

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

EDUARDO NUNES DE SOUZA

Single Event Upset mitigation for FPGA-based

Low-Density Parity-Check decoder

Monograph presented in partial fulfillment of the

requirements for the degree of Bachelor in Computer

Engineering.

Advisor: Prof. Dr. Gabriel Luca Nazar

Porto Alegre

2018

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitor: Profa. Jane Fraga Tutikian

Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas

Coordenador do Curso de Engenharia de Computação: Prof. Renato Ventura Bayan Henriques

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The development of technology will leave only one problem:

 the infirmity of human nature.”

Karl Kraus

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor Gabriel, my advisor, for his patient

guidance and assistance.

I would also like to extend my thanks to Marcos, for his help with the fault injection

platform, and Geferson, for his assistance with the decoder.

Finally, I wish to thank my family and friends for their support and encouragement

throughout my study.

ABSTRACT

 With the increasing of data rates and physical limitation defined by channel capacity,

communication systems have to be designed with high efficiency and reliability. LDPC codes

have emerged over the last decades and became a key component of many commercialized

systems as a benefit of their excellent performance and suitability to parallel hardware

implementation. Under that scenario, FPGA-based decoders have been exploited since these

devices offer rapid prototyping and high levels of parallelism. FPGAs, as any semiconductor

device, have become sensitive to radiation due to the continual evolution of fabrication

technology, such as device shrinkage, power supply reduction and increasing operating speeds.

FPGAs’ cells are especially susceptible to single event upsets (SEUs) and fault tolerance

techniques must be applied in order to mitigate their effects. In this work, it is presented a study

about the effects of SEUs in an FPGA-based LDPC decoder and it is proposed a selective

technique to improve reliability in this specific application.

Keywords: Fault Tolerance. Low-density Parity-Check. Forward Error Correction. Field-

Programmable Gate Array. Single event upset.

Mitigação de single event upsets em um decodificador LDPC

implementado em FPGA

RESUMO

Com o aumento das taxas de dados e limitações físicas definidas pela capacidade do

canal, os sistemas de comunicação devem ser projetados com alta eficiência e confiabilidade.

Os códigos LDPC emergiram nas últimas décadas e se tornaram um componente-chave de

vários sistemas comerciais, como resultado de seu excelente desempenho e possibilidade de

paralelismo. Nesse contexto, implementações em FPGAs vêm sendo exploradas, uma vez que

esses dispositivos oferecem prototipagem rápida e altos níveis de paralelismo. Os FPGAs, como

qualquer dispositivo semicondutor, tornaram-se sensíveis à radiação devido à evolução

contínua da tecnologia de fabricação, como encolhimento do dispositivo, redução da voltagem

de alimentação e aumento das velocidades de operação. As células dos FPGAs são

especialmente suscetíveis a single event upsets (SEUs) e técnicas de tolerância a falhas devem

ser aplicadas para atenuar seus efeitos. Neste trabalho, é apresentado um estudo sobre os efeitos

de SEUs em um decodificador LDPC implementado em FPGA e uma técnica seletiva para

aumentar a confiabilidade nesta aplicação específica é proposta.

Palavras-chave: Tolerância a falhas. Low-density Parity-Check. Forward Error Correction.

Field-Programmable Gate Array. Single event upset.

LIST OF FIGURES

Figure 1.1 – Factor graph representations for matrices H1 and H2 ... 13

Figure 1.2 – Matrix H for QC-LDPC implemented in IEEE 802.11 with code rate = 1/2 14

Figure 1.3 – Misbehavior of a circuit caused by radiation ... 15

Figure 2.1 – Collision of an ionized particle and the resulting current pulse 17

Figure 2.2 – Particle strike in a SRAM cell .. 18

Figure 2.3 – FPGA structure .. 19

Figure 2.4 – TMR and voter circuit .. 20

Figure 2.5 – Communication system scheme ... 21

Figure 2.6 – BER performance for IEEE 802.16 LDPC using BPSK modulation 21

Figure 2.7 – Factor graph representing messages exchanges in BP algorithm 23

Figure 3.1 – Modified Layered Decoding architecture .. 27

Figure 3.2 – Architecture of a Check Node .. 28

Figure 4.1 – Fault injection platform structure proposed by Leipnitz (2016) 30

Figure 4.2 – Readback data signals in Kintex-7 devices .. 31

Figure 4.3 – Frame addressing scheme of Kintex-7 devices .. 31

Figure 5.1 – Normal distribution for BER per physical CN over failure 34

Figure 5.2 – Normal distribution for BER per code-level CN over failure 35

Figure 6.1 – Cost benefit scenarios of applying DMR in the modules of the CN 39

LIST OF TABLES

Table 4.1 – Number of frames per block type .. 32

Table 5.1 – Physical CNs x code-level CNs mapping .. 33

Table 5.2 - BER per physical CN over failure ... 34

Table 6.1 – Number of sensitive bits, LUTs and FFs per module of the CN 36

Table 6.2 – Average of errors caused by sensitive bits per module of the CN 37

Table 6.3 – BER performance for each module under a faulty-state 37

Table 6.4 – WPD, AO and Gain for each module of the CN ... 38

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BP Belief Propagation

BPSK Binary Phase-Shift Keying

BUBs Bit Update Blocks

CLB Configurable Logic Block

CNs Check Nodes

DMR Double Modular Redundancy

DSP Digital Signal Processor

FEC Forward Error Correction

FF Flip-Flop

FPGAs Field Programmable Gate Arrays

HDL Hardware Description Language

IC Integrated Circuit

ICAP Internal Configuration Access Port

IDS Informed Dynamic Scheduling

IOB Input/output Block

LBP Layered Belief Propagation

LDPC Low-Density Parity-Check

LLR Logarithmic-Likelihood Ratio

LUT Lookup Table

MOS Metal Oxide Semiconductor

PCUBs Parity Check Update Blocks

QC Quasi-cyclic

RAM Random Access Memory

SEE Single Event Effect

SEFIs Single Event Functional Interrupts

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upsets

SRAM Static Random Access Memory

STMR Selective Triple Modular Redundancy

TID Total Ionizing Dose

TMR Triple Modular Redundancy

VNs Verification Nodes

SUMMARY

1 INTRODUCTION ... 12

1.1 Motivation ... 12

1.2 Goals .. 14

1.3 Structure .. 16

2 BACKGROUND .. 17

2.1 Radiation effects on semiconductor devices .. 17

2.2 Radiation effects on FPGAs ... 18

2.3 Forward error correction .. 20

2.4 LDPC codes ... 22

2.4.1 Encoding .. 22

2.4.2 Decoding .. 23

2.5 Related works .. 24

3 LDPC DECODER ARCHITECTURE .. 26

4 FAULT INJECTION METHOD ... 29

5 COARSE-GRAINED REDUNDANCY ... 33

6 FINE-GRAINED REDUNDANCY .. 36

7 CONCLUSIONS .. 40

REFERENCES ... 42

APPENDIX A - GRADUATION PROJECT I .. 46

12

1 INTRODUCTION

1.1 Motivation

The main purpose of a digital communication system is to transmit data from one

extremity of the system to the other efficiently and with an acceptable level of quality and

reliability. The quality of the signal is commonly expressed in terms of Bit Error Rate (BER),

i.e., the probability of bit errors measured in the receiver side. The power of the transmitted

signal and the channel’s bandwidth are the most fundamental parameters of a system and, along

with the noise spectral density, they determine the energy per bit to noise power spectral density

ratio (Eb/N0). Practical restrictions frequently limit the value of Eb/N0 and the modulation

scheme used may not capable of providing an acceptable BER. In such cases, the best approach

to guarantee data integrity is to encode the message transmitted by applying error control, which

may be performed with Forward Error Correction (FEC) codes (HAYKIN, 2004).

Low-Density Parity-Check (LDPC) codes represent a powerful class of FEC codes, i.e.,

they may be employed for correcting transmission errors in communication systems. They were

conceived by Gallager (1962) in his doctoral dissertation, but at the time, they were impractical

to implement due to the lack of the necessary hardware technology. Thirty-four years later,

Mackay and Neal (1996) verified that the performance of LDPC codes are equivalent to that of

Turbo codes and could approach Shannon’s theoretical limit. Since their rediscovery, they have

been extensively used in several commercial standards like WiFi, WiMAX, DVB-S2, CCSDS

and ITU G.hn (HAILES et al., 2015).

LDPC codes are defined by a parity-check matrix, in which the rows are the coefficients

of the parity-check equations. A code is considered regular if the number of nonzero elements

does not vary among each row or each column of the parity-check matrix. Irregular codes, on

the other hand, do not respect this property. In general, irregular codes have a better

performance than regular codes (CARRASCO, 2009). Matrices H1 and H2, as follows, are

parity-check matrix for an irregular code and a regular code, respectively. The corresponding

parity-check equations are listed aside.

 In the meantime, between the creation and effective usage, LDPC codes were not

heavily investigated. One exception is the work of Tanner (1981), in which he generalized

LDPC codes and proposed a graphical representation for them. Each row represents a parity

check equation and each column of the matrix represents a codeword bit. The so-called factor

graphs introduce the concepts of Check Nodes (CN), each of them is attached with a row of the

13

c1+c4+c6 = 0,

c2+c3+c5 = 0,

c1+c3+c5+c6 = 0,

c1+c3+c4 +c6= 0.

c1+c2+c4 = 0,

c2+c3+c5 = 0,

c1+c5+c6 = 0,

c3+c4+c6 = 0.

parity-check matrix, and the Variable Nodes (VN), which are related with the columns. A

connection between a CN and a VN represents a bit ‘1’ in the parity-check matrix. Figure 1.1

illustrates the corresponding factor graph to parity-check matrices H1 and H2.

