T → T → Bool
(T->)

Γ ` fresh(X{Orderable}) = T

Γ `≥: T → T → Bool
(T-≥)

Boolean Functions Both functions require two Bool arguments, returning
another Bool.

Γ ` ∨ : Bool→ Bool→ Bool (T-∨)

Γ ` ∧ : Bool→ Bool→ Bool (T-∧)

Accessor Functions These functions manipulate accessors, creating fresh type
variables to represent all necessary types.

Γ ` fresh(X) = T1 Γ ` fresh(X) = T2

Γ ` get : T2#T1→ T2→ T1
(T-get)
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Γ ` fresh(X) = T1 Γ ` fresh(X) = T2

Γ ` set : T2#T1→ T1→ T2→ T2
(T-set)

Γ ` fresh(X) = T1 Γ ` fresh(X) = T2 Γ ` fresh(X) = T3

Γ ` stack : T2#T1→ T1#T3→ T2#T3
(T-stack)

Γ ` fresh(X) = T1 Γ ` fresh(X) = T2 Γ ` fresh(X) = T3

Γ ` distort : T2#T1→ (T1→ T3)→ (T3→ T1→ T1)→ T2#T3
(T-distort)

IO Functions The typing rules for both IO related functions are very simple,
relying on VoidT and IOT to de�ne their inputs and outputs.

Γ ` read : VoidT → IOT Char (T-read)

Γ `write : Char→ IOT VoidT (T-get)

For IO composition, the return and bind functions also have straightforward type
signatures.

Γ ` fresh(X) = T1

Γ ` return : T1→ IOT T1
(T-return)

Γ ` fresh(X) = T1 Γ ` fresh(X) = T2

Γ `write : IOT T1→ (T1→ IOT T2)→ IOT T2
(T-bind)

Constructors The rule for typing constructors is very simple. The type is extracted
from the environment, and then a fresh instance is generated from that type.

Γ(con) = T Γ ` fresh(T ) = T ′

Γ ` con : T ′
(T-Con)

Application The constraint collection rule for an application is simple, creating just
one fresh type variable and one new constraint. The type variable X1 represents the
type of the result of the application, and, therefore, is the return type of the collection.
Furthermore, the type of e1, T1, must be equal to a function that takes T2 (the type of
e2) as an argument and returns X1.

Γ ` e1 : T1 | C1 | γ1 Γ ` e2 : T2 | C2 | γ2 Γ ` fresh(X) =X1

Γ ` e1 e2 :X1 | C1∪C2∪{T1 = T2→X1} | γ1∪γ2
(T-App)
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Identi�ers The type of an identi�er is, like for constructors, completely de�ned by
its typing association in the environment. The typing rule does not create a fresh in-
stance of this type, since the environment already does this when returning types that
are universally bound.

Γ(x) = T

Γ ` x : T
(T-Ident)

Records The constraint collection rule for a record is relatively straightforward. Each
�eld of the record is passed through the collection algorithm, and the resulting types are
combined into a single record type with their matching labels. Similarly, the resulting
constraints and uni�cation environments are combined by union.

∀ k ∈ [1,n] Γ ` ek : Tk | Ck | γk

Γ ` {l1 : e1, . . . ln : en} : {l1 : T1, . . . ln : Tn} |
n⋃

i=1
Ci |

n⋃
i=1

γi

(T-Record)

Accessors The constraint rules for simple label accessors relies on type variables and
record label traits. A new fresh type variable, T1, is generated, representing the type of
the �eld being accessed. Another new fresh type variable, T2, which must conform to
the record label trait associating the label l to the type T1, is generated, representing the
type of the record that is being accessed.

Γ ` fresh(X) = T1 Γ ` fresh(X{l:T1}) = T2

Γ `#l : T2#T1
(T-Label)

A joined accessor does not use record label traits, but instead relies on type vari-
ables and constraints to guarantee the correct type information.

A single type variable X0 represents the record being accessed. For every com-
ponent ei of the accessor, a new type variable Xi is generated, along with the resulting
type Ti of calling the constraint collection algorithm. The type Ti is then constrained
to be equal to X0#Xi, indicating that all components refer the same record, but access
�elds with (possibly) di�erent types.

Finally, the resulting type is an accessor that returns a tuple composed of all Xi

when accessing a record of type X0.

fresh(X) =X0 ∀ i ∈ [1,n] Γ ` fresh(X) =Xi∧Γ ` ei : Ti | Ci | γi

Γ `#(e1, . . . en) :X0#(Xi, . . . Xn) |
n⋃

i=1
Ci∪{Ti =X0#Xi} |

n⋃
i=1

γi

(T-Joined)
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Let Expression The constraint collection rule for a let expression depends on both
the uni�cation and the application algorithms.

