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The previous results based on numerical simulations showed that a cold electron beam injected in a

crossed field gap does not reach a time independent stationary state in the space charge limited

regime [P. J. Christenson and Y. Y. Lau, Phys. Plasmas 1, 3725 (1994)]. In this work, the effect of

finite injection temperature in the transition from stationary to nonstationary states is investigated.

A fully kinetic model for the electron flow is derived and used to determine the possible stationary

states of the system. It is found that although there is always a stationary solution for any set of

parameters, depending on the injection temperature the electron flow becomes very sensitive to

fluctuations and the stationary state is never reached. By investigating the nonlinear dynamics of a

characteristic electron, a theory based on a single free parameter is constructed to predict when the

transition between stationary and nonstationary states occurs. In agreement with the previous

numerical results, the theory indicates that for vanishing temperatures the system never reaches the

time independent stationary state in the space charge limited regime. Nevertheless, as the injection

temperature is raised it is found a broad range of system parameters for which the stationary state

is indeed attained. By properly adjusting the free parameter in the theory, one can be able to

describe, to a very good accuracy, when the transition occurs. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4943202]

I. INTRODUCTION

The understanding of the characteristics of the electron

flow in the presence of crossed electric and magnetic fields is

fundamental for the development of many advanced applica-

tions in different areas. For such devices working at low cur-

rents, it is shown that if a sufficiently strong magnetic field is

imposed, the electrons emitted from the cathode will not

reach the anode.1 Instead, they will perform a cycloidal

motion that will eventually lead them back to the cathode.2,3

As the current is increased and the self-fields due to the elec-

trons become more intense, an interesting new phenomenon

may occur. For instance, in the presence of fluctuations the

cycloidal trajectories may become unstable if there are par-

ticles that are injected with vanishing small velocities. What

happens is that these particles may loose energy while tran-

siting in the cathode-anode gap and fail to return to the cath-

ode at the end of their cycloidal trajectory.4–6 They then

become trapped in the gap region leading to an increasing

charge build up in the system.

At high currents, the self-fields may also be responsible

for the onset of a space-charge limited regime, where the

accelerating field is completely shielded at the cathode by

the electron distribution present in the gap region.7,8 This

corresponds to the formation of a virtual cathode9 that pre-

vents new particles from entering the device. Numerical sim-

ulations considering cold (monoenergetic) injected beams

have shown that the space-charge limit imposes a drastic

change in the electron flow: while it is stationary below the

limiting current, it becomes turbulent (nonstationary) above

it.3 More recently, however, it has been found that thermal

effects may play a major role in the electron dynamics in a

crossed field gap.6 In particular, it has been detected the

occurrence of stationary solutions for currents well beyond

the space-charge limiting threshold.

Our aim here is to investigate in detail the onset of non-

stationary regimes when thermal effects are taken into

account. We consider a fully kinetic Vlasov-Poisson descrip-

tion for the electron flow and search for its stationary solu-

tions. Different from the cold case where the electron

dynamics is dictated by a linear equation of motion,2,3 in the

thermal case the characteristic trajectory is given by a non-

linear equation. To theoretically investigate its properties,

we then derive an effective potential10 for the evolution of

the characteristic momentum. We find that for sufficiently

low temperatures the effective potential forms a well that

nearly confines the characteristic trajectory. In such cases, it

is anticipated that the trajectories will be very sensitive to

any small fluctuation in the potential which may lead to trap-

ping and untrapping of particles, preventing the system to

reach the predicted stationary solution. This scenario is con-

firmed by self-consistent numerical simulations which show

the existence of a threshold temperature below which the sta-

tionary solution is never reached.

II. MODEL

We consider a planar gap whose cathode (anode) is ori-

ented along the x – z plane and is located at y¼ 0 (y¼L).

The gap is immersed in a uniform transverse magnetic field

B0 ¼ �B0ẑ and subject to a potential difference V0 between

the electrodes that generates a uniform electric field

E0 ¼ �ðV0=LÞŷ. The electrons are accelerated along the y
direction by E0 and deflected clockwise by B0. When B0 is

large enough, the electron will not gain sufficient energy to

reach the anode and will be pushed back to the cathode by
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the magnetic force, performing the typical cycloidal trajec-

tory shown in Fig. 1. If B0 prevents all the particles from

reaching the anode and there is no net current between the

electrodes, we say, that the gap is magnetic insulated. We

focus our analysis on this particular regime.