Figure 1.1 – Factor graph representations for matrices H1 (a) and H2 (b)

(a) (b)

Source: the author

The parity-check matrix of an LDPC code is often sparse, i.e., it has few ‘1’s and many

‘0’s, which allows the decoding to be partly-parallelized. Quasi-cyclic (QC) LDPC code is a

class of construction code whose structure facilitates low-complexity memory addressing and

routing for the hardware implementation. It is based on a matrix, in which each element

represents an equally-sized square submatrix (Z x Z). If a particular element in the matrix has

a value of ‘0’, then the corresponding submatrix is a null matrix. Otherwise, the submatrix is

an identity matrix, which has been cyclically shifted a number of times according to the

corresponding value (HAILES et al., 2015). Figure 1.2 shows the parity-check matrix for a QC-

LDPC code implemented in IEEE 802.11ad standard with a code rate =
1

2
, i.e., half of the coded

message is formed by redundant bits.

Besides the implementation of LDPC codes using low-complexity calculations, a high

level of parallelism can be exploited, which makes them suitable to be implemented in Field

H1 = [

1 0 0 1 0 1
0 1 1 0 1 0
1 0 1 0 1 1
1 0 1 1 0 1

]

H2 = [

1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

]

14

Figure 1.2 – Matrix H for QC-LDPC implemented in IEEE 802.11, with code rate =
1

2

Source: Avaliant (2018)

Programmable Gate Arrays (FPGAs). These devices are extremely versatile and can offer high

degree of parallel processing. In addition, they offer rapid prototyping and are especially useful

for measuring BER performance, due to the reduced time that the simulations take when

compared, for instance, to a general-purpose processor (HAILES et al., 2015). Their usage has

been increasing more and more, and they are not restricted to coding applications, FPGAs are

present in other fields such as industrial, automobile and medical applications.

When these applications run over the presence of ionizing radiation, FPGAs (as any

other semiconductor device) are susceptible to many effects that may either damage the device

or compromise the operation of the circuit by changing its behavior. The immediate effects

caused by radiation are called single event effects (SEEs). The particular type of SEE that we

are interested are the single event upsets (SEUs). SEUs are soft errors, because the device itself

is not permanently damaged by radiation, but the radiation event causes enough charge

disturbance to reverse or flip the data of a memory cell, register, latch or flip-flop. SRAM-based

FPGAs are particularly susceptible to SEUs within the configuration memory and fault

tolerance techniques may be applied in order to guarantee the proper operation of the circuit,

even in the presence of faults. Figure 1.3 illustrates the misbehavior of a circuit caused by a

particle strike.

1.2 Goals

Several works in literature propose fault tolerance mechanisms to mitigate SEUs in

LDPC decoders, but none of them has the specific concern with FPGAs implementations. Li

15

Figure 1.3 - (a) Configuration bits used to a certain logic and routing

 (b) Logic and routing are modified due to upsets caused by radiation

(a) (b)

(a) (b)

Source: Wirthlin (2015)

et al. (2016), for example, propose to protect parts of the control logic with a Hamming decoder

while May et al. (2008) propose to protect some subsets of the circuit with Triple Modular

Redundancy (TMR). Both of them are concerned in ASIC implementations, which have a

different model of failures. On the other hand, there are several publications aiming to protect

FPGAs from SEUs, as in Foster et al. (2010), which propose a technique to define and protect

critical subsets of the circuit. Samudrala et al. (2004) describes a technique to predict which

cells of the circuit are more sensitive to SEUs by the probability of signal's inputs, while Pratt

et al. (2006), in a different manner, has a concern to protect cells that may lead the circuit to a

complete faulty state, even when these cells are repaired with configuration scrubbing. All of

these publications are focused on general-purpose applications.

This work presents an overview on the effects of radiation in semiconductor devices and

FPGAs, FEC codes, LDPC codes as well as a study with the purpose of providing protection

from radiation on an FPGA-based LDPC decoder. The Check Nodes (CNs) are considered the

most critical element of LDPC decoders, since they execute all arithmetic operations, occupy

most of the total area, and have the greatest workload of the circuit. Initially, it was made a

coarse-grained analysis in the architecture, evaluating the severity of each CN to the overall

performance of the decoder. A fine-grained analysis in the internal structure of the CNs was

then made in order to determine which subsets of the circuit are most relevant to the overall

sensitivity. The fault injection simulations were executed in a fault injection platform adapted

from Leipnitz (2015) to Kintex-7 devices. The architecture evaluated is presented in Hess

(2016), who proposes an HDL implementation and a software-based model. The results and the

16

method used to perform fault injections will be shown as well as the LDPC decoder architecture

used as reference.

1.3 Structure

This work is structured as follows: section 2 explains the basic concepts, such as

radiation effects on semiconductor devices (2.1), radiation effects on FPGAs (2.2), Forward

Error Correction (2.3), LDPC codes (2.4) and related works (2.5). Section 3 details the

architecture of the decoder used as reference. Section 4 presents the fault injection method and

platform used. Section 5 presents the coarse-grained analysis among CNs and section 6 presents

the fine-grained approach, which exploits the internal structure of CNs. Finally, section 7 shows

the conclusions of this work.

17

2 BACKGROUND

2.1 Radiation effects on semiconductor devices

Ionizing radiation can be defined as the transmission of energy through atomic and

subatomic particles with very high kinetic energy. It is a natural phenomenon and it is generated

from materials on earth, the sun and other cosmic sources (WIRTHLIN, 2015). In space, there

is high flow of protons, neutrons, alpha particles and heavy ions that affect semiconductor

devices. At ground level, on the other hand, neutrons are the most frequent cause of failures

(BAUMANN, 2005). When a single heavy ion strikes the silicon, it loses its energy through the

production of free electron-hole pairs, resulting in a dense ionized track in the local region

(KASTENSMIDT et al., 2004). Figure 2.1 illustrates the current pulse disturbance caused by

this event in a reverse-biased junction.

Figure 2.1 – Collision of an ionized particle and the resulting current pulse

Source: Baumann (2005)

There are several radiation effects in semiconductor devices that vary in magnitude from

data disruptions to permanent damage ranging from parametric shifts to complete device

failure. Single event effects (SEEs), as the name implies, are device failures induced by a single

radiation event. They can cause long-term effects to devices, compromising the operation of

the circuit, or simply change the data state in a memory cell, register, latch or flip-flop. SEEs

that do not permanently damage the device are called soft errors (BAUMANN, 2005).

 Long-term effects include changes in device’s electrical parameters, such as the

threshold voltage, leakage current and the timing of the MOS transistors. High-energy particles

can also displace atoms in the lattice of semiconductor materials, causing permanent damages.

The maximum amount of radiation that a device can tolerate before failing its parameters is

called total ionizing dose (TID) (BARNABY, 2006).

18

Single event upsets (SEUs), otherwise, are soft errors. They occur when an ionized

particle causes enough charge disturbance to change the voltage level of critical nodes within a

memory cell, causing the inversion of the original data stored (changing a logic “1” to a logic

“0” or a logic “0” to a logic “1”). This effect occurs due to the feedback nature of these cells,

as shown in Figure 2.2. If the radiation-induced voltage happens in a logic gate, that is, a glitch

that propagates through combinational circuitry, it is called a single event transient (SET).

Single event functional interrupts (SEFIs) are failures that change the internal state of important

control registers within a device that control device-level functionality. SEFIs compromise the

operation of the application, but they can be resolved by repowering the device and placing it

in its initial state. As SEUs, SETs and SEFIs are soft errors (WIRTHLIN, 2015).

Figure 2.2 – Particle strike in a SRAM cell

Source: Monteanu & Autran (2008)

2.2 Radiation effects on FPGAs

With the request of consumer’s demand for device shrinkage, power supply reduction

and increasing in the operating frequency, the circuits are more and more susceptible to the

effects of radiation. Particularly, there is growing interest in using FPGAs in space and other

extreme environments where high-energy radiation is more common than on earth

(KASTENSMIDT et al., 2004).

FPGAs are semiconductor devices consisting of logic blocks, RAM blocks and I/O

blocks. The most fundamental logic block of an FPGA is formed by a Lookup Table (LUT) and

a Flip-Flop (FF). The I/O blocks surround the outer edge of the microchip, providing I/O access

to the pins on the exterior of the FPGA package. Programmable routing is implemented so that

it is possible to connect logic blocks and IOBs to logic blocks arbitrarily, as shown in Figure

2.3.

19

Xilinx devices quantify the logic resources in terms of “slices”, each of them contains

several LUTs and FFs - the nature and quantity of the hardware resources available in each slice

depends on the model and generation of the FPGA. The terminology given by Xilinx also

introduces the concept of Configurable Logic Blocks (CLBs), which consists of multiple slices

(BUELL et al., 2007).

