
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

OTÁVIO MORAES DE CARVALHO

A model for distributed data aggregation in
edge and cloud environments

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux

Porto Alegre
January 2019

CIP — CATALOGING-IN-PUBLICATION

Carvalho, Otávio Moraes de

A model for distributed data aggregation in edge and cloud
environments / Otávio Moraes de Carvalho. – Porto Alegre:
PPGC da UFRGS, 2019.

83 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Philippe O. A. Navaux.

1. Edge Computing. 2. Fog Computing. 3. Cloud Comput-
ing. 4. Internet of Things. 5. Distributed Computing. I. Navaux,
Philippe O. A.. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The one who has conquered himself

is a far greater hero

than he who has defeated

a thousand times a thousand men.”

— SIDDHĀRTHA GAUTAMA

ACKNOWLEDGMENTS

First of all, I would like to give a special thanks to my parents, Jorge and Nadia,

for all the love and support. You are my life lessons on the importance of kindness and

wholeheartedness. I would also like to wholeheartedly thank my uncle Marcelo and my

aunt Ana — without whom I would never be here — not only for their extensive support

throughout my life but also for sharing their family values with me and for making me

part of their family.

Second, I would like to thank my advisor and co-advisor, Prof. Dr. Philippe

Navaux and Prof. MSc. Eduardo Roloff, respectively, for all of the support, openness

to new ideas and confidence into my work. Thanks also to everyone in the Informatics

Institute at the Federal University of Rio Grande do Sul (UFRGS), by the opportunities

and high-quality education provided to me and my colleagues.

Furthermore, I would also like to thank all of my colleagues at Parallel and Dis-

tributed Research Group (GPPD) and ThoughtWorks. Without them, my education cer-

tainly would not have been as complete and, my path would not have been as enjoyable.

Finally, I would like to thank all of my friends (many of them also colleagues

and co-workers). You all live in my heart and are a considerable part of what has made

possible this accomplishment.

This study was financed in part FAPERGS in the context of the GreenCloud

Project. This research also received partial funding from CYTED under the context of

the RICAP Project. It also received partial funding from the EU H2020 Programme and

from MCTI/RNP Brazil under the HPC4E project. Microsoft has provided cloud comput-

ing instances on Microsoft Azure to the execution of the experiments.

ABSTRACT

The Internet of Things generates each time larger amounts of data through devices that

range from personal smartphones sensors to large scale smart cities sensor deployments.

Edge Computing and Fog Computing hardware resources nowadays have processing

power that in the past was only found on Cloud Computing resources. These capabilities

enable the possibility of aggregating data directly on the edge of the network, avoiding

network traffic that was previously necessary to transfer data to the cloud.

However, the ability to leverage each time more powerful edge nodes to decentralize data

processing and aggregation is still a significant challenge for both industry and academia.

Although large scale sensor deployments and powerful edge nodes are now available, the

proper frameworks and processing patterns for these profiles of data are still under active

research.

In this work, it is analyzed the impact of a model for data aggregation in a large scale

smart grid application dataset. The results obtained show that the implemented testbed

application, through the usage of edge node aggregation and messaging windows, was

able to achieve data aggregation rates of above 400 million measurements per second.

These results were obtained using machines on 15 distinct geographic regions on the Mi-

crosoft Azure platform, for a total of 1366 machines in the largest evaluation scenario.

Keywords: Edge Computing. Fog Computing. Cloud Computing. Internet of Things.

Distributed Computing.

Um modelo para agregação de dados distribuída em ambientes de edge e cloud

RESUMO

A internet das coisas é responsável pela geração de quantidades de dados cada vez maio-

res, oriundas de dispositivos que vão de sensores de smartphones até implementações de

sensores em larga escala para cidades inteligentes.

Os recursos de hardware dos dispositivos de edge computing e fog computing apresentam

poder de processamento que no passado só era encontrado em recursos de computação em

nuvem. O aumento da capacidade de processamento habilita a possibilidade de agregar

dados na borda da rede, evitando tráfego de rede que anteriormente era necessário para

transmitir os dados para a nuvem.

Por outro lado, a capacidade de alavancar nodos de borda cada vez mais poderosos, para

descentralizar o processamento e agregação de dados, ainda é um desafio significante

tanto para a indústria quanto para a academia. Ainda que nodos de borda poderosos e

grandes instalações de sensores estejam disponíveis hoje em dia, as frameworks e pa-

drões de processamento necessários para esses perfis de dados ainda são material de ativa

pesquisa.

Nesse trabalho, é analisado o impacto de um modelo para agregação de dados em um con-

junto de dados para redes de energia inteligentes de larga escala. Os resultados obtidos

mostram que, para a aplicação de testes desenvolvida, através da utilização de agragação

na borda da rede e janelas de mensagens, foi possível atingir taxas de agregação acima de

400 milhões de medidas por segundo. Estes resultados foram obtidos utilizando máqui-

nas em 15 regiões geográficas distintas na plataforma Microsoft Azure, totalizando 1366

máquinas no maior cenário de avaliação.

Palavras-chave: Internet das Coisas, Computação em névoa, Computação na Nuvem,

Computação Distribuída.

LIST OF ABBREVIATIONS AND ACRONYMS

AP Access Point

AMI Advanced Metering Infrastructure

API Advanced Programming Interface

AMQP Advanced Message Queuing Protocol

ARM Advanced RISC Machine

ARIMA Autoregressive Integrated Moving Average

AWS Amazon Web Services

CDN Content Delivery Network

CEP Complex Event Processing

CLI Command Line Interface

DEBS Distributed Event-Based Systems

DSMS Data Stream Management Systems

DBMS Database Management Systems

DSM Demand Side Management

ETSI European Telecommunications Standards Institute

GC Garbage Collection

GFS Google File System

GRPC gRPC Remote Procedure Calls

HFC Hybrid Fiber-Coaxial

HTTP HyperText Transfer Protocol

IoT Internet of Things

IaaS Infrastructure as a Service

ISG Industry Specification Group

LTLF Long Term Load Forecast

LTE Long-Term Evolution

MEC Multi-access Edge Computing

MTLF Medium Term Load Forecast

MLP Multilayer Perceptron

NFV Network Function Virtualization

NIST National Institute of Standards and Technology

OEC Open Edge Computing

OS Operating System

PaaS Platform as a Service

QoS Quality of Service

QPS Queries Per Second

RFID Radio-Frequency Identification

SDN Software-Defined Networking

REST Representational State Transfer

RPC Remote Procedure Call

SaaS Software as a Service

STLF Short Term Load Forecast

SSM State-Space Model

TCP Transmission Control Protocol

VANET Vehicular Ad-hoc Network

VM Virtual Machine

XaaS Everything as a Service

LIST OF FIGURES

Figure 2.1 Cloud computing service models stack and their relationships.....................27
Figure 2.2 The internet of things paradigm as the convergence of different visions33

Figure 3.1 The architecture is composed by 3 layers: Cloud, Edge and Sensor.............44

Figure 4.1 PingPong: Latency Percentiles by Message Sizes (32KB to 1MB).52
Figure 4.2 PingPong: Maximum Throughput by Message Size (32KB to 1MB)52
Figure 4.3 Concurrency Analysis: Impact of Goroutines usage on throughput (Edge

and Cloud nodes). ...54
Figure 4.4 Scalability Analysis: Throughput with multiple consumers (1 to 4 edge

nodes)..55
Figure 4.5 Windowing Analysis: Windowing impact on throughput (1 to 1000

messages per request). ..56
Figure 4.6 Latency simulation validation: Simulated windowing latencies versus

real obtained latencies per node (using a total of 90 nodes per execution).57
Figure 4.7 Latency simulation validation: Throughput obtained per node with 90

nodes. ..58
Figure 4.8 Aggregated throughput evaluation with multiple sets of edge nodes (30

to 90 nodes)...59
Figure 4.9 Windowing evaluation with simulated latencies running on 90 nodes..........60

Figure 5.1 The architecture is composed by 4 layers: Cloud, Aggregator, Edge and
Sensor..63

Figure 6.1 Aggregator stress comparison analysis: 90 nodes maximum throughput
with and without an aggregation layer..69

Figure 6.2 Aggregator stress evaluation: Throughtput analysis from 15 to 90 nodes70
Figure 6.3 Aggregator groups evaluation: 40 edge nodes distributed between dis-

tinct groups of aggregators..71
Figure 6.4 Global performance evaluation: 90 nodes per region, 5 regions and vari-

able batch sizes (1 to 1000 messages)...72
Figure 6.5 Global performance evaluation: 90 nodes per regions, 1000 messages

batches and variable number of regions (5 to 15) ...72
Figure 6.6 Global scale deployment: One global master (red square) and 15 re-

gions (blue dots, where each region contains 1 aggregator node and 90 edge
nodes)..73

LIST OF TABLES

Table 2.1 Research scope comparison of the state-of-the-art with the proposed work...41

Table 3.1 Cloud layer configuration: Virtual machine type and toolset description.......44
Table 3.2 Edge layer configuration: Architecture and software description...................46

Table 4.1 Network measurements with Iperf ..51
Table 4.2 Machines configuration: Virtual machine types and toolset description57

Table 5.1 Cloud layer configuration: Virtual machine type and toolset description.......62
Table 5.2 Aggregator layer configuration: Virtual machine type and toolset description64
Table 5.3 Edge layer configuration: Virtual machine type and toolset description64

Table 6.1 Region profiles: Description of the latency profiles between Azure re-
gions selected for evaluation...68

CONTENTS

1 INTRODUCTION.. 19
2 STATE OF THE ART.. 23
2.1 Evolution of distributed computing.. 23
2.1.1 Utility computing .. 24
2.1.2 Cluster computing... 25
2.1.3 Grid computing ... 25
2.1.4 Cloud computing... 26
2.1.5 Distributed event stream processing systems.. 30
2.1.6 Internet of things ... 32
2.1.7 Fog computing .. 33
2.1.8 Edge computing .. 34
2.2 Smart grid... 36
2.2.1 Advanced metering infrastructure... 37
2.2.2 Demand side management .. 38
2.2.3 Consumption forecasting .. 38
2.3 Related work and discussion... 39
3 GARUA: ARCHITECTURE AND IMPLEMENTATION .. 43
3.1 Architectural overview .. 43
3.2 Cloud layer ... 44
3.3 Edge layer ... 45
3.4 Sensor layer .. 45
3.5 Communication protocol... 46
3.6 Measurement algorithm .. 47
4 GARUA: EVALUATION... 51
4.1 Communication evaluation ... 51
4.2 Application evaluation... 53
4.2.1 Concurrency evaluation .. 53
4.2.2 Scalability evaluation .. 54
4.2.3 Impact of message windowing.. 55
4.3 Simulated latencies... 56
4.3.1 Validation .. 56
4.3.2 Throughput evaluation .. 58
4.3.3 Windowing evaluation .. 59
5 GARUAGEO: ARCHITECTURE AND IMPLEMENTATION ... 61
5.1 Architectural overview .. 61
5.2 Cloud layer ... 62
5.3 Aggregator layer .. 63
5.4 Edge layer ... 64
5.5 Sensor layer .. 65
6 GARUAGEO: EVALUATION .. 67
6.1 Infrastructure setup and operators placement ... 67
6.2 Exploring the impact of adding aggregators into the infrastructure.............................. 68
6.3 Multiple aggregators in a given global region ... 69
6.4 Groups of aggregators into a single region.. 71
6.5 Multiple region edge analysis.. 72
7 CONCLUSION AND FUTURE WORKS... 75

19

1 INTRODUCTION

The ubiquity of the Internet of Things (IoT) unleashes the potential of using inno-

vations based on sensor data to improve society’s overall quality of life. These profiles of

data can be used to enable technologies such as large scale smart cities deployments, smart

home monitoring, smart industries and smart energy grids. Devices that provide these

kinds of capabilities are now widespread through cities and homes on devices such as

smartphones, medical devices, home appliances and street signals. By 2025, researchers

estimate that the IoT will have a potential economic impact of $11 trillion per year –

which would be equivalent to about 11% of the world economy. They also expect that

one trillion IoT devices will be deployed by 2025 (BUYYA; DASTJERDI, 2016).

IoT is now a reality, and we are connecting each time more devices – such as

personal consumer electronic devices, home appliances, cameras, medical devices, and

all types of sensors – to the Internet environment. This ubiquity unlocks the potential to

innovations that can use the data generated by those devices to enable smart cities, smart

infrastructures and smart services that can improve quality of life.

By 2025, researchers estimate that the IoT will have a potential economic impact

of 11 trillion per year – which would be equivalent to about 11% of the world economy.

They also expect that one trillion IoT devices will be deployed by 2025. In majority of

the IoT domains such as infrastructure management and healthcare, the major role of IoT

is the delivery of highly complex knowledge-based and action-oriented applications in

real-time (BUYYA; DASTJERDI, 2016).

Novel technologies for mobile computing and IoT are shifting the focus of its

research and development to computing toward dispersion. In this context, edge comput-

ing is one of the most prominent areas, it is a new paradigm in which a high volume of

computing and storage resources – generally referred to as cloudlets, micro datacenters

or fog nodes – are placed at the Internet’s edge in close proximity to mobile devices or

sensors (SATYANARAYANAN, 2017).

The ability to scale these solutions to a large number of nodes is an important

research topic, due to the fact that millions of users will be part of these information

flows. Cloud computing services are now widespread and have proven their value by

providing reliable processing at global scale. However, there is a large set of applications

that cannot tolerate the latency penalties of sending data to be aggregated on the cloud and

then sending it back to edge nodes. Also, the act of sending a potentially large number of

20

small packets to the cloud for data processing can saturate the network and decrease the

scalability of the applications (DASTJERDI; BUYYA, 2016).

Since millions of end-users will be taking part into processes and information

flows of smart grids, high scalability of these methods turns into an important issue. To

solve these issues, cloud computing services present themselves as a viable solution, by

providing reliable, distributed and redundant capabilities at global scale (BUYYA et al.,

2009). However, there is a large set of applications which cannot accept the delay caused

by transferring data to the cloud and back, being bounded by latency. However, it is not

efficient to send a large number of small packages of data to the cloud for processing, as

it would saturate network bandwidth and decrease scalability of the applications (DAST-

JERDI; BUYYA, 2016). Therefore, one of the most important points explored by this

work is geographical distribution of processing elements, and how it impacts the process-

ing ability in global scale scenarios. The largest evaluation is executed in 1366 nodes,

distributed globally across 15 distinct geographical regions. This way, it was possible to

evaluate the real impact of latencies and how data aggregation at nearby regions can help

to improve processing. Which applies not exclusively to smart grids, but also to many

other scenarios where offloading all data to the cloud is not a viable option.

Furthermore, finding ways to achieve a more sustainable lifestyle plays a large

hole on the path of our society growth, and poses some challenges to a society that de-

pends each time more on a increasing number of electrical devices. to achieve this, the

smart grid incentives pretend to improve the legacy systems for energy production and

consumption, based on research, to advance technologies in the energy field.