The expression e1 is passed through the constraint collection algorithm, resulting
in a type T1, a set of constraints C1 and a uni�cation environment γ1. The constraints
C1 are then uni�ed (see Appendix C.2) under the uni�cation environment γ1, resulting
in a substitution σ.

The substitution σ is then applied (see Appendix C.3) to the type T1, resulting in
a principle type T ′1. The substitution is also applied to the environment Γ, and the result
of this application is used to evaluate a universal match between p and T ′1, resulting in
a new set of constraints C ′1 and a new typing environment Γ′.

Finally, the type of the expression e2 is obtained under the environment Γ′.

Γ ` e1 : T1 | C1 | γ1 γ1 ` U(C1) = σ σ(T1) = T ′1

σ(Γ) `matchU (p,T ′1) = C ′1,Γ′ Γ′ ` e2 : T2 | C2 | γ2

Γ ` let p= e1 in e2 : T2 | C ′1∪C1∪C2 | γ2∪γ1
(T-Let)

Match Expression The constraint collection rule for a match expression requires an
auxiliary function, much like its operational semantic rule. A fresh type variable X1 is
created, representing the output type of the expression and, along with the type T of the
expression e, is used to validate every matchi in the expression.

Γ ` e : T | C | γ Γ ` fresh(X) =X1

∀i ∈ [1..n]Γ ` validate(matchi,T,X1) = Ci | γi

Γ ` match e withmatch1, ... matchn :X1 | C ∪
n⋃

i=1
Ci | γ∪

n⋃
i=1

γi

(T-Match)

The validate function takes amatch expression, a type Tin, representing the type
of the pattern, and a Tout, representing the result of evaluating the match expression,
as inputs. The function outputs a set of constraints and a uni�cation environment if
successful.

For an unconditional match, the pattern in matched against the provided input
type Tin and the type of the expression e is constrained to equal the provided type Tout.
It is important to realize that the typing environment returned by the match (i.e. Γ′) is
used only to obtain the type of e, since any identi�ers bound in the pattern p can only
be used inside a single match expression.

Γ `match(p,Tin) = C,Γ′ Γ′ ` e : T1 | C1 | γ1

Γ ` validate(p→ e,Tin,Tout) = C ∪C1∪{T1 = Tout} | γ1
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The same holds true for a conditionalmatch, with the added veri�cation that the
type of e1 must be equal to Bool.

Γ `match(p,Tin) = C,Γ′ Γ′ ` e1 : T1 | C1 | γ1

Γ′ ` e2 : T2 | C2 | γ2

Γ ` validate(p when e1→ e2,Tin,Tout) =
C ∪C1∪C2∪{T1 =Bool,T2 = Tout} | γ1∪γ2

Exception The raise expression simply creates and returns a new fresh type variable.

Γ ` fresh(X) =X1

Γ ` raise :X1
(T-Raise)

C.2 Uni�cation

After constraint collection, the second step in the type inference algorithm is
uni�cation. Uni�cation attempts to solve the set of equalities de�ned by the constraints
collected in the previous step.

The algorithm takes, as input, a set of constraints C and a uni�cation environ-
ment γ, and produces a substitution σ as output. The algorithm is given as a set of rules
following the form:

γ ` U(C) = σ (U)

Uni�cation Environment The uni�cation environment is a set of trait speci�cations.
Trait speci�cations are 3-tuples that de�ne the requirements for a speci�c type to con-
form to a speci�c trait.

γ ::= {} | {trtSpec}∪γ

trtSpec ::= (conT,Trait, [Traits1, . . .T raitsn]) (n= arity conT )
A trait speci�cation describes conformance to a trait. Some types, such as records

and functions, have their trait conformance built into the language, and it is not neces-
sary to use the uni�cation environment to decide conformance. For a constructor type
conT T1, . . . Tn to conform to a trait Trait, however, the following criteria must hold:

1. There exists a trait speci�cation (conT,Trait, [Traits1, . . .T raitsn]) in the uni�-
cation environment
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2. For all i ∈ [1,n], Ti ∈ Traitsi

This will be formally de�ned in the uni�cation algorithm itself, but these are the
general rules that govern trait conformance.

Uni�cation Rules Uni�cation iterates through the list of constraints, always operat-
ing on the �rst constraint in the list and recursing on the remaining constraints. Because
of this format, it can be de�ned as a base case and recursion rules.

Base Cases The basic case, with an empty constraint list, returns an empty
substitution.

γ ` U(∅) = ∅ (U-Empty)

If both types of a constraint are equal, they are discarded and the recursion is
called.