Figure 2.3 – FPGA structure

Source: Hailes et al. (2015)

To determine the effects of radiation on FPGAs, they will be classified in three

categories, based on the technology used to store the configuration data: antifuse, flash and

SRAM-based FPGAs. Antifuse FPGAs are nonvolatile and the configuration data cannot be

changed once the fuses have been programmed. This type of FPGA is usually the most reliable,

since the configuration cells are made from passive, programmed fuses, and they are generally

immune to SEEs. Flash FPGAs are also nonvolatile but they may be reprogrammed only for a

certain number of times, which may not be suitable for reconfigurable systems requiring

frequent reconfiguration. Flash FPGAs have a major concern with SETs through the

combinational logic data path and routing resources (STERPONE & DU, 2014).

SRAM-based FPGAs, on the other hand, are volatile, so they lose their configuration

when power is removed. Although SRAM cells require more power than antifuse or flash cells,

they can be reprogrammed an unlimited number of times. SRAM-based FPGAs have a primary

reliability concern in SEUs within the configuration memory, since these cells are made using

standard static memory techniques and comprise the majority of the memory cells on the device.

The incidence of radiation in the configuration memory may lead to changes in the logic and

20

routing of the operating circuit, deviating from the function they were supposed to fulfill

(WIRTHLIN, 2015).

TMR is the most classical and robust technique with the purpose of mitigating SEUs in

FPGAs, where a module is replicated three times and the output is extracted from a majority

voter, as shown in Figure 2.4 (SAMUDRALA et al., 2004). In this work, Double Modular

Redundancy (DMR) is proposed to protect the circuit. It provides error detection by comparing

two copies of the circuit. DMR has at least 100% area and power overheads compared to the

unhardened design. For TMR, on the other hand, these overheads are at least 200%, making its

use very expensive. For applications with stringent cost and power limitations, the application

of TMR may not be desirable, making DMR and other less costly error detection mechanisms

more attractive choices (NAZAR et al., 2013). The re-writing of the configuration memory is

called scrubbing and it is the approach proposed to correct the errors detected by DMR in this

work.

Figure 2.4 – TMR (a) and voter circuit (b)

Source: Samudrala et al. (2004)

2.3 Forward Error Correction

Figure 2.5 shows the scheme of a communication system. The message m to be

transmitted is composed of binary symbols. The encoder accepts bits of the message and adds

redundancy according to a predefined rule, producing data encoded in a higher bit-rate. In order

to generate an (n, k) block code, the encoder receives blocks of k bits. For each block, it adds

n-k redundant bits and produces a coded block of n bits, where n > k. The decoder in the

receiver side explores this redundancy to decide which bits of the message were indeed

21

transmitted (HAYKIN, 2004). The relation r = k/n is called code rate, where 0 < r < 1. Figure

2.6 shows BER performance for IEEE 802.16 with different code rates.

Figure 2.5 – Communication system scheme

Source: adapted from Hailes et al. (2016)

Figure 2.6 – BER performance for IEEE 802.16 LDPC using BPSK modulation

Source: Avaliant (2018)

Assuming a Binary Phase-Shift Keying (BPSK) modulation, the modulated symbol

vector x = {xj}
N

j=1 may be represented through the energy per symbol, xj = + √𝐸s when cj = 0

and xj = - √𝐸s when cj = 1. Moreover, assuming the Additive White Gaussian Noise (AWGN)

channel, x̂j = xj + (0, N0), where is the normal distribution and N0 is the noise power

spectral density. The relation between Es and Eb is given by:

𝐸𝑏 =
𝐸𝑠

𝑟
 (2.1)

In order to convert received symbols into demodulated bits, Logarithmic-Likelihood

Ratio (LLR) is often used. The sign (positive or negative) expresses the most likely value for

22

the corresponding bit (0 or 1) and the magnitude represents the certainty on the value of the bit.

The value of the LLR of a demodulated bit is calculated as (2.2), where ci is the transmitted bit

and x̂ is the received symbol.

LLR(ĉi) = log
𝑃(𝑐𝑖=0 | x𝑖̂)

𝑃(𝑐𝑖=1 | x𝑖̂)
 (2.2)

Considering a BPSK modulation over an AWGN channel, LLR values can be calculated

as follows:

LLR(ĉi) = 4 ∗ 𝑟 ∗
𝐸𝑏

𝑁0
∗ x̂𝑖 (2.3)

In terms of Es:

 LLR(ĉi) = 4 ∗
𝐸𝑠

𝑁0
∗ x̂𝑖 (2.4)

2.4 LDPC Codes

2.4.1 Encoding

LDPC codes can be described as a k-dimensional subspace C of the vector space of

binary n-tuples over the binary field F2. We first describe a basis B = {g0, g1, …, gk-1} which

spans C. The process of encoding a message is given by 2.3. Each codeword c ∈ C can be

written as c = u0g0+u1g1+...+uk-1gk-1, or simply

c = uG (2.5)

where u = [u0, u1, …, uk-1] is the message to be transmitted and G is the k x n generator matrix

whose rows are the vectors {gi}.

The (n – k)-dimensional null space C⊥ of G comprises all the vectors x for which xGT =

0 and is spanned by the basis B⊥ = {h0, h1, … hn-k-1}. For each c ∈ C, chT
i = 0, or simply

cHT = 0 (2.6)

where H is the (n-k) x n parity-check matrix whose rows are the vector {hi} and is the generator

matrix for the null space C⊥ (RYAN, 2003).

23

We can obtain G from H by some simple steps. It is necessary first to transform H with

Gauss-Jordan elimination in order to get H in the form:

H = [A, In-k] (2.7)

where I is the identity matrix of dimension n-k and A is a matrix of size (n - k) x k. From that,

G can be easily found:

G = [Ik, A
T] (2.8)

2.4.2 Decoding

LDPC decoding is usually done with belief propagation (BP) algorithm. In this

approach, LLR values are passed in both directions along the edges between connected nodes

of the factor graph describing the code. An important characteristic of the BP algorithm is that

any message sent to a particular node does not depend on the message received from that node.

In Figure 2.7, for example, CN c4 is connected to VNs v2, v4, v5, v6, v7 and v9. The message r4̃-

9, however, will be calculated based on the values received from VNs v2, v4, v5, v6 and v7.

Figure 2.7 – Factor graph representing messages exchanges in BP algorithm

Source: Hailes et al. (2016)

LDPC decoder’s schedule, i.e., the order in which the nodes are activated, has a

significant effect upon the error correction capability provided by the decoder. The three most

common schedules schemes are Flooding, Layered Belief Propagation (LBP) and Informed

Dynamic Scheduling (IDS).

24

Flooding is the simplest decoding schedule, where each iteration comprises the

activation of all CNs simultaneously followed by the activation of all VNs. This approach offers

a high degree of parallel processing; however, it demands high area to be implemented.

In LBP schedule, the nodes are processed sequentially within each iteration. Once a CN

has been activated, all its connected VNs are activated before moving to the next CN. This

schedule results in a lower throughput, higher latency and high complexity per iteration.

However, LBP tends to converge to the correct result using fewer iterations, resulting in lower

complexity overall when compared to flooding. In addition, a certain level of parallelism can

be exploited when using QC codes with this policy. LBP will be more exploited later, since is

the schedule used in the decoder used as reference in this work.

IDS verifies the messages passed between the nodes and activates the node that offers

the greatest improvement in belief. This schedule requires additional calculations, increasing

the complexity per iterations, but the complexity overall is decreased since it demands fewer

iterations to achieve the correct output.

2.5 Related Works

Several works in literature propose techniques to mitigate SEUs in LDPC decoders. Li

et al. (2016), for instance, proposes the design of a fault-tolerant LDPC decoder that corrects

soft-errors caused by SEUs inside the control logic with a Hamming decoder. For RAM cells,

a layered pipelined architecture is proposed as well as a scheme that detects soft errors by parity

check, then the errors will be corrected by the inherent decoder’s iterative process. This

approach could save 42% of cell area compared with TMR method and the reduction of 12%

of memory bits compared with similar works.

The work presented in May et al. (2008) proposes a technique that assumes that not all

data bits of a message or channel value have the same importance and corruption in higher

significant bits has a larger impact on the overall communications performance than corruption

in lower bits. If an LLR value which is calculated by a functional node is corrupted, the value

is reset to 0. In other words, the corresponding node/edge is temporarily removed for the current

iteration. Thereby, no information is associated with the respective bit and the error tends to be

minimized.

In order to protect FPGAs from the effects of SEUs, several publications have proposed

alternatives to the traditional TMR method by protecting specifics subsets of the circuit, the

ones considered most critical. Foster et al. (2010) presents several methodologies for selecting

25

these subsets, such as metrics that consider the number of logic cells that use the cell’s output

signals as inputs, the number of logic resources necessary to add TMR to the logic cell and the

number of logic cells in longest propagation path through the logic cell.

Another approach is presented in Samudrala et al. (2004), where a Selective Triple

Modular Redundancy (STMR) technique is described. The logic cells are classified by the

“sensitivity” to SEUs, which is measured by the signal probability of its inputs. It is assumed

that the primary inputs of the circuit are specified by the user in terms of signal probabilities

and then it is propagated to compute the signal probability of each internal node.