In the absence of charge in the gap, the electric potential

is simply given by that of a planar capacitor in free space,

namely, /ðyÞ ¼ E0y. However, as charge builds up in the

system, the self-fields will become important and the electric

potential will be a function of the particle density n(y) as

given by the Poisson’s equation,

@2/
@y2
¼ e

�0

n yð Þ; (1)

where �0 is the vacuum permittivity, –e is the electron

charge, and the potential satisfies the boundary conditions

/ð0Þ ¼ 0 and /ðLÞ ¼ V0. The dynamics of a given electron

subject to such crossed-fields is dictated by the Hamiltonian6

H ¼ 1

2m
p2

y þ e2B2
0y2

h i
� e/ yð Þ; (2)

where m is the electron mass and, for simplicity, we have

assumed that the electrons are injected with velocities nor-

mal to the cathode, such that the conserved canonical

momenta along x and z satisfy px ¼ pz ¼ 0. We have also

assumed that the gap region is sufficiently thin such that we

can safely neglect the self-magnetic fields.11 The electron

dynamics is given by the Hamilton equations _y ¼ @H=@py

and _py ¼ �@H=@y, where the dot stands for time derivative.

From the single particle Hamiltonian in Eq. (2), we can then

describe the evolution of the whole electron distribution as

described by the distribution function in phase space

f ðy; py; tÞ, which evolves according to the Vlasov equation9

df

dt
¼ @f

@t
þ @H

@py

@f

@y
� @H

@y

@f

@py
¼ 0: (3)

An important consequence of the Vlasov equation is that it

shows that the system evolves over the phase space as an

incompressible fluid because the convective derivative of

f ðy; py; tÞ vanishes. This feature will be directly employed in

order to determine the stationary states of the system. The

particle density is related to the distribution function in phase

space by n ¼
Ð

f ðy; py; tÞdpy. Substituting this expression in

Eq. (1), we obtain the Vlasov-Poisson closed set of equations

that fully describe the electron flow in the gap region.

III. STATIONARY SOLUTIONS

The analysis performed so far on the onset of turbulence

in crossed-field gaps considered only the cases where the

electron injection was cold,i.e., all the electrons entered in

the gap region with the same velocity.3–5 In order to investi-

gate the role of injection temperature in the onset of turbu-

lence, we will consider that the electrons have a velocity

distribution with a finite spread at the cathode. More specifi-

cally, we will assume that they are injected at y¼ 0 as a

waterbag in momentum: py is uniformly distributed from 0

to p0. This corresponds to impose that the distribution

function satisfies a boundary condition of the form f ðy ¼ 0; pyÞ
¼ n0=p0 for 0 � py � p0, where n0 is the particle density at

the cathode. In fact, the technique employed here to deter-

mine stationary solutions for the electron flow can be gener-

alized to other velocity distributions by approximating them

by a series of waterbags.12 Nevertheless, it is anticipated that

a single waterbag already captures the relevant features of

the emission of a hot cathode.

Once a stationary solution is attained, quantities like the

distribution function, the particle density, and the electro-

static potential become time independent. Hence, the single

particle Hamiltonian (2) also becomes a constant of motion,

corresponding to the total energy of the particle. Because

/ð0Þ ¼ 0, the energy for the most energetic electron—the

one that is injected from the cathode with momentum p0—is

Hmax ¼ p2
0=2m. From energy conservation, we can readily

write its momentum as a function of the position as

pmaxðyÞ ¼ 6½p2
0 þ 2em/ðyÞ � e2B2

0y2�1=2; (4)

where the plus (minus) sign refers to the electron moving

towards the anode (cathode). Figure 2 illustrates this curve in

the phase-space. Since at the anode /ðLÞ ¼ V0, it is clear

from Eq. (4) that whenever

B0 >
p2

0 þ 2emV0

� �1=2

eL
; (5)

not even the most energetic electron will reach the anode.

Instead, it will perform a cycloidal motion like the one

depicted in Fig. 1. Therefore, Eq. (5) corresponds to the mag-

netic insulation regime condition where all the electrons

return to the cathode.