T1 = T2

γ ` U({T1 = T2}∪C) = γ ` U(C)
(U-Eqals)

Compound Types When encountered, compound types are destructured and
equality constraints with their corresponding components are added to the end of the
constraint list.

T1 = T 1
1 #T 2

1 T2 = T 1
2 #T 2

2

C ′ = {T 1
1 = T 1

2 ,T
2
1 = T 2

2 }

γ ` U({T1 = T2}∪C) = γ ` U(C ∪C ′)
(U-Accessor)

T1 = T 1
1 → T 2

1 T2 = T 1
2 → T 2

2

C ′ = {T 1
1 = T 1

2 ,T
2
1 = T 2

2 }

γ ` U({T1 = T2}∪C) = γ ` U(C ∪C ′)
(U-Fn)

T1 = {l1 : T 1
1 , . . . ln : Tn

1 } T2 = {l1 : T 1
2 , . . . ln : Tn

2 }

C ′ = {T 1
1 = T 1

2 , . . . T
n
1 = Tn

2 }

γ ` U({T1 = T2}∪C) = γ ` U(C ∪C ′)
(U-Record)

For applied constructor types, it is also necessary to verify that the constructor
types themselves are equal. If not, the uni�cation fails.
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T1 = conT1 T 1
1 , . . . T

n
1 T2 = conT2 T 1

2 , . . . T
n
2

conT1 = conT2 C ′ = {T 1
1 = T 1

2 , . . . T
n
1 = Tn

2 }

γ ` U({T1 = T2}∪C) = γ ` U(C ∪C ′)
(U-Cons)

Type Variables When unifying a constraint that contains a type variable, a
more complicated process of uni�cation is necessary.

First, the type variable must not be contained in the free variables of its paired
type, ensuring that the types are not circular. Then, the type T2 must conform to the
type variable’s traits, and this process might create additional constraints that must be
uni�ed. These newly created constraints, along with the remaining constraints, are then
uni�ed after having every occurrence of X replaced with the type T2.

T1 =XT raits X /∈ free(T2)
T2 ∈ Traits→ CT C ′ = C ∪CT

γ ` U(C ′[X 7→ T2]) = σ

γ ` U({T1 = T2}∪C) = {X 7→ T2}∪σ
(U-Var)

Substitution The result of applying the uni�cation algorithm is a substitution σ. A
substitution is a mapping from type variables to types.

σ ::= ∅ | {X 7→ T}∪σ

C.3 Application

The last component of the type inference algorithm is the application of a type
substitution. This replaces all type variables that are speci�ed by the substitution, re-
sulting in a new instance of the input type.

Application takes, as input, a type T and a substitution σ, producing another type
T ′ as output. It is de�ned with rules of the form:

σ(T ) = T ′ (A)
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APPENDIX D — EXTENDED LANGUAGE

In order to facilitate programming, it is useful to de�ne an extended language. A
program is �rst parsed into this language, and the resulting tree is translated into the
regular abstract syntax.

This allows the core language to be concise, reducing the complexity of type in-
ference and evaluation. Complex constructs (such as comprehensions and multi-parameter
functions) can be included only in the extended language, and it su�ces to provide a
translation into the core language.

This translation does have the drawback of reducing the formality of evaluation.
Since there are no evaluation rules for the additional constructs, it is impossible to prove
the correctness of the translation rules. This does not in any way a�ect the correctness
of the core language type inference and evaluation, and the advantages gained by this
method far outweigh the drawbacks, so it is still a net positive to the language.

The following two sections will describe the abstract syntax tree for the extended
language and how it translates to a syntax tree in the core language.

D.1 Abstract Syntax

The extended language has terms which are similar to (if not exactly the same as)
ones existing in the core language. These terms are presented in their entirety here, and,
since they are directly extracted from the core language, no explanation will be given
for them.

e′ ::= func′

| e′1 e
′
2

| x

| Builtin

| con

| {l1 : e′1, . . . ln : e′n} (n≥ 1)
| #l
| #(e′1, . . . e′n) (n≥ 2)
| raise

| match e′ withmatch′1, ... match
′
n (n≥ 1)
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match′ ::= p′→ e′

| p′ when e′1→ e′2

Most patterns are extracted from the core language without any di�erences, and
are de�ned below.

p′ ::= patt′

| patt′ : T ′

patt′ ::= x

| _
| con p′1, . . . p

′
n (constructor pattern,n= arity con)

| {l1 : p′1, . . . ln : p′n} (n≥ 1)
| {l1 : p′1, . . . ln : p′n, . . .} (partial record,n≥ 1)

Most types are, like patterns, extracted from the language.