In a different way, Pratt et al. (2006) prioritizes the protection of structures causing

“persistent” errors within the design. Configuration bits are categorized in “persistent” and

“non-persistent”. A non-persistent configuration bit will cause a design fault when upset and

may be repaired through configuration scrubbing, which will lead the design back to normal

operation. Persistent bits, on the other hand, will also cause a design fault when upset, but after

repairing persistent bits through configuration scrubbing, the FPGA circuit does not return to

normal operation.

Unlike the other works focused on LDPC decoders, this work specifically targets LDPC

in FPGAs and the associated failure model, which is different from ASICs. In addition, unlike

the other works in partial redundancy for FPGAs, this work is specific to an application, that is,

the impact of the failures in metrics relevant to the application in question will be taken into

account.

26

3 LDPC DECODER ARCHITECTURE

LBP is often used in LDPC decoders since it can achieve effectively high decoding

throughput with low computation complexity (CUI et al., 2012). In this policy, the parity check

matrix is viewed as horizontal layers, each layer represents a component code and the message

updating is performed layer by layer. The model presented in Hocevar (2004) consists in a

memory used to store the bit values of the message to be decoded, Parity Check Update Blocks

(PCUBs) and Bit Update Blocks (BUBs), which implement the message exchange calculations,

as well as a router and a reverse router to arrange data as needed by the algorithm and

architecture.

Hess (2016) implemented an HDL description and a bit-accurate software simulator of

a modified version of the architecture presented in Hocevar (2004), as shown in Figure 3.1. Bit

Memory is used to store the LLR values of the message bits, the Controller implements a finite

state machine and is responsible for controlling the data flow among the other components of

the circuit, and the Check Nodes perform the message exchange calculations. It was used a

single router, called Permuter, since the output of the CNs will be routed only in the processing

of the last row of the matrix. The Permuter rotates the values from the Bit Memory by the value

obtained from GetRotX, in order to deliver the correct inputs to CNs.

The algorithm used to decode the messages is a modified version of Min-Sum algorithm

(KARKOOTI et al., 2008). It calculates two messages: one that considers the smallest value

among all VNs connected, and another that considers the second smallest value. The first

message is sent to all VNs connected and the second message is sent to the VN connected that

owns the smallest value. A correction factor (β > 0) is applied to the calculation of the messages

aiming to reduce the information loss due to the simplified function that is used. Besides the

advantages brought by the original version of the algorithm, as the reduced complexity to

calculate the messages and the small area necessary, the modified version offers a greater

energy efficiency. The Modified Min-Sum algorithm, along with the Layered Decoding policy,

is described in Algorithm 1.

The internal structure of the CN is represented in Figure 3.2. Initially, the subtractor

(Sub) receives LLR values from bit rj and from the values stored in the internal memories.

MagMem stores the magnitude of the messages with lower values, SignMem contains the

signals and IdxMem contains the indexes of these messages.

27

Figure 3.1 – Modified Layered Decoding architecture

Source: Hess (2016)

Algorithm 1 – LD-MMS

Source: Hess (2016)

28

The magnitude of the signal generated by Sub is sent to a register (MagReg) and to

Find2Smaller, which calculates the two smallest values among all. Both values are subtracted

by the correction factor β and are compared with 0 in Max. The decision by which value to use

is made by a signal from Find2Smaller. AllSign stores the sum of all signs and, by applying

XOR with the sign from previous iteration (stored in SignReg), we have the correct sign.

Finally, Sum calculates the output of the CN based on the values from previous iteration and

the value given by Find2Smaller.

Figure 3.2 – Architecture of a Check Node

Source: Hess (2016)

29

4 FAULT INJECTION METHOD

Fault injection methods can be seen as techniques for testing systems with respect to the

effects of faults on their behavior. They are applicable when it is not possible to get statistical

data from field operation or when preliminary studies of the behavior of the system in the

presence of faults should be considered in development phase. Moreover, it can identify

implementation errors in fault-tolerance mechanisms and provide feedback on those

mechanisms’ efficiency (CLARK & PRADHAN, 1995; ARLAT et al., 1990).

This technique may be categorized in five main groups: hardware, software, simulation,

emulation and hybrid-based fault injection. Hardware-based approach is accomplished when

applied at physical level, by disturbing the IC itself with environments parameters (such as

heavy ion radiation, electromagnetic interferences or power supply disturbances). Software-

based fault injection consists of a software implementation reproducing the errors that would

have been produced upon occurring faults in the hardware. In a different way, simulation-based

approach consists of injecting faults in high-level models (usually HDL models) and emulation-

based fault injection, which is applied in this work, takes advantage of FPGAs for effective

circuit emulation and speeding-up fault simulation. Hybrid-based approaches mix software-

implemented fault injection and hardware monitoring (ZIADE et al., 2004).

Leipnitz (2016) proposes a fault injection platform, focused on communication systems,

for a Virtex-5 device to emulate SEUs, whose structure is shown in Figure 4.1. The approach

presented consists in an FPGA device connected to a host computer, used to define the fault

injection campaign, control the injection experiments, display the results and communicate with

the board though the PCIe interface. The hardware emulated by the FPGA contains a module

called PCIe I/O Ctrl to perform communication with the host computer. System Ctrl is

responsible for performing fault injection/removal in the configuration memory and CUT I/O

Ctrl performs the execution of the circuit under test.

It was used a modified version of the platform presented by Leipnitz (2016) to be

synthesized in Kintex-7 devices, since the original version was designed for Virtex-5 devices.

The overall structure of the platform remains the same, but several adaptations had to be done

due to differences in the communication bus, configuration memory addressing, interface with

internal ports and circuit placement.

The PCIe interface used to perform communication between the FPGA and computer

host is implemented with Xillybus system, developed by Eli Billauer (2014). It consists of an

30

Figure 4.1 – Fault injection platform structure proposed by Leipnitz (2016)

Source: Leipnitz (2016)

IP core and a host driver and provides low latency, full-duplex communication and data rates

between 200MB/s and 800MB/s. The Virtex-5 device used in the original version has a PCIe

1.0 x1 and can reach at most 250MB/s, which limits the communication rate. Kintex-7 device

has a PCI-express 2.0 x4 that achieves 2GB/s, which makes the upper bound rate defined by

the IP core. Despite changing the IP core module and the driver in the host computer, several

parameters and internal buffers had to be altered due to the different number of lanes in the bus

as well as the placement of PCIe ports.

To emulate the effects of SEUs in the FPGA’s configuration memory, bit-flips in the

memory content are performed. The access is made through the Internal Configuration Access

Port (ICAP), a mechanism provided by Xilinx devices which allows accessing the configuration

memory within the device and guarantees faster fault injection/removal times. The original

version of the platform treats a signal called busy from ICAP to get readback data. Kintex-7

devices counts with ICAPE2, a newer version of the interface, in which this signal was

discontinued and readback data is synchronous with other signals, as illustrated in Figure 4.2.

The configuration memory is divided into frames that can be accessed with an

addressing scheme, as shown in Figure 4.3. The FPGA structure is divided in rows, which may

be in the top half or in the bottom half of the lattice. Each row is numbered from 0, starting

from the center. The rows are divided into columns, which may be either a CLB, DSP, block

RAM or IOB block. The columns are numbered from 0, starting from the left. Each column

contains a certain number of frames, depending on the block type, as shown in Table 4.1.

31

Figure 4.2 – Readback data is available deterministically three clock cycles after CSI_B is set to 0 in

Kintex-7 devices

Source – Xilinx UG470 (2016)

System Ctrl had to be modified to match the addressing scheme of Kintex-7 devices, which

contains 3232 bits per frame, against 1312 bits in Virtex-5 devices. The word size remains the

same (32 bits), but the words per frame has increased from 41 to 101 from one FPGA to the

other.

Figure 4.3 – Frame addressing scheme of Kintex-7 devices

Source: the author

32

Table 4.1 – Number of frames per block type

Block type Number of frames

CLB 36

DSP 28

Block RAM 30

IOB 54

Clock 4

Source: Xilinx UG470 (2016)

33

5 COARSE-GRAINED REDUNDANCY

This section presents a coarse-grained analysis in the CNs in order to identify the ones

that are most critical to the overall system. By identifying the CNs that cause greater impact on

the decoder's BER performance, it is possible to protect them with a selective redundancy

technique.

The simulations made in this work take advantage of QC code construction to parallelize

the processing of multiple CNs and reduce the hardware area occupied. The codeword length

(n) is 648, the code rate (r) is 0.5 and the parity-check matrix is formed by square submatrices

of length 27 (Z). Since each row is connected to a single column in the same submatrix, it is

possible to process the rows of each submatrix in parallel. The HDL model implements 27

physical CNs, each one corresponding to a row in a submatrix (code-level CNs), which are

activated simultaneously. Table 5.1 shows the mapping between physical and code-level CNs,

(an iteration corresponds to the processing of a submatrix).

Table 5.1 – Physical CNs x code-level CNs mapping

Physical

CN index
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration

index

Code CN

index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0

27 28 29 30 31 32 33 34 35 36 37 38 39 40 1

54 55 56 57 58 59 60 61 62 63 64 65 66 67 2

...

297 298 299 300 301 302 303 304 305 306 307 308 309 310 11

Physical

CN index
14 15 16 17 18 19 20 21 22 23 24 25 26

Iteration

index

Code CN

index

14 15 16 17 18 19 20 21 22 23 24 25 26 0

41 42 43 44 45 46 47 48 49 50 51 52 53 1

68 69 70 71 72 73 74 75 76 77 78 79 80 2

...

