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RESUMO

De acordo com a estimativa apresentada no estudo realizado pelo Global Burden of Dise-

ase (Carga Global de Doença, em tradução livre), de 2016, erros de refração e deficiências

no processo de acomodação visual afetam um total de 886 milhões de pessoas (43% de

todas as deficiências relacionadas a orgãos sensoriais).

A fim de tratar este problema, oftalmologistas prescrevem lentes corretivas, capazes de

corrigir os diversos tipos de erros refrativos: Miopia, Hypermetropia, Astigmatismo, e

Presbiopia.

Para a prescrição das lentes, é necessário determinar o erro refrativo dos pacientes. Este

processo é realizado em duas fases: uma estimativa inicial (chamada Refração Objetiva), e

um ajuste-fino (chamado Refração Subjetiva). Este trabalho, busca aprimorar a qualidade

da refração estimada, reduzindo o tempo necessário para a realização da etapa de ajuste-

fino.

Este trabalho propõe então a utilização de machine learning para a predição da refração

mais adequada (i.e. Refração Subjetiva) de cada olho, considerando não apenas a esti-

mativa inicial (i.e. Refração Objetiva), como também outras características do paciente,

como idade, sexo, e sintomas apresentados.

Um conjunto de dados coletados pelo grupo de telemedicina TelessaúdeRS-UFRGS, du-

rante um período de 13 meses, foi utilizado. Dentre as três técnicas investigadas (Regres-

são Linear, Máquinas de Vetores de Suporte, e Redes Neurais), a melhor performance

geral apresentada foi produzida pelo modelo preditivo baseado em redes neurais (0.406

dioptrias), reduzindo em até 70% o erro inicial produzido pelo equipamento Autorrefrator

(de 1.381 dioptrias).

Palavras-chave: Inteligência Artificial, Aprendizado Supervisionado, Regressão Linear,

Máquina de Vetores de Suporte, Redes Neurais, Oftalmologia, Optometria, Erros Refra-

tivos, Vetores de Poder.



ABSTRACT

According to the estimate in the Global Burden of Disease study of 2016, visual im-

pairments such as refractive errors and deficiencies in the visual accommodation process

affect a total of 886 million people (43% of all sensory organ deficiencies).

To address this problem, clinicians prescribe corrective lenses, capable of correcting the

many types of refractive errors: Myopia, Hypermetropia, Astigmatism, and Presbyopia.

In order to prescribe the lenses, clinicians must first determine the patient’s refractive

error. This process is performed in two steps: an initial estimate called Objective Re-

fraction, and a fine-tuning step called Subjective Refraction. The current work seeks to

improve the quality of the estimated refraction, reducing the time required to perform the

fine-tuning step.

In order to reduce the time necessary for this process, this work proposes the use of ma-

chine learning for predicting the most adequate refractive power (i.e. the Subjective Re-

fraction) of each eye, considering not only the subject’s Objective Refraction information

but also other characteristics such as the age, sex, and presented symptoms.

A data set containing information of over 3600 patients, collected by the telemedicine

group TelessaúdeRS-UFRGS during a period of 13 months, was used.

Among the three techniques investigated (Linear Regression, Support Vector Regres-

sion, and Neural Networks), the best overall performance was presented by the predictive

model based on neural networks (0.406 diopters), reducing by 70% the initial error pro-

duced by the Autorefractor (1.381 diopters).

Keywords: Artificial Inteligence. Supervised Learning. Linear Regression. Support

Vector Regression. Neural Network. Ophthalmology. Optometry. Refractive Errors.

Power Vectors.
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1 INTRODUCTION

The World Health Organization published in 2010 a study evaluating the severity

of visual impairment and its causes. The organization reviewed publications over a period

of 10 years, covering 39 countries, and estimated a total of 285 million people to be

visually impaired. Additionally, the study demonstrated that nearly 80% of the causes

are preventable, and that a total of 43% of them belong to uncorrected refractive errors

(PASCOLINI; MARIOTTI, 2012).

Most recently, the Global Burden of Disease (GBD) study, from 2016, performed

a systematic analysis and ranked the prevalence of 328 diseases and injuries over a total

of 195 countries. In this study, refraction and accomodation disorders ranked 9th place,

and affected an estimated total of 886 million people (accounting for 47% of all sense

organ diseases) (VOS et al., 2017).

The GBD study also reviewed and ranked the diseases by a custom metric named

Years Lived with Disability (YLD), and revealed sense organ diseases to be ranked sec-

ond, with refraction and accomodation disorders ranking among the top 15 disorders,

indicating that subjects are unable to reach treatment - perhaps due to its access not being

adequately provided - and tend to live with the disorders for many years.

These studies make evident the major health issue that are sense organ diseases,

particularly refraction and accomodation disorders. In order to correct for these refractive

errors, clinicians can prescribe spectacles.

The assessment of refraction is usually made up of multiple measuring processes:

characteristics such as visual acuity, objective refraction, and subjective refraction need

to be evaluated so as to determine the need for corrective lenses.

According to the American Academy of Ophthalmology, due to the rapid advances

in tecnology in the past years, newer diagnostic tools have been emerging, facilitating

and accelerating the assessment of refractive errors by ophthalmologists and optometrists

(AAO, 2014). However, the determination of subjective refraction, even with automated

machines, still lacks accuracy, underperforming manual evaluation when performed by

an experienced clinician (JORGE et al., 2005).



12

1.0.1 Goals

In an effort to help clinicians, this work proposes the application of machine learn-

ing techniques, so as to improve the accuracy and facilitate the process for subjective re-

fraction determination of visually impaired patients, reducing the time required to perform

the procedure, and consequently, reducing its associated costs.

For this, the current study will adhere to the following methodology: (i) appli-

cation of machine learning algorithms for predicting subjective refraction of patients af-

fected with refraction disorders, using data collected by the telemedicine group Telessaúde

RS-UFRGS; (ii) evaluation of the performance of the predictive methods, in order to de-

termine the most appropriate method for the previously mentioned data; (iii) validation of

the results, determining whether they fall within a clinically acceptable range; and finally,

(iv) discussion about the approaches taken in this study, commenting on obstacles and

threats to validity.

1.1 Work Structure

This work is structured as follows: the next chapter (2) provides the medical con-

cepts underlying the data used for training the supervised learning models; chapter three

(??) discusses the use of AI in healthcare, and proposes the application of machine learn-

ing for subjective refraction prediction, while diving into the data itself, the problem, and

the learning models used; chapter four (5) delves into the development process, explain-

ing the chosen programming language and libraries, the environment configuration and

problems faced during the implementation and application of the algorithms; chapter five

(6) discusses the metrics chosen to evaluate model performance, and compares the results

produced by the different learning models; lastly, chapter six (7) concludes this work

commenting on results, limitations, and future work.
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2 OPHTHALMOLOGY AND OPTOMETRY

For a complete understanding of this work, some important concepts must be cov-

ered. This chapter presents the medical concepts related to the visual system, the many

anomalies that can be manifested in the human eye - in particular, refractive errors - and

their treatment using corrective lenses, while also covering the mathematical models used

to represent the refractive powers associated with such conditions.

2.1 Ophthalmology and Refractive Errors

The following subsections introduce the visual system, the refractive disorders that

can be manifested in the human eye and how these are treated using corrective lenses.

2.1.1 Light, the Human Eye, and Refractive Errors

The human eye is composed of three layers: the outermost layer, the middle layer

and the innermost layer.

As shown in Figure 2.1, light rays enter the eye through the cornea, a transparent

component of the outermost layer. The cornea’s refractive power bends the rays towards

the pupil (an opening present in the center of the iris) and through the crystalline lens

(an element capable of changing its shape to adjust the focal distance of the eye), both

in the middle layer. Next, the light reaches the innermost layer of the eye, also called

retina. The two-dimensional image formed in the retina is captured by photoreceptors

cells (cones and rods, for colors and luminance, respectively) and nerve impulses are then

sent through the optic pathway to the brain, responsible for the visual perception process

(PROBST; TSAI; GOODMAN, 2012).

The absence of refractive errors is called emmetropia, and an eye without refractive

errors is said to be emmetropic. If refractive defects are present, however, the eye is said

to have ametropia - or to be ametropic. These refractive errors are caused by anomalies

in the shape of the eye, cornea or crystalline lens and lead to incorrect convergence points

(i.e light rays not converging directly on the retina). These are categorized in the literature

into the following groups: Myopia, Hyperopia, Astigmatism, and Presbyopia (PROBST;

TSAI; GOODMAN, 2012).
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Figure 2.1: Diagram showing how light enters the human eye.