FIG. 1. A schematic diagram of a planar crossed-field gap. A typical cycloi-

dal trajectory of an electron is also shown.

FIG. 2. Phase space portray showing pmaxðyÞ (thick solid line), Eq. (4),

for a magnetic insulated case. It corresponds to the trajectory of the most

energetic particle, whose energy is Hðy; pyÞ ¼ Hmax. The stationary distri-

bution of Eq. (6) is uniformly distributed with density n0=p0 inside this

curve (colored area).
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In order to determine the stationary state, we need to

understand how the charge buildup occurs in the system. As

the particles are injected in an empty gap, they start perform-

ing their respective cycloidal motion. Because the system is

still far from being stationary the electrostatic potential

varies with time such that particles may loose or gain energy

as they move in the gap. This particularly affects the low

energy particles—those injected with py � 0—because if

they loose energy they may fail to return to the cathode,

becoming trapped in the gap region.4–6 This causes a contin-

uous increase in the charge accumulated inside the gap. At

this point, the incompressibility in the evolution of the

Vlasov equation becomes crucial because it sets a limit on

the maximum density of particles found in the phase space

which has to be always equal or smaller (in a coarse grained

sense13) than the density at the injection, namely, n0=p0.

Note that the incompressibility condition plays no role when

one considers monoenergetic cold beams because their injec-

tion density in phase space is divergent; however, it does

play a major role when one considers a more realistic ther-

mal injection. Hence, the charge keeps increasing in the sys-

tem up to the point where the available phase space is

completely filled by the particles.6 The available phase space

corresponds to the region where the energy does not exceed

Hmax. The stationary distribution function is then given by

fs y; pyð Þ ¼
n0

p0

H Hmax � H y; pyð Þ
� �

; (6)

where H is the Heaviside function (see Fig. 2). Note that

fsðy; pyÞ is effectively a stationary solution of the Vlasov

equation because it only depends on the phase space varia-

bles through the Hamiltonian Hðy; pyÞ which is a conserved

quantity for the single particle dynamics after the stationary

state is reached. Integrating fs over the momentum space, we

obtain the stationary particle density as given by

n yð Þ ¼ 2
n0

p0

jpmax yð Þj; (7)

where the factor “2” accounts for the particles that are mov-

ing both to and from the cathode. Substituting Eqs. (4) and

(7) in the Poisson’s equation (1), we then obtain a closed

equation for stationary self-field electric potential, which has

to be numerically solved. In practice, we solve the Poisson’s

equation as an initial value problem by setting /ð0Þ ¼ 0 and

taking a guess value for the electric field at the cathode

Ec ¼ �@/=@yjy¼0. Using an iterative method, we find a

value for Ec that satisfies the correct boundary condition at

the cathode /ðLÞ ¼ V0.

It is convenient to define the dimensionless parameters

�0 ¼ 2mV0=eB2
0L2; g0 ¼ en0L2=�0V0, and T0 ¼ p2

0=12e2B2
0L2

that correspond, respectively, to a scaled ratio between elec-

tric and magnetic force in the gap, a normalized electron

density, and a normalized temperature (momentum spread)

at injection. In terms of these parameters, the magnetic insu-

lation condition (5) becomes �0 þ 12T0 < 1. In the remain-

der of the paper, we will consider � ¼ 0:8, setting as the

upper limit for the temperature T0 < 0:016. In Fig. 3, we

plot the cathode electric field for the stationary state as a

function of the normalized electron density for T0 ¼ 0:0075.

As expected, for low charge densities (g0 � 0) the cathode

field is very little affected by the space charge and it is

approximately equal to the vacuum accelerating field E0. As

g0 increases, Ec=E0 falls because the space charge effects

become progressively more important, partially shielding the

accelerating field. At g0 � 1:2, the space charge limiting

case with Ec¼ 0 is reached. Beyond this point, the self-field

generated by the charge distribution in the gap becomes

larger than the accelerating field as indicated by Ec=E0 < 0

and particles are pushed back to the cathode as soon as they

are injected in the system.