311 312 313 314 315 316 317 318 319 320 321 322 323 11

Source: the author

Each physical CN was placed in a faulty-state in the decoder’s software model. To

simulate the faults, the CN’s outputs had the magnitudes attenuated or increased by a random

factor and the signal was changed depending also of a random factor. Note that a fault induced

in the first physical CN, for instance, corresponds to 12 code-level CNs (of indexes 0, 27, 54,

etc.) operating inappropriately. The BER measured for a fault-free execution was 0.00011,

Table 5.2 shows the BER performance for each CN in a faulty-state and Figure 5.1 shows the

34

corresponding normal distribution (the average is equal to 0.08867 and the standard deviation

is 0.00103).

Table 5.2 - BER per physical CN over failure

Physical

CN index
BER

Physical

CN index
BER

Physical

CN index
BER

0 0.088034 9 0.087201 18 0.088772

1 0.088035 10 0.089398 19 0.091276

2 0.088644 11 0.089682 20 0.08881

3 0.086128 12 0.088972 21 0.089552

4 0.089682 13 0.089432 22 0.087181

5 0.088052 14 0.089139 23 0.08811

6 0.088424 15 0.088645 24 0.088412

7 0.088528 16 0.08779 25 0.090668

8 0.08927 17 0.087991 26 0.088508

Source: the author

Figure 5.1 – Normal distribution for BER per physical CN over failure

Source: the author

35

Given these results, we can conclude that all the physical CNs are similarly critical for

proper system behavior, since the BER performance among them is within the same order-of-

magnitude and is highly degraded compared to a fault-free execution.

The code-level CNs were then evaluated in the overall system’s performance. The same

approach to simulate the faults was adopted, but this time individually for each of the 324 code-

level CNs. The average obtained for BER is equal to 0.0240 and the standard deviation is

0.00187. Note that the code-level CNs are individually less relevant to the system performance

than the physical CNs, which was already expected since each physical CN corresponds to

twelve faulty code-level CNs. Yet, due to the low standard deviation of BER performance

among them and high degradation compared to a fault-free execution, they are similarly critical

for proper system behavior, as illustrated in Figure 5.2.

Figure 5.2 – Normal distribution for BER per code-level CN over failure

Source: the author

36

6 FINE-GRAINED REDUNDANCY

The next step is to evaluate the internal structure of the CN in order to compare the

performance loss, in terms of BER increase, caused by each module in a faulty-state and the

area overhead obtained by applying selective redundancy. Here, we assume that DMR will be

applied to detect the errors, scrubbing will be applied to correct the errors and the signals will

be reprocessed.

Fault injections were performed in the components of a single CN for LLR values with

Eb/N0 = 2.5 dB and the results were obtained for twenty input blocks of the LDPC decoder.

Each input block of the decoder produces 440 inputs and 525 outputs in the CN, totaling 8800

inputs and 10500 outputs in the CN. The total amount of 51712 bits of the configuration

memory were affected and 22536 (43,58%) produced some error in the CN’s output. The fault

injections were performed in all configuration bits associated with logic and routing. Memory

elements (BRAMs) were not evaluated since these components have a different model of

failures and may be protected with different fault tolerance techniques, such as error-correcting

codes. Table 6.1 shows the distribution of sensitive bits, LUTs and FFs on the modules

evaluated.

Table 6.1 – Number of sensitive bits, LUTs and FFs per module of the CN

Module Sensitive bits LUTs FFs

SUM 5422 50 17

SUB 4929 50 17

SUB_BETA_1 3267 50 17

Find2Smaller 3076 22 23

SUB_BETA_0 2793 50 17

AllSign 2416 3 0

MAX_0 529 7 0

MAX_1 104 7 0

Total 22536 239 91

 Source: the author

The CN’s outputs may be either correct or categorized within one or more classes of

errors. The errors with respect to the value produced are:

• Change of sign;

• Increase in magnitude;

• Decrease in magnitude;

37

If the behavior of the circuit is affected, the errors may be classified in:

• Control errors (regarding the signals that control the behavior of the CN);

• Timeout (if the CN does not produce any output).

Table 6.2 shows the average of errors caused by sensitive bits per module of the CN.

For example, each sensitive bit of Find2Smaller produced, on average, 16.8% outputs with

wrong signal.

Table 6.2 – Average of errors caused by sensitive bits per module of the CN

Module
Change of

sign

Increase in

magnitude

Decrease in

magnitude

Control

errors
Timeout

Correct

outputs

Find2Smaller 16.8% 43.6% 19.3% 2.9% 2.3% 24.3%

MAX_0 29.7% 26.6% 32.2% 5.2% 1.1% 31.0%

MAX_1 39.9% 28.0% 28.2% 10.4% 3.2% 29.5%

SUB 31.9% 37.2% 4.6% 31.4% 2.2% 22.3%

SUB_BETA_0 28.3% 32.6% 24.1% 8.3% 2.0% 30.8%

SUB_BETA_1 17.2% 31.6% 31.6% 8.4% 2.3% 24.1%

SUM 53.2% 1.1% 44.6% 23.0% 0.3% 14.8%

AllSign 27.0% 5.9% 12.3% 5.2% 3.9% 51.4%

Source: the author

 The behavior obtained in the fault injections, shown in Table 6.2, was replicated in the

software model in order to evaluate the impact of the faults in the decoder's BER performance.

The results are presented in Table 6.3.

Table 6.3 – BER performance for each module under a faulty-state

Module BER

SUB 0.238585

SUM 0.238522

Find2Smaller 0.231251

SUB_BETA_0 0.101422

MAX_0 0.046245

SUB_BETA_1 0.001991

MAX_1 0.000411

AllSign 0.000245

Source: the author

38

 We can define the Weighted Performance Degradation (WPD) of a module M as the

product of the relative quantity of sensitive bits in M by the increase in BER performance

produced by M:

𝑊𝑃𝐷(𝑀) =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑀

𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑏𝑖𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑁
∗

𝐵𝐸𝑅 𝑓𝑜𝑟 𝑀 𝑢𝑛𝑑𝑒𝑟 𝑓𝑎𝑢𝑙𝑡

𝐵𝐸𝑅 𝑓𝑜𝑟 𝑓𝑎𝑢𝑙𝑡 𝑓𝑟𝑒𝑒
 (6.1)

 The Area Overhead (AO) of the module M is simply the hardware area occupied by M

since we are applying DMR, i.e., the sum of LUTs and FFs:

𝐴𝑂(𝑀) = 𝐿𝑈𝑇𝑠(𝑀) + 𝐹𝐹𝑠(𝑀) (6.2)

 The ratio of the Weighted Performance Degradation to the Area Overhead is defined as

the Gain and is a quantity we want to maximize:

𝐺𝑎𝑖𝑛(𝑀) =
𝑊𝑃𝐷(𝑀)

𝐴𝑂(𝑀)
 (6.3)

 Table 6.4 shows the metrics (6.1), (6.2) and (6.3) for each module of the CN.

Table 6.4 – WPD, AO and Gain for each module of the CN

Module WPD AO Gain

SUM 438.066 67 6.538

SUB 398.340 67 5.945

Find2Smaller 240.947 45 5.354

SUB_BETA_0 95.952 67 1.432

MAX_0 8.287 7 1.184

AllSign 0.201 3 0.067

SUB_BETA_1 2.203 67 0.033

MAX_1 0.014 7 0.002

Source: the author

Figure 6.1 illustrates the scenarios of applying cumulative DMR in the modules of the

CN. The x-axis is ordered by the gain (shown in Table 6.4) and each module represented in the

x-axis incurs in the protection of itself and all the others to the left. Observe that by applying

redundancy in SUM, SUB and Find2Smaller, the area would be increased about 55% and the

remaining WPD would be about 10%, which means that 90% of the possible WPD would have

been achieved. The protection of SUB_BETA_1 and MAX_1 has a high cost in area, the WPD

39

obtained is low and if the area occupation is a major concern to the hardware designer, it would

probably not be worthy.

Figure 6.1 – Cost benefit scenarios of applying DMR cumulatively in the modules of the CN

Source: the author

0

10

20

30

40

50

60

70

80

90

100

%

AO

Remaining

WPD

40

7 CONCLUSIONS

In this work, we have presented a study about the effects of SEUs in an FPGA-based

LDPC decoder and proposed a selective technique to improve reliability in this specific

application.

It was shown the destructive and non-destructive effects and models of failures of

radiation in semiconductor devices. The structure of FPGAs was presented and these devices

were categorized by the technology used to store the configuration data. SRAM-based FPGAs

were best exploited since they are especially susceptible to SEUs and were targets of this work.

Regarding the application evaluated, an overview of FEC codes and communication systems

was presented as well as the processes to encode and decode a message with LDPC codes. The

decoding encompasses not only the algorithm used (belief propagation), but also the advantages

and disadvantages of different schedules that may be applied.

The architecture and algorithm used as reference was shown and the structure of a CN

was exploited, since it is the most critical element of LDPC decoders (they execute all

arithmetic operations, occupy most of the total area, and have the greatest workload of the

circuit). Fault injections were performed in the HDL modules and a bit-accurate software model

was used to obtain BER performance for the analyses taken.