From: National Keratoconus Foundation (2018)

2.1.2 Myopia

As aforementioned, myopia is associated with the incorrect convergence of light

rays - specifically, when the point of convergence is located in front of the retina (as seen

in Figure 2.2).

Myopia can be caused by multiple factors such as: eyes too long (relative to the

focusing power of the cornea and lens); an overly curved cornea (causing light rays to

bend more than they should, shortening the focal distance); or a crystalline lens too thick

(resulting in a rounder shape, with higher refractive power, thus bending more the light -

same as the cornea case).

Subjects with such anomaly have problems to discern objects at distance. Hence,

myopia is also referred as Near-Sightedness (PROBST; TSAI; GOODMAN, 2012).

2.1.3 Hyperopia

Hyperopia (also called Far-Sightedness, or Hypermetropia) is the anomaly of the

eye responsible for increasing the eye’s back focal distance, thus making light rays con-

verge behind the retina (see Figure 2.3). Subjects affected with hyperopia have difficulties

to distinguish shapes of objects at near distances (PROBST; TSAI; GOODMAN, 2012).

Contrary to the rest of the world, where other refractive errors are most common (S

et al., 2008; KINGE; MIDELFART; JACOBSEN, 1998; MAVRACANAS et al., 2001), a
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Figure 2.2: Diagram showing how light converges in front of the retina (Myopia).

From: National Eye Institute (2017)

study by Ferraz et al. (2015) shows that hyperopia is the predominant ametropia in Brazil.

Such study is corroborated by others such as Garcia et al. (2005) (northeastern region)

and Barros and Dias (2000) (center-west region). The latter, however, differs from the

former as it ranks presbyopia as most predominant anomaly. Nonetheless, the study ranks

hyperopia in second place, still prevailing myopia.

2.1.4 Astigmatism

If the cornea (or the crystalline lens) presents different refractive powers depend-

ing on the observed axis - thus, configuring an oval shape (see Fig. 2.4) - there is the

occurrence of a condition called Astigmatism (PROBST; TSAI; GOODMAN, 2012).

Based on the axes of the steepest and the flattest meridians - i.e. axes with high-

est and lowest optical power, the anomaly is split into two groups: regular astigmatism -

which consists of cases where the meridians are perpendicular to each other - and irreg-

ular astigmatism - when they are not. According to Probst, Tsai and Goodman (2012),

regular astigmatism is also organized into sub-categories:

• With-the-rule astigmatism: when the vertical meridian has the highest refractive

power.

• Against-the-rule astigmatism: when the horizontal meridian has the highest refrac-
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Figure 2.3: Diagram showing how light converges behind the retina (Hyperopia).

From: National Eye Institute (2016)

Figure 2.4: Comparison between a normal eye and an astigmatic one - notice the irregular
shape of the cornea or lens.

From: Canadian Association of Optometrists (2017)
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Figure 2.5: Convergence of light rays on two distinct focal points.

From: Anaheim Eye (2017)

tive power.

• Oblique astigmatism: when the highest refractive power lies between 120 and 150

degrees or 30 and 60 degrees.

As seen in Figure 2.5, each meridian bends the light differently, creating two dis-

tinct focal points, which then leads to blurry vision. Astigmatism can also be classified

according to the position of each focal point: simple astigmatism - when only one focal

point does not converge on the retina; compound astigmatism - when both focal points

converge either in front of the retina or behind it; and mixed astigmatism - when one focal

point converges in front of the retina, while the other converges behind.

2.1.5 Presbyopia

Presbyopia is the condition caused by the aging process of the eye, which leads to

hardening of the crystalline lens, and therefore worsens the focusing capability of the lens

(PROBST; TSAI; GOODMAN, 2012).

2.1.6 Corrective Lenses

In order to treat and correct the refractive errors caused by the aforementioned

anomalies, corrective lenses can be prescribed.

Many characteristics are considered when crafting corrective lenses, such as type

(how many distances does the lens correct), optical profile (the type of curvature for each



18

surface of the lens), and materials used in the manufacturing process (PROBST; TSAI;

GOODMAN, 2012).

To clarify how lenses correct these refractive errors, optical profiles are briefly

described next.

2.1.6.1 Optical Profiles

According to Probst, Tsai and Goodman (2012), each anomaly presents a different

convergence error that needs to be compensated for:

• Myopia converges the light in front of the retina. In this case, is necessary to

lenghten the focal distance, which can be done with divergent lenses - as indicated

by the lenses’ negative optical power.

• Now, for subjects with hyperopia, light rays are converged behind the retina. To

compensate for this error, convergent (positive) lenses are then used, shortening the

focal distance.

• Astigmatism presents a new scenario, where two different axes present different

refraction powers each. Therefore, the prescribed corrective lenses must counter-

balance each meridian’s refractive error differently. The decision of which profile to

use when correcting these errors follows the same principles described for myopia

and hyperopia.

2.2 Diagnosis and Eyeglass Prescription

Ametropia diagnosis and lens prescription is done by evaluating both Central Vi-

sual Acuity and the refractive powers of the patient’s eyes. Refractive power evaluation

can be split into two processes: Objective Refraction and Subjective Refraction (KHU-

RANA, 2003).

In the Objective Refraction process, the optical powers responsible for the incor-

rect convergence of light, caused by the anomalous conditions of the eyes (e.g. an elon-

gated shape of the eye, in case of myopia) are estimated. This task can be accomplished

either manually, by a procedure called Retinoscopy - which analyzes the reflection off the

patient’s retina - or automatically, using a machine called Automatic Refractometer.

Next, the ophthalmologist (or optometrist) combines relevant information such as

clinical history, visual acuity, and objective refraction to determine a starting point for the
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Subjective Refraction process. This process is responsible for defining the final and most

adequate optical power needed to fix the subject’s refractive errors, and therefore is the

one used when prescribing corrective lenses to the patient.

2.2.1 Visual Acuity Assessment

Central Visual Acuity (VA) relates to the ability to distinguish different visual

stimuli and covers a series of stages and components from the visual system - from the

incidence of light rays on the cornea to the processing of these stimuli by the occipital lobe

(LEVENSON, 1990). The assessment of such ability can be accomplished with the use

of techniques such as the Snellen chart, and the LogMAR chart - either one can be used

to measure near- and far-sightedness. In worse scenarios, alternative measurements such

as finger counting, hand motion and light perception are applied (KHURANA, 2003).

2.2.1.1 The Snellen Chart

Herman Snellen introduced in (1862) the Snellen Chart (see Fig. 2.6), a tool in-

tended for visual acuity assessment based on symbol recognition. The symbols - also

called optotypes - are arranged in rows and must comply the following rules:

• Line thickness should be equal to the thickness of white spaces between lines.

• Optotype size must be five times the thickness of the line.

• Optotype size must also decrease for each subsequent row (increasing the difficulty

in visual pattern recognition).

With exception of the optotype’s size, each row must present the same difficulty

level (i.e. the optotypes must be equally legible) (BAILEY; LOVIE, 1976).

The ability to discern visual patterns separated by a visual angle of one minute of

arc, or optotypes that subtend an angle of five minutes of arc (since the optotype’s size

must be five times the thickness of the line) is named by Snellen as Normal Vision.

The standard distance for such test is 20 foot (or 6 meters) for distance acuity - as

to approximate optical infinity (where parallel rays converge at the focal point of the lens

- or in this case, direct on the retina, for normal vision).

Visual Acuity is then described using a nominator - which indicates the distance

between the subject and the chart - and a denominator - which defines the distance in
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Figure 2.6: Example of a Snellen Chart.

From: Wikipedia (2008)
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which a subject with normal vision would discern the same optotype.

Therefore, subjects with normal vision are said to have 20/20 vision.

Following this idea, 20/40 vision indicates lower visual performance: the smallest

optotype discernible by the subject at 20 meters is discernible by someone with normal

vision at 40 meters. On the other hand, 20/10 vision indicates a higher visual perfor-

mance: the subject identifies at standard distance optotypes that can only be identifiable

by subjects with normal vision at 10 meters.

In european countries, however, visual acuity description is required to be ex-

pressed as a decimal number (ISO Central Secretary, 2017).