T ′ ::= XT raits

| conT T ′1, . . . T
′
n (n= arity conT )

| T ′1→ T ′2

| {l1 : T ′1, . . . ln : T ′n} (n≥ 1)
| T ′1#T ′2 Accessor

D.1.1 Additions

The extended language provides a number of additions to the base expressions
and types. These are presented below.

TypeAliases The �rst addition to the extended language is the concept of type aliases.
These types are simple renames of existing types, and can be used in programs as a way
to simplify type declarations.

T ′ ::= · · ·

| τ

τ ::= {τ0, τ1, . . .}
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Conditional Expression A conditional expression, which translates to a match ex-
pression on the patterns true and false, has been added.

e′ ::= · · ·

| if e′1 then e
′
2 else e

′
3

Multi-Parameter and PatternMatching Functions Functions have been extended
to allow multiple parameters, removing the necessity of declaring nested functions.
These functions still require at least one parameter.

Furthermore, patterns are allowed as the de�nition of parameters.

func′ ::= · · ·

| fn p′1, . . . p
′
n⇒ e′ (n≥ 1)

| rec f : T p′1, . . . p
′
n⇒ e′ (n≥ 1)

| rec f p′1, . . . p
′
n⇒ e′ (n≥ 1)

Declarations The let expression is also extended, and a new construction (decl′)
is needed. Besides the basic value binding, 4 new function bindings are allowed. These
correspond to all combinations of typed, untyped, recursive and non-recursive functions,
with at least one parameter.

Along with value and function bindings, a new type alias binding was added.
This binding creates a new type alias that can be used further down in the syntax tree.

e′ ::= · · ·

| decl′ in e

decl′ ::= let p′ = e′

| let f p′1, . . . p
′
n = e′ (n≥ 1)

| let rec f p′1, . . . p
′
n = e′ (n≥ 1)

| let f : T ′ p′1, . . . p′n = e′ (n≥ 1)
| let rec f : T ′ p′1, . . . p′n = e′ (n≥ 1)
| type alias τ = T ′

Lists Although lists are supported by the base language with the :: (cons) and nil data
constructors, they are not easy to use with only these terms.

The extended language provides a term to implicitly de�ne a list, specifying all
of its components between square brackets.

e′ ::= · · ·

| [e′1, . . . e′n] (n≥ 0)
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In a similar fashion, a speci�c pattern for lists is added.

patt′ ::= · · ·

| [p′1, . . . p′n] (n≥ 0)

Range Using a similar construction to basic lists, ranges allow the programmer to
specify a list of numbers without having to declare all of them explicitly.

There are two variations on ranges. The �rst is a simple range, providing the
start and end values. This range creates a list with all integers starting from the �rst
value, incrementing by one until the last value.

The second variation provides, along with the start and end values, the second
value of the list. This allows the language to know what the increment of the range is.
Besides allowing increments greater than 1, this also allows ranges that decrement from
the start value until the end value.

e′ ::= · · ·

| [e′1 .. e′2]
| [e′1, e′2 .. e′3]

Comprehension V provides a very basic list comprehension syntax. This allows
evaluating an expression for every value in an existing list, returning a list with the
results of every evaluation.

e′ ::= · · ·

| [e′1 for p′ in e′2]

Tuple Like lists, tuples are supported by the language through the Tuple n construc-
tor. To allow easier creation of tuples, a new term is added to the extended language.

e′ ::= · · ·

| (e′1, . . . e′n) (n≥ 2)

Do Notation For composing multiple IO operations, using the basic bind and return
operations is cumbersome. Because of this, the following notation was introduced:



105

e′ ::= · · ·

| do doTerms

doTerms ::= e′

| doTerm :: doTerms

doTerm ::= p′← e′

| e′

| decl′

Accessors and Records The extended language provides easier syntax for creating
and using accessors, both in accessing and updating �elds of records.

The basis for this syntax is the dot, which simpli�es the construction of the most
common use cases for accessors. A dot is composed of a stack of acc, which are individual
components in an accessor. accs can be �eld labels, arbitrary identi�ers or joined dots.

e′ ::= · · ·

| #dot

dot ::= acc . dot

| acc

acc ::= l

| ′x

| (dot1, . . . dotn) (n≥ 2)

Dot Access Another use of the dot is to allow a simple syntax for getting a
�eld of a record, being very similar to many object-oriented languages.

e′ ::= · · ·

| x . dot

Record Update Finally, the dot syntax is used to allow the easy update of a
record.
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e′ ::= · · ·

| update updates

updates ::= ∅

| update :: updates

update ::= dot← e′

| dot  e′

| decl′

D.2 Translation

To actually evaluate or type check a program in the extended language, it must
�rst be translated into the core language. This is done by a translation algorithm which,
besides converting extended terms into core terms, also performs some additional safety
checks.