It was used a modified version of the platform described in Leipnitz (2016) to Kintex-7

devices and several adaptations had to be done due to differences in the communication protocol

to perform partial reconfiguration, communication bus with the host computer and frame

addressing of the configuration memory.

The first approach to propose a selective redundancy to the circuit was made in CN-

level, by identifying the CNs that cause greater impact on the decoder's BER performance.

Initially, it was analyzed the 27 physical CNs, by placing each one in a faulty-state in the

decoder's software model. Then, a similar approach was applied, but this time for the 324 code-

level CNs. The results have shown that both physical and code-level CNs are equally critical

for proper system behavior.

The internal structure of the CN was then analyzed and the results have shown that SUB,

SUM and Find2Smaller are the modules that cause greater impact in the decoder’s BER

performance. Within the metrics created to evaluate the application of DMR, SUM is the

module that provides the best gain when protected, SUB_BETA_1 and MAX_1 are the ones that

provide the smaller contribution in the decoder’s BER performance when we consider their area

occupation. Nevertheless, there are several parameters that must be taken into account by a

41

hardware designer to develop the best solution for the application’s needs. If the concern is with

the type of error that the modules are more susceptible to produce instead with area occupation,

for example, the protection of these modules may be considered to best fit in the project’s

requirements.

42

REFERENCES

GALLAGER, R. G. Low-density parity-check codes. Information Theory, IRE Transactions

on communications, IEEE, v. 8, n. 1, p. 21–28, 1962.

MACKAY, D. J.; NEAL, R. M. Near Shannon limit performance of low-density parity

check codes. In: . [S.l.]: [Stevenage, etc., Institution of Electrical Engineers], 1996. v. 32, n.

18, p. 1645–1646.

TANNER, R. M. A recursive approach to low complexity codes. In: [S.l.]: IEEE, 1981. v.

27, n. 5, p. 533–547.

BUELL, Duncan; EL-GHAZAWI, Tarek; GAJ, Kris; KINDRATENKO, Volodymyr. High-

performance reconfigurable computing. Computer, IEEE Computer Society, vol. 40, no. 3,

pp.23–27, March 2007. [Online] Available:

http://www.computer.org/csdl/mags/co/2007/03/r3023.pdf.

HAILES, P. et al. A survey of FPGA-Based LDPC Decoders. IEEE Communications Surveys

& Tutorials, IEEE, v. 18, n. 2, p. 1098–1122, 2015.

WIRTHLIN, Michael. High-reliability FPGA-based systems: space, high-energy physics,

and beyond. IEEE Proceedings, vol. 103, no. 3, pp. 379–389, March 2015.

CARRASCO, Rolando; JOHNSTON, Martin. Non-Binary Error Control Coding for

Wireless Communication and Data Storage. Pages 201-235. 2009. ISBN: 978-0-470-51819-

9

RYAN, William. An Introduction to LDPC Codes. CRC Handbook for Coding and Signal

Processing for Recording Systems, B. Vasic, ed., CRC Press.

JÚNIOR, Geferson L. H. Implementação e caracterização de falhas em um decodificador

LDPC. December 2016.

PRATT, Brian; CAFFREY, Michael; GRAHAM, Paul; MORGAN, Keith; WIRTHLIN,

Michael. Improving FPGA Design Robustness with Partial TMR. IEEE International

Reliability Physics Symposium Proceedings, San Jose, CA, 2006, pp. 226-232. DOI:

10.1109/RELPHY.2006.251221

43

FOSTER, David L.; HANNA, Darrin M. 2010. Maximizing area-constrained partial fault

tolerance in reconfigurable logic. Proceedings of the 18th annual ACM/SIGDA international

symposium on Field programmable gate arrays. ACM, New York, NY, USA, 259-262. DOI:

http://dx.doi.org/10.1145/1723112.1723155

SAMUDRALA, Praveen K.; RAMOS, Jeremy; KATKOORI, Srinivas. Selective triple

Modular redundancy (STMR) based single event upset (SEU) tolerant synthesis for

FPGAs. IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2957-2969, Oct. 2004. DOI:

10.1109/TNS.2004.834955

HOCEVAR, D. E. A reduced complexity decoder architecture via layered decoding of

LDPC codes. In: IEEE. Signal Processing Systems, 2004. SIPS 2004. IEEE Workshop on.

[S.l.], 2004. p. 107–112.

LEIPNITZ, M. T.; HESS, G. L.; NAZAR, G. L. A fault injection platform for fpga-based

communication systems. In: IEEE. 2016 IEEE 7th Latin American Symposium on Circuits &

Systems (LASCAS). [S.l.], 2016. p. 59–62.

MAY, M.; ALLES, M.; WEHN, N. A case study in reliability-aware design: a resilient

LDPC code decoder. In: ACM. Proceedings of the conference on Design, automation and test

in Europe. [S.l.], 2008. p. 456–461.

BAUMANN, Robert C. Radiation-induced soft errors in advanced semiconductor

technologies. Device and Materials Reliability, IEEE Transactions on, vol. 5, no. 3, pp. 305-

316, Sept. 2005.

MUNTEANU, D.; AUTRAN, J. L. Modeling and simulation of single-event effects in digital

devices and ICs. Nuclear Science, IEEE Transactions on, vol. 55, no. 4, pp. 1854— 1878, Aug

2008.

SHANNON, C. E. A mathematical theory of communication. Bell System Technical Journal.

The, vol. 27, no. 3, pp. 379-423, July 1948. DOI: 10.1002/j.1538-7305.1948.tb01338.x.

KASTENSMIDT, F.G.; NEUBERGER, G.; HENTSCHKE, R.F. Designing fault-tolerant

techniques for SRAM-based FPGAs. IEEE Design & Test of Computers, vol. 21, no. 6,

pp.552-562, Nov 2004. DOI: 10.1109/MDT.2004.85

44

BARNABY, H.J. Total-Ionizing-Dose Effects in Modern CMOS Technologies. IEEE

Transactions on Nuclear Science, vol. 53, no. 6, pp. 3103-3121, Dec 2006. DOI:

10.1109/TNS.2006.885952

HAYKIN, Simon. Communication Systems. 4th Edition. John Wiley & Sons Inc., 2004. 840

p.

CUI, Z.; WANG, Z.; ZHANG, X. Reduced-complexity column-layered decoding and

implementation for LDPC codes. IET Communications, vol. 5, no. 15, pp. 2177-2186, Oct

2011. DOI: 10.1049/iet-com.2010.1002

KARKOOTI, M.; RADOSAVLJEVIC, P.; CAVALLARO, J. R. Configurable LDPC Decoder

Architecture for Regular and Irregular Codes. Springer Journal of VLSI Signal Processing

Systems for Signal, Image and Video Technology, vol. 53, no. 1-2, Nov 2008. DOI:

10.1007/s11265-008-0221-7

CLARK, J.A.; PRADHAN, D.K. Fault injection: a method for validating computer-system

dependability. IEEE Computer, vol. 28, no. 6, pp. 47-56, Jun 1995. DOI: 10.1109/2.386985

ARLAT, J.; AGUERA, M.; AMAT, L.; CROUZET, Y.; FABRE, J.C.; LAPRIE, J.C.;

MARTINS, E.; POWELL, D. Fault injection for dependability validation: a methodology

and some applications. IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 166-

182. DOI: 10.1109/32.44380

ZIADE, H.; AYOUBI, R.; VELAZCO, R. A Survey on Fault Injection Techniques. The

International Arab Journal of Information Technology, vol. 1, no. 2, Jul 2004

BILLAUER, Eli. An FPGA IP core for easy DMA over PCIe with Windows and Linux.

2014 [Online]. Available: http://xillybus.com.

XILINX, Inc. 7 Series FPGAs Configuration User Guide. UG470, Aug 2018 [Online].

Available:

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

LI, B.; PEI, Y.; GE, N.; Area-Efficient Fault-Tolerant Design for Low-Density Parity-Check

Decoders. 2016 IEEE 84th Vehicular Technology Conference, Sep 2016. DOI:

10.1109/VTCFall.2016.7880909

45

AVALIANT. Case Study: Performance Results of Avaliant Mercury. Sep 2018 [Online].

Available:

https://static1.squarespace.com/static/553e7ab4e4b07293cf6dd681/t/59120dfaff7c507ca01ff4

e3/1494355459355/LDPC_Case_Study_v6.pdf

NAZAR, G.L.; SANTOS, L.P.; CARRO, L. Accelerated FPGA Repair through shifted

scrubbing. 23rd International Conference on Field programmable Logic and Applications.

Porto, Portugal. Sep 2013. DOI: 10.1109/FPL.2013.6645533

STERPONE, L.; DU, B. Analysis and mitigation of single event effects on flash-based

FPGAS. 19th IEEE European Test Symposium (ETS). Paderborn, Germany. May, 2014. DOI:

10.1109/ETS.2014.6847804

46

APPENDIX A – GRADUTATION PROJECT I

Reliable FPGA-based LDPC Decoder

Eduardo Nunes de Souza

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

ensouza@inf.ufrgs.br

Abstract. LDPC codes are extremely advantageous, both from the theoretical point of

view – which makes them attractive to the academic community – and from the

applicability perspective, which justifies their wide use in data communication

applications. In particular, FPGAs are very timely to the implementation of these

codes: the high level of parallelism given by these devices combined with the

efficiency of LDPC codes ensures an elevated performance of these applications. In

critical systems, the data reliability is a major requirement and, in such cases, as

communication satellites, these devices are exposed to a high incidence of ionizing

radiation, which may lead to failures. In this sense, this work presents a study about

LDPC codes and the effects of soft errors in FPGAs. To workaround this issue, it is

proposed the implementation of fault-tolerance techniques in an FPGA-based LDPC

decoder.

1. Introduction

 Low-Density Parity-Check (LDPC) codes represent a powerful class of Forward Error

Correction (FEC) codes. They were conceived by [Gallager 1962] in his doctoral dissertation,

but at the time, they were impractical to implement. Thirty-four years later, [Mackay and Neal

1996] verified that the performance of LDPC codes are equivalent as Turbo codes and could

approach Shannon’s bound. Since their rediscovery, LDPC codes have been extensively used

in several standards like WiFi, WiMAX, DVB-S2, CCSDS and ITU G.hn [Hailes et al. 2015].

These codes indeed offer an excellent performance and when hardware resources capable of

implementing them showed up, they became a success in many communication systems.

 In the meantime between the creation and the beginning of effective usage, LDPC codes

were not heavily investigated. One notable exception is the work of Tanner, in which he

generalized LDPC codes and proposed a graphical representation for them [Tanner 1981].

LDPC codes are defined by a sparse matrix (containing mostly zero elements), called parity-

check matrix. Each row represents a parity check equation and each column of the matrix

represents a codeword bit. The so-called Tanner graphs introduce the concepts of Check Nodes

(CN), each of them is attached with a row of the parity-check matrix, and the Virtual Nodes

(VN), related with the columns of the parity-check matrix.

 Besides the implementation of LDPC codes uses low-complexity calculations, a high

level of parallelism can be exploited, which makes them very suitable to be implemented in

FPGAs (Field Programmable Gate Arrays). These devices are extremely versatile and can offer

high degree of parallel processing. In addition, they offer rapid prototyping and are specially

useful for measuring Bit Error Rate (BER) performance, due to the reduced time that the

simulations take (when compared to a general-purpose processor, for instance) [Hailes et al.

2015]. Their usage have been increasing more and more, and they are not restricted to coding

47

applications, FPGAs are present in other fields such as industrial, automobile and medical

applications.

 When these applications run over the presence of ionizing radiation, FPGAs (and any

other semiconductor device) are susceptible to many effects that vary in magnitude from data

disruptions to permanent damage ranging from parametric shifts to complete device failure

[Baumann 2005]. The immediate effects caused by radiation are called single-event effects

(SEEs). The particular type of SEE that we are interested are the single-event upsets (SEUs).

SEUs are soft errors, because the device itself is not permanently damaged by radiation, but the

radiation event causes enough charge disturbance to reverse or flip the data of a memory cell,

register, latch or flip-flop. SRAM-based FPGAs are specially susceptible to SEUs within the

configuration memory [Wirthlin 2015].

 In order to ensure data reliability on an FPGA-based LDPC decoder, this work aims to

mitigate SEUs within the design, taking advantage of the architecture of the circuit. To the best

of our knowledge, this is the first work proposing fault tolerance mechanisms focusing on

FPGA-based LDPC decoders. ASIC implementations have been proposed, however, as in [Li

et al. 2016], which presents an area-efficient design by using Hamming decoders inside the

control logic and [May et al. 2008] which presents techniques to improve the performance of

the decoder in the presence of SEUs. ASIC and FPGAs have a different model of failures,

though.

 The decoder used as reference is presented by [Júnior 2016]. Fault injections and the

characterization of faults inside the check nodes (CN) were performed, since it is the main

module of the decoder. It implements a Layered Decoding architecture and the Modified Min-

Sum algorithm.

2. Background

 The following topics detail the basic concepts of this work. Initially, in section 2.1, it is

discussed the effects of radiation in FPGAs, followed by some basic concepts of LDPC codes

(section 2.2). Finally, section 2.3 presents previous works related with this paper.

2.1. Radiation Effects on FPGAs

 FPGAs are semiconductor devices consisting of logic blocks, RAM blocks and I/O

blocks. The most fundamental logic block of an FPGA is formed by a Lookup Table (LUT) and

a Flip-Flop (FF). The I/O blocks surround the outer edge of the microchip, providing I/O access

to the pins on the exterior of the FPGA package. Programmable routing is implemented so that

it is possible to connect logic blocks and IOBs to logic blocks arbitrarily [Buell et al. 2007], as

shown in Figure 1.

Xilinx devices quantify the logic resources in terms of “slices”, each of them contains

several LUTs and FFs - the nature and quantity of the hardware resources available in each slice

depends on the model and generation of the FPGA. The terminology given by Xilinx also

introduces the concept of Configurable Logic Blocks (CLBs), which consists of multiple slices

[Buell et al. 2007].

 To determine the effects of radiation on a FPGA, it is necessary to classify these devices

in three categories, based on the technology used to store the configuration data: antifuse, flash

and SRAM-based FPGAs. Antifuse FPGAs are nonvolatile and the

48

Figure 1: FPGA structure [Hailes et al. 2015]

configuration data cannot be changed once the fuses have been programmed. This type of FPGA

is usually the most reliable, since the configuration cells are made from passive, programmed

fuses, and they are generally immune to single-event effects. Flash FPGAs are also nonvolatile

but they may be reprogrammed only for a certain number of times, which may not be suitable

for reconfigurable systems requiring frequent reconfiguration. Flash FPGAs are as well

immune to SEUs and both types of FPGAs have a primary radiation concern in SEUs within

the user flip-flops and block memories.

SRAM-based FPGAs, on the other hand, are volatile, so they lose their configuration

when power is removed. Although SRAM cells require more power than antifuse or flash cells,

they can be reprogrammed an unlimited number of times. SRAM FPGAs have a primary

reliability concern in SEUs within the configuration memory, since these cells are made using

standard static memory techniques and comprise the majority of the memory cells on the device.

[Wirthlin 2015].

The incidence of radiation in the configuration memory causes SEUs, which may lead

to changes in the logic and routing of the operating circuit, deviating from the function they

were supposed to fulfill. Figure 2 illustrates this behavior.

 (a) (b)

Figure 2: (a) configuration bits used to a certain logic and routing (b) logic and routing are
modified due to upsets caused by radiation [Wirthlin 2015]

49

2.2. LDPC Codes

 An LDPC code is defined by its parity check matrix (H), a matrix containing mostly

zero elements and few nonzero elements. Three important parameters are its code word length

(n), its dimension (k) and the number of parity bits (m = n – k).

 We can categorize these codes by regular and irregular. A code is regular if the number

of nonzero elements do not vary amongst each row or each column of the matrix H. Irregular

codes, on the other hand, do not respect this property. In general, irregular codes have a better

performance than the regular ones [Carrasco 2009]. Figure 3 illustrates examples of both types

of codes.

 (a) (b)

Figure 3: parity-check matrices (a) from an irregular code (b) from a regular code

 LDPC codes can be described as a k-dimensional subspace C of the vector space of

binary n-tuples over the binary field F2. We first describe a basis B = {g0, g1, …,gk-1} which

spans C. Each c ∈ C can be written as c = u0g0+u1g1+...+uk-1gk-1, or simply

c = uG (2.1)

where u = [u0, u1, …, uk-1] and G is the k x n generator matrix whose rows are the vectors {gi}.

The (n – k)-dimensional null space C⊥ of G comprises all the vectors x for which xGT = 0 and

is spanned by the basis B⊥ = {h0, h1, … hn-k-1}. For each c ∈ C, chT
i = 0, or simply

cHT = 0 (2.2)

where H is the (n-k) x n parity-check matrix whose rows are the vector {hi} and is the generator

matrix for the null space C⊥ [Ryan 2003].

The process of encoding a message is given by 2.1. We can obtain G from H by some

simple steps. It is necessary first to transform H with Gauss-Jordan elimination in order to get

H in the form:

H = [A,In-k] (2.3)

where I is the identity matrix of dimension n-k and A is a matrix of size (n - k) x k. From

that, G can be easily found:

G = [Ik, A
T] (2.4)

2.2.1. Tanner Graph Representation

 Each row of the parity-check matrix (H) represents a parity-check equation and is

represented by a Check Node (CN) in the Tanner graph. In the same way, each column

represents a coded bit and is represented by a Virtual Node (VN). Edges on Tanner graphs may

50

only connect two nodes of different types and an edge between a check node j and variable node

i exists whenever element hji in H is equal to 1. Figure 4 shows the Tanner graphs corresponding

to the matrices of Figure 3.

 (a) (b)

Figure 4: Tanner graphs corresponding to matrix (a) H1 (b) H2

2.3. Related Works

 The following topics present works related with this paper. The first two propose

techniques to mitigate soft errors in LDPC decoders implemented in ASICs. The third presents

the implementation of an FPGA-based LDPC decoder and a study about the effect of faults in

this scenario.

2.3.1 Area-efficient LDPC decoder

 [Li et al. 2016] proposes the design of a fault-tolerant LDPC decoder that corrects soft-

errors caused by SEUs inside the control logic with a Hamming decoder. For RAM cells, a

layered pipelined architecture is presented as well as a scheme that detects soft errors by parity

check, then the errors will be corrected by the inherent decoder’s iterative process. This

approach could save 42% of cell area compared with TMR method and the reduction of 42%

and 12% of memory bits compared with similar works.

2.3.2 Resilient LDPC decoder

 [May et al. 2008] presents a technique that assumes that not all data bits of a message

or channel value have the same importance and corruption in higher significant bits has a larger

impact on the overall communications performance than corruption in lower bits. If an LLR

value which is calculated by a functional node is corrupted, the value is reset to 0. In other

words, the corresponding node/edge is temporarily removed for the current iteration. Thereby,

no information is associated with the respective bit and the error tends to be minimized.

2.3.3 FPGA-based LDPC decoder and characterization of faults

 [Júnior 2016] implemented a parameterizable LDPC decoder using FPGA, as well as a

bit accurate simulator written in C. In order to evaluate the effects of faults on an FPGA-based

LDPC decoder, it is also presented the results of fault injections campaigns performed inside

the check nodes, the most important module of the circuit. Modified Min-Sum algorithm is

implemented, as well as a Layered Decoding architecture, as shown in Figure 5.

51

Figure 5: architecture implemented by [Júnior 2016]

 Figure 6 illustrates the importance of the mitigation of soft errors in FPGA-based LDPC

decoders. The signal is highly degraded in the presence of faults.

Figure 6: comparison between BER with and without faults [Júnior 2016]

52

3. Ongoing work

3.1. Fault Injection Platform Adaptation

 The fault injection campaigns performed in [Júnior 2016] took place in a fault injection

platform specific for data communication systems [Leipnitz et al. 2016]. A Xilinx Virtex-5

XUPV5-LX110T FPGA board was used (for which the platform was originally developed).

Due to a bigger amount of logic resources, this work will use a Kintex-7 XC7K325T-1FFG676

FPGA board, also from Xilinx. Since the FPGAs have a different architecture, an adaptation of

the platform from one board to another has already been made.

 The platform is composed of a module responsible for the communication with the PC

Host (PCIe I/O Control), another one to perform readback and partial reconfiguration in the

configuration memory of the FPGA (System Control) and the circuit that will be submitted to

faults (CUT I/O Control). The first two modules were the ones that suffered the most significant

changes due to the difference in the PCIe bus width and the scheme to access the bits in the

configuration memory, that differs from one board to another. Figure 7 shows the architecture

of the platform.

Figure 7: fault injection platform architecture [Leipnitz 2016]

3.2. Selective Technique to mitigate SEUs

 The next step of this work encompasses a detailed study in the architecture implemented

in [Júnior 2016] in order to find the best approach to mitigate SEUs. TMR (Triple Modular

Redundancy) is the most classical and robust technique with this purpose, where a module is

replicated three times and the output is extracted from a majority voter. This technique,

however, demands excessive area overhead and, in SRAM FPGAs, the voter circuit has to be

implemented using SRAM cells which themselves are highly susceptible to upsets [Samudrala

et al. 2004].

 Several publications have proposed alternatives to the traditional TMR method by

protecting specifics subsets of the circuit, the ones considered most critical. [Foster et al. 2010]

presents several methodologies for selecting these subsets, such as metrics that consider the

number of logic cells that use the cell’s output signals as inputs, the number of logic resources

necessary to add TMR to the logic cell and the number of logic cells in longest propagation

path through the logic cell.

53

 Another approach is presented by [Samudrala et al. 2004], where a Selective Triple

Modular Redundancy (STMR) technique is described. The logic cells are classified by the

“sensitivity” to SEUs, which is measured by the signal probability of its inputs. It is assumed

that the primary inputs of the circuit are specified by the user in terms of signal probabilities

and then it is propagated to compute the signal probability of each internal node.

 In a different way, [Pratt et al. 2006] prioritizes the protection of structures causing

“persistent” errors within the design. Configuration bits are categorized in “persistent” and

“non-persistent”. A non-persistent configuration bit will cause a design fault when upset and

may be repaired through configuration scrubbing, which will lead the design back to normal

operation. Persistent bits, on the other hand, will also cause a design fault when upset, but after

repairing persistent bits through configuration scrubbing, the FPGA circuit does not return to

normal operation.

 An analysis of the “severity” of CNs will be performed in this work. In other words,

faults will be injected sequentially in each CN in order to get the BERs caused by individual

CNs under a faulty state, in order to determine the most critical CNs in the circuit and propose

a selective mechanism to protect the circuit from SEUs.

4. Schedule

 The development of the second stage of this work also comprises the implementation of

the technique in the C-based simulator and in the VHDL modules. The steps are listed below

and Table 1 shows the estimated amount of time necessary for each task.

 1. Analysis of the “severity” of CNs and definition of the selective technique to

 mitigate SEUs

2. Implementation of the technique in the LDPC decoder simulator

3. Validation and performing of fault injection campaigns in the simulator in order

to evaluate the technique implemented

4. Implementation of the technique in the VHDLs modules

5. Validation and performing of fault injection campaigns in the FPGA board

6. Writing and presentation of Graduation Work II

Task Feb Mar Apr May Jun Jul

1 X

2 X X

3 X X

4 X X

5 X X

6 X X

Table 1: activities schedule

54

5. Final Considerations

 This work presented a study about LDPC codes and the effects of radiation on FPGAs.

It discussed about the architecture of an FPGA and explained why it is susceptible to soft-errors,

particularly SEUs. It has also given a formal definition to LDPC codes and the graphical

representation for them, the Tanner graphs.

 As the concern with fault-tolerance mechanisms in FPGA-based LDPC decoders is not

heavily exploited in literature, we presented related publications targeting ASIC

implementations. It was also shown the LDPC decoder implementation used as reference in this

work, the fault injection platform and the modifications required to exchange the FPGA board

used.

 Finally, it was explained the approach that will be taken to define the best technique to

mitigate SEUs in the circuit and the tasks necessary to conclude Graduation Work II.

6. References

GALLAGER, R. G. Low-density parity-check codes. Information Theory, IRE Transactions

on communications, IEEE, v. 8, n. 1, p. 21–28, 1962.

MACKAY, D. J.; NEAL, R. M. Near Shannon limit performance of low density parity check

codes. In: . [S.l.]: [Stevenage, etc., Institution of Electrical Engineers], 1996. v. 32, n. 18, p.

1645–1646.

TANNER, R. M. A recursive approach to low complexity codes. In: . [S.l.]: IEEE, 1981. v.

27, n. 5, p. 533–547.

BUELL, Duncan; EL-GHAZAWI, Tarek; GAJ, Kris; KINDRATENKO, Volodymyr. High-

performance reconfigurable computing. Computer, IEEE Computer Society, vol. 40, no. 3,

pp.23–27, March 2007. [Online] Available:

http://www.computer.org/csdl/mags/co/2007/03/r3023.pdf.

HAILES, P. et al. A survey of FPGA-Based LDPC Decoders. IEEE Communications

Surveys & Tutorials, IEEE, v. 18, n. 2, p. 1098–1122, 2015.

WIRTHLIN, Michael. High-reliability FPGA-based systems: space, high-energy physics,

and beyond. IEEE Proceedings, vol. 103, no. 3, pp. 379–389, March 2015.

CARRASCO, Rolando; JOHNSTON, Martin. Non-Binary Error Control Coding for

Wireless Communication and Data Storage. Pages 201-235. 2009. ISBN: 978-0-470-51819-

9

RYAN, William. An Introduction to LDPC Codes. CRC Handbook for Coding and

Signal Processing for Recording Systems, B. Vasic, ed., CRC Press.

JÚNIOR, Geferson L. H. Implementação e caracterização de falhas em um decodificador

55

LDPC. December 2016.

PRATT, Brian; CAFFREY, Michael; GRAHAM, Paul; MORGAN, Keith; WIRTHLIN,

Michael. Improving FPGA Design Robustness with Partial TMR. IEEE International

Reliability Physics Symposium Proceedings, San Jose, CA, 2006, pp. 226-232. DOI:

10.1109/RELPHY.2006.251221

FOSTER, David L.; HANNA, Darrin M. 2010. Maximizing area-constrained partial fault

tolerance in reconfigurable logic. Proceedings of the 18th annual ACM/SIGDA international

symposium on Field programmable gate arrays. ACM, New York, NY, USA, 259-262. DOI:

http://dx.doi.org/10.1145/1723112.1723155

SAMUDRALA, Praveen K.; RAMOS, Jeremy; KATKOORI, Srinivas. Selective triple

Modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for

FPGAs. IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2957-2969, Oct. 2004. DOI:

10.1109/TNS.2004.834955

	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS AND ACRONYMS
	SUMMARY
	1 INTRODUCTION
	1.1 Motivation
	1.2 Goals
	1.3 Structure

	2 BACKGROUND
	2.1 Radiation effects on semiconductor devices
	2.2 Radiation effects on FPGAs
	2.3 Forward Error Correction
	2.4 LDPC Codes
	2.4.1 Encoding
	2.4.2 Decoding

	2.5 Related Works

	3 LDPC DECODER ARCHITECTURE
	4 FAULT INJECTION METHOD
	5 COARSE-GRAINED REDUNDANCY
	6 FINE-GRAINED REDUNDANCY
	7 CONCLUSIONS
	REFERENCES
	APPENDIX A – GRADUTATION PROJECT I