2.2.1.2 LogMAR Chart

The LogMAR chart standardizes the design and use of optotype charts, eliminating

some deficiencies from older charts (e.g. the Snellen Chart) and improving precision and

reproducibility of measurements (BAILEY; LOVIE, 1976). For this reason, the use of the

LogMAR chart is considered the gold standard technique for visual acuity measuring.

The chart is based on the Logarithm of the Minimum Angle of Resolution (i.e. the

angle of the smallest visual pattern discernible by the subject’s eye) - hence, LogMAR.

Its usage of the minimum angle of resolution allows for conversion between Snellen and

LogMar measurements (see Table 2.1).

Subjects capable of discerning visual patterns down to one minute of an arc (also

called 20/20 vision, or normal vision) have a LogMAR score of 0 (since log101 = 0). Fol-

lowing this equation, patients with 20/40 vision have a LogMAR score of 0.3 (log100.5 =

0.3). Ergo, higher LogMAR scores indicate a lower visual performance, while lower ones

indicate better performance (see Table 2.1).

In the LogMAR chart, both optotype sizing and spacing follow a logarithmic pro-

gression, decreasing for each row. In-between spacing is uniform, reducing errors caused

by optotypes with reduced legibility (result of countour interaction - i.e having optotypes

near one from another) (FLOM; WEYMOUTH; KAHNEMAN, 1963).

These characteristics improve the precision and reproducibility of measurements,

and facilitate the use of non-standard distances for those cases where standard distance is

not a viable option (BAILEY; LOVIE, 1976).
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Table 2.1: Snellen - LogMAR Conversion Table
Foot Meter Decimal LogMAR

20/200 6/60 0.1 1.0
20/160 6/48 0.125 0.9
20/125 6/38 0.16 0.8
20/100 6/30 0.2 0.7
20/80 6/24 0.25 0.6
20/63 6/19 0.32 0.5
20/50 6/15 0.4 0.4
20/40 6/12 0.5 0.3
20/32 6/9.5 0.63 0.2
20/25 6/7.5 0.8 0.1
20/20 6/6 1.0 0.0
20/16 6/4.8 1.25 -0.1

20/12.5 6/3.8 1.6 -0.2
20/10 6/3 2.0 -0.3

From: (KEIRL; CHRISTIE, 2007)

Figure 2.7: How Pinhole Occluder blocks the light.

From: International Myopia Prevention Association

2.2.1.3 Pinhole Occluder

Additionally, it is possible to measure the loss of visual acuity caused by such

conditions by temporary correcting the subject’s refractive errors with use of a pinhole

occluder (BOWLING, 2015).

The pinhole occluder is a tool used to temporary correct refractive errors, and

works by partially blocking the passage of light rays through the eye. It is an opaque

tool, with a small circular hole in the middle - hence its name. As a result, when placed

in front of the eye, only rays incident to its central portion are allowed through. Since

these "central" rays are much less affected by the refractive power of the lens than those

incident to peripheral regions, refractive error is reduced, causing the image to be formed

correctly in the retina (see Fig. 2.7).
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2.2.2 Retinoscopy and Autorefractor

To determine the objective refractive error, the ophthalmologist (or optometrist)

analyzes how light is reflected off the patient’s retina. This analysis can be done either

manually - via Retinoscopy - or automatically, using an equipment called Autorefractor

(KHURANA, 2003).

If done manually, the clinician uses an equipment called retinoscope to project

light into the eye and observes the "behavior" of the reflection when the light is moved

horizontally and vertically. Then, the clinician introduces correction lenses until the "re-

flection errors" caused by the refractive errors are corrected. When this is done, the clini-

cian is able to estimate the optical power of the patient’s eye.

As an alternative to the retinoscopy, an equipment called autorefractor can be used.

The equipment emits infrared light to the eye and detects its reflection, analyzing the

shape of the formed image in the retina - which can be either circular or oval, depending

on the condition of the eye (see Figure 2.4). It automatically adjusts its magnification,

simulating changes in the distance between the real image and the eye. As consequence,

the equipment is capable of identifying the distance in which the projected image strikes

the retina, and is able to approximate the eye’s optical power, while doing it in a fast and

repeatable manner.

The clinician then uses the measured objective optical power as a starting point to

the subjective refraction process, in order to find the final and most adequade refractive

power needed to correct the patient’s refractive errors.

It is important to notice that the accuracy presented by the autorefractor can be out-

performed by the manual alternative (when done by an experienced clinician) - presenting

a trade-off between time and accuracy. (JORGE et al., 2005)

2.2.3 Subjective Refraction

The process of Subjective Refraction is responsible for determining the final and

most adequate optical power needed to fix the subject’s refractive errors - and therefore is

the one used when prescribing corrective lenses to the patient (KHURANA, 2003).

Subjective Refraction relies on the patient’s ability to discern and communicate

possible improvements or distortions caused by corrective adjustments performed by the

clinician, thus the naming of the procedure.
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The clinician positions the subject in front of a visual acuity chart (e.g. the Snellen

Chart shown in Fig. 2.6) and, introduces different corrective lenses, in order to balance out

the subject’s refractive errors. This procedure consists of three main steps: (i) correction

of spherical error; (ii) correction of astigmatic error; and (iii) fine-tuning of the refractive

correction, to provide the best optical performance while assuring the correction to be

visually comfortable.

In order to facilitate the process of determinating the necessary refractive correc-

tion of steps (i) and (ii), objective refraction - measured via retinoscopy (see 2.2.2) - is

used as starting point.

2.2.4 Static and Dynamic Measurements

The process of visual accomodation - i.e. the adjustment of the refractive power

of the eye by altering the shape of the crystalline lens - occurs through contraction and

relaxation of the ciliary muscle.

The ciliary muscle tone can influence the patient’s focusing ability, and conse-

quently, measurements such as central visual acuity and objective refraction may become

inaccurate.

In order to avoid this issue, clinicians limit the patient’s focusing ability by tem-

porary reducing - or, in some cases, fully paralyzing - the movements of contraction and

relaxation of the ciliary muscle, with the use of cycloplegic eye drops.

For this reason, measurements done with use of cycloplegic eye drops are named

static measurements, while those that do not - and therefore allow for the visual accomo-

dation process to happen - are said to be dynamic measurements (KHURANA, 2003).

2.3 Representational Models for Refractive Errors

2.3.1 Clinical Nomenclature

The standard notation for measuring refractions and prescribing correctors is called

Clinical Nomenclature and its three components (S,C, and A) are directly related to the

manufacturing of spectacles:

A spherical component (S) - meaning its value is equal in all meridians of the



25

eye, indicates the corrective power of the lens, in dipoters, used to correct near- and far-

sightedness.

For those cases where there is presence of astigmatism, two extra components are

specified: a cylindrical component (C), that corrects the uneven distribution of refractive

error in the eye by introducing corrective power to a single axis, and consequently the

degree associated with such axis (A).

Unfortunately, the sphero-cylindrical nomenclature is not suitable for graphical,

numerical, and statistical analysis of optometric data (THIBOS; HORNER, 2001).

Several methods are available for the task of computing optical power of sphero-

cylindrical lens combinations, such as the Power Cross, Prentice’s formulas, Thompsons’s

graphical technique, Optometric Vectors (GARTNER, 1965), complex numbers, Power

Vectors (HARRIS, 1997), and Power Matrices (KEATING, 1981).

It is shown in Thibos, Wheeler and Horner (1997), Harris (2007), that numerical

and statistical analysis is a problematic task, that many of these tools are unable to perform

(e.g. the computation of variance between multiple refractive powers). Such difficulty

may be caused by the polar form used to describe astigmatism (HARRIS, 2007). In

consequence of that, we explore two representational models that overcome this problem:

Power Vectors and Power Matrices.

2.3.2 Power Vectors

Thibos, Wheeler and Horner (1997) attempt to solve the difficulties found in the

traditional model (clinical nomenclature) through a representational model based on vec-

tors, in which the components of the clinical nomenclature S (sphere), C (cylinder) and

A (axis) are converted to a three-dimensional cartesian plane, and correspond to the diop-

tric power of three lenses (M: the spherical-equivalent; J0: the vertical jackson-Cross-

cylinder; and J45: the oblique Jackson-Cross-cylinder).

The vector defined between the converted point and the origin is equivalent to the

blurring strength of a sphero-cylindrical lens - hence the model’s name: Power Vectors.