A translation rule is of the form:

γ ` e′⇒ e

where γ is the translation environment.
Besides translating expressions, the translation algorithm also translates types

(T ′), functions (func′), etc. All these translations will be described using the same for-
mat, and also use the same environment.

Enviroment Like evaluation and type inference, the translation algorithm requires
an environment to properly function. This environment contains the following infor-
mation:

1. Type aliases
A mapping of type aliases to core types

2. Mapping of generated identi�ers
A mapping of identi�ers to other identi�ers. This is used because the translation
algorithm can create new identi�ers, and so it maps identi�ers from the input
expression to new identi�ers in the output expression.
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γ ::= (aliases, ids)

aliases ::= {} | {τ 7→ T}∪aliases (n ∈ N)
ids ::= {} | {x1 7→ x2}∪ ids

Below will be sections describing the translation algorithms for the di�erent
types of expressions in the extended language. As to avoid clutter, only the rules that
perform some sort of computation or modi�cation on the expression will be displayed.
This means that rules such as:

γ ` Int⇒ Int (Tr-T-Int)

will not be provided.
Similarly, composite expressions that simply call the translation algorithm recur-

sively on their sub-expressions, without any modi�cation to structure, will be omitted.
This includes rules such as:

γ ` T ′1⇒ T1 γ ` T ′2⇒ T2

γ ` (T ′1→ T ′2)⇒ (T1→ T2)
(Tr-T-Func)

Type Translation Given the fact that trivial translations are not provided, there is
only one translation rule that governs type translations.

γ.aliases(τ) = T

γ ` τ ⇒ T
(Tr-T-Alias)

Pattern Translation The algorithm for translating patterns works on lists of patterns
instead of single patterns. This is done to allow veri�cation of repeated identi�ers in a
list of patterns.

Since functions allow multiple patterns as parameters, a veri�cation is done to
ensure that there are no repeated identi�ers in any of the parameters. Furthermore,
composite patterns, such as a list or tuple pattern, also cannot repeat identi�ers in their
sub-patterns, as this would cause ambiguous binding.

This veri�cation is done from left to right, composing a set of identi�ers already
used in the pattern. Each veri�cation uses the set of identi�ers from the previous veri�-
cation, and so the complete set of used identi�ers is created.

The translation also returns a modi�ed translation environment. This environ-
ment has new identi�er mappings, one for each x pattern found.
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id0 = ∅ γ0 = γ

∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

γ ` [p′1, . . . p′n]⇒ [p1, . . . pn],γn

(Tr-P)

To translate a single pattern, a list with only that pattern is created and then
translated. This ensures that, even within a single pattern, no identi�ers are allowed to
repeat.

γ ` [p′]⇒ [p],γ′

γ ` p′⇒ p,γ′
(Tr-P2)

An auxiliary function, called "collectPatterns", is used in pattern translation. This
function takes an extended pattern, a set of already used identi�ers and a translation
environment; and returns a core pattern and a new set of used identi�ers.

This is the core of the pattern translation algorithm. If an identi�er has already
been used in a pattern (or list of patterns), the translation algorithm fails. If the iden-
ti�er has not been used, a fresh identi�er (guaranteed not to be in the environment) is
generated. The original identi�er is then associated to this new identi�er and added to
the environment.

x /∈ id x′ is new

collectPatterns(x, id,γ) = x′, id∪{x},γ∪{x 7→ x′}
(Tr-P-X)

x /∈ id γ ` T ′⇒ T x′ is new

collectPatterns(x : T ′, id,γ) = x′ : T, id∪{x},γ∪{x 7→ x′}
(Tr-P-X2)

Every other translation rule is a variation on iterating on sub-patterns to con-
struct the list of used identi�ers and �nal environment.

collectPatterns(_, id,γ) = _, id,γ (Tr-P-Ignore)

γ ` T ′⇒ T

collectPatterns(_ : T ′, id,γ) = _ : T, id,γ
(Tr-P-Ignore2)

id0 = id
∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns(con p′1, . . . p′n, id,γ) = con p1, . . . pn, idn,γn

(Tr-P-Con)
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id0 = id γ ` T ′⇒ T

∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns(con p′1, . . . p′n : T ′, id,γ) = con p1, . . . pn : T, idn,γn

(Tr-P-Con2)

id0 = id
∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns({l1 : p′1, . . . ln : p′n}, id,γ) = {l1 : p1, . . . ln : pn}, idn,γn

(Tr-P-Record)

id0 = id γ ` T ′⇒ T

∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns({l1 : p′1, . . . ln : p′n} : T ′, id,γ) = {l1 : p1, . . . ln : pn} : T, idn,γn