Smart grids will allow consumers to receive near real-time feedback about house-

hold energy consumption and price, allowing consumers to make informed decisions

about their spending. For energy producers, it will be possible to leverage home con-

sumption data to produce energy forecasts, enabling near real-time actions and better

scheduling of energy generation and distribution (BROWN, 2008). This way, smart grids

will save billions of dollars in the long run, for consumers and the generators, as well as to

reduce the impact on the environment, according to recent forecasts (REUTERS, 2011).

In this work, it is utilized a smart grid short-term load forecast algorithm to evaluate a

testbed implementation of the model.

In order to provide a new model for aggregate data in fog computing and edge

computing environments, this thesis provides a model that combines existing cloud com-

puting resources to edge devices, extending the research on cloud computing applied to

21

IoT data profiles (CARVALHO; ROLOFF; NAVAUX, 2017). Using this model, it is pos-

sible to provide a high performance aggregation model that leverages the existing research

in distributed stream processing systems and applies it to the context of fog computing.

The results obtained show that the implemented testbed application, through the usage

of edge node aggregation and messaging windows, was able to achieve data aggregation

rates of above 400 million measurements per second.

The rest of this thesis is organized as follows. Chapter 2 introduces the state of the

art in distributed processing, explains mandatory concepts to understand this work and

shows the most recent and relevant research publications on the field. Chapter 3 describes

the first generation of the model, its main architectural concepts and the algorithm used to

evaluate the platform. Chapter 4 evaluates the performance of the first generation of the

model and discusses the results obtained. Chapter 5 describes the second generation of

the aggregation model, which introduces a new processing layer to better explore locality

and decrease the processing latency. Chapter 6 evaluates the performance of the second

generation of the model in a global scale deployment. Chapter 7 analyses what was

possible to achieve with this model in terms of design and performance and discusses

the future works.

22

23

2 STATE OF THE ART

In this chapter, we introduce several background concepts necessary to the proper

understanding of this work. Distributed systems are the basis of this work, since it is

known from the state of the art that centralized applications have certain limits in terms

of amount of users and Quality Of Service (QoS) that they are able to provide.

In Section 2.1, there is a brief overview of the evolution of the distributed com-

puting platforms, starting from distributed computing research on the late 60s, up to the

recent research advances in Fog Computing and Edge Computing.

Smart grids are an important research topic, since the traditional design of energy

grids has not being improved during the last century, and are not able to consider the

metrics collected by households to optimize energy generation and distribution. In this

work, it is utilized a smart grid short-term load forecast algorithm to evaluate a testbed

implementation of the model. In Section 2.2, we introduce some important concepts

regarding smart grids and how they are different from traditional approaches to design

energy grids.

Finally, on Section 2.3, we review the related works that represent the state of the

art on applications and models for edge processing. We also explain what are the main

challenges of the research field and how this work relates to those publications.

2.1 Evolution of distributed computing

Distributed computing refers to the study of decentralized models of systems and

its ways to divide computation between multiple network devices. The beginning of this

research field trace back to the 60s, when the first studies on concurrent processes commu-

nicated via message passing were developed (LEOPOLD, 2001). After that, many other

computation paradigms were created. Starting from the concept of utility computing over

a distributed framework, the computing domain has gradually moved towards the concept

of Cloud Computing and, more recently, efforts on improving computation at the edge of

the network where expressed via new concepts like internet of things, fog computing and

edge computing.

In this Section, we introduce the background required to understand the foundation

of this work. The background review starts with established research areas like utility

computing and cluster computing. In the following sections, grid computing and cloud

24

computing are introduced, explaining the evolution of these ideas to broader network

areas and the main challenges in this area regarding performance and network latencies.

Finally, more recent research topics are introduced, in areas like IoT, fog comput-

ing and edge computing. Their challenges on how to aggregate data in a timely manner

with low power computation and high latencies are also briefly discussed. It is also intro-

duced some important concepts on smart grids research, since it is the basis of the case

study used to evaluate the proposed platform.

2.1.1 Utility computing

A major requirement from the end-users is that they need to get computing and

storage services within a short period of time. This strict requirement of deadline driven

services has created the demand for getting services without the botheration about de-

ployment and operationalization of custom hardware. The traditional mainframe based

systems lack these features of providing deadline driven services, as the users need to

purchase hardware, customize them, and install tools and software to make them opera-

tional. That is why, the end users have shifted towards getting real-time services from the

vendors. These services are provided to the end users as an utility. The users need not

worry about the underlying hardware infrastructure. The services are provided to the end

users whenever they require that.

The provision of providing computations and services to the end users based

on their need has created the distributed computation model named as utility comput-

ing. In this early computing model over distributed systems, users have to pay for the

services whenever they use it. The concept was first presented by John McCarthy in

1961 (GARFINKEL, 1999).

Though the utility computing was not very popular in those times, it was again

introduced in late 90s as the cost for computation hardware gradually dropped and minia-

turization of servers become practical. The excessive demands for services have generated

the need for this utility based service provisioning by the service providers. Previously,

there was no proper access to resources in several systems. Further, there was no provi-

sion of supporting a fixed and predefined deadline for response time over these systems.

However, the utility computing has given the user a proper valuation of their services.

Utility computing systems can be considered as a marketplace where the users compete

for getting their service by the service providers. The advantages of such utility comput-

25

ing systems are much more in comparison with the single time-sharing system. Utility

computing supports the users by giving higher throughput than a single time-sharing sys-

tem as multiple servers are placed in utility computing (PADALA et al., 2007).

2.1.2 Cluster computing

In cluster computing (BUYYA et al., 1999), many connected computers work to-

gether in order to behave like a single system. These computers do the same work, which

is controlled by a scheduling software. In the advent of low cost microprocessors, the

cluster computers have emerged as a new computing platform.

The different personal computers along with communication software and network

interfaces are connected to the high speed network or switch. The cluster middleware is

the software environment that interconnects the cluster computing nodes with different

applications.

The advantages of the cluster computing system are the reliability and the avail-

ability. The end users can be given more computing power and storage facilities by al-

lowing several cluster computers to work. The system failure rate is decreased in case

of cluster computing as we have redundancy within the clusters. The dedicated and high

speed network connects these cluster nodes in order to provide more reliability in case of

system failure. These are the driving forces behind the development of cluster comput-

ing concepts. There are several types of applications of cluster computing, such as load

balancing (WERSTEIN; SITU; HUANG, 2006), high availability clusters (AGBARIA;

FRIEDMAN, 1999), etc. In load balancing, a single task can be divided between several

cluster nodes in order to provide the particular service. The high availability clusters pro-

vide the users with the required service in case of system failure. The cluster computing

systems have data redundancy among the cluster nodes. That is why, cluster computing

systems have greater reliability than utility computing systems.

2.1.3 Grid computing

Grid computing (BERMAN et al., 2003) (CHERVENAK et al., 2000) was origi-

nated in early 90s as an effect of extending the distributed computation models beyond the

cluster computing framework. Cluster computing environment faced several limitations

26

during its implementation. One of the major problems faced over the cluster architecture

is that, there can be node failures in clusters; however as the cluster size increases, the

complexity of finding the location of failures also increases. However, the grid comput-

ing systems are much modular and have very less number of points of failure. The grid

software is responsible for policy management.

A generic architecture of a grid computing framework consists of several grid

clients that are connected by an underlying computer network to the grid server, and the

grid servers are in turn connected to the end users.

In grid computing, several computers, termed as computing grids, work together

to provide a high performance distributed environment. The computation is divided and

distributed among several nodes. The computing nodes are loosely coupled in the sense

that they make use of little or no knowledge of the definitions of other separate nodes.

On the contrary, in tightly coupled systems, the computing nodes are not only linked

together but also dependent upon each other. The disadvantages of tightly coupled system

is that the entire system becomes down in case of even a single node failure. However,

the resources are generally heterogeneous and largely distributed (KRAUTER; BUYYA;

MAHESWARAN, 2002).

Nowadays, grid computing is mainly used in commercial organizations for its ad-

vantage of workload distribution. Grid computing are great in the sense that they provide

fault tolerance which helps to provide better QoS requirements.

2.1.4 Cloud computing

Cloud computing is a new paradigm of computing. It was developed with the

combination and evolution of distributed computing and virtualization, with strong con-

tributions from grid and parallel computing (BUYYA et al., 2009). There are many ef-

forts to provide a definition of cloud computing, such as the work of Grid Computing

and Distributed Systems Laboratory (BUYYA et al., 2009) and the initiative from Berke-

ley University (BUYYA et al., 2009). In 2011, NIST (National Institute of Standards

and Technology) has published its definition that consolidates several studies and became

widely adopted.

Cloud computing has two main actors that are defined as the user and the provider.

The user is defined as the consumer and can be a single person or an entire organization.

The provider is an organization that provides the services to the user. According to NIST

27

Figure 2.1: Cloud computing service models stack and their relationships

definition (MELL; GRANCE et al., 2011), cloud computing is a model that conveniently

provides on-demand network access to a shared pool of configurable computing resources

that can be provisioned and released quickly without large management efforts and inter-

action with the service provider. This model definition is composed of five essential char-

acteristics, three service models and four implementation models, which will be discussed

in this section.

A cloud computing service needs to present the following characteristics to be

considered adherent to the NIST definition: On-demand service; Broad network access;

Resource Pooling; Rapid Elasticity and Measured Service.

As it is shown on Figure 2.1.4, the services provided by a cloud provider are

categorized into three service models (BADGER et al., 2011): Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Some providers

denominates other service models such as Database as a Service and Framework as a

Service. Those models are commonly defined as Everything as a Service (XaaS), but it is

possible to classify these models into one of the three defined by NIST.

The NIST cloud definition lists four implementation models: private, community,

public and hybrid. Each one of these models has its particularities regarding to aspects

such as network dependency, security, quantity of resources, among others. In the public

model the user rents the resources from a provider, the private and community models can

be used in two configurations, outsourced, where the user rents exclusive resources from

a provider, and on-site, where the resources are owned by the user. The hybrid model is a

combination between any of the other three models.

Generally we can say that a cloud service is controlled by a cloud platform, which

is responsible for all procedures related to the service. A cloud platform is a very abstract

term. In a practical approach it is made up of several components that are responsible for

its operation.

28

The base of any cloud service is the hardware. By hardware we mean servers,

storage and networking equipment. In a public cloud provider this hardware is maintained

in a datacenter facility. The hardware is normally grouped into a container, that holds

thousands of physical machines and storages interconnected with a high-speed network.

This strategy is used by providers to optimize energy consumption. The containers are

switched on and off according to user demand, each container has its own cooling system

that is only used when the container is turned on.

In a cloud service normally the machines and storages offered to the users are a

virtualization of real hardware. The component that performs this virtualization is the

hypervisor. Basically the hypervisor controls the underlying hardware and provides VMs

to the upper layers of the cloud platform. The hardware is a group of machines composed

by different sizes and configurations and also a different type of processor architectures

and operating systems. The purposes of the use of a hypervisor are to take care of all

this heterogeneity and provide a standard interface to the cloud platform. Example of

hypervisors that can be used are: Xen 1, KVM2, Virtualbox3, Hyper-V4 and VMware5.

The hypervisor layer delivers basically virtual machines to the other layers. The Virtual

Machines (VMs) are abstractions of real hardware and can be used for general purposes.

The resource manager is responsible for providing the interface between the re-

sources and the cloud platform. It controls the VM allocation and deallocation, also the

VM migration between different servers is controlled in this layer. The security of re-

sources is defined in this layer too. For example, the policies of VMs interconnection

are defined by the resource manager. This is the main component regarding the energy

consumption. Because this is the layer that decides when to power up a new machine, or

an entire container, according to the demand. The resource manager has the responsibility

to perform the VM consolidation to be possible turn off a server.

The main part of a cloud service is the cloud manager. This component performs

the entire administrative tasks of the cloud platform. The user authentication is performed

by the manager, that has a complete user record system controlling each user rights. The

consumption of resources that each user makes of the system and the pricing mode are

also controlled by this component. This control is used for billing purposes, in this way

it can be stated that the pay-per-use charging model is implemented here. The instance

1<http://www.openstack.org/>
2<http://www.linux-kvm.org/>
3<https://www.virtualbox.org/>
4<http://www.microsoft.com/hyper-v-server>
5<http://www.vmware.com/>

http://www.openstack.org/
http://www.linux-kvm.org/
https://www.virtualbox.org/
http://www.microsoft.com/hyper-v-server
http://www.vmware.com/

29

sizes of VMs and the standard operating systems are also defined in the cloud manager.

All the capabilities of customization of the images, size changing, multiple creation, user

access security, among others are controlled in this layer too. The user reports are gen-

erated and provided here. Examples of cloud managers are: OpenStack 6, Eucalyptus 7,

OpenNebula 8 and Nimbus 9. Several providers implement their own proprietary cloud

managers (ROLOFF et al., 2017).

The user interface is the front-end layer of the cloud platform. All the user-

provider interaction is made through this layer. The user interface is normally a web

page or a smart phone application, from the point of view of the user this layer is the

entire cloud platform. Commonly the cloud managers provide a standard user interface,

but each provider customizes it.

Microsoft started its initiative in cloud computing with the release of Microsoft

Azure10 in 2008, which initially was a PaaS to develop and run applications written in the

programming languages supported by the ṄET framework. At these days, the company

owns products that covers all types of service models.

Microsoft Azure PaaS is a platform developed to provide to the user, the capa-

bility to develop and deploy a complete application into Microsoft’s infrastructure. To

have access to this services, the user needs to develop his application following the pro-

vided framework. The Azure framework has support to a wide range of programming

languages, including all .NET languages, Python, Java and PHP. A generic framework is

provided in which the user can develop in any programming language that is supported

by Windows Operating System (OS).

Microsoft Azure IaaS is a service developed to provide to the user access to VMs

running in Microsoft’s infrastructure. The user has a set of base images of Windows and

Linux OS, but other images can be created using Hyper-V. The user can also configure an

image directly into the Azure and capture it to use locally or to deploy to another provider

that supports Hyper-V.

In this work, we use Microsoft Azure IaaS extensively, as the basis for our de-

ployment and evaluation. It completely fulfills our needs for a stable and flexible large

6<http://www.openstack.org/>
7<http://www.eucalyptus.com/>
8<http://opennebula.org/>
9<http://www.nimbusproject.org/>

10<http://azure.microsoft.com/>

http://www.openstack.org/
http://www.eucalyptus.com/
http://opennebula.org/
http://www.nimbusproject.org/
http://azure.microsoft.com/

30

scale platform to deploy VMs, as well as provides several tools to partially automate our

deployments of VMs using the Azure Command Line Interface (CLI) 11.

2.1.5 Distributed event stream processing systems

Applications that require real-time or near real-time processing functionalities

are changing the way that traditional data processing systems infrastructures operate.

They are pushing the limits of current processing systems forcing them to provide bet-

ter throughputs with the lowest possible latencies.