This vectorial representation allows for the use of conventional scalar methods on

each component, facilitating statistical and numerical analysis of the refractive errors.

In consequence of that, Thibos shows that changes to the patient’s refractive error

can be measured by subtracting two vectors (one associated with the refractive power of

the eye before the change, and one after).
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Miller (2009) also contributes with two other important concepts: the MOD (Mag-

nitude of Differences), related to the scalar resulting from the difference of two vec-

tors - i.e. the magnitude of change of the optical blur; and the VDD (Vector difference

in diopters), which normalizes the unit vector used by Harris (1997) and uses cylinder

diopters instead of sphere diopters - which can be used to identify when spectacles should

be changed, for example.

Representational models based on vectors, however, are applicable solely to thin

systems (those in which there is no need to consider the refraction of each surface sep-

arately, since the distance between surfaces is neglegible when compared to the focal

length), and are limited to simple problems that require only addition or multiplication

with scalar values. To solve this limitation, the use of representational models based on

matrices is suggested. These are able to represent both thin and thick systems, and are

called Power Matrices (KEATING, 1981).

2.3.3 Power Matrices

Harris (1997) introduces a representational model of dioptric power in a three- and

four-dimensional space called Power Matrices. The model - different from the vectorial

model - is universal, since it can model both thin and thick systems. It does so by creating

ray transfer matrices (i.e. a matrix that encapsulates all the optical characteristics of the

system).

Although capable to generalize both thin and thick systems, the matricial system

can be overly complex and not justifiable, in cases where only thin systems need to be

modeled - as is the case of conventional spectacles. Therefore, this study opts to transform

refraction data into Power Vectors notation.

Another factor that weighted the choice for the vectorial representation instead

of the matricial one, was the lack of publications exploring practical applications of the

Power Matrices model - in contrast to the vectorial model, present in Miller (2009), when

is used for statistical analysis.



27

3 AI IN HEALTHCARE AND RELATED WORK

This chapter discusses the use of artificial intelligence algorithms in healthcare, as

well as related publications.

3.1 Artificial Intelligence in Healthcare

Although present since the 60s, the field of Artificial Intelligence (AI) only became

popular with the success of a supervised learning technique called Multilayer Perceptron

(MLP) - a class of Artificial Neural Network (ANN) (MOOR, 2006). This rise in popu-

larity was only possible due to a combination of two factors: (i) the development of faster

Graphical Processing Units (GPUs) - which then improved drastically the performance of

the learning algorithms, by allowing training on much deeper networks and (ii) the pos-

sibility to store much larger and richer labeled datasets - which also improved learning

performance (JASON, 2017).

Nowadays, one of the most popular and well researched topics in AI for healthcare

is medical imaging (GIGER, 2018) - notably, the dermatological classification of skin

cancer (ESTEVA et al., 2017), and the detection of diabetic retinopathy (GULSHAN et

al., 2016) and refractive errors (described in 3.2) through retinal fundus images. Other

topics, however, have been emerging and getting attention in the field, such as robotic

surgery (MAYER et al., 2008) and drug discovery (Benhenda, 2017).

3.2 Related Work

An exhaustive search - meaning that all results (described in Table 3.1) were in-

spected - on IEEExplore and MEDLINE, along with a 10-page search on Google Scholar

returned, by the time of this writing, only three publications similar to this work’s pro-

posal: Varadarajan et al. (2018), Libralao et al. (2004) and Fageeri et al. (2017).

Other than these, no other publication targeting the problem of predicting subjec-

tive refraction was found.

Table 3.1 describes the searches performed on IEEExplore and MEDLINE, as well

as the obtained results, and the similar publications found:

As previously mentioned, a similar work by Varadarajan et al. (2018) was found,
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Table 3.1: Keywords used when searching for related work and number of obtained re-
sults.

Keywords IEEExplore MEDLINE
Artificial Intelligence Optometry 1/9 0/29
Artificial Intelligence Optometry Refraction 0/0 0/0
Artificial Intelligence Ophthalmology Refraction 0/0 0/15
Artificial Intelligence Lenses Refraction 0/2 0/6
Artificial Intelligence Refraction 0/42 0/25
Machine Learning Refraction 0/10 0/6
Machine Learning Optometry 1/10 0/16
Machine Learning Ophthalmology 1/38 0/204

Formatted as: Related Work / Results

proposing the application of deep learning algorithms for predicting refractive error. These,

have shown a mean absolute error (MAE) of 0.56 diopters for estimating the spherical-

equivalent (M) - presenting a reduction of almost 40% of the baseline expected MAE for

the UK Biobank data set (0.91 diopters), and a reduction of approximately 65% of the

baseline expected MAE computed for the AREDS data set (1.63 diopters).

This work, however, is not entirely comparable to the current work since its in-

put data is made of retinal fundus images (while the current work deals with a csv for-

matted dataset of unstructured numerical and textual data). Also, the work proposed by

VARADARAJAN et al. does not present astigmatic data, due to the lack of information

about the toricity of the cornea or crystalline lens in retinal fundus images.

Lastly, Fageeri et al. (2017) investigates the performance of machine learning

models for classification of refractive errors (myopia, hyperopia, and astigmatism) us-

ing techniques such as Decision Trees, SVM, and Naïve Bayes. As these models predict

classes instead of the optical powers (the characteristics of the current work’s problem

will be further discussed in Sec. 4.2), direct comparison between works is not possible.
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4 DATA AND PROPOSED APPROACH

This chapter discusses the current work’s proposal: to investigate the applicability

of three different techniques for subjective refraction prediction.

4.1 Data

This work uses data collected by the telemedicine group Telessaúde-UFRGS dur-

ing a period of 13 months (from July 2017 to August 2018), and contains information of

8149 patients. Its access was approved by the local ethics committee.

From this dataset, the following features were extracted and used by the predictive

models:

• Age

• Sex

• Race

• Symptoms 1

• Visual Acuity data (LogMAR form - see 2.2.1):

• Type (VA, CF, HM, LP, and NLP)

• Acuity without correctors

• Acuity with correctors (for patients that already use spectacles)

• Acuity with Pinhole Occluder

• Objective Refraction measured by an autorefractor (Power Vector form - see 2.3.2):

• Spherical Equivalent (M)

• Vertical Jackson-Cross Cylinder (J0)

• Oblique Jackson-Cross Cylinder (J45)

• Subjective Refraction (Power Vector form - see 2.3.2):

• Spherical Equivalent (M)

• Vertical Jackson-Cross Cylinder (J0)

• Oblique Jackson-Cross Cylinder (J45)

1Symptoms were chosen by the clinicians from a predetermined set of options.
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4.2 Problem and Supervised Learning

As explained previously (see 2.2.2), objective refraction is measured manually or

automatically through the process of retinoscopy and is used as a starting point for the

process of subjective refraction.

Subjective Refraction is necessary because manual and automatic retinoscopy are

not always accurate and do not measure the most adequate optical power necessary to fix

the subject’s refractive errors. This procedure takes time, slows the process of diagnosis,

and consequently reduces the rate of patients that can be diagnosed given a fixed amout

of time.

In order to reduce the time necessary for this process, this work proposes the use

of machine learning for predicting the most adequate refractive power (i.e. the subjective

refraction) of each eye, considering not only the subject’s objective refraction information

but also other characteristics such as the age, sex, and presented symptoms.

Machine learning tasks are often classified into: (i) Supervised Learning - where

the expected outcome (also called target attribute) is known and used in the learning

process; (ii) Unsupervised Learning - models have no prior knowledge about the target

attributes, and are commonly used to describe data; and (iii) Reinforcement Learning - in

which the learning process happens through rewards, and depend on the actions taken by

the algorithm (BISHOP, 2006).

Since the collected data (described in 4.1) provides subjective refraction measure-

ments, supervised learning based methods can be applied.

As expressed by (THIBOS; HORNER, 2001), statistical analysis of directional

data (e.g. astigmatism axis, one of the components of the clinical nomenclature - see

2.3.1) is fundamentally different from the analysis of nondirectional data, and the appli-

cation of such conventional methods may lead to inaccurate results. In order to avoid this

problem, refraction data is then converted from polar (Clinical Nomenclature) to cartesian

coordinates (Power Vector).

The resulting Power Vector components (M, J0, and J45) are continuous variables.