We have considered other values of the injection tem-

perature T0 and the trend that we find is the same as the one

shown in Fig. 3. Namely, there is always one stationary

solution for a given set of parameters14 and it goes from

accelerating with Ec=E0 > 0 to space charge limited with

Ec=E0 < 0 as the particle density g0 is increased. In Fig. 4,

the thick solid curve shows where the transition between

these regimes occurs in the g0 vs. T0 parameter space. In par-

ticular, the space charge limited region to the right of the

curve is where the turbulent states are found in the cold

injection case. The fact that we can always find stationary

solutions in this parameter region for the thermal case does

not a priori guarantee that the system will not present a

FIG. 3. Cathode electric field of the stationary state obtained from the theory

as a function of the normalized electron density. The remainder parameters

are �0 ¼ 0:8 and T0 ¼ 0:0075. The electric field is normalized to the vacuum

one E0 ¼ �V0=L.

FIG. 4. Parameter space g0 vs. T0. The solid curve corresponds to the points

where the cathode electric field vanishes, Ec¼ 0, and marks the transition

between accelerating (smaller g0) and space charge limited (larger g0)

regimes. The dashed curve shows the points where Dðg0; T0Þ ¼ Dc, with

Dc ¼ 0:02. The colored region represents the points where 0 � D � Dc.

033107-3 Marini, Rizzato, and Pakter Phys. Plasmas 23, 033107 (2016)



turbulent (nonstationary) character. In fact, the stationary so-

lution may be unstable15 or very sensitive to small oscilla-

tions in the system in such a way that it may not be actually

attained in practice.

IV. ELECTRON DYNAMICS AND EFFECTIVE
POTENTIAL

It is not an easy task to perform a fully kinetic linear

stability analysis of the stationary solutions. Moreover, the

linear stability may not even be determinant to specify the

occurrence of turbulence because the system starts very far

from the stationary solution and may never reach its close

vicinity to be affected by its linear stability. Instead, we

will perform a detailed nonlinear analysis of the electron

dynamics in the gap in order to determine when it is more

or less robust against fluctuations in the system. We focus

on the space charge limited parameter region where the tur-

bulent solutions were found.

Let us consider the dynamics of the most energetic parti-

cle. Taking two derivatives of Eq. (4) with respect to time,

we can obtain a closed equation for the evolution of pmax

which reads

€pmax þ X2
e �

2x2
e

p0

jpmaxj
 !

pmax ¼ 0; (8)

where Xe ¼ eB0=m and xe ¼ ðe2n0=�0mÞ1=2
are electron cy-

clotron and plasma frequencies, and applied Eqs. (1) and (7)

and the fact that dy=dt ¼ pmax=m along the particle trajec-

tory. Equation (8) is equivalent to Llewellyn form2,16 for a

thermal crossed field gap. Different from the cold case, this

equation is now nonlinear and, in principle, can only be

solved numerically. However, even without finding its

explicit solution, we can already discover important proper-

ties of the particle trajectory by constructing an effective

potential for its momentum evolution.10 Conveniently multi-

plying Eq. (8) by 2 _pmax=X
2
ep2

0, we can readily integrate it to

obtain

_pmax

Xep0

� �2

þ V pmaxð Þ ¼ E: (9)

In the equation above, VðpmaxÞ is an effective potential driv-

ing pmax dynamics, which can be written as

V pmaxð Þ ¼ 1� 2�0g0

3

���� pmax

p0

����
 !

pmax

p0

� �2

; (10)

and E is an integration constant that plays the role of an

effective energy for the trajectory. Evaluating Eq. (9) at the

injection where pmax ¼ p0 and _pmax ¼ �eEc, we can com-

pute the value of the effective energy as

E ¼ �2
0

48T0

Ec

E0

� �2

þ 1� 2�0g0

3
: (11)

The shape of the effective potential is shown by the

thick solid curve in Fig. 5 for the choice of parameters �0g0

¼ 1:5 (a) and �0g0 ¼ 0:95 (b). Both cases present a local

minimum at pmax¼ 0. For the parameters of panel (a), there

are also two symmetric maximums. With the aid of Eq. (10),

we find that the maximums are located at pmax ¼ 6�pmax with

�pmax � p0=�0g0. The maximums are absent from panel (b)

because for this case p0 < �pmax. It is also shown in the figure

the straight line that represents the value of the effective

energy for T0 ¼ 0:0075. For the trajectories shown, the parti-

cle is injected with pmax ¼ þp0 and starts decreasing its mo-

mentum—moving to the left in the figure—because _pmax < 0

at the cathode (space charge limited case). Since E
> VðpmaxÞ for all pmax, there are no turning points where

_pmax changes its sign [see Eq. (9)]. Hence, pmax continuously

decreases until the particle hits the cathode again with a

momentum pmax ¼ �p0 and leaves the system.