The main problems to be solved nowadays are not primarily focused on raw data,

but rather in the high-level intelligence that can be extracted from it. As a response,

systems were developed to filter, aggregate and correlate data, and notify interested parties

about its results, abnormalities, or interesting facts.

However, the distributed processing ecosystem today is mostly focused on Hadoop

(WHITE, 2012), which itself is the result of the Google’s Inc. research effort into large

scale processing, that ended up producing several tools — such as MapReduce (DEAN;

GHEMAWAT, 2004) and Google File System (GFS) (GHEMAWAT; GOBIOFF; LE-

UNG, 2003) — that were rewritten for the open source community through the Apache

Foundation.

Hadoop has proved that the development of large scale distributed processing sys-

tems on the cloud is achievable. After understanding that it was possible to develop such

systems, better approaches were proposed using Hadoop’s infrastructure, but focusing on

improving the performance of these kinds of systems. The aim was not to limit them

only to batch processing, but to evolve them into systems of near real-time processing

(CARVALHO; ROLOFF et al., 2013).

During the development of applications that aim to achieve better throughputs

using Hadoop, its bottlenecks were exposed, proving that it is not the best platform for

certain kinds of intensive data processing systems, being better for workloads that are

more batch processing oriented. Aiming improvements in the fields in which Hadoop

failed, new approaches to distributed processing were proposed, focusing each time on

more reliable processing systems that are not heavily bounded by intensive processing

workloads (PAVLO et al., 2009).

11<https://azure.microsoft.com/pt-br/documentation/articles/xplat-cli/>

https://azure.microsoft.com/pt-br/documentation/articles/xplat-cli/

31

These efforts generated a convergence between event processing systems and dis-

tributed processing systems, in direction for a merge between those fields. Nowadays

event processing systems have been developed focusing on ways for distribute data pro-

cessing. On the other hand, the most recent distributed processing systems also include

complex built-in tools and specific Advanced Programming Interface (API) for easier the

process of analysing data (CARVALHO; ROLOFF; NAVAUX, 2013).

We can trace the development of the event stream processing area back to Data

Stream Management Systems (DSMSs), such as TelegraphCQ (CHANDRASEKARAN

et al., 2003) and Aurora/Borealis (ABADI et al., 2003) (ABADI et al., 2005), which are

similar to Database Management Systems (DBMSs), but focused on managing continu-

ous data streams. In contrast to DBMSs, they execute a continuous query that is not only

performed once, but is permanently executed until it is explicitly stopped. The devel-

opment of the area could also be traced back to the origins of Complex Event Process-

ing (CEP) systems, which are event processing systems that combine data from multiple

sources to infer events or patterns that suggest more complicated situations. These sys-

tems are represented broadly by traditional content-based publish-subscribe systems like

Rapide (LUCKHAM et al., 1995) and TESLA/T-Rex (CUGOLA; MARGARA, 2010)

(CUGOLA; MARGARA, 2012).

In the evolution of both kinds of systems, a process of convergence between

DSMSs systems and CEP systems had generated intersections between those fields, com-

plicating more the characterization of them in distinct and clear groups.

Aiming to solve this naming problems, efforts were done to group all those kinds

of systems into a common terminology. The term Information Flow Processing (MAR-

GARA; CUGOLA, 2011) was created to refer to an application domain in which users

need to collect information produced by multiple sources, to process it in a timely way, in

order to extract new knowledge as soon as the relevant information is collected.

As well as the information processing systems had aggregated characteristics of

distributed processing systems, many distributed processing system are aggregating in-

formation flow processing capabilities into their platforms. These changes are making it

harder to explain the differences between them, because they are merging into tools that

offer characteristics of both of them (CARVALHO; ROLOFF; NAVAUX, 2013).

These new systems have their designs strongly driven by the trend towards cloud

computing, which requires the data stream processing engines to be highly scalable and

robust towards faults. This trend can be seen through well-known systems of this gen-

32

eration, such as Flink (CARBONE et al., 2015) and Spark Streaming (ZAHARIA et al.,

2013).

More specifically, this generation of streaming systems present a pattern towards

a set of common requirements: 1) the scenarios typically involve input streams with high

up to very high data rates (> 10000 event/s); 2) they have relaxed latency constraints

(up to a few seconds); 3) the use cases require the correlation among historical and live

data; 4) they require systems to elastically scale and to support diverse workloads and; 5)

they need low overhead fault tolerance, supporting out-of-order events and exactly once

semantic (HEINZE et al., 2014).

2.1.6 Internet of things

IoT is a novel paradigm that is rapidly gaining ground in the scenario of modern

wireless telecommunications. The IoT builds on the pervasive presence around us of a

variety of things or objects – such as Radio-Frequency Identification (RFID) tags, sensors,

actuators, mobile phones, etc. – which, through unique addressing schemes, are able

to interact with each other and cooperate with their neighbors to reach common goals

(ATZORI et al., 2010).

However, for the IoT vision to successfully emerge, the computing criterion will

need to go beyond traditional mobile computing scenarios that use smartphones and porta-

bles, and evolve into connecting everyday existing objects and embedding intelligence

into our environment. For technology to disappear from the consciousness of the user, the

IoT demands: (1) a shared understanding of the situation of its users and their appliances,

(2) software architectures and pervasive communication networks to process and convey

the contextual information to where it is relevant, and (3) the computational artifacts in the

IoT that aim for autonomous and smart behavior. With these three fundamental grounds

in place, smart connectivity and context-aware computation via anything, anywhere, and

anytime can be accomplished (YAN et al., 2008).

Gartner, Inc. forecasts that the IoT will reach 26 billion units by 2020, up from

0.9 billion in 2009, and will impact the information available to supply chain partners and

how the supply chain operates. From production line and warehousing to retail delivery

and store shelving, the IoT is transforming business processes by providing more accurate

and real-time visibility into the flow of materials and products. Firms will invest in the IoT

to redesign factory workflows, improve tracking of materials, and optimize distribution

33

Figure 2.2: The internet of things paradigm as the convergence of different visions (AT-
ZORI et al., 2010)

costs. For example, large enterprises such as John Deere and UPS are already using IoT-

enabled fleet tracking technologies to cut costs and improve supply efficiency (LEE et al.,

2015).

In Figure 2.2, the main concepts, technologies and standards are highlighted and

classified with reference to the IoT visions they contribute to characterize best. From

such an illustration, it clearly appears that the paradigm shall be the result of the conver-

gence of three main visions. The "Internet oriented" together with the "Things oriented"

perspective imply the huge number of interconnected devices connected through unique

addressing protocols. The "Semantic oriented" perspective, on the other hand, represents

the challenges in data representation for storage and information exchange (ATZORI et

al., 2010).

2.1.7 Fog computing

The concept of fog computing (STOJMENOVIC, 2014) emerged from the concept

that part of the computing can be brought back near the edge devices. The term fog

computing has been proposed by Cisco in 2012.

34

The fog computing architecture extend the cloud computing paradigm to the edge

of the network. The edge devices (i.e. routers, gateways etc.) can be used as the comput-

ing nodes along with the existing cloud data centers.

Fog computing has been envisioned to provide computation from the network

edge, through the network core and to the cloud data centers.

The different services are hosted in the fog nodes, which are using its resources

through the hypervisor, the management software for virtualizing the computing environ-

ment. Fog computing does the proper interplay of the services with the cloud.

The applications which require real time response and context aware computing

rely on the fog computing framework. Furthermore, there are situations where there are

need for supporting huge amounts of data generated from the IoT devices. Cloud com-

puting alone is not sufficient in these situations as there is a requirement of real-time

service provisioning. The typical applications of fog computing paradigm can be in real

time health-care monitoring systems, smart cities, smart grids, vehicular ad-hoc network

(VANET) etc. Being loosely coupled and highly distributed, QoS management and dy-

namic adaptability are the key challenges faced by the fog computing domain which need

to be solved.

The OpenFog Consortium was founded to drive industry and academic leadership

in fog computing architecture, testbed development, and a variety of inter-operability and

composability deliverables that seamlessly leverage cloud and edge architectures to en-

able end-to-end IoT scenarios. OpenFog Consortium published a white paper on fog com-

puting in February 2016, in which the OpenFog Consortium’s approach to an open fog

computing architecture (OpenFog architecture) has been outlined (GROUP et al., 2016).

Fog computing different from edge computing provides tools for distributing, or-

chestrating, managing and securing resources and services across networks and between

devices that reside at the edge. Edge architecture places servers, applications, and small

clouds at the edge. Fog jointly works with the cloud, while edge is defined by the exclu-

sion of cloud (AI; PENG; ZHANG, 2018).

2.1.8 Edge computing

Edge computing is a new paradigm in which substantial computing and storage

resources – variously referred to as cloudlets, micro datacenters, or fog nodes – are placed

at the Internet’s edge in close proximity to mobile devices or sensors.

35

The roots of edge computing reach back to the late 1990s, when Akamai 12 intro-

duced content delivery networks (CDNs) to accelerate web performance.

A CDN uses nodes at the edge close to users to prefetch and cache web con-

tent. These edge nodes can also perform some content customization, such as adding

location-relevant advertising. CDNs are especially valuable for video content, because

the bandwidth savings from caching can be substantial (WEIN et al., 2007).

Edge computing generalizes and extends the CDN concept by leveraging cloud

computing infrastructure. As with CDNs, the proximity of cloudlets to end users is cru-

cial. However, instead of being limited to caching web content, a cloudlet can run ar-

bitrary code just as in cloud computing. This code is typically encapsulated in a VM

or a lighter-weight recognition could be implemented with acceptable performance on a

resource-limited mobile device by offloading computation to a nearby server.

Cloud computing’s emergence in the mid-2000s led to the cloud becoming the

most obvious infrastructure to leverage from a mobile device. Today, Apple’s Siri and

Google’s speech-recognition services both offload computation to the cloud. Unfortu-

nately, consolidation implies large average separation between a mobile device and its

optimal cloud datacenter.

Observations about end-to-end latency and cloud computing were first articu-

lated in a 2009 article that laid the conceptual foundation for edge computing (SATYA-

NARAYANAN et al., 2009). In this article authors advocated a two-level architecture:

the first level is today’s unmodified cloud infrastructure; the second level consists of dis-

persed elements called cloudlets with state cached from the first level. Using persistent

caching instead of hard state simplifies the management of cloudlets despite their physical

dispersal at the Internet edge.

In order to accelerate the development of the ecosystem based on cloudlets, the

Open Edge Computing (OEC) initiative has been launched in June 2015 by Vodafone,

Intel, and Huawei companies in partnership with Carnegie Mellon University. Similarly,

Nokia Networks company introduced a computing platform in 2013, which is integrated

with the base station. The initial concept that applications and services are executed at

the edge of the network has been formed gradually. In September 2014, a new industry

specification group (ISG) was proposed to be set up in European Telecommunications

Standards Institute (ETSI) to allow the creation of industry specifications for multi-access

edge computing (MEC), which has been supported by Huawei, IBM, Intel, Nokia Net-

12<https://www.akamai.com>

https://www.akamai.com

36

works, NTT DoCoMo, Vodafone, and etc. In MEC World Congress 2016, the MEC ISG

has renamed Mobile Edge Computing as Multi-access Edge Computing in order to reflect

the growing interests from non-cellular operators (AI; PENG; ZHANG, 2018).

Edge computing clearly offers many benefits. At the same time, it also faces many

technical and nontechnical challenges. On the technical side, there are many unknowns

pertaining to the software mechanisms and algorithms needed for the collective control

and sharing of cloudlets in distributed computing. There are also substantial hurdles in

managing dispersed cloudlet infrastructure.

One of cloud computing’s driving forces is the lower management cost of central-

ized infrastructure. The dispersion inherent in edge computing raises the complexity of

management considerably. Developing innovative technical solutions to reduce this com-

plexity is a research priority for edge computing. Another important area of study will

be the development of mechanisms to compensate for the weaker perimeter security of

cloudlets, relative to cloud datacenters.

Since the 60s, computing has alternated between centralization and decentraliza-

tion. The centralized approaches of batch processing and timesharing prevailed in the 60s

and 70s. During the 80s and 90s saw decentralization through the rise of personal com-

puting. By the mid-00s, the centralized approach of cloud computing began its ascent to

the preeminent position that it holds today. Edge computing represents the latest phase of

this ongoing dialectic (SATYANARAYANAN, 2017).

2.2 Smart grid

For 100 years, there has been no change in the basic structure of the electrical

power grid. Experiences have shown that the hierarchical, centrally controlled grid of

the 20th Century is ill-suited to the needs of the 21st Century. To address the challenges

of the existing power grid, the new concept of smart grid has emerged. The smart grid

can be considered as a modern electric power grid infrastructure for enhanced efficiency

and reliability through automated control, high-power converters, modern communica-

tions infrastructure, sensing and metering technologies, and modern energy management

techniques based on the optimization of demand, energy and network availability, and so

on. While current power systems are based on a solid information and communication

infrastructure, the new smart grid needs a different and much more complex one, as its

dimension is much larger (GÜNGÖR et al., 2011).

37

According to the U.S. Department of Energy report, the demand and consump-

tion for electricity in the U.S. have increased by 2.5% annually over the last 20 years

(GUNGOR; LU; HANCKE, 2010). Today’s electric power distribution network is very

complex and ill-suited to the needs of the 21st Century. Among the deficiencies are a lack

of automated analysis, poor visibility, mechanical switches causing slow response times,

lack of situational awareness, etc (ENERGY, 2015). These have contributed to the black-

outs happening over the past 40 years. Some additional inhibiting factors are the growing

population and demand for energy, the global climate change, equipment failures, energy

storage problems, the capacity limitations of electricity generation, one-way communica-

tion, decrease in fossil fuels, and resilience problems (EROL-KANTARCI; MOUFTAH,

2011). Also, the greenhouse gas emissions on Earth have been a significant threat that

is caused by the electricity and transportation industries (SABER; VENAYAGAMOOR-

THY, 2011). Consequently, a new grid infrastructure is urgently needed to address these

challenges.

Due to the emergence of newer technologies to energy grids and their direct appli-

cability to cloud and edge processing, smart grids were selected to be the case study used

to evaluate the model implementation.

2.2.1 Advanced metering infrastructure

The Advanced Metering Infrastructure (AMI) is regarded as the most fundamental

and crucial part of smart grid. It is designed to read, measure, and analyse the energy

consumption data of consumers through smart meters in order to allow for dynamic and

automatic electricity pricing.

AMI requires a two way communication and spans through all the network com-

ponents of smart grid from the private networks and Field Area Networks to Wide Area

Networks. AMI goes beyond automatic meter reading scenarios which according to IEC

61968-9 — a series of standards under development that will define standards for infor-

mation exchanges between electrical distribution systems — only have to do with meter

reading, meter events, grid events and alarms. AMI will include customer price signals,

load management information, power support for prepaid services, Home Energy Man-

agement Systems and Demand Response. It can also be used to monitor power quality,

electricity produced or stored by distributed energy resources units as well as intercon-

nected intelligent electronic devices (ANCILLOTTI; BRUNO; CONTI, 2013).