Being so, the predictive models proposed in this work must solve a regression problem.
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4.2.1 Methods

To predict subjective refraction, the following methods were explored: (i) Lin-

ear Regression algorithms; (ii) a regression adaptation of Support Vector Machine called

Support Vector Regression; and lastly, (iii) a simple feed-forward type of Neural Network

called Multilayer Perceptron.

4.2.1.1 Linear Regression

Linear Regression models are those in which the predicted target value is a linear

combination of the input variables, such as:

f(X) = β0 +
p∑
j=1

Xjβj

Being X the input vector, f(X) the target value, and βi the coefficients of the

linear function (HASTIE; TIBSHIRANI; FRIEDMAN, 2001).

This study looks for the best linear method for each component in the Power Vec-

tor notation (M, J0, and J45). To do so, for each method presented below, multiple models

are trained, validated, and tested.

The following linear regression methods were tested:

Ordinary Least Squares: fits a linear model minimizing the residual sum of

squares between expected and predicted values - i.e. squared errors. Mathematically, it

solves the following problem:

argmin
β

N∑
j=1

(yi − β0 −
p∑
j=1

Xijβj)
2

Ordinary Least Squares (OLS) is the simplest method of linear regression and

for that reason it does not address problems caused by more complex models, such as

multicollinearity (a problem in which two features are highly linearly related, causing

instability - i.e. making the model very sensitive to small changes - and consequently

poorly generalizing the problem).

Model complexity can be viewed as: (i) a function of the weights of all features in

the model; or (ii) a function of the total number of non-zero weighted features.

To address the complexity of our model and improve model generalization (thus,

avoiding overfitting), two other methods were also explored: Ridge Regression and Lasso
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Regression. Both performing regularization, a technique that introduces penalties to the

estimated coefficients.

Ridge Regression: fits a linear model while minimizing the sum of the squared

errors. Ridge differs from the simple OLS method by penalizing the coefficients through

the use of L2 regularization - i.e. the sum of the squared values of all weights. Being

λ the regularization parameter (i.e. how much weights are penalized), the Ridge method

solves the problem below:

argmin
β

N∑
j=1

(yi − β0 −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

β2
j

Consequently, the Ridge method prefers solutions that do not depend too heavily

on a specific feature.

Lasso Regression: fits a linear model while minimizing the sum of the squared

errors. Like the Ridge method, its coefficients are also penalized. However, the Lasso

method uses L1 regularization - i.e. the sum of the absolute values of all weights. Being

λ the regularization parameter, the Lasso method solves the following problem:

argmin
β

1

2

N∑
j=1

(yi − β0 −
p∑
j=1

Xijβj)
2 + λ

p∑
j=1

|βj|

Consequently, the Lasso method produces sparse outputs. In other words, the

method tends to prefer solutions with fewer non-zero weighted features. In other words,

it performs feature selection (BISHOP, 2006).

A more stable variation of the Lasso algorithm, called Lasso LARS, is also ex-

plored. This variation implements the Least-Angle Regression proposed by Efron et al..

Lastly, a bayesian ridge regression method was also included in the experiment.

Bayesian Ridge Regression: like the previously described Ridge method, the

bayesian alternative also fits a linear model minimizing the residual sum of squared er-

rors, and also performs L2 regulatization. However, the Bayesian alternative includes the

regularization parameter (λ) in the estimation process - in other words, it also learns how

much the weights are penalized (BISHOP, 2006).

This model, however, presents a serious limitation: as the name itself states, linear

models can only describe linear relationships between variables, meaning that nonlinear

relationship (see Figure 5.8) won’t be properly modeled, resulting in bad predictions.

The following methods deal with this problem by using kernel tricks - i.e. the
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transformation of non-separable data into linearly separable data with help of nonlinear

(kernel) functions, thus allowing for nonlinear relationships to be modeled (HASTIE;

TIBSHIRANI; FRIEDMAN, 2001).

4.2.1.2 Support Vector Machines

A relevant machine learning model is the so called Support Vector Machine (SVM).

First introduced by (CORTES; VAPNIK, 1995), the SVM model tries to separate linearly

a set of data points by using a maximum-margin hyperplane, in which its distance to the

nearest data point (on each side) is maximized.

A regression technique called Support Vector Regression Machine (SVR) was also

included in the experiment. SVR (DRUCKER et al., 1997) is an alternative to the SVM

model used in classification problems. The SVR model uses the same principles as the

SVM one while including a margin of tolerance (ε), used to decide which samples to

consider. In other words, the model tries to find a function f(xi) that differs no more than

a margin of tolerance ε from the expected yi (DEVELOPERS, 2007).

This study looks for the best SVR model for each component in the Power Vector

notation (M, J0, and J45) - furtherly detailed in 6.2. To do so, multiple models are trained,

validated, and tested (using the RandomizedSearchCV class of the scikit-learn library).

4.2.1.3 Neural Networks

Neural Network is a model first introduced by Rosenblatt, in 1958 (ROSEN-

BLATT, 1958). It is inspired by biological neural networks, and is composed by layers

of interconnected neurons. Each neuron receives one or more signals (the input), trans-

forms it through the application of an activation function and sends the result forward to

other neurons (just like synapses would in a biological setting) (HASTIE; TIBSHIRANI;

FRIEDMAN, 2001).

The popularity of the model, however, only started to take off after the develop-

ment of the backpropagation algorithm, which provided an efficient way to distribute the

error term back through the layers, hence its name.

For this study, a Multilayer Perceptron (MLP) - a feedforward and fully-connected

Neural Network - was implemented, and a Rectified Linear Unit (RELU) - shown by

(GLOROT; BORDES; BENGIO, 2011) to enable better training when compared to hy-

perbolic tangent neurons - was selected as the activation function.
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Contrary to the previously described models, Neural Networks can predict multi-

ple outputs by having multiple neurons on the output layer. To that end, only one model

needs to be trained, validated and tested, in order to predict all three components.
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5 DEVELOPMENT

5.1 Language and Frameworks

Due to the existence of well documented and reliable machine learning libraries,

Python 3 (specifically v3.6.7) was selected as main programming language for this study.

For data manipulation and machine learning related tasks, the following tools were

chosen: (i) NumPy and pandas were used during the preprocessing of the original dataset

and plotting of the obtained results; (ii) the machine learning library scikit-learn was used

for the development and application of machine learning methods, as it supplies an exten-

sive collection of off-the-shelf models (accelerating the development phase) and provides

methods for hyperparameter optimization (through randomized search) and overfitting

prevention (via cross-validation); (iii) lastly, the Keras library was also selected, pro-

viding a high-level API that allows for an easy configuration and application of neural

networks - these, implemented by low-level libraries (or backends) such as TensorFlow

(the backend used in this study), Theano, or the Microsoft Cognitive Toolkit - CNTK.

For the sake of organization, each predictor was trained, validated, and tested

within a different jupyter notebook and grouped into folders according to their respec-

tive methods (see 4.2.1). For those cases in which multiple predictors were needed (one

for each Power Vector component), an extra notebook was created, combining the pre-

dictors with best performance, so as to compute an overall performance score (MOD -

described in 6.1).

5.2 Environment

This study was performed in an Inspiron 14 7400 machine, under the following

configuration: Intel R© CoreTM i5-7200U CPU @ 2.50GHz x 4, Memory 8 GB, SDD 120

GB, OS Ubuntu 18.04.1 LTS (64-bit).

5.3 Preprocessing

Due to the some missing or invalid values (common to unstructured data), a few

transformations had to be done to the original dataset before its use in the learning phase:
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First, each instance (patient data) was partitioned into two new instances, one for

each eye - as these can present different refraction values, which are unrelated one to the

other;

Secondly, all instances in which there was no need for corrective lenses to be

prescribed were excluded from the dataset.

Then, eyes marked with Pterygium - a condition that causes tissue growth on the

cornea - were removed, since this condition introduces distortions in autorefractor mea-

surements, and would add noise to training data;

Before converting objective (autorefractor) and subjective refraction data from

Clinical to Power Vector form, sphere and cylinder components were winsorized - i.e.

extreme values were saturated, in order to mitigate the impact caused by outliers (e.g.

mistyped values) in the learning process;

Axes were also rounded to their nearest multiple of 5. The decision to apply

such transformation was based on the same action being performed by clinicians when

prescribing corrective lenses - generally, the axis prescribed is rounded to the nearest

multiple of 5 (or 20th), as to facilitate the manufacture process of spectacles. Being so,

any measurement taken by the autorefractor that deviates from the expected subjective

refraction by less than 5o is not considered an error.