A quick inspection on Eq. (11) reveals that the only

explicit dependence of E on T0 appears in the first term on

the rhs and is such that the effective energy would decrease

with an increase in the temperature. However, one should

notice that the cathode electric field is also a function of the

injection temperature. In fact, by solving the stationary

state equations derived in Sec. III one finds that Ec tends to

increase with T0 and that its variation dominates over the

1=T0 term of Eq. (11). Hence, by decreasing the cathode

temperature the effective energy also decreases and the

straight lines of Fig. 5 moves downward, closer to the effec-

tive potential curves. Nevertheless, except for the transition

line where Ec¼ 0 (see Fig. 4), E is always above VðpmaxÞ
and there are no turning points for a strictly stationary

solution.

FIG. 5. Plots of the effective potential (solid curve) for �0g0 ¼ 1:5 (a) and

�0g0 ¼ 0:95 (b). The dashed lines show the corresponding values of the

effective energy for T0 ¼ 0:0075.
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In practice, however, as the system relaxes it presents

fluctuations that will cause both E and VðpmaxÞ to vary in

time. If at a certain instant E ¼ VðpmaxÞ, there will be a

change in the sign of _pmax and the particle momentum will

start bouncing inside the effective potential well, which may

prevent the system from reaching the time independent sta-

tionary state. It is expected that the smaller is the difference

between the theoretically predicted values of E and VðpmaxÞ,
the more likely is such an event. We thus define

D ¼ min½E � VðpmaxÞ�; (12)

where the minimization is to be taken along the stationary

solution trajectory �p0 � pmax � p0. The smallness of D is

foreseen to serve as an indicator of how sensitive the station-

ary solution is to the fluctuations. It is clear from Fig. 5(a)

that when �0g0 > 1 and the maximums of the effective

potential are present that D ¼ E � Vð�pmaxÞ. On the other

hand, when �0g0 < 1, such as in Fig. 5(b), the minimization

in Eq. (12) leads to D ¼ E � Vðp0Þ. Using these expressions,

we can determine D for any given set of parameters.

To perform a qualitative analysis of the regions in the

parameter space where the system is more sensitive to fluctu-

ations, we choose a small number Dc and determine from the

expressions above when D ¼ Dc. As an illustration, the

dashed curve in Fig. 4 shows the result for Dc ¼ 0:02. The

colored area in the figure thus represents when D is suffi-

ciently small to satisfy 0 < D < Dc and corresponds to a

region where the onset of turbulence is more likely. For high

injection temperatures (above T0 � 0:003), we notice that

this region is limited to a very thin layer near the transition

to the space charge limited regime. This means that for these

temperatures the system is expected to reach the stationary

solution for most of the injection current densities g0 and tur-

bulence is not foreseen. On the other hand, for low tempera-

tures we see that 0 < D < Dc is satisfied for an extended

region of the parameter space where turbulence is expected.

In particular, we see that as T0 ! 0 the system is not

expected to reach a time independent stationary state for any

space charge limited case, which is in agreement with the

simulation results.3 By considering other small values of Dc

leads to the same qualitative profile for the D ¼ Dc curve.

The actual value of Dc will be resolved in Section V.

V. SIMULATION RESULTS

To verify the theoretical predictions above, we run N-

particle self-consistent simulations. To model the charging

process in real devices, in the simulations we start with an

empty gap and continuously inject particles from the cathode

with transverse momenta uniformly distributed from 0 to p0.