(Tr-P-Record2)

id0 = id
∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns({l1 : p′1, . . . ln : p′n, . . .}, id,γ) = {l1 : p1, . . . ln : pn, . . .}, idnγn

(Tr-P-PartRec)

id0 = id γ ` T ′⇒ T

∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

collectPatterns({l1 : p′1, . . . ln : p′n, . . .} : T ′, id,γ) = {l1 : p1, . . . ln : pn, . . .} : T, idn,γn

(Tr-P-PartRec2)

id0 = id
∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

p= :: p1 (:: p2 . . .(:: pn nil) . . .)

collectPatterns([p′1, . . . p′n], id,γ) = p, idn,γn

(Tr-P-List)

id0 = id γ ` T ′⇒ T

∀i ∈ [1, n] . collectPatterns(p′i, idi−1,γi−1) = pi, idi,γi

p= :: p1 (:: p2 . . .(:: pn nil) . . .)

collectPatterns([p′1, . . . p′n] : T ′, id,γ) = p : T, idn,γn

(Tr-P-List2)

Typing Patterns Some expressions require that untyped patterns be transformed
into typed patterns. For this, fresh variable types are generated.

typeP(patt′ : T ′,γ) = patt′ : T ′ (Typ-Patt)
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X is new

typeP(patt′,γ) = patt′ :X
(Typ-Patt2)

Function Translation Since functions have undergone massive changes from the
core language, they need complex translation rules.

γ ` [p′1, . . . p′n]⇒ [p1, . . . pn],γ′

∀i ∈ [1, n] . xi is new

γ′ ` e′⇒ e

m= match (x1, . . . xn) with (p1, . . .pn)→ e

f = fn x1⇒ ·· ·fn xn⇒m

γ ` (fn p′1, . . . p′n⇒ e′)⇒ f
(Tr-F-Fn)

γ ` [p′1, . . . p′n]⇒ [p1, . . . pn],γ′

f ′ is new ∀i ∈ [1, n] . xi is new

γ′∪{f 7→ f ′} ` e′⇒ e

m= match (x1, . . . xn) with (p1, . . .pn)→ e

fn= rec f ′ x1⇒ ·· ·fn xn⇒m

γ ` (rec f p′1, . . . p
′
n⇒ e′)⇒ fn

(Tr-F-Rec)

∀i ∈ [1,n] . typeP(p′i,γ) = patt′i : T ′i
T ′′ = T ′2→ T ′3→ ·· · → T ′n

γ ` [patt′1 : T ′1, . . . p′n : T ′n]⇒ [p1, . . . pn],γ′

f ′ is new ∀i ∈ [1, n] . xi is new

γ′∪{f 7→ f ′} ` e′⇒ e γ′ ` T ′′⇒ T

m= match (x1, . . . xn) with (p1, . . .pn)→ e

fn= rec f : T x1⇒ ·· ·fn xn⇒m

γ ` (rec f : T ′ p′1, . . . p′n⇒ e′)⇒ fn
(Tr-F-RecT)

When functions only have one parameter, the match expression does not use a
tuple, since tuples must have at least 2 components.

γ ` p′⇒ p,γ′ x is new

γ′ ` e′⇒ e

m= match x with p→ e

f = fn x⇒m

γ ` (fn p′⇒ e′)⇒ f
(Tr-F-Fn1)
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γ ` p′⇒ p,γ′ x is new

γ′ ` e′⇒ e

m= match x with p→ e

f = rec x⇒m

γ ` (rec p′⇒ e′)⇒ f
(Tr-F-Rec1)

typeP(p′,γ) = p′′

γ ` p′′⇒ p,γ′ x is new

γ′ ` e′⇒ e γ′ ` T ′⇒ T

m= match x with p→ e

f = rec x : T ⇒m

γ ` (rec p′ : T ′⇒ e′)⇒ f
(Tr-F-RecT1)

As a further e�ciency improvement, that match expression is only created when
the parameters of the function are patterns. If every parameter of the function is a regular
identi�er (without type information), then no match expression is necessary. This is only
done if the function does not specify a return type.

γ ` [x′1, . . . x′n]⇒ [x1, . . . xn],γ′

γ′ ` e′⇒ e

f = fn x1⇒ ·· ·fn xn⇒ e

γ ` (fn x′1, . . . x′n⇒ e′)⇒ f
(Tr-F-Fn2)

γ ` [x′1, . . . x′n]⇒ [x1, . . . xn],γ′

f ′ is new γ′∪{f 7→ f ′} ` e′⇒ e

fn= rec f ′ x1⇒ ·· ·fn xn⇒ e

γ ` (rec f x′1, . . . x
′
n⇒ e′)⇒ fn

(Tr-F-Rec2)

DeclarationTranslation The translation of declarations works di�erently from other
translations. The result of translating a declaration is a set of associations between pat-
terns and expressions; along with an updated translation environment.