Visual Acuity data was converted from the traditional format (described in 2.2.1.1)

to LogMAR format (see 2.2.1.2);

Patients with low visual acuity (CF and HM) were converted according to studies

from Lange et al. (2009) and Schulze-Bonsel et al. (2006): entries with visual acuity of

type Counting Fingers (CF) were converted to 0.014 LogMAR; while patients with VA of

type Hand Motion (HM) had their visual acuity value set to 0.005 LogMAR. Entries with

even lower visual acuity types - i.e. light perception (LP) and no light perception (NLP)

- were excluded, since no direct conversion to LogMAR was found in the literature for

such cases;

Categorical variables such as sex, race, and symptoms were one-hot-encoded, in

order to be easily identifiable by the predictive models;

Both static and dynamic autorefractor measurements were stored into the original

dataset. In order to predict the subjective refraction of each patient, the most adequate

measurement for each patient had to be selected. This selection was performed manually

by an experienced ophthalmologist.
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Figure 5.1: Distribution of age between instances of the dataset.

From: Author

5.4 Processed Data

By the end of the preprocessing phase, the dataset presented the following charac-

teristics:

Table 5.1: Data collected by TelessaúdeRS-UFRGS from Jul/2017 to Aug/2018.
Characteristic Type
Number of instances (eyes)* 6,202
Mean Age (SD) 49.08 (18.60)
Sex (% female) 68.04
Ethnicity (%) White 77.65

Mixed (Pardo) 15.32
Black 6.56

Asian (Yellow) 0.32
Indian 0.15

Already using correctors (%) 39.20
*From a total of 3,687 subjects.

As figures 5.4 and 5.7 show, most of the intrisic error present in the autorefrac-

tor can be pointed to Spherical and Cylindrical components. This can be explained by

the rounding of the Axis component, performed by the clinician when prescribing the

corrective lens (described in 5.3).



38

Figure 5.2: Distribution of sex between instances of the dataset.

From: Author

Figure 5.3: Distribution of race between instances of the dataset.

From: Author
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Figure 5.4: Refraction data histograms (by component in Clinical Notation)

Objective refraction measured by the autorefractor (blue) and expected subjective refraction (red)
From: Author
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Figure 5.5: Refraction data histograms, grouped by Age (in Clinical Notation)

Objective refraction measured by the autorefractor (blue) and expected subjective refraction (red)
Notice the drop in accuracy when measuring refraction for older patients and how both spherical
and cylindrical components show similar skewness throughout the different age groups.

From: Author
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Figure 5.6: Distribution of Subjective Refraction, grouped by Age (Clinical Notation)

As expected, histograms show a clear difference between young and older subjects, as older pa-
tients present higher Spherical and Cylindrical refraction errors (distributions skewing towards
higher values).

From: Author



42

Figure 5.7: Refraction data histograms (by Power Vector component)

Objective refraction measured by the autorefractor (blue) and expected subjective refraction (red)
From: Author
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Figure 5.8: Refraction data (J0 vs J45)

From: Author

Table 5.2: Difference between Objective and Subjective Refraction
Characteristic Type
Refraction Change (Power Vector)

Mean M (SD) -0.0869 (0.4389)
Mean J0 (SD) -0.0043 (0.1720)
Mean J45 (SD) -0.0081 (0.1298)

Magnitude of Differences Mean (SD) 0.3515 (0.3509)
Also presented in Figure 5.9 for better visualization.

5.5 Data Partitioning and Data Stratification

The preprocessed data was partitioned into two disjoint sets: (i) a Training and

Validation set, used in the model selection phase; and a (ii) Test set (commonly named

Holdout-set), used for a final evaluation of the best predictor (found in the model selection

phase).

This partitioning is necessary in order to avoid the problem of overfitting: if there

is no partitioning (i.e. model training and testing are performed on the same instances),

or if the partitioned training and test sets are not mutually disjoint (i.e. sets share at least

one element with each other), the resulting performance is most likely to be overestimated

due to poor generalization. In other words, the trained model memorizes the information

used during training and is, consequently, incapable of predict on unseen data.

After partitioning, sets consisted in: Training/Validation set (70% of the prepro-

cessed dataset) and Test set (30% of the preprocessed dataset).

Additionally, so as to reduce variance between results during model selection (fur-

ther explained in 6.2), data stratification is performed.

Data stratification is the process of separating data into smaller chunks, also called

strata - hence the naming - and is used to balance out the distribution of classes between
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Figure 5.9: Differences between objective refraction [Autorefractor] and subjective re-
fraction [Expected] (by Power Vector component) - Histogram

Detailed in Table 5.2.
From: Author
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Figure 5.10: Differences between objective refraction [Autorefractor] and subjective re-
fraction [Expected] (MOD) - Histogram

From: Author

folds, producing similar results during cross-validation and, as mentioned before, reduc-

ing performance variance.

In order to stratify the multiple target attributes (the three Power Vector compo-

nents), a few transformations were needed: first, the continuous components were dis-

cretized into bins and labeled accordingly; then, for each instance, labels were groupped

together into triplets (a Python 3-tuple object); lastly, objects were then used for the parti-

tioning of the preprocessed data (using the train_test_split method, provided by the scikit-

learn library) and for model selection (using 10-fold cross validation).



46

6 RESULTS

The set of metrics chosen to evaluate model performance, as well as the perfor-

mance results themselves - produced both during validation and test by the methods pre-

viously described in chapter ?? - are presented in the sections below, being followed by

comments on the best overall model and its performance.

6.1 Performance Metrics

The performance evaluation of the predictive models is done through the use of the

Root-Mean-Square Error (RMSE) metric. In other words, RMSE computes the average

of the squared values of the prediction errors. Prediction error is the difference between

the expected value and the value predicted by the model. Therefore, the closer to zero

(meaning no prediction errors at all), the better the model.

Unlike the Mean Absolute Error (MAE) - another popular metric for performance

evaluation of regression models - where each error contributes proportionally to its mag-

nitude to the final result, RMSE squares all errors, causing larger errors to have a much

greater influence to the final result.

It is important to point out that models trained with RMSE try to avoid predictions

with large amounts of error and, in order to do so, might introduce some distortion to

other predictions. The decision of using RMSE is then justified by the perspective of the

patient, who desires the diagnosis process to be as quick as possible - hence, predictions

with large amounts of error are avoided.

The metric is used to describe two different aspects of this work: (i) model’s

ability to learn and predict refractions in Power Vector form (by component); and (ii)

overall model performance (using the blur strength metric proposed in Harris (1997)).

First, RMSE is calculated for each Power Vector component (M, J0, and J45), be-

tween the following pairs of vectors: (i) objective and subjective refraction - this is the

error associated with the autorefractor, which we seek to reduce through the use of ma-

chine learning algorithms. Therefore, this will be considered as the worst acceptable

result. Any predictive model with greater RMSE - i.e. worse performance - is automat-

ically discarded; and (ii) predicted and subjective refraction - the error associated with

the predictive model (or, how far are the model predictions from the actual subjective

refractions).
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Also, to facilitate the interpretation of the results, the Magnitude of Differences

(MILLER, 2009) is calculated for both: (i) objective and subjective refraction; and (ii)

predicted and subjective refraction. This single value (usually abbreviated as MOD) can

be seen as the Euclidian distance between two points in the dioptric space, and represents

the overall difference between two refractions.

6.2 Model Selection

A series of tests were performed, in order to investigate and find the best hyperpa-

rameter configuration for each method (described in 4.2.1).

Each method presented in Linear Regression (4.2.1.1) was tested (using a 10-fold

cross-validation approach, to avoid overfitting) and ranked by their respective test scores.

Support Vector Regression Machine and Neural Network hyperparameters were

optimized using a 10-fold cross-validation implemented with the help of the Random-

izedSearchCV class, from the scikit-learn library.

In contrast to the time-consuming Grid Search approach, which tests all possible

hyperparameter configurations given a set of parameter values, the Randomized Search

approach only tests a fixed number of n different settings (which are created through

random sampling - with replacement - of the given parameter values).

The metric used to score and rank each fold is the negative MSE - provided by the

scikit-learn library as neg_mean_squared_error. However, to facilitate visualization and

interpretation of results, these were converted to RMSE.

As explained in 4.2.1.1 and 4.2.1.2, in both Linear Regression and Support Vector

Regression each Power Vector component is predicted independently - i.e. one predictor

per component. As a result of that, the best predictors are - at the end of the model

selection phase - grouped together, in order to predict the best overall refraction.