38

In addition, AMI is also expected to support customer switch between suppliers

and help in detection and reducing electricity theft. Electricity theft has plagued many

utilities companies especially in developing countries. To address these issues, authors

in (ANAS et al., 2012) have reviewed electricity theft and reduction issues using security

and efficient AMIs (TSADO; LUND; GAMAGE, 2015).

2.2.2 Demand side management

Demand Side Management (DSM) is the action that influences the quantity or

pattern of energy consumption by end users. These actions may include targeting re-

duction of peak demand by end users during periods when energy supply systems are

constrained. Energy peak management does not necessarily decrease the amount of to-

tal energy consumption, but it will reduce the need for investments on power generation

sources or spinning reserves at peak periods (WANG; XU; KHANNA, 2011) (DAVITO;

TAI; UHLANER, 2010). DSM includes the following:

• Demand Response enabling the utility operator to optimally balance power gener-

ation and consumption either by offering dynamic pricing programs or by imple-

menting various load control programs.

• Load Management through dynamic pricing which helps to reduce energy con-

sumption during peak hours by encouraging customers to limit energy usage or

shifting demand to other periods. Existing dynamic pricing programs include:

Time-of-use, Real-Time Pricing, Critical Peak timing and Peak time Rebates.

• Conservation of energy through load control program which involve performing re-

mote load control programs where communicating networks are used to control us-

age of appliances remotely to use less energy across many hours (TSADO; LUND;

GAMAGE, 2015).

2.2.3 Consumption forecasting

The term forecasting is frequently confused with the terms prediction and pre-

dictive analytics. A prediction in the general sense involves an imagination of an oracle

which can reason about the past based on some experience and which on this basis is able

to look into future to predict a certain event.

39

Prediction and predictive analytics in the scientific sense means predicting a be-

havior of someone or a trend characterized with a probability and based on statistical data

analysis and the current evolution. In contrast, forecasting refers to predicting an (aggre-

gated) value, or an occurrence of an event at certain time point, based on historical data

analysis, the current state and sometimes on predictive analytics (ANALYTICSWORLD,

2015).

Electricity load forecasts provide a prediction of an amount of electricity con-

sumed at a certain point of time. The purpose of electricity load forecasting is in most

cases an efficient economic and quality planning. Good forecasts ensure economic prof-

itability of the service and safety of the network.

Energy consumption forecasts can be performed on different levels of time interval

resolution. The range of the forecasts generally depends on the available reliable data and

the goal of the forecast. Usually, the following three terms for forecasting interval are

used: short term, medium term and long term forecasts (ALFARES; NAZEERUDDIN,

2002).

• Short Term Load Forecasting (STLF) means to give forecasts for the next min-

utes up to one day on minutes or hourly basis. Such forecasts are required for the

scheduling, capacity planning and control of power systems.

• Medium Term Load Forecasting (MTLF) are required for planning and operation

of power systems. Such forecasts can be provided from one day to months ahead

on hourly or days basis.

• Long Term Load Forecasting (LTLF), in contrast to short and medium term fore-

casting which support operational decisions, has the aim to support strategic deci-

sions, more than a year ahead.

Metrics to measure the quality of load forecasting can be subdivided into two

main categories: Measuring the forecast accuracy and measuring the processing delay

(latency).

2.3 Related work and discussion

The main works on the state of the art of edge computing focus on platforms and

frameworks aiming to provide scalable processing as close as possible to the network

border. These approaches are primarily focused on providing the lowest possible latency

40

results and better utilize the resources available on the network. MECs and Cloudlets,

which can be described as cloud-like deployments at the network edge, are currently the

predominant approaches to address these challenges.

The most prominent approaches and how they relate to this work are briefly de-

scribed below. At the end of this section there are detailed explanations of the relationship

between the works on the state of the art and the model proposed in this work.

The state of the art works include FemtoClouds (HABAK et al., 2015), REPLI-

SOM (ABDELWAHAB et al., 2016), Cumulus (GEDAWY et al., 2016), CloudAware (ORSINI

et al., 2016), ParaDrop (LIU et al., 2016), HomeCloud (PAN et al., 2016), ENORM (WANG

et al., 2017), RT-SANE (SINGH et al., 2017), EdgeIoT (SUN; ANSARI, 2016) and cloud

provider based implementations (TÄRNEBERG; CHANDRASEKARAN; HUMPHREY,

2016), which are examples of applications that explore computational offloading to nearby

devices.

One important thing to perceive is that the majority of the related works either rely

on offloading computation to edges that are underutilized or offload processing to nearby

network centralizers (modified wireless network access points or specialized mobile net-

work base station hardware). EdgeIoT (SUN; ANSARI, 2016) stands apart on this aspect

by exploring computation to considerably more performance nodes, by relying on virtual

machines in a nearby mobile base station.

Several works on the state of the art either rely on hardware specific tools or sig-

nificant modifications on their underlining communication protocols. This work, on the

other hand, relies on standard tools and protocols that add flexibility and turn easier to

port it to other platforms.

Examples of applications which require significant changes in the underlining

communication protocols or specific hardware are ParaDrop, a specific edge computing

framework implemented on WiFi Access Points (APs) or other wireless gateways (such as

set-top boxes). It uses a lightweight virtualization framework through which third-party

developers can create, deploy, and revoke their services in different APs.

HomeCloud (PAN et al., 2016) focus on being an open and efficient new appli-

cation delivery in edge cloud, by integrating two complementary technologies: Network

Function Virtualization (NFV) and Software-Defined Networking (SDN).

EdgeIoT, in its turn, is an architecture to handle data stream at the mobile edge.

The central idea consists of fog nodes communicating with a VM positioned at a nearby

41

Table 2.1: Research scope comparison of the state-of-the-art with the proposed work
Name Cloud Edge Mobility Large Scale Hardware Agnostic

GaruaGeo (this work) • • • •

ENORM • • •

RT-SANE • • •

Tarneberg et al. • • •

HomeCloud • • •

CloudAware • • •

FemtoClouds • •

REPLISOM • •

Cumulus • • •

ParaDrop • •

EdgeIoT • •

base station. On the top of the fog nodes, the SDN based cellular core is designed to

facilitate the package forwarding among fog nodes.

Multiple works, like Cumulus (GEDAWY et al., 2016), FemtoClouds (HABAK

et al., 2015), CloudAware (ORSINI et al., 2016) and RT-SANE (SINGH et al., 2017)

have a greater focus on task placement, providing dynamic scheduling capabilities for

operators and tasks (such as tasks migration functionalities) which are beyond the scope

of this work. Cumulus (GEDAWY et al., 2016) provides a complete framework that

controls task distribution under a heterogeneous set of devices on its cloudlet. Femto-

Clouds (HABAK et al., 2015) and CloudAware (ORSINI et al., 2016) monitor device

usage on its cloudlets in order to improve device usage as part of its scheduling algo-

rithms. CloudAware (ORSINI et al., 2016) also provides a specific API to improve the

user experience of software developers. RT-SANE (SINGH et al., 2017) evaluates several

scheduling heuristics in comparison to a cloud-only scenario.

Although the related works present multiple initiatives on Edge Computing to-

wards computational offloading, only the work of Tärneberg et al. (TÄRNEBERG; CHAN-

DRASEKARAN; HUMPHREY, 2016), ENORM (WANG et al., 2017) and RT-SANE

(SINGH et al., 2017) explore the potential of combining low latency edge nodes pro-

cessing with scalable and more powerful sets of commodity machines on public clouds.

However, ENORM (WANG et al., 2017) evaluation only considers a small set of edge

nodes communicating with a nearby Amazon Web Services (AWS) cloud node in Dublin.

RT-SANE (SINGH et al., 2017), in its turn, relies on a specific fog simulator to obtain

42

its results, which limits the scope in comparison to a real-world evaluation. Finally, the

work of Tärneberg et al. (TÄRNEBERG; CHANDRASEKARAN; HUMPHREY, 2016)

directly offload from the edges devices to the cloud infrastructure, which limits the scope

of the work in relation to data aggregation.

These types of systems, which represent the convergence between edge and cloud

computing, are described in a recent survey paper as 4th generation distributed stream

processing systems (ASSUNCAO; VEITH; BUYYA, 2018).

Apart from that, most works presented in this section either rely on generated

datasets or small datasets (tenths of mobile devices) for its evaluations. On the other hand,

the present work uses a realistic dataset, based on a real-world dataset from household

energy consumption in Germany (ZIEKOW; JERZAK, 2014).

In Table 2.1, we present a comprehensive description of the coverage of the state

of the art in comparison with this work. In comparison to the state of the art, this work

is the only one that combines the given characteristics: (1) Focus on hybrid processing

(edge nodes working in collaboration with cloud computing resources); (2) Does not focus

on mobility issues; (3) Does not rely on specific hardware extensions to its processing

mechanism (uses commodity hardware); (4) Provides a large scale evaluation (thousands

of nodes in comparison to tenths of nodes on the similar works).

The taxonomy used follows the ideas found on recent surveys on fourth-generation

distributed stream processing systems, fog computing and edge computing (ASSUNCAO;

VEITH; BUYYA, 2018) (ATZORI; IERA; MORABITO, 2010) (MAO et al., 2017) (MAH-

MUD; KOTAGIRI; BUYYA, 2018).

43

3 GARUA: ARCHITECTURE AND IMPLEMENTATION

The Garua architecture was designed to provide an innovative model to aggregate

data in edge and cloud computing environments, combining the existing cloud computing

resources and research knowledge to the recent advances in fog and edge computing.

This work builds on top of the authors previous research on cloud computing ap-

plied to IoT data profiles (CARVALHO; ROLOFF; NAVAUX, 2017).

The main idea is that Garua should provide a high performance aggregation model

that leverages the existing research in distributed stream processing systems and applies

it to the context of edge computing.

In this Chapter, we introduce the Garua architecture, their layers and the reasoning

behind the model design and implementation. Section 3.1 describes which layers com-

pose the model and explains their high level responsibilities. Section 3.2 describes the

cloud layer, its design and details about the implementation. Section 3.3 describes the

edge layer, its design and details about the implementation using physical hardware. Sec-

tion 3.4 describes the sensor layer, its design and details about their simulation using a

realistic dataset. Section 3.5 describes the reasoning behind the selection of the commu-

nication protocol. Section 3.6 describes the algorithm used to evaluate the platform on

Chapter 4.

3.1 Architectural overview

The architectural infrastructure of the testbed application deployment can be de-

scribed as a composition of three layers, as it is represented on Figure 3.1: (1) Cloud layer,

which executes long running scalable jobs that can provide more performant processing

with the trade-off of greater latencies; (2) Edge layer, which is composed by edge nodes

that are used to pre-process and aggregating data before sending to the Cloud; and the

(3) Sensor layer, which is composed by the sensors that communicate directly with Edge

layer nodes to receive actuation requests and provide measurements to the network.

44

Figure 3.1: The architecture is composed by 3 layers: Cloud, Edge and Sensor
VM VM VM

VM

Cloud
Layer

Edge Node Edge Node Edge Node Edge
Layer

Sensor Sensor Sensor Sensor Sensor
Sensor
Layer

3.2 Cloud layer

This layer is composed by virtual machines that execute the application in order

to aggregate data to be received from edge layer nodes. The cloud layer should be com-

posed by elements that can be able to process data as it arrives. It can be instantiated by

implementing the same application logic from the layer below, but instead it should be

configured to receive data from multiple edge nodes.

This layer receives data from queues and exchanges through a message hub, so that

the inputs can be parallelized through multiple consumers. It can also be configured to

support clusters of machines to execute transformations as distributed stream processing

jobs over these queues and exchanges.

Table 3.1: Cloud layer configuration: Virtual machine type and toolset description
Parameter Description

Instance Type Basic_A3 (4 cores, 7 GB RAM)
Operating System Ubuntu 16.04 LTS
Location Brazil South
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0
Network Interconnection 5Mbps HFC (Edge to Cloud)

In the evaluation work, the model is implemented as an application running in a

single node inside a Linux VM at Microsoft Azure, which was chosen due to its perceived

benefits over other cloud platforms (ROLOFF et al., 2012) (ROLOFF et al., 2017). This

application was written in Go programming language and receives processing request

from the layer below through GRPC Remote Procedure Calls (GRPC) communication

framework. The VM instance utilized was configured as it is described in Table 3.1.

45

3.3 Edge layer

The edge layer is composed by a set of nodes with transformation operators to

apply over sensor measurements one-at-time. Operators can be either transformations

over results, combinations with sets of measurements received or mappings to machines

on the cloud layer above.

On this layer, the application code will be expressed to define which computation

will be done inside of edge nodes and which computation will be managed by VMs on

the cloud computing environment. The degree of control provided by this level makes it

possible to decrease the number of messages sent to the cloud. In this way, it is possible

to decrease the amount of data that is sent to the cloud. Also, by processing certain

amounts of data directly on the edge nodes, the latency experienced by actuator sensors is

in the order of tenths of milliseconds instead of a couple of seconds of cloud processing

latencies.

Actuator sensor logic can also be implemented on this layer, in such a way that

when a given condition is matched by an edge node, it can trigger actuators on the Sensor

layer in order to act on external applications. For example, a consumer can configure its

smart grid energy meter to maintain the energy consumption below a certain level during

peak cost energy hours. In this way, the smart grid meter can turn off certain machines

when the average consumption reaches a certain threshold.

In the evaluation testbed, this layer was composed by a set of Raspberry Pi edge

nodes connected to the internet through wireless connection. Each edge node is a com-

plete Linux machine running an application in an Advanced RISC Machine (ARM) ar-

chitecture. They were configured to communicate with the underlining sensors directly,

as well as the Linux VM on the Azure cloud service. The configuration of the edge nodes

is described in details on Table 3.2.

3.4 Sensor layer

The sensor layer is represented by a given set of sensors that communicate with

the Edge nodes. Ideally, sensors should communicate with edge nodes through their

available input/output hardware interconnections or lightweight wireless connection such

as Bluetooth or Long-Term Evolution (LTE) networks. However, in order to limit the

46

Table 3.2: Edge layer configuration: Architecture and software description
Parameter Description

Number of Edge Nodes 4
Hardware Raspberry Pi Zero W
Hardware CPU 1 GHz Single Core CPU
Hardware RAM 512 MB
Operating System Raspbian Jessie Lite 4.4
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0
Wireless Router HUMAX HG100R

analysis scope of this work, the sensor network dataset is previously loaded into edge

nodes prior to the execution of tests.

Smart grid environments rely on specific meters and plugs on households to collect

data, which are provided by the energy grid provider or standardized to support only a

set of accepted and verified plugs and meters types. The data types generated by these

environments also need to respect a certain schema to be shared, aggregated and analyzed

by the energy provider companies.

The dataset used to the evaluation of this work is based on the dataset provided by

by the 8th ACM International Conference on Distributed Event-Based Systems (DEBS).

This conference provides competitions with problems which are relevant for the industry.