γ ` p′⇒ p,γ′

γ ` e′⇒ e

γ ` (p′ = e′)⇒{p 7→ e},γ′
(Tr-Decl)
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γ ` T ′⇒ T

γ ` type alias τ = T ′⇒{},γ∪{τ 7→ T}
(Tr-Decl-Alias)

γ ` (fn p′1, . . . p′n⇒ e′)⇒ e

f ′ is new

γ ` f p′1, . . . p′n = e′⇒{f ′ 7→ e},γ∪{f 7→ f ′}
(Tr-Decl-Func)

γ ` (fn p′1, . . . p′n⇒ e′)⇒ e

f ′ is new

γ ` f : T ′ p′1, . . . p′n = e′⇒{f ′ 7→ e},γ∪{f 7→ f ′}
(Tr-Decl-Func2)

γ ` (rec f p′1, . . . p′n⇒ e′)⇒ e

f ′ is new

γ ` rec f p′1, . . . p′n = e′⇒{f ′ 7→ e},γ∪{f 7→ f ′}
(Tr-Decl-Rec)

∀i ∈ [1,n] . typeP(p′i,γ) = patt′i : T ′i
T ′′ = T ′1→ T ′2→ ·· · → T ′n

γ ` (rec f : T ′ patt′1 : T ′1, . . . patt′n : T ′n⇒ e′)⇒ e

f ′ is new

γ ` rec f : T ′ p′1, . . . p′n = e′⇒{f ′ : T ′′ 7→ e},γ∪{f 7→ f ′}
(Tr-Decl-Rec2)

Dot Translation To properly translate the accessor and dot syntax expressions in-
troduced in the extended language, it is necessary to de�ne translations for both acc and
dot expressions.

When translating an acc, the result is an expression e. The rules governing this
translation are given below.

γ ` l⇒#l (Tr-Acc-Label)

γ ` ′x⇒ x (Tr-Acc-’x)

∀i ∈ [1,n] . γ ` doti⇒ ei

γ ` (dot1, . . . dotn)⇒#(e1, . . . en)
(Tr-Acc-Joined)

Similarly, translating a dot also yields an expression e. The two rules de�ning
this translation are given below.
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γ ` acc⇒ e

γ ` acc⇒ e
(Tr-Dot-Stacked)

γ ` acc⇒ e1 γ ` dot⇒ e2

γ ` acc . dot⇒ stack e1 e2
(Tr-Dot-Stacked)

Using the translations de�ned above, de�ning the translation of the accessor and
dot access expressions is trivial:

γ ` dot⇒ e

γ `#dot⇒ e
(Tr-E-Acc)

γ ` dot⇒ e

γ ` x . dot⇒ get e x
(Tr-E-Dot)

Record Update Translation

x is new f ′ = (fn x⇒ x)

concat(∅,γ) = f ′,γ
(Tr-Updates-Empty)

x is new f ′ = (fn x⇒ set #dot e′ x)
concat(updates,γ) = g′,γ′

concat(dot← e′ :: updates,γ) = g′ . f ′,γ′
(Tr-Updates-Set)

x is new f ′ = (fn x⇒ modify #dot e′ x)
concat(updates,γ) = g′,γ′

concat(dot  e′ :: updates,γ) = g . f ′,γ′
(Tr-Updates-Modify)

concat(updates,γ) = g′,γ′

concat(decl′ :: updates,γ) = let decl′ in g′,γ′
(Tr-Updates-Decl)

concat(updates) = f ′,γ′ γ′ ` f ′⇒ f

γ ` update updates⇒ f
(Tr-E-Update)

Expression Translation The conditional expression translates into a match expres-
sion, testing whether the �rst sub-expression (e1) is true or false and evaluation e2 or
e3, respectively.
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γ ` e′1⇒ e1 γ ` e′2⇒ e2 γ ` e′3⇒ e3

e= match e1 with true→ e2, false→ e3

γ ` if e′1 then e′2 else e′3⇒ e
(Tr-E-Cond)

The list expression translates into nested applications of the :: constructor, ending
with the nil (empty list) constructor.

∀i ∈ [1, n] . γ ` e′i⇒ ei

e= :: e1 (:: e2 . . .(:: en nil) . . .)

γ ` [e′1, . . . e′n]⇒ e
(Tr-E-List)

Similarly, the tuple expression translates into a complete application of a tuple
(Tuple n) constructor, where n is the number of elements in the expression.