The parameters values provided to the Randomized Search algorithm during the

optimization phase and its results are detailed in the subsections below.

Lastly, overall performance will be compared between the three approaches (Lin-

ear Regression, SVR, and Neural Network), so as to determine the best predictive model

for the given dataset.
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6.2.1 Linear Regression

In this subsection, we investigate the results produced by the different Linear Re-

gression methods presented in 4.2.1.1.

Table 6.1 presents the average test scores of each method and vectorial component

(produced through 10-fold cross validation), while highlighting the best performances.

Figures 6.1, 6.2, and 6.3 detail the scores presented by the table, plotting the results pro-

duced for each fold in the cross validation.

The best models (for each power vector component) are then grouped toghether

so as to make possible the computation of an overall performance score (MOD RMSE).

Table 6.1: Cross-Validation test scores for Linear Regression methods (per component)
Power Vector Component Method Mean RMSE Std RMSE
M (Spherical-Equivalent) Ordinary Least Squares 0.373670 0.016799

Ridge Regression 0.373671 0.016777
Lasso Regression 0.373539 0.017009
Lasso Regression (LARS)* 0.373596 0.017035
Bayesian Ridge Regression 0.373670 0.016792

J0 (Vertical Jackson-Cross Cylinder) Ordinary Least Squares 0.146388 0.021926
Ridge Regression 0.146391 0.021902
Lasso Regression 0.146275 0.021973
Lasso Regression (LARS)* 0.146318 0.021962
Bayesian Ridge Regression 0.146389 0.021918

J45 (Oblique Jackson-Cross Cylinder) Ordinary Least Squares 0.104175 0.011797
Ridge Regression 0.104179 0.011738
Lasso Regression 0.104145 0.011633
Lasso Regression (LARS)* 0.104093 0.011610
Bayesian Ridge Regression 0.104175 0.011786

Lower RMSE scores are better.
*An alternative implementation provided by the scikit-learn that uses Least-Angle Regression
proposed in Efron et al. (2004).

6.2.2 Support Vector Regression

In this subsection, we investigate the results produced by the Support Vector Re-

gression method presented in 4.2.1.2.

Table 6.2 establishes the search space for hyperparameter optimization, while Ta-

ble 6.3 presents the best hyperparameter configuration for the Support Vector Regression

Machine, found through randomized search (with 10-fold cross validation).

Table 6.4 presents the average test scores of all three power vector components
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Figure 6.1: Linear Regression cross validation scores - Spherical Equivalent (M)

Training (left) and Test (right) scores.
From: Author

Figure 6.2: Linear Regression cross validation scores - J0 (Vertical Jackson-Cross Cylin-
der)

Training (left) and Test (right) scores.
From: Author

Figure 6.3: Linear Regression cross validation - J45 (Oblique Jackson-Cross Cylinder)

Training (left) and Test (right) scores.
From: Author
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Figure 6.4: Linear Regression best model coefficients (per component)

Predictive model coefficients, showing selected features (non-zero values) and objective refraction
importance to subjective refraction prediction. Notice also visual acuity sc’s (without correctors)
importance for predicting spherical-equivalent.

From: Author

(produced by a SVR model configured with the best hyperparameters, and using a 10-

fold cross validation), while highlighting the best performances. Figures 6.5, 6.6, and 6.7

detail the scores presented by the table, plotting the results produced for each fold in the

cross validation.

The best models (for each power vector component) are then groupped toghether

so as to make possible the computation of an overall performance score (MOD RMSE).

Table 6.2: SVR hyperparameters optimized through Randomized Search (with cross val-
idation).

Hyperparameter Value(s)
Penalty parameter of error term (C) [1;5]
Kernel Linear, Polynomial, RBF*, Sigmoid
Degree of the polynomial kernel function** [1;10]
Use of the Shrinking heuristic*** True, False

*Radial Basis Function. **Ignored by all other kernels. ***(CHANG; LIN, 2011)

6.2.3 Multilayer Perceptron

In this subsection, we investigate the results produced by the Multilayer Perceptron

method presented in 4.2.1.3.

The search space for hyperparameter optimization is established in Table 6.5. The
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Figure 6.5: SVR cross validation scores - Spherical Equivalent (M)

Training (left) and Test (right) scores.
From: Author

Figure 6.6: SVR cross validation scores - J0 (Vertical Jackson-Cross Cylinder)

Training (left) and Test (right) scores.
From: Author

Figure 6.7: SVR cross validation scores - J45 (Oblique Jackson-Cross Cylinder)

Training (left) and Test (right) scores.
From: Author
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Table 6.3: Best Hyperparameters for SVR model.
Power Vector Component Hyperparameter Value
M Penalty parameter of error term (C) 4

Kernel RBF
Degree of the polynomial kernel function 8
Use of the Shrinking heuristic False

J0 Penalty parameter of error term (C) 4
Kernel RBF
Degree of the polynomial kernel function 8
Use of the Shrinking heuristic False

J45 Penalty parameter of error term (C) 3
Kernel RBF
Degree of the polynomial kernel function 3
Use of the Shrinking heuristic True

Optimization performed through Randomized Search (with built-in cross validation).
Total of 30 iterations.

Table 6.4: Best SVR model - Cross-Validation test scores (per component)
Power Vector Component Mean RMSE Std RMSE
M (Spherical-Equivalent) 0.350399 0.038521
J0 (Vertical Jackson-Cross Cylinder) 0.144324 0.031066
J45 (Oblique Jackson-Cross Cylinder) 0.103799 0.014601

Lower RMSE scores are better.

best hyperparameter configuration for the Multilayer Perceptron, found through random-

ized search (with 10-fold cross validation) is then shown in Table 6.6.

Figure 6.8 details the cross validation scores (fold-by-fold) produced by the five

best hyperparameter configurations.

Different from Linear Regression and SVR based models, the Multilayer Percep-

tron is able to predict multiple target attributes at once, by having multiple neurons in

the last layer (also called output layer). Being so, there is no need to train and combine

multiple models in order to compute an overall score (MOD RMSE).

Table 6.5: Multilayer Perceptron hyperparameters optimized through Randomized Search
(with cross validation).

Hyperparameter Value(s)
Hidden layers [1;4]
Neurons per hidden layer [10*;400]
Optimization heuristic** SGD***, RMSProp, Adam
Epochs [16;128]

*Encoder behavior. **(Ruder, 2016). ***Stochastic Gradient Descent.
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Table 6.6: Best Hyperparameters for Multilayer Perceptron model.
Hyperparameter Value
Hidden layers 1
Neurons per hidden layer 334
Optimization heuristic Adam
Epochs 118

Optimization performed through Randomized Search (with built-in cross validation).
Total of 30 iterations.

Figure 6.8: Multilayer Perceptron randomized search cross validation scores (top-5 hy-
perparameter configurations)

Training (left) and Test (right) scores.
From: Author

6.3 Comparison Between Techniques

The performance scores produced by the predictive models are displayed below in

tables 6.7 (for each power vector component) and 6.8 (overall performance). The follow-

ing figures 6.9 and 6.10 are shown so as to facilitate the visualization of the results.

6.4 Best Model Results

In this section, the model with best overall performance is further explored, in

order to evaluate the applicatibilty of artificial intelligence algorithms and answer the

questions raised in 1.0.1.

According to performance results shown in Table 6.8 (and Fig. 6.10), the best

overall performance is produced by the Multilayer Perceptron model.

Figure 6.11 illustrates the model’s learning curves, demonstrating no underfitting

(when models perform well on training set but poorly on test set) nor overfitting (displayed

when the test set performance improves only until reaching a certain point, where then
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Table 6.7: Performance of predictive models (per component).
Method Component RMSE
Worst Case Scenario* M (Spherical-Equivalent) 1.119009

J0 (Vertical Jackson-Cross Cylinder) 0.608390
J45 (Oblique Jackson-Cross Cylinder) 0.535598

Linear Regression M (Spherical-Equivalent) 0.413058
J0 (Vertical Jackson-Cross Cylinder) 0.147472
J45 (Oblique Jackson-Cross Cylinder) 0.111887

SVR M (Spherical-Equivalent) 0.393489
J0 (Vertical Jackson-Cross Cylinder) 0.146996
J45 (Oblique Jackson-Cross Cylinder) 0.111782

Multilayer Perceptron M (Spherical-Equivalent) 0.360249
J0 (Vertical Jackson-Cross Cylinder) 0.149369
J45 (Oblique Jackson-Cross Cylinder) 0.116096

*Difference between objective refraction from autorefractor and expected subjective refraction
(more details in 6.1).