The dynamics of a given particle inside the gap region is

derived from the Hamiltonian (2) where the self-fields are

calculated using Green’s functions.17 In Fig. 6, we plot the

evolution of the force acting upon a test particle fixed at

y=L ¼ 0:35 as obtained from the simulations with g0 ¼ 3:0
(space charge limited regime) and 2 different T0. We see that

for both injection temperatures the force undergoes violent

oscillations in the beginning. However, for the higher T0

case (dashed curve) it eventually saturates to a nearly

constant value indicating that the system has reached the sta-

tionary state. In fact, the stationary value of the force at

y=L ¼ 0:35 calculated from the theory is Fe ¼ �0:0255,

which is in excellent agreement with the one obtained in the

simulation. Note that the force is negative because in a space

charge limited stationary state all the particles are pushed

back towards the cathode. We have evaluated Fe at different

positions and they all relax to constant values that match

with the theoretically predicted ones. On the other hand, for

the lower temperature (solid curve) the solution presents per-

sistent oscillations around Fe � 0 that do not fade and pre-

vent the system from attaining the stationary state. These

oscillations are clearly related to the changes in the sign of

_pmax as discussed in the previous section.

Based on the results of Fig. 6, we notice that the turbu-

lent state is characterized by the occurrence of a positive

force acting upon the beam particles after the initial transient

time. Hence, in order to determine when the stationary-

nonstationary transition occurs, we ran simulations for times

longer than the transient time with a given g0 and increased

T0 from 0 at small increments until the condition Fe < 0 was

found for all the particles, indicating that a time-independent

stationary regime has emerged. The results obtained for

FIG. 6. Time evolution of the net force acting upon a test particle fixed at

y=L ¼ 0:35 as obtained from self-consistent simulations in the space charge

limited regime. For T0 ¼ 0:0075 (dashed curve), the force eventually

reaches a stationary value that agrees with the theoretically predicted one,

whereas for T0 ¼ 0:0003 (solid curve) the force shows persistent oscilla-

tions. The remainder parameters are g0 ¼ 3:0 and �0 ¼ 0:8.

FIG. 7. Parameter space g0 vs. T0. The symbols show the injection tempera-

ture above which the system attains a time-independent stationary state in

the self-consistent simulations for the given g0. The dashed curve corre-

sponds to the theoretical curve Dðg0;T0Þ ¼ Dc obtained with Dc ¼ 0:006.

The solid curve marks the transition between accelerating and space charge

limited regimes.
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different values of g0 are shown in Fig. 7, where the symbols

represent the injection temperature above which the system

attains the time-independent stationary state. To test the

theory presented in Sec. IV, we search for a Dc that best fits

the numerical results. We find Dc ¼ 0:006 which is shown

by the dashed curve in Fig. 7. The very good agreement is a

clear indication that the mechanism discussed in Sec. IV is

the one responsible for the onset of turbulence at low temper-

atures. As a reference, it is also shown in the figure the curve

that marks the transition to the space charge limited regime

(solid curve). For larger temperatures, we notice that the

dashed and the solid curves almost coincide, meaning that

the region where the theory predicts the onset of nonstation-

ary states is effectively very narrow. As a matter of fact, we

were unable to identify nonstationary solutions in this region

in the numerical simulations.

VI. CONCLUSIONS

We have investigated temperature effects in the transition

between stationary and nonstationary states in the relaxed

state of the electron flow in crossed field gaps. A fully kinetic

Vlasov-Poisson model was derived and used to determine the

stationary states of the system. It is found that the theory pre-

dicts the existence of a stationary solution for any set of sys-

tem parameters. However, in the space-charge limited regime

and depending on the injection temperature, the electron flow

becomes very sensitive to fluctuations such that the stationary

state is never reached and the system was found to present

persistent oscillations. By investigating the nonlinear dynam-

ics of the most energetic electron, we were able to estimate

when the system is more sensitive to the fluctuations and to

determine the mechanism that prevents it from reaching the

stationary state. In particular, we constructed a theory based

on a single free parameter to predict the occurrence of the

transition between stationary and nonstationary states. It is

found that for vanishing temperatures the system never

reaches the time independent stationary state in the space

charge limited regime, which is in agreement with the

previous results.3 Nevertheless, as the temperature is raised,

we find a broad range of system parameters for which the sta-

tionary state is indeed attained and is in agreement with the

one predicted by the theory. Finally, by properly adjusting the

free parameter in the theory we were able to describe to a

very good accuracy the transition curve between the stationary

and the nonstationary states.
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