In the year of 2014, the conference challenge focus was on the ability of CEP systems to

apply on real-time predictions over a large amount of sensor data. For this purpose, house-

hold energy consumption measurements where generated, based on simulations driven by

real-world energy consumption profiles, originating from smart plugs deployed in house-

holds (ZIEKOW; JERZAK, 2014). For the purpose of this challenge, a large number of

smart plugs has been deployed in households with data being collected roughly every

second for each sensor in each smart plug.

3.5 Communication protocol

Although multiple protocols for communication in IoT systems have been pro-

posed in the recent years, the protocols in use today are still being evaluated and are sub-

ject of discussion and standardization initiatives, mainly due to advancements of internet

protocols to support mobile and IoT applications. The most widely adopted protocols in

47

use today are, respectively, MQTT (BANKS; GUPTA, 2014) and CoAP (BORMANN et

al., 2012).

One of the most prominent proposals on this area is the HTTP/2 protocol. The

standard was finished in 2005 and provides several improvements over previous protocols,

mainly due to the capability of multiplexing data, avoiding handshake overhead and their

data compression capabilities (BELSHE et al., 2015) (RUELLAN; PEON, 2015).

As an alternative to broker centric communication protocols and synchroniza-

tion costly protocols such as Representational State Transfer (REST) (RICHARDSON;

RUBY, 2008), Google Inc. has adopted a Remote Procedure Call (RPC) protocol and ser-

vice discovery framework Stubby/Chubby (BURROWS, 2006). The open source version

of its tool is called GRPC (Google, 2015), which relies on HTTP/2 in order to avoid hand-

shake overhead, and Protocol Buffers (GLIGORIĆ et al., 2011) to communicate using a

binary method, which provides better data compaction by reducing the message size.

Due to the performance benefits reported from the usage of HTTP/2 protocols

over standard HyperText Transfer Protocol (HTTP), and their ease of usage for flexible

prototyping of distributed applications, GRPC was used to build a reliable and fast com-

munication channel for all of the communication layers implemented on this work.

GRPC as a communication platform presents several advantages over TCP only

connections and communication protocols such as REST. Its has a simple interface which

hides configuration complexity but is still able to provide high level features, such as

long lived connections (to avoid unnecessary communication handshakes) and commu-

nication multiplexing inside a small number of channels (reducing the number of re-

quired connections open at a given point in time). However, their usage is still sub-

ject of evaluation, mainly on networks with high package loss percentages, which are a

limiting factor not only for HTTP/2 but also for Advanced Message Queuing Protocol

(AMQP) based applications (GOEL et al., 2016) (LEE et al., 2013) (CHOWDHURY et

al., 2015) (THANGAVEL et al., 2014).

3.6 Measurement algorithm

In order to extract metrics from the data collected by sensors, we have selected a

widely used approach to aggregate and generate STLF for smart grids data. The algorithm

was chosen not only due to the fact it is well-known by the community by the research

48

community but also because it provides the potential to be applied at multiple aggregation

layers.

Smart grids promise to provide better control and balance of energy supply and

demand through near real-time, continuous visibility into detailed energy generation and

consumption patterns. Methods to extract knowledge from near real-time and accumu-

lated observations are hence critical to the extraction of value from the infrastructure

investment.

In this context, STLF refers to the prediction of power consumption levels in the

next hour, next day, or up to a week ahead. Methods for STLF consider variables such as

date (e.g., day of week and hour of the day), temperature (including weather forecasts),

humidity, temperature-humidity index, wind-chill index and most importantly, historical

load. Residential versus commercial or industrial uses are rarely specified.

Time series modeling for STLF has been widely used over the last 30 years and

a myriad of approaches have been developed. These methods (KYRIAKIDES; POLY-

CARPOU, 2007) can be summarized as follows:

• Regression models that represent electricity load as a linear combination of vari-

ables related to weather factors, day type, and customer class.

• Linear time series-based methods including the Autoregressive Integrated Moving

Average (ARIMA) model, auto regressive moving average with external inputs

model, generalized auto-regressive conditional heteroscedastic model and State-

Space Models (SSMs).

• SSMs typically relying on a filtering-based (e.g., Kalman) technique and a charac-

terization of dynamical systems.

• Nonlinear time series modeling through machine learning methods such as nonlin-

ear regression.

Shawkat Ali (ALI, 2013) argues that the three most accurate models for load pre-

diction are, respectively, Multilayer Perceptron (MLP), Support Vector Machine and Least

Mean Squares. Due to the model fit in relation to the distributed architecture, it was

decided to implement an approach similar to the suggested by the DEBS 2014 confer-

ence committee (ZIEKOW; JERZAK, 2014), that is schematically described in Equa-

tion (3.1). This approach could be interpreted as a mixed approach between MLP and

ARIMA. It brings together characteristics from both Linear time series-based methods

and SSMs (BYLANDER; ROSEN, 1997).

49

More specifically, the set of queries provide a forecast of the load for: (1) each

house, i.e., house-based and (2) for each individual plug, i.e., plug-based. The forecast

for each house and plug is made based on the current load of the connected plugs and a

plug specific prediction model.

L(si+2) =
avgL(si)+median(avgL(s j))

2
(3.1)

In the Equation (3.1), avgL(si) represents the current average load for the slice si.

The value of avgL(si), in case of plug-based prediction, is calculated as the average of

all load values reported by the given plug with timestamps ∈ si. In case of a house-based

prediction the avgL(si) is calculated as a sum of average values for each plug within the

house. avgL(s j) is a set of average load value for all slices s j such that:

s j = si+2−n∗k (3.2)

In the Equation (3.2), k is the number of slices in a 24 hour period and n is a

natural number with values between 1 and f loor(i+2
k). The value of avgL(s j) is calcu-

lated analogously to avgL(si) in case of plug-based and house-based (sum of averages)

variants.

50

51

4 GARUA: EVALUATION

In this Chapter, the performance of the Garua architecture (CARVALHO et al.,

2017b) is evaluated under three main aspects: Communication, application and latency

impact. Section 4.1 analyses the network communication between edge processors and

cloud nodes and compare the raw network traffic results to the application performance

with distinct message sizes. Section 4.2 discusses about experiments executed to test

potential hypothesis to improve the model implementation performance and their draw-

backs. The model implementation is tested using multiple green threads, multiple edge

nodes and message windowing at the edge. Section 4.3 evaluates the platform using a

latency simulation mechanism, in order to further understand the latency impact for win-

dowed and non-windowed requests.

4.1 Communication evaluation

In order to successfully evaluate the testbed middleware implementation, the first

step is to evaluate the underlining network connection. The network evaluation started by

measuring the maximum amount of data that could be sent from edge nodes to the cloud

provider, using the specified network router and the given network connection described

on Chapter 3.

Table 4.1: Network measurements with Iperf
Parameter Edge to Edge Edge to Cloud

TCP window size 43.8 KByte 43.8 KByte
Interval 60 seconds 60 seconds
Total transfered 388MBytes 7.76 MBytes
Bandwidth 54.1Mbits/sec 1.03 Mbits/sec

The measurements started with the throughput analysis through the Iperf tool (TIRU-

MALA et al., 2005). Those experiments have shown that the average throughput was

slightly below the network bandwidth described by the provider, which is common on

internet providers of cable connections and was expected on the measurement results

(DISCHINGER et al., 2007). The results obtained of this first measurement step are de-

scribed on Table 4.1.

52

Figure 4.1: PingPong: Latency Percentiles by Message Sizes (32KB to 1MB).

50th 90th 99th
0

5,000

10,000

15,000

20,000

Percentiles (ms)

La
te

nc
y

(m
s)

32KB 64KB 128KB 256KB 512KB 1024KB

After observing the real throughput of the underlining network, it was designed a

simple application in order to evaluate the performance or the GRPC middleware and the

HTTP/2 protocol with varying message sizes.

The simple application designed for this task was called PingPong, which is re-

sponsible to execute the following steps: (1) sends a message from the edge node to the

cloud node; (2) the cloud node receives the message and sends it back to the edge node,

completing a round-trip.

Distributed applications are prone to performance penalties due to effect of fat

tails on their latency distribution percentiles, which can be several times greater than the

expected average latency. On applications with multiple users that send thousands of

messages per second, it is a known fact that these fat tail latencies might be experienced

by several users of these systems (MAAS et al., 2015) (BAILIS; KINGSBURY, 2014).

In the Figure 4.1 it is possible to analyze the impact of message sizes, from 32KB

up to 1MB, in the latency of the messages being sent over the network. As shown on this

figure, the 50th percentile (the median), is as low as a couple of milliseconds for small

Figure 4.2: PingPong: Maximum Throughput by Message Size (32KB to 1MB)

32KB 64KB 128KB 256KB 512KB 1024KB
0

0.5

1

1.5

Size (KB)

Th
ro

ug
hp

ut
(Q

P
S

)

53

messages sizes, but it increases highly for tail latencies. The impact of messages that

are delayed by Garbage Collection (GC) pauses, package losses or other network failures

is a limiting factor depending on the application. These measurements also serve to as

a guideline to build message windows, given that it is possible to expect, for example,

messages latencies up to 2.5 seconds for 64KB messages at the 99th percentile.

The PingPong method was used to evaluate the maximum achievable network

throughput of the communication middleware, as it can be visualized on Figure 4.2. This

evaluation was important to understand that the usage of 64KB messages increases the

overall application throughput, which is probably due to a better fit on Transmission Con-

trol Protocol (TCP) windows used by the GRPC communication framework.

4.2 Application evaluation

The application evaluation was done by distributing the aggregation step of the

application processing between edge and cloud nodes. The main objective for this eval-

uation was to understand how latency impacts the processing throughput, as well as to

analyze the performance gains obtained by aggregating data on edge nodes before send-

ing data to the cloud.

In order to execute the evaluation, the data was preloaded on the edge nodes prior

to the execution of the tests. The schema is quite similar to the original dataset and

is composed by a timestamp, the value of the energy measurement (in Watts) and an

identifier id of the house/plug that is been measured. As it is compressed by the Protocol

Buffers binary protocol, the final message payload size is 32 bytes.

The evaluation can be better described in three phases: (1) Evaluation of the im-

pact of the concurrency degree on the throughput; (2) Scalability evaluation to understand

how the number of edge nodes impacts into the cloud node throughput; (3) Windowing

and strategies to aggregate data on the edge node before sending data to the cloud node.

4.2.1 Concurrency evaluation

Given that edge nodes execute multiple requests per second to its respective cloud

nodes, it is important to explore concurrency strategies to obtain performance gains by

executing multiple concurrent requests to remote services.

54

In the Go programming language, the concurrency execution is done not directly

through the creation of threads, but through Go’s green threads model which are called

Goroutines (TOGASHI; KLYUEV, 2014).

Figure 4.3: Concurrency Analysis: Impact of Goroutines usage on throughput (Edge and
Cloud nodes).

1 10 100
0

2,000

4,000

6,000

8,000

Concurrency (Number of Goroutines)

Th
ro

ug
hp

ut
(Q

P
S

)

Cloud Edge

The experiment on Figure 4.3 explores the interplay between the number of Gor-

outines used to process data and the overall application throughput obtained. The outcome

of this experiment suggests that both edge and cloud nodes are able to benefit from con-

currency. The experiments show that, in comparison with the sequential approach, it is

possible to achieve a 4 times speedup on the testbed application by using 100 Goroutines.

4.2.2 Scalability evaluation

One important aspect of the model is the ability to aggregate messages from mul-

tiple edge nodes. In order to understand the limits of cloud nodes to receive messages

from edge nodes, it was done a set of experiments to evaluate which was the perceived

impact on throughput as it was increased the number of edge nodes. In this experiment,

it was used a single cloud node communicating with one to four edge nodes.

As it is shown on Figure 4.4, a single cloud node was able to scale linearly up to

four edge nodes, each one of them maintaining an average of approximately 500 requests

per second.

55

4.2.3 Impact of message windowing

Finally, in order to explore the limitations of communication in terms of bandwidth

and latency, it was decided to explore distinct possibilities to aggregate multiple energy

measurements into edge nodes before sending data to cloud nodes. Prior to that, for each

new measurement, it was necessary to receive data at the edge node, send it to the cloud

to be processed and finally receiving an updated forecast.

In these experiments, as it is presented on Figure 4.5, it was analyzed the behavior

of the testbed application when processing locally grouped sets of messages before send-

ing it to the cloud. In this way, it was possible to validate the assumption that processing

more messages at the edge improves the overall throughput and increases scalability (by

decreasing the number of measurements being processed on the cloud node).

The results show that the overall application (the combination of cloud and edge

nodes) was able to process almost 800k messages per second by using 4 edge nodes and

window sizes of 1000 combined messages.

The approach that was used to build windows of processing consists in aggregating

the local measurements into a unified representation of the set. Using this approach, it was

possible to send the grouped view with the same payload size of a single message of the

window.

Figure 4.4: Scalability Analysis: Throughput with multiple consumers (1 to 4 edge
nodes).

1 2 4
0

1,000

2,000

Number of Edge Nodes (1 to 4)

Th
ro

ug
hp

ut
(Q

P
S

)

56

Figure 4.5: Windowing Analysis: Windowing impact on throughput (1 to 1000 messages
per request).

1 2 4
0

2 ·105

4 ·105

6 ·105

8 ·105

Number of Edge Nodes

Th
ro

ug
hp

ut
(Q

P
S

)

1 10 100 1000

4.3 Simulated latencies

In this section, it was made use of simulated latencies on a cloud computing envi-

ronment to evaluate the platform’s behavior on a large scale edge computing scenario.

All of the experiments described on this section were ran at least 20 times. Each

one of the nodes used on the following tests has sent groups of 10000 or 100000 messages

per execution between edge and cloud nodes. These experiments were executed using in-

stances with concurrency degree of 100 goroutines, which was selected due to the results

obtained on the previous experiments on Section 4.2.1.

In order to simulate the latency behavior, this simulation was first validated on

Section 4.3.1. After this step, it was done the evaluation of the throughput obtained under

distinct latency constrained scenarios on Section 4.3.2. Finally, on Section 4.3.3 follows

the analysis of the behavior of the message windowing strategy under distinct latency

profiles.

4.3.1 Validation

It was necessary to design a requests throttler for the application in order to simu-

late latencies on the cloud. The job of its requests throttler was to limit the number of data

packets flowing between the simulated edge nodes – that were in this case VMs running

on Microsoft Azure – and the cloud node.

The configuration used to run these experiments is shown on Table 4.2. It con-

sists mainly of a single cloud node – with the same configuration described previously –

57

and sets of up to 90 simulated edge nodes, which are single core machines deployed on

the same cloud region as the main cloud node. Virtual machines instances of type Stan-

dard_DS1_v2 were selected on Azure due to their similarity (single core with low amount

of RAM) with the real edge node machines used on the previous analysis.

Table 4.2: Machines configuration: Virtual machine types and toolset description
Parameter Description

Instance Type - Cloud Node Basic_A3 (4 cores, 7 GB RAM)
Instance Type - Edge Nodes Standard_DS1_v2 (1 core, 3.5 GB RAM)
Operating System Ubuntu 16.04 LTS
Location Brazil South
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0

The accuracy of the throttling mechanism was analyzed by comparing the latency

values of the requests between the simulated edge and cloud nodes.

In this experiment, it was done a comparison of real request latencies with simu-

lated latencies, where values closer to equality on x and y axis mean that the simulated

latencies are equal to the measured latencies, as it can be visualized on Figure 4.6.

Figure 4.6: Latency simulation validation: Simulated windowing latencies versus real
obtained latencies per node (using a total of 90 nodes per execution).

25ms 50ms 100ms 200ms 400ms
0

50

100

150

200

250

300

350

400

Simulated Latencies (ms)

M
ea

su
re

d
L

at
en

ci
es

(m
s)

p90
mean

58

These results show that the requests throttler implementation was able to simulate

real latencies for at least 90 percent of the requests. These tests were ran more than 20

times with 90 nodes, each of them running 10000 requests per execution.

4.3.2 Throughput evaluation

In order to evaluate throughput under latency constraints, it was designed of two

sets of experiments. The first experiment is the throughput evaluation based on the results

found on the latency verification, as it can be seen on Figure 4.6. The second experiment

expands this analysis to multiple latency behaviours under sets of 30, 60 and 90 edge

nodes.

On the first experiment, the throughput was evaluated under multiple latency con-

straints. The same amount of nodes and simulated latencies values used on this experi-

ment were also used to the latency verification on 4.3.1, but this time to understand the

rate in which throughput increases as simulated latencies are decreased.

The relationship between these factors is shown on Figure 4.7, demonstrating that

the latency directly impacts throughput when running with 90 edge nodes. For the given

scenario, our results show that throughput increases almost in the same proportion as

latency decreases. For example, when latency goes from 100ms to 50ms, throughput for

90 nodes almost doubles and goes from approximately 75k Queries per Second (QPS) to

approximately 150k QPS.

Figure 4.7: Latency simulation validation: Throughput obtained per node with 90 nodes.

25ms 50ms 100ms 200ms 400ms
0

1,000

2,000

3,000

Simulated Latencies (ms)

Th
ro

ug
hp

ut
(Q

P
S

)

Given that it was found that throughput per node is directly proportional to latency

decreases with 90 nodes, the next step was to explore how the number of nodes could

impact throughput rates.

59

By comparing latency behaviours under the same set of nodes – sets of 30 nodes

under latency constraints of 50ms, 100ms and 200ms – it was perceived that the same

behaviour exists and throughput is still a factor of how many nodes are added to the

analysis, as it can be seen on Figure 4.8.

However, when compared the throughput increase under distinct sets of nodes –

sets of 30, 60 and 90 nodes under 50ms latency constraints – the experiments have shown

that the speedup relationship is not linear, which could represent the saturation of our

cloud node.

Using the analysis with 50ms as an example, the obtained speedup was 3.95, which

represents the case when the number of nodes was increased from 30 to 60 nodes. On the

other hand, when the number of nodes was increased from 60 nodes to 90 nodes, the

speedup obtained was 2.26. From this analysis it is possible to infer that the speedup is

decreasing as the number of nodes doubles. The obtained speedups for 100ms and 200ms

follow the same pattern with similar speedup values.

Figure 4.8: Aggregated throughput evaluation with multiple sets of edge nodes (30 to 90
nodes).

50ms 100ms 200ms
0

50,000

1 ·105

1.5 ·105

Simulated Latencies (ms)

Th
ro

ug
hp

ut
(Q

P
S

)

30 nodes 60 nodes 90 nodes

4.3.3 Windowing evaluation

In this experiment, it is evaluated the windowing capabilities to aggregate message

on edge nodes, but this time using larger sets of nodes and distinct profiles of simulated la-

tencies. During the design of this experiment it was decided to evaluate it with the largest

amount of edge nodes available (90 nodes) and the same profiles of latencies used on the

previous tests, in order to facilitate the comparison. The message windows analyzed were

60

composed by batches of 100 to 800 messages and latency profiles of 50ms, 100ms and

200ms.

On the result graph of Figure 4.9, it can be perceived that message windowing

adds another linearly increasing dimensionality to the application, which can be used in

order to better tune the message throughput on latency constrained environments.

As it can seen on Figure 4.9 the tests, which were run using 90 nodes, shows that

message windowing adds another linearly increasing dimensionality to the application,

being able to be used in order to better tune the message throughput on latency constrained

environments. This way, it is not only possible to increase throughput by adding more

nodes and partitioning message pre-processing on edge nodes, but also by grouping data

before sending it to the cloud nodes.

An important tuning factor, not only in relation to throughput but also to monetary

costs, is the relationship between the number of nodes and the message windowing. As

the throughput increases by processing messages at edge node level, it is not only possible

to process more messages from sensors with a smaller number of edge nodes, but it is also

possible to spend less on edge nodes hardware by better leveraging edge nodes processing

capabilities.

Finally, it is important to perceive that the latency impact is similar to previous

scenarios, where throughput linearly decreases as latency increases.

Figure 4.9: Windowing evaluation with simulated latencies running on 90 nodes

100 200 400 800
0

5 ·105

1 ·106

1.5 ·106

Windows of messages (100 to 800)

Th
ro

ug
hp

ut
(Q

P
S

)

50ms 100ms 200ms

61

5 GARUAGEO: ARCHITECTURE AND IMPLEMENTATION

GaruaGeo is an extension of the Garua architecture which was the previous gen-

eration of the architecture, as it is described on Chapter 3. In the previous architecture, it

was possible to evaluate physical edge nodes interconnected to cloud nodes would behave

in a variety of scenarios.

However, in our previous experiments with simulated latencies, it was clear that

latency penalties were severely penalizing the overall performance of the architecture. In

order to properly evaluate the scalability of the platform in a real-world large scale scenar-

ios, and improve the performance in high latency scenarios, it was decided to improve the

predecessor architecture by including aggregation nodes, which are nodes placed nearby

the geographical location of edge nodes.

As a way to avoid moving physical hardware across the globe to execute the eval-

uation procedures, we have decided to instantiate edge nodes as less powerful VMs into

distinct cloud datacenters across the globe. Therefore, in this Chapter we introduce the

GaruaGeo architecture, discuss its design, implementation and compare it with the Garua

architecture.

The rest of this Chapter is described as follows. Section 5.1 does an overview of

the architecture and its improvements over the previous generation. Section 5.2 describes

the specific implementation details of the cloud layer in this generation of the platform.

Section 5.3 describes the reasoning behind adding a new layer to the platform, and how it

could potentially improve the architecture. Section 5.4 describes the specific implemen-

tation details of the edge layer in this generation of the platform. Section 5.5 describes

the specific implementation details of the sensor layer in this generation of the platform.

The testbed implementation of the platform described in this Chapter is available

online and can be found in a public git repository 1.

5.1 Architectural overview

The architectural infrastructure of the testbed application deployment can be de-

scribed as a composition of four layers, as it is represented on Figure 5.1: (1) Cloud layer,

which executes long-running scalable jobs that can provide more powerful machines for

processing with the trade-off of greater latencies; (2) Aggregator layer, which aggregates

1<https://github.com/otaviocarvalho/garua>

https://github.com/otaviocarvalho/garua

62

Table 5.1: Cloud layer configuration: Virtual machine type and toolset description
Parameter Description

Instance Type Basic_A3 (4 cores, 7 GB RAM)
Operating System Ubuntu 16.04 LTS
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0

from multiple edge nodes, usually placed on the same geographic region as edge nodes, in

order to aggregate all data for a given geographic region before sending data to the cloud

layer, which is potentially placed in a distant geographic region; (3) Edge layer, which is

composed of edge nodes that are used to pre-process and aggregating sensor data before

sending to the Aggregator nodes; and the (4) Sensor layer, which is composed of the sen-

sors that communicate directly with Edge layer nodes to receive actuation requests and

provide measurements to the network.

GaruaGeo extends the ideas applied to Garua by including a new layer nearby each

geographic region where edge nodes are deployed. This way, edges nodes are capable of

offloading data to nearby aggregator nodes, potentially decreasing the latency penalties

experienced by edge nodes. The architectural implementation used for GaruaGeo dif-

fers from Garua in several aspects. In order to distribute nodes across the globe, it was

necessary to implement edge nodes as less powerful VM on Azure, instead of physical

ARM processors. Furthermore, deploying the testbed architecture in global scale scenar-

ios posed distinct challenges to build, execute and collect data from experiments.

5.2 Cloud layer

The cloud layer is composed of a set of virtual machines that execute a given al-

gorithm in order to aggregate data received from edge nodes. Similar to the description of

Garua’s cloud layer on Section 3.2 of Chapter 3, GaruaGeo’s cloud layer is implemented

as an application running in a single node inside of a Linux VM running on Microsoft

Azure. The hardware and software configuration of these VMs can be visualized on Fig-

ure 5.1. The communication pattern is still via GRPC communication framework, but

it communicates with the local aggregator nodes instead of directly receiving messages

from the edge nodes.

63

Figure 5.1: The architecture is composed by 4 layers: Cloud, Aggregator, Edge and Sen-
sor

VM VM VM

VM

Cloud
Layer

Aggregator Aggregator Aggregator
Layer

Edge Node Edge Node Edge Node Edge
Layer

Sensor Sensor Sensor Sensor Sensor
Sensor
Layer

Furthermore, the network interconnection (between the cloud layer and the other

layers) used on the evaluation on Chapter 6 is not limited by the Hybrid Fiber-Coaxial

(HFC) network interconnection as it was on Figure 3.1 of Chapter 4 on Garua’s archi-

tecture. In the evaluation procedure of GaruaGeo’s architecture the network is limited

instead by Microsoft Azure’s data center interconnections across the globe (since both

aggregator and edge nodes are instantiated as VMs for evaluation purposes).

5.3 Aggregator layer

The aggregator layer represents one or multiple intermediate layers of aggregation

that could be potentially used to mitigate the impact of latency between data collection

and the collection of global metrics into the cloud layer.

In previous evaluations, it was possible to observe that is possible to obtain signif-

icant throughput gains by aggregating data from sensors on edge nodes.

However, it was perceived that there was room for improvement if it was possible

to have an operator in the architecture responsible for aggregate data for specific regions

before communicating with the cloud layer. An example of this scenario is when multiple

edge nodes in Japan are transferring data to the USA, each one of them paying the latency

penalty of communicating with another continent. Instead, aggregators could be placed

in this location and aggregate data from multiple edge nodes in Japan, before transferring

it to the USA.

In our evaluation, this layer was represented as a single core machine, in order to

potentially represent less powerful machines, such as Raspberry Pi’s and similar ARM

64

processors which are well-suited for the given scenario (and that were used for the edge

layer on previous evaluations).

5.4 Edge layer

The edge layer is composed of a set of nodes with transformation operators to

apply over sensor measurements one-at-time. These operators can be transformations to

apply over results, combinations with sets of measurements received or just simple map-

pings to machines on the cloud layer above in a publish-subscribe pattern implementation.

The GaruaGeo’s edge layer is similar from Garua’s edge layer (described previously on

Section 3.3 of Chapter 3 in its processing functionality and overall role in the architecture.

However, GaruaGeo’s edge layer is different from Garua’s edge layer by being imple-

mented as an application running in a Linux VM on Microsoft Azure. Garua’s edge layer,

on the other hand, was implemented and evaluated as a set of Raspberry Pi nodes based

on ARM processors. The configuration used for this layer is displayed on Figure 5.3.

Furthermore, the network interconnection (between the edge layer and the other

layers) used on the evaluation on Chapter 6 is not limited by the WiFi router intercon-

nection as it was on Figure 3.2 of Chapter 4 on Garua’s architecture. In the evaluation

procedure of GaruaGeo’s architecture the network is limited instead by Microsoft Azure’s

data center interconnections across the globe (since nodes on all layers are instantiated as

VMs for evaluation purposes).

Table 5.2: Aggregator layer configuration: Virtual machine type and toolset description
Parameter Description

Instance Type Standard_DS2_v2 (2 cores, 7 GB RAM)
Operating System Ubuntu 16.04 LTS
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0

Table 5.3: Edge layer configuration: Virtual machine type and toolset description
Parameter Description

Instance Type Standard_DS1_v2 (1 cores, 3.5 GB RAM)
Operating System Ubuntu 16.04 LTS
Golang version 1.8
GRPC version 1.3.0-dev
Protocol Buffers version 3.2.0

65

In this implementation the edge layer communicates directly with aggregator nodes,

which are going to be placed in a (physical) nearby region. The main hypothesis being

tested was that offloading to nearby aggregator nodes would improve the overall perfor-

mance (in terms of number of elements processed per second) since edge nodes would

pay smaller latency penalties to communicate with the layer above. Apart from that,

an important hypothesis to be tested was the potential performance upside of process-

ing messages on event windows, in order to only experience overseas network latencies

(to communicate with machines geographically distant) for large groups of pre-processed

messages.

The usage of a cloud platform has turned easier to scale the evaluation. However,

there were several challenges in implementing and deploying large scale experiments. For

example, the template format used to automate the deployment of the experiments (Azure

Resource Manager templates) has a fixed limit on the number of resources which can be

described in a single deployment (e.g. virtual machine instances, network interconnec-

tions, naming services, etc.). Apart from that, it was necessary to automate data collection

since in the largest evaluation scenario the application was deployed in 1350 edge nodes.

5.5 Sensor layer

The GaruaGeo’s sensor layer is similar from Garua’s sensor layer (described pre-

viously on Section 3.4 of Chapter 3 both in terms of implementation and overall role in

the architecture. From a model perspective, the hole of this layer is also to be represented

by sensors that should communicate with edge nodes via hardware interconnections or

lightweight wireless connection such as Bluetooth or LTE network. The main challenges

of this layer on this new architecture were driven by the scale of the experiments instead

of additional features.

Due to amount of potential nodes to be deployed in a single experiment, there was

a large effort in terms of deployment automation and data collection. As it was described

on the previous section, the larger evaluation scenarios had up to 1350 edge nodes, and

it was necessary to split the sensor dataset to in such a way that a given edge node only

had measurement which were from a given set of households (in order to respect the data

locality aspect of the algorithm processing).

Apart from the effort of splitting sensor data across their respective edge nodes,

the simulation of the edge layer on GaruaGeo also had to consider that the execution of

66

the experiments could be executed at the same time across edge nodes. This way, there

was an additional effort to provide the right tools to not only distribute the workload, but

also to trigger the execution and collect data after the execution was finished.

67

6 GARUAGEO: EVALUATION

The main hypothesis on the contribution of adding aggregators to the platform

was that, by including a layer near to the edge nodes, the latency experienced by the edge

nodes would decrease and it would be possible to decide, on aggregator nodes, when

it was necessary to suffer the latency penalties to communicate with potentially distant

cloud nodes.

After adding the new layer, some scenarios would be required to be validated in

order to verify that our platform was able to provide its expected benefits in comparison

to the previous version without aggregators.

Aggregators have the ability to receive, buffer, pre-process and group messages

before sending data to the cloud layer nodes. This additional layer gives the platform the

ability to answer edge layer node requests faster than the cloud layer nodes, which could

potentially be placed at other countries and continents, providing slower responses due to

the greater latencies implied in communication between machines in distant geographical

regions.

This Chapter is organized as follows. Section 6.1, discusses the global position of

the operators used in this evaluations and their latency profiles. Section 6.2, explores the

additional performance impact of adding a new layer of communication into the platform.

Section 6.3, evaluates the performance of a fixed number of edge nodes when distributed

between groups of aggregators. Section 6.4, relates the number of aggregators per region

and message windowing to the overall performance of the system. Finally, on Section 6.5,

there is a comprehensive analysis of the system’s edge nodes performance in a multi-

region experiment.

The scripts used to automate the evaluation process of experiments described in

this Chapter is available online and can be found in a public git repository 1.

6.1 Infrastructure setup and operators placement

Before the execution of the tests, it was essential to setup a minimal set of tools to

help on the automation of the deployment process in multiple regions around the globe.

Since we are using Microsoft Azure, it was possible to rely on Azure Resource

Manager templates to describe the infrastructure to setup. By using templates, it was pos-

1<https://github.com/otaviocarvalho/garua-azure-deployment>

https://github.com/otaviocarvalho/garua-azure-deployment

68

Table 6.1: Region profiles: Description of the latency profiles between Azure regions
selected for evaluation

Region Low latency Medium latency High latency

westus2 •

brazilsouth •

ukwest •

southeastasia •

eastasia •

japaneast •

westeurope •

australiasoutheast •

northeurope •

centralus •

southindia •

canadacentral •

centralindia •

koreasouth •

francecentral •

sible to describe the number of nodes, size of virtual machines, operating system version

and default tools that were important to have pre-installed on all machines.

The decision of which regions to use in our analysis scenarios came from a previ-

ous latency measurement evaluation done on previous works.

In this evaluation, it was analyzed the communication between machines placed in

multiple regions and one node placed on US West, which in this evaluation was the region

where the master node of the cloud layer was placed. After this analysis was made, these

regions were classified regions into three categories: Low latency, medium latency, and

high latency. The results with regions selected and their latency profiles are displayed on

Table 6.1.

6.2 Exploring the impact of adding aggregators into the infrastructure

In this testbed evaluation, aggregators nodes are placed in the same regions (dat-

acenters) as the simulated edge nodes. Using this approach messages are buffered into a

69

nearby aggregator, where they can be aggregated or pre-processed and sent to a central-

ized node which is potentially in a distant region.

The first experiment we have made was to evaluate the impact of adding another

moving piece to our infrastructure. The rational behind it was to evaluate how much it

would impact the performance in a stress scenario. In Figure 6.1 we evaluate a stress

scenario with a single master, before and after adding an aggregator.

From this experiment, it was possible to perceive that the performance improves

for smaller groups of messages, but in general, including an aggregator does not impact

the performance negatively in comparison to the previous architecture. In comparison to

the previous architecture, it is a worst-case evaluation scenario, since with an aggregator

there is an extra layer of communication overhead. Apart from that, in this scenario the

aggregator could not benefit from batching of multiple messages since batching, in this

case, is done at edge node level. The potential performance benefits of using one or

multiple aggregators should be perceived only in the communication between aggregator

and master nodes (where it is possible to wait or batch multiple edge node messages

before communicating with nodes on the cloud layer).

6.3 Multiple aggregators in a given global region

In our previous version of the architecture, which was composed by a master node

on the cloud layer and edge nodes that received sensor data, it was possible to validate

that it the architecture was able to scale linearly up to 90 nodes (regarding throughput).

Figure 6.1: Aggregator stress comparison analysis: 90 nodes maximum throughput with
and without an aggregation layer

baseline aggregator

105

106

107

108

Execution type

Th
ro

ug
hp

ut
(Q

P
S

)

1 10 100 1000

70

Figure 6.2: Aggregator stress evaluation: Throughtput analysis from 15 to 90 nodes

1 10 100 1000
103

104

105

106

107

Batches of messages (1 to 1000 messages)

Th
ro

ug
hp

ut
(Q

P
S

)
15 30 45 60 75 90

In this experiment, after the addition of our new processing layer, it was collected data to

understand if this behavior has not changed.

As it can be seen on Figure 6.2, regarding batches of messages, it is still possible

to perceive that the architecture can scale linearly. However, regarding the number of

nodes, it is not possible to perceive any performance gains when we increase the number

of nodes from 15 to 90. This behavior could be explained by the fact that our aggregators

are now in the same geographic region as our edge nodes.

In our previous analysis (which considered cloud nodes and edges nodes only),

cloud nodes were placed in a region and edge nodes were placed in another. In this

analysis, from the standpoint of the master node a stress scenario was never achieved (the

upper bound of the system regarding throughput). However, in the current scenario, the

only piece of the architecture which is not in the same region is the master node. Hence,

the latency experienced by our edge nodes is much lower, and the upper bound of the

system is experienced by all scenarios from 15 to 90 nodes.

This analysis has shown three crucial facts: 1) The throughput from the standpoint

of the edge nodes has significantly improved since aggregator nodes now handle requests

in the same geographic region with lower latencies; 2) By adding aggregator nodes in the

same geographic regions as the edge nodes which collect sensor data, we are now bounded

by the communication between the aggregator nodes and cloud nodes (which will always

be slower than the communication between edge nodes and aggregator nodes); 3) In order

to evaluate the overall performance (regarding throughput and latency) of the system, it is

not possible anymore to aggregate the number of requests made from edge nodes to their

counterparts (cloud nodes in the previous architecture or aggregator nodes in the current),

71

but it is required to evaluate the performance of the communication between aggregator

nodes and the cloud node.

6.4 Groups of aggregators into a single region

In this experiment, it was evaluated the impact of adding multiple aggregators into

the same local region. The analysis was made using VMs on the uswest region of Azure

with a fixed number of edge nodes (40 edge nodes) and a variable number of aggregators

(1 to 8 aggregators).

In order to execute this analysis, the number of existent edge nodes was spread

evenly between aggregators. In Figure 6.3, it was possible to verify that by adding 8

aggregators it was possible to achieve exponential increase on throughput up to 8 ag-

gregators, where the aggregator has achieved a throughput of around 100k messages per

second received from the edge nodes.

Multiple aggregators perform better probably due to the number of concurrent

requests that one aggregator can answer at the same time. Given a certain amount of edge

nodes, spreading their requests between multiple aggregator nodes decreases contention

level in each aggregator. This way, they can answer more requests per second since the

number of nodes for each aggregator is more balanced. However, introducing a more

significant amount of aggregators will require that more elements pay the extra latency

needed to communicate with cloud layer nodes, but these trade-offs were not explored in

this scenario.

Figure 6.3: Aggregator groups evaluation: 40 edge nodes distributed between distinct
groups of aggregators

1 2 4 8
0

50,000

1 ·105

Aggregators (1 to 8)

Th
ro

ug
hp

ut
(Q

P
S

)

72

Figure 6.4: Global performance evaluation: 90 nodes per region, 5 regions and variable
batch sizes (1 to 1000 messages)

1 10 100 1000

105

106

107

Batch sizes per region (1 to 1000)

Th
ro

ug
hp

ut
(Q

P
S

)

brazilsouth japaneast southeastasia ukwest westus

6.5 Multiple region edge analysis

In this evaluation scenario, it was explored the maximum achievable performance

from the standpoint of data collection on edge nodes. In order to evaluate it, we have

deployed a large number of machines, into multiple geographic regions, and collected

data about the aggregated data collection throughput of its edge nodes.

Each scenario evaluated on these tests relies on regions (datacenters) on Microsoft

Azure across the globe. In each region, there were placed 90 Edge nodes and a single ag-

gregator node. The analysis was made based on data collected from at least 20 executions

for 5, 10 and 15 regions. In each execution scenario, each edge node sends at least 100k

energy measurements to its respective aggregator nodes.

In Figure 6.6 it is possible to visualize the extension of the largest execution. For

this analysis it was used: 15 regions on Azure; one Global aggregator node on the cloud

Figure 6.5: Global performance evaluation: 90 nodes per regions, 1000 messages batches
and variable number of regions (5 to 15)

1000

108.2

108.4

108.6

Groups of regions (5 to 15 regions)

Th
ro

ug
hp

ut
(Q

P
S

)

5 10 15

73

Figure 6.6: Global scale deployment: One global master (red square) and 15 regions (blue
dots, where each region contains 1 aggregator node and 90 edge nodes)

layer; 15 aggregator nodes on the aggregator layer; 1350 Edge nodes, for a grand total of

1366 machines aggregating data across the globe.

Another important aspect captured by this analysis is the discrepancy in perfor-

mance between distinct regions. From the standpoint of the Edge nodes, it was not possi-

ble to perceive significant performance discrepancies between regions for each one of the

analyzed regions, as it is displayed in Figure 6.4.

Linear scalability is also obtained as we increase the batch factor on the number of

messages which are aggregated before being sent to the aggregator nodes. Hence, it was

possible to validate in this scenario that the pattern analyzed in the scenario with a single

region in Figure 6.2 holds significant for multiple regions.

Finally, it is shown in Figure 6.5 a summary of the highest throughput scenarios

observed, which are those that display the largest amount of messages per batch evaluated.

The results show that the performance does not only increases linearly with batch sizes,

but also data collection rates, which increase linearly as more regions are added globally.

From these tests, up to 15 regions (which use 90 nodes and one aggregator per region), it

was not possible to achieve an inflection point where data collection rates start to decrease.

74

75

7 CONCLUSION AND FUTURE WORKS

In this work, it was analyzed a model for workload distribution and data aggrega-

tion using a large scale smart grid application dataset. This work improves and extends

our research on cloud computing applied to IoT data profiles (CARVALHO; ROLOFF;

NAVAUX, 2017). This application was able to achieve a higher throughput by leveraging

processing on edge nodes and data aggregation to reduce communication with the cloud

environment.

The results show that, using the Garua architecture, it is possible to achieve through-

puts of above 1 million records being processed per second with latencies up to 50ms (CAR-

VALHO et al., 2017b) (CARVALHO et al., 2017a), using a single cloud node on Mi-

crosoft Azure and 90 Raspberry Pi based edge nodes.

After the introduction of the aggregator layer, on the GaruaGeo architecture, it was

possible to improve the results by leveraging the geographical locality on the aggregation

processing. The results obtained show that the implemented testbed application was able

to achieve data aggregation rates of above 400 million measurements per second. These

results were obtained using machines on 15 distinct geographic regions on the Microsoft

Azure platform, for a total of 1366 machines in the largest evaluation scenario.

The experiments show that the impact of windowing and aggregation on edge

nodes is not negligible and needs further investigation by the research community. Al-

though it has similarities to data stream processing research, the topic is still being ini-

tially explored by researchers on the fields of the Internet of Things, Fog Computing and

Edge Computing.

The future works should focus on the exploration of other scheduling, windowing

and aggregation techniques for edge processing. Apart from that, one important line of

research would be to explore how to evolve this testbed application and its middleware

into a generic framework for applications that need to distribute processing through edge

and cloud nodes. Finally, it would be important to explore other communication proto-

cols to understand their suitability to multiple scenarios based on hybrid computations on

cloud and edge environments.

76

77

REFERENCES

ABADI, D. J. et al. Aurora: A New Model and Architecture for Data Stream
Management. The VLDB Journal - The Int. Journal on Very Large Data Bases,
Springer-Verlag New York, Inc., v. 12, n. 2, p. 120–139, 2003.

ABADI, D. J. et al. The Design of the Borealis Stream Processing Engine. In: 2nd
Biennial Conference on Innovative Data Systems Research (CIDR). [S.l.: s.n.], 2005.
v. 5, n. 2005, p. 277–289.

ABDELWAHAB, S. et al. Replisom: Disciplined tiny memory replication for massive
iot devices in lte edge cloud. IEEE Internet of Things Journal, IEEE, v. 3, n. 3, p.
327–338, 2016.

AGBARIA, A. M.; FRIEDMAN, R. Starfish: Fault-tolerant dynamic mpi programs on
clusters of workstations. In: IEEE. High Performance Distributed Computing, 1999.
Proceedings. The Eighth International Symposium on. [S.l.], 1999. p. 167–176.

AI, Y.; PENG, M.; ZHANG, K. Edge computing technologies for internet of things: a
primer. Digital Communications and Networks, Elsevier, v. 4, n. 2, p. 77–86, 2018.

ALFARES, H. K.; NAZEERUDDIN, M. Electric Load Forecasting: Literature Survey
and Classification of Methods. International Journal of Systems Science, Taylor &
Francis, v. 33, n. 1, p. 23–34, 2002.

ALI, A. B. M. S. Smart Grids: Opportunities, Developments, and Trends. [S.l.]:
Springer, 2013.

ANALYTICSWORLD, P. How is Predictive Analytics Different from Forecasting?
2015. Disponível em: <http://www.predictiveanalyticsworld.com/faq.php#q3-2>.

ANAS, M. et al. Minimizing Electricity Theft Using Smart Meters in AMI. In:
IEEE. P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Seventh
International Conference on. [S.l.], 2012. p. 176–182.

ANCILLOTTI, E.; BRUNO, R.; CONTI, M. The Role of Communication Systems in
Smart Grids: Architectures, Technical Solutions and Research Challenges. Computer
Communications, Elsevier, v. 36, n. 17, p. 1665–1697, 2013.

ASSUNCAO, M. D. de; VEITH, A. da S.; BUYYA, R. Distributed data stream
processing and edge computing: A survey on resource elasticity and future directions. In:
. [S.l.]: Elsevier, 2018. v. 103, p. 1–17.

ATZORI, L.; IERA, A.; MORABITO, G. The internet of things: A survey. Computer
networks, Elsevier, v. 54, n. 15, p. 2787–2805, 2010.

ATZORI, L. et al. The Internet of Things: A Survey. Computer networks, Elsevier,
v. 54, n. 15, p. 2787–2805, 2010.

BADGER, L. et al. Cloud Computing Synopsis and Recommendations. NIST Special
Publications, v. 800, p. 146, 2011.

http://www.predictiveanalyticsworld.com/faq.php#q3-2

78

BAILIS, P.; KINGSBURY, K. The network is reliable. Queue, ACM, v. 12, n. 7, p. 20,
2014.

BANKS, A.; GUPTA, R. Mqtt version 3.1. 1. OASIS standard, v. 29, 2014.

BELSHE, M. et al. Hypertext transfer protocol version 2 (HTTP/2). Internet
Engineering Task Force (IETF) - RFC-7540, 2015.

BERMAN, F. et al. Grid computing: making the global infrastructure a reality.
[S.l.]: John Wiley and sons, 2003. v. 2.

BORMANN, C. et al. CoAP: An application protocol for billions of tiny internet nodes.
Internet Computing, IEEE, v. 16, n. 2, p. 62–67, 2012.

BROWN, R. E. Impact of Smart Grid on Distribution System Design. In: IEEE. Power
and Energy Society General Meeting-Conversion. [S.l.], 2008. p. 1–4.

BURROWS, M. The Chubby lock service for loosely-coupled distributed systems. In:
USENIX. Proceedings of the 7th symposium on Operating systems design and
implementation. [S.l.], 2006. p. 335–350.

BUYYA, R.; DASTJERDI, A. V. Internet of Things: Principles and paradigms. [S.l.]:
Elsevier, 2016.

BUYYA, R. et al. High performance cluster computing: Architectures and systems
(volume 1). Prentice Hall, Upper SaddleRiver, NJ, USA, v. 1, p. 999, 1999.

BUYYA, R. et al. Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the 5th Utility. Future Generation computer
systems, Elsevier, v. 25, n. 6, p. 599–616, 2009.

BYLANDER, T.; ROSEN, B. A Perceptron-like Online Algorithm for Tracking the
Median. In: IEEE. Neural Networks, 1997., International Conference on. [S.l.], 1997.
v. 4, p. 2219–2224.

CARBONE, P. et al. Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
IEEE Computer Society, v. 36, n. 4, 2015.

CARVALHO, O. et al. Exploring the Impact of Workload Distribution in a Hybrid
Edge and Cloud Application for Smart Grids. In: 15th Workshop on Parallel and
Distributed Processing (WSPPD). [S.l.: s.n.], 2017.

CARVALHO, O. et al. IoT Workload Distribution Impact Between Edge and Cloud
Computing in a Smart Grid Application. In: SPRINGER. Latin American High
Performance Computing Conference (CARLA). [S.l.], 2017. p. 203–217. ISBN
978-3-319-73353-1.

CARVALHO, O.; ROLOFF, E.; NAVAUX, P. A Survey of the State-of-the-art in Event
Processing. In: 11th Workshop on Parallel and Distributed Processing (WSPPD).
[S.l.: s.n.], 2013.

79

CARVALHO, O.; ROLOFF, E.; NAVAUX, P. O. A distributed stream processing based
architecture for iot smart grids monitoring. In: Companion Proceedings of the 10th
International Conference on Utility and Cloud Computing. [S.l.]: ACM, 2017. (UCC
’17 Companion), p. 9–14.

CARVALHO, O.; ROLOFF, E. et al. Beyond Hadoop: An Analysis of The Evolution
of New Technologies for Cloud Computing. In: Anais do, Workshop de Iniciacao
Cientifica, XXV Simposio em Sistemas Computacionais, WSCAD-WIC. [S.l.: s.n.],
2013.

CHANDRASEKARAN, S. et al. TelegraphCQ: Continuous Dataflow Processing. In:
ACM. Proc. of the 2003 ACM SIGMOD Int. Conference on Management of Data.
[S.l.], 2003. p. 668–668.

CHERVENAK, A. et al. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of network and computer
applications, Elsevier, v. 23, n. 3, p. 187–200, 2000.

CHOWDHURY, S. A. et al. Is HTTP/2 more energy efficient than HTTP/1.1 for mobile
users? PeerJ PrePrints, PeerJ Inc. San Francisco, USA, v. 3, p. e1280v1, 2015.

CUGOLA, G.; MARGARA, A. TESLA: A Formally Defined Event Specification
Language. In: ACM. Proc. of the Fourth ACM Int. Conf. on Distributed Event-Based
Systems. [S.l.], 2010. p. 50–61.

CUGOLA, G.; MARGARA, A. Complex Event Processing with T-REX. Journal of
Systems and Software, Elsevier, v. 85, n. 8, p. 1709–1728, 2012.

DASTJERDI, A. V.; BUYYA, R. Fog Computing: Helping the Internet of Things Realize
Its Potential. Computer, IEEE, v. 49, n. 8, p. 112–116, 2016.

DAVITO, B.; TAI, H.; UHLANER, R. The Smart Grid and the Promise of Demand-side
Management. McKinsey on Smart Grid, v. 3, p. 8–44, 2010.

DEAN, J.; GHEMAWAT, S. MapReduce: Simplified Data Processing on Large Clusters.
In: Symposium on Operating System Design and Implementation (OSDI). [S.l.:
s.n.], 2004. p. 137–150.

DISCHINGER, M. et al. Characterizing residential broadband networks. In: Internet
Measurement Conference. [S.l.: s.n.], 2007. p. 43–56.

ENERGY Department of. U.S. Department of Energy. 2015. Disponível em:
<http://www.oe.energy.gov>.

EROL-KANTARCI, M.; MOUFTAH, H. T. Wireless Multimedia Sensor and Actor
Networks for the Next Generation Power Grid. Ad Hoc Networks, Elsevier, v. 9, n. 4, p.
542–551, 2011.

GARFINKEL, S. Architects of the information society: 35 years of the Laboratory
for Computer Science at MIT. [S.l.]: MIT press, 1999.

GEDAWY, H. et al. Cumulus: A distributed and flexible computing testbed for edge
cloud computational offloading. In: IEEE. Cloudification of the Internet of Things
(CIoT). [S.l.], 2016. p. 1–6.

http://www.oe.energy.gov

80

GHEMAWAT, S.; GOBIOFF, H.; LEUNG, S.-T. The Google File System. In: ACM.
Proc. of ACM Int. Conf. SIGOPS Operating Systems Review. [S.l.], 2003. v. 37, p.
29–43.

GLIGORIĆ, N. et al. Performance evaluation of compact binary XML representation
for constrained devices. In: IEEE. Distributed Computing in Sensor Systems and
Workshops, International Conference on. [S.l.], 2011.

GOEL, U. et al. HTTP/2 Performance in Cellular Networks. In: ACM MobiCom. [S.l.:
s.n.], 2016.

Google. gRPC Motivation and Design Principles. 2015. Disponível em: <http:
//www.grpc.io/blog/principles>.

GROUP, O. C. A. W. et al. Openfog architecture overview. White Paper OPFWP001,
v. 216, p. 35, 2016.

GUNGOR, V. C.; LU, B.; HANCKE, G. P. Opportunities and Challenges of Wireless
Sensor Networks in Smart Grid. Industrial Electronics, IEEE Transactions on, IEEE,
v. 57, n. 10, p. 3557–3564, 2010.

GÜNGÖR, V. C. et al. Smart Grid Technologies: Communication Technologies and
Standards. Industrial informatics, IEEE transactions on, IEEE, v. 7, n. 4, p. 529–539,
2011.

HABAK, K. et al. Femto clouds: Leveraging mobile devices to provide cloud service at
the edge. In: IEEE. Cloud Computing (CLOUD), IEEE 8th International Conference
on. [S.l.], 2015. p. 9–16.

HEINZE, T. et al. Cloud-based data stream processing. In: Proceedings of the 8th
ACM International Conference on Distributed Event-Based Systems. ACM, 2014. p.
238–245. Disponível em: <http://doi.acm.org/10.1145/2611286.2611309>.

KRAUTER, K.; BUYYA, R.; MAHESWARAN, M. A taxonomy and survey of grid
resource management systems for distributed computing. Software: Practice and
Experience, Wiley Online Library, v. 32, n. 2, p. 135–164, 2002.

KYRIAKIDES, E.; POLYCARPOU, M. Short Term Electric Load Forecasting: A
Tutorial. In: Trends in Neural Computation. [S.l.]: Springer, 2007. p. 391–418.

LEE, I. et al. The Internet of Things (IoT): Applications, Investments and Challenges for
Enterprises. Business Horizons, Elsevier, v. 58, n. 4, p. 431–440, 2015.

LEE, S. et al. Correlation analysis of MQTT loss and delay according to QoS level. In:
IEEE. Information Networking (ICOIN), International Conference on. [S.l.], 2013.
p. 714–717.

LEOPOLD, C. Parallel and Distributed Computing: A survey of Models, Paradigms
and approaches. [S.l.]: John Wiley & Sons, Inc., 2001. ISBN 0471358312.

LIU, P. et al. ParaDrop: Enabling Lightweight Multi-tenancy at the Network’s Extreme
Edge. In: IEEE. Edge Computing (SEC), IEEE/ACM Symposium on. [S.l.], 2016. p.
1–13.

http://www.grpc.io/blog/principles
http://www.grpc.io/blog/principles
http://doi.acm.org/10.1145/2611286.2611309

81

LUCKHAM, D. C. et al. Specification and Analysis of System Architecture Using
Rapide. Software Engineering, IEEE Transactions on, IEEE, v. 21, n. 4, p. 336–354,
1995.

MAAS, M. et al. Trash day: Coordinating garbage collection in distributed
systems. In: 15th Workshop on Hot Topics in Operating Systems (HotOS
XV). Kartause Ittingen, Switzerland: USENIX Association, 2015. Disponível em:
<https://www.usenix.org/conference/hotos15/workshop-program/presentation/maas>.

MAHMUD, R.; KOTAGIRI, R.; BUYYA, R. Fog computing: A taxonomy, survey and
future directions. In: Internet of everything. [S.l.]: Springer, 2018. p. 103–130.

MAO, Y. et al. A survey on mobile edge computing: The communication perspective.
IEEE Communications Surveys & Tutorials, IEEE, v. 19, n. 4, p. 2322–2358, 2017.

MARGARA, A.; CUGOLA, G. Processing Flows of Information: From Data Stream to
Complex Event Processing. In: ACM. Proc. of the 5th ACM Int. Conf. on Distributed
Event-based Systems. [S.l.], 2011. p. 359–360.

MELL, P.; GRANCE, T. et al. The NIST definition of Cloud Computing. National
institute of standards and technology, v. 53, n. 6, p. 50, 2011.

ORSINI, G. et al. CloudAware: A Context-Adaptive Middleware for Mobile Edge and
Cloud Computing Applications. In: IEEE. Foundations and Applications of Self*
Systems, IEEE International Workshops on. [S.l.], 2016. p. 216–221.

PADALA, P. et al. Adaptive control of virtualized resources in utility computing
environments. In: ACM. ACM SIGOPS Operating Systems Review. [S.l.], 2007. v. 41,
n. 3, p. 289–302.

PAN, J. et al. HomeCloud: An edge cloud framework and testbed for new application
delivery. In: IEEE. Telecommunications (ICT), 23rd International Conference on.
[S.l.], 2016. p. 1–6.

PAVLO, A. et al. A Comparison of Approaches to Large-Scale Data Analysis. In: ACM.
Proc. ACM SIGMOD Int. Conf. on Management of Data. [S.l.], 2009. p. 165–178.

REUTERS. U.S. Smart Grid to Cost Billions, Save Trillions. 2011. Disponível em:
<http://reut.rs/iorv4f>.

RICHARDSON, L.; RUBY, S. RESTful web services. [S.l.]: O’Reilly Media, Inc.,
2008.

ROLOFF, E. et al. High Performance Computing in the Cloud: Deployment, performance
and cost efficiency. In: IEEE. 4th International Conference on Cloud Computing
Technology and Science (CloudCom). [S.l.], 2012. p. 371–378.

ROLOFF, E. et al. HPC Application Performance and Cost Efficiency in the Cloud.
In: 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). [S.l.: s.n.], 2017. p. 473–477.

RUELLAN, H.; PEON, R. HPACK: Header Compression for HTTP/2. Internet
Engineering Task Force (IETF) - RFC-7541, 2015.

https://www.usenix.org/conference/hotos15/workshop-program/presentation/maas
http://reut.rs/iorv4f

82

SABER, A. Y.; VENAYAGAMOORTHY, G. K. Plug-in Vehicles and Renewable Energy
Sources for Cost and Emission Reductions. Industrial Electronics, IEEE Transactions
on, IEEE, v. 58, n. 4, p. 1229–1238, 2011.

SATYANARAYANAN, M. The Emergence of Edge Computing. Computer, IEEE,
v. 50, n. 1, p. 30–39, 2017.

SATYANARAYANAN, M. et al. The case for vm-based cloudlets in mobile computing.
IEEE pervasive Computing, IEEE, v. 8, n. 4, p. 14–23, 2009.

SINGH, A. et al. Rt-sane: Real time security aware scheduling on the network edge.
In: ACM. Proceedings of the10th International Conference on Utility and Cloud
Computing. [S.l.], 2017. p. 131–140.

STOJMENOVIC, I. Fog computing: A cloud to the ground support for smart things
and machine-to-machine networks. In: IEEE. Telecommunication Networks and
Applications Conference (ATNAC), 2014 Australasian. [S.l.], 2014. p. 117–122.

SUN, X.; ANSARI, N. EdgeIoT: Mobile Edge Computing for the Internet of Things.
IEEE Communications Magazine, IEEE, v. 54, n. 12, p. 22–29, 2016.

TÄRNEBERG, W.; CHANDRASEKARAN, V.; HUMPHREY, M. Experiences creating
a framework for smart traffic control using aws iot. In: ACM. Proceedings of the 9th
International Conference on Utility and Cloud Computing. [S.l.], 2016. p. 63–69.

THANGAVEL, D. et al. Performance evaluation of MQTT and CoAP via a common
middleware. In: IEEE. 9th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP). [S.l.], 2014. p. 1–6.

TIRUMALA, A. et al. Iperf: The TCP/UDP bandwidth measurement tool. http://iperf.fr,
2005.

TOGASHI, N.; KLYUEV, V. Concurrency in Go and Java: Performance analysis.
In: IEEE. 4th International Conference on Information Science and Technology
(ICIST). [S.l.], 2014. p. 213–216.

TSADO, Y.; LUND, D.; GAMAGE, K. A. Resilient Communication for Smart Grid
Ubiquitous Sensor Network: State of the Art and Prospects for Next Generation.
Computer Communications, Elsevier, v. 71, p. 34–49, 2015.

WANG, N. et al. Enorm: A framework for edge node resource management. IEEE
Transactions on Services Computing, IEEE, 2017.

WANG, W.; XU, Y.; KHANNA, M. A Survey on the Communication Architectures in
Smart Grid. Computer Networks, Elsevier, v. 55, n. 15, p. 3604–3629, 2011.

WEIN, J. M. et al. Content delivery network (CDN) content server request handling
mechanism with metadata framework support. [S.l.]: Google Patents, 2007. US
Patent 7,240,100.

WERSTEIN, P.; SITU, H.; HUANG, Z. Load balancing in a cluster computer. In:
IEEE. Parallel and Distributed Computing, Applications and Technologies, 2006.
PDCAT’06. Seventh International Conference on. [S.l.], 2006. p. 569–577.

83

WHITE, T. Hadoop: The Definitive Guide. [S.l.]: O’Reilly Media, Inc., 2012.

YAN, L. et al. The Internet of Things: from RFID to the Next-generation Pervasive
Networked Systems. [S.l.]: CRC Press, 2008.

ZAHARIA, M. et al. Discretized streams: Fault-tolerant streaming computation at
scale. In: ACM. Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. [S.l.], 2013. p. 423–438.

ZIEKOW, H.; JERZAK, Z. The DEBS 2014 Grand Challenge. In: Proceedings of