Lower RMSE scores are better.

Table 6.8: Performance of predictive models (MOD RMSE)
Model RMSE
Worst Case Scenario* 1.381732
Linear Regression 0.452641
Support Vector Regression 0.434669
Multilayer Perceptron 0.406901

*Difference between objective refraction from autorefractor and expected subjective refraction
(more details in 6.1).

Lower RMSE scores are better.

pivots and starts to degrade).

Figures 6.12, 6.13, and 6.14 provide insights on the accuracy of the predictions.

The model exhibits bias when predicting subjective refractions for the M component. This

can be observed by looking at the predicted values under the dotted lines, showing that

the model has difficulty to properly predict higher refractive powers (i.e. it undercorrects

the initial estimate). J0 and JJ45 components, however, do not share such bias.

Now for the variance, J0 and JJ45 components show a much higher spread between

predictions when outcome(ji) = 0. In other words, the model has difficulty to predict

whether a patient has vertical or oblique astigmatic error or not.

In order to determine whether the best model provides an acceptable performance,

two questions should be answered: (i) does the model perform better than the autorefrac-

tor? and (ii) is the error of the model within a clinically acceptable range?

(i) Does the best model perform better than the autorefractor? As explained

in 6.1, the autorefractor’s intrinsic error can be assessed by calculating its distance to the

subjective refraction point within the dioptric space. This distance can be calculated either
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Figure 6.9: Performance comparison between methods (per Power Vector component).

Lower RMSE scores are better.
From: Author

individually for each component of the Power Vector or as a single value, by computing

the euclidean distance between the two points (also called Magnitude of Differences by

Miller (2009)).

Both Table 6.8 and Figure 6.10 shows that the predictive model do outperforms

the autorefractor, by scoring an RMSE of 0.406901 (in constrast to 1.381732, from the

autorefractor), and reducing the error in approximately 70%.

(ii) Is the error of the best model within the clinically acceptable range? Ac-

cording to the literature, the maximum acceptable deviation for the Spherical Equivalent

(S) component lies generally within a range of 0.2 to 0.6 diopters. (ROSENFIELD; CHIU,

1995; SMITH, 2006; GREIN; SCHMIDT; RITSCHE, 2014) Being so, any model perfor-

mance with less than 0.6 diopters of error should be deemed as acceptable.

As Figure 6.15 shows, the average deviation for the Spherical Equivalent (M) is

lower than the 0.6 diopter limit proposed in the literature ( 0.240229), and can indeed be

considerer clinically acceptable.
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Figure 6.10: Performance comparison between methods (MOD RMSE).

Lower RMSE scores are better.
From: Author
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Figure 6.11: Loss history of Neural Network model (using best hyperparameter configu-
ration)

Training (blue) and Test (orange) scores.
From: Author

Figure 6.12: Predicted Refraction vs Expected Refraction - M

From: Author
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Figure 6.13: Predicted Refraction vs Expected Refraction - J0

From: Author

Figure 6.14: Predicted Refraction vs Expected Refraction - J45

From: Author
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Figure 6.15: Multilayer Perceptron Performance (MAE)

From: Author
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7 CONCLUSION

In this work, several machine learning methods were explored, in order to predict

subjective refraction - the refraction used when prescribing spectacles. This investigation

was performed so as to determine whether ophthalmologists and optometrists would ben-

efit from the use of AI in their workplace, by having predictive models to improving the

quality of refractive error diagnosis and reducing the time needed to prescribe corrective

lenses.

After the experiment, the best overall performance was produced by a class of

Neural Network called Multilayer Perceptron.

The application of the technique proved to be beneficial, reducing the difference

between objective refraction (measured by the autorefractor) and subjective refraction

(used for prescribing spectacles). This improvement in prediction accuracy has the effect

of reducing the time required for the diagnosis of refractive errors and the prescription of

corrective lenses, causing a decrease in costs and allowing for more patients to be treated

within the same time span.

As shown in the results chapter, the multilayer perceptron model was able to re-

duce the overall prediction error produced by the autorefractor down to 30 % - and ap-

proximately 32 % for the spherical equivalent error (shown in Fig. 5.9 to be the most

inaccurate of all three components) - showing a significant improvement over the results

produced through current practices.

It has also been shown that the performance produced by the best predictive model

lies within a clinically acceptable range, and is suitable for practical use by ophthalmolo-

gists and optometrists.

7.1 Limitations of the Model

Although presenting a good performance, by reducing the original prediction er-

rors up to approximatelly 70 %, the proposed approach bears limitations that may hinder

the reproduction of the results presented. This section discusses some of these limitations.

As discussed in Section 5.3, the collected data had to be preprocessed, due to un-

structured variables, that lead to the presence of invalid and missing patient data. During

this stage, some assumptions have been made, and may or may not influence the quality

of the final performance of the model:
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Instances with low visual acuity (e.g. hand motion - HM) were converted to the

LogMAR scale, using values found in Schulze-Bonsel et al. (2006). However, the work

of Schulze-Bonsel et al. (2006) assumes that VA measurements are taken at a fixed dis-

tance of 50 cm. Therefore, if future work decides to use visual acuity measurements in

predictive models, care should be taken during the conversion of these values, by taking

into account the distance used during the measurement - thus avoiding distorted LogMAR

values being used in the process of learning.

To avoid possible interference of the outliers in the final result, these went through

a process of winsorization - i.e. saturation of extreme values based on quantiles. This

practice was adopted so that instances with incorrect values of objective refraction do not

influence the performance of the model too much. Therefore, the presence of extreme

values in future work may negatively impact the training of models.

It should also be noted, that because of the winsorization process, the model

trained in this work may present some instability - i.e. not generalize well - for instances

with very high (but correct) optical power.

Regarding the reproducibility of results, another important point should be high-

lighted:

Due to the impossibility of differentiating the many types of astigmatism: simple,

compound, and mixed (the clinical notation "combines" the optical powers of the axes

into a single value - the cylindrical component), it was not possible to characterize the

distribution of the anomalies in the data collected by the TelesaúdeRS-UFRGS group -

i.e. how many instances were used during the training of the model, for each type of

anomaly. Being so, some anomalies may not be well represented within the dataset,

causing the trained model to be somewhat instable when predicting these specific cases.

Lastly, the selection of subjective refraction between static and dynamic refrac-

tions (described in Section 5.3) may present an obstacle and cause selection bias. To

avoid this problem, it is strongly advised to have experienced clinicians performing such

task.

7.2 Future Work

This work performed an investigation of three different methods of machine learn-

ing: (i) Linear Regression; (ii) SVR; and a simple neural network architecture, (iii) Mul-

tilayer Perceptron.
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However, due to lack of time and computational resources, it was not possible to

explore other models.

Therefore, it is suggested an investigation of the applicability of other models,

such as nearest neighbors and decision trees - or even more robust (and generally better)

alternatives like random forests, as well as their performance, and how these compare

against the models presented here. Additionally, the use of different metrics for perfor-

mance evaluation (e.g. MAE) is very much welcomed.

It is also suggested the introduction of new features in order to reduce the bias

shown to be present in the M component predictions, or the use of a larger dataset, in

order to improve the performance of predictive models by reducing the inconsistencies

caused by variance. An investigation on the use of techniques such as boosting is also

recommended, so as to identify and reduce possible model bias (such as the one shown in

Fig. 6.12).

A deeper analysis of the prediction errors is also suggested for future works, in

order to investigate their causes and possible improvements to the models.

Another topic to be explored is whether it is possible, using the Matrix represen-

tation (described in Subsec. 2.3.3), to produce satisfactory (i.e. clinically acceptable)

results - such as the results presented in this paper. And if so, a discussion on issues

such as the interpretability of the results produced and their application in thin and thick

systems is highly encouraged.

As an additional and final suggestion, an extension of the work proposed by

Varadarajan et al. (2018) is proposed, with the addition of features such as sex, gender,

race, or even visual acuity measurements to the training variables (as it is done in the cur-

rent work). A more accurate application of the power vector is also incentived, through

the inclusion of axial data, which would then allow for the computation of both J0 and J45

components, improving prediction of refractive errors in astigmatic eyes.
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