∀i ∈ [1, n] . γ ` e′i⇒ ei

e= ( . . . (Tuple n e1) e2) . . . en)

γ ` (e′1, . . . e′n)⇒ e
(Tr-E-Tuple)

When translating let expressions, the declaration is translated into an ordered
set of associations between patterns and expressions. Nested let expressions are then
created with these associations.

γ ` decl⇒{p1 7→ e1, . . . pn 7→ en},γ′ γ′ ` e′⇒ e

ret= (let p1 = e1 in · · ·let pn = en in e)

γ ` let decl in e′⇒ ret
(Tr-E-Let)

There are two variations of ranges: one with an implicit step and one with an
explicit step. Both of these rely on the existing of the function "range", which, when
given a starting number, ending number and step, returns a list with the numbers.

The �rst variation uses a �xed step value of 1, while the second variation calcu-
lates its step by sutracting the second element of the range (e2) from the �rst element
(e1).

γ ` e′1⇒ e1 γ ` e′2⇒ e2

γ ` [e′1 .. e′2]⇒ range e1 e2 1
(Tr-E-Range)
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γ ` e′1⇒ e1 γ ` e′2⇒ e2

γ ` e′3⇒ e3 i= − e2 e1

γ ` [e′1, e′2 .. e′3]⇒ range e1 e2 i
(Tr-E-Range2)

Comprehensions, similarly to ranges, rely on the function "map". A function is
created with the pattern p′ and the body e′1. This function is then translated and passed
as the �rst argument of the "map" function. The second argument of the function is the
translation of the expression e′2, which will eventually evaluate into a list.

γ ` (fn p′⇒ e′1)⇒ f γ ` e′2⇒ e2

γ ` [e′1 for p′ in e′2]⇒map f e2
(Tr-E-Comprehension)

Do Notation Translation

concat(e′,γ) = e′,γ (Tr-Do-Base)

concat(doTerms,γ) = f ′,γ′

concat(p′← e′ :: doTerms,γ) = bind e′ (fn p′⇒ f ′),γ′
(Tr-Do-Bind)

concat(doTerms,γ) = f ′,γ′

concat(e′ :: doTerms,γ) = bind e′ (fn _⇒ f ′),γ′
(Tr-Do-Term)

concat(doTerms,γ) = f ′,γ′

concat(decl′ :: doTerms,γ) = let decl′ in f ′,γ′
(Tr-Do-Decl)

concat(doTerms) = f ′,γ′ γ′ ` f ′⇒ f

γ ` do doTerms⇒ f
(Tr-E-Do)
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APPENDIX E — ACCESSORS IN HASKELL

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE MultiParamTypeClasses #-}

{-# LANGUAGE FunctionalDependencies #-}

-- This would be included in an accessor library (or be built-in)

type Accessor rec field = rec -> field -> (field, rec)

get :: Accessor rec field -> rec -> field

get acc rec = fst $ acc rec undefined

set :: Accessor rec field -> field -> rec -> rec

set acc value rec = snd $ acc rec value

stack :: Accessor rec field1 -> Accessor field1 field2 -> Accessor rec field2

stack acc1 acc2 recOuter field =

let (recInner, recOuter') = acc1 recOuter recInner'

(value, recInner') = acc2 recInner field

in (value, recOuter')

distort :: Accessor r f -> (f -> t) -> (t -> f -> f) -> Accessor r t

distort acc getter setter rOld tNew =

let (fOld, rNew) = acc rOld fNew

fNew = setter tNew fOld

in (getter fOld, rNew)

-- Here ends the accessor library

-- The code below is to illustrate how it would be used

-- A simple record

data Record = R {code :: String, age :: Int} deriving Show

-- This code would be generated

class CodeLabel rec field | rec -> field where

codeAcc :: Accessor rec field

instance CodeLabel Record String where

codeAcc r@(R code _) string = (code, r { code = string })

-- End of generated code
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-- Another record with the same field name

-- (the 2 is added because of Haskell's current restriction on field names)

data Record2 = R2 {code2 :: String, age2 :: Double} deriving Show

-- This code would be generated

instance CodeLabel Record2 String where

codeAcc r@(R2 code _) string = (code, r { code2 = string })

-- End of generated code

-- Record with another record as a field

data Outer = O { r :: Record, name :: String } deriving Show

-- This would be generated

class RLabel rec field | rec -> field where

rAcc :: Accessor rec field

instance RLabel Outer Record where

rAcc o@(O r _) record = (r, o { r = record })

-- End of generated code

-- Example values

r1 = R "1234" 22

r2 = R2 "1234" 22.0

o1 = O r1 "name"

-- Examples

-- get (stack rAcc codeAcc) o1

-- set codeAcc "3" $ get rAcc o1

-- codeAcc' = distort codeAcc read (\t _ -> show t)

-- set (stack rAcc codeAcc') 3 o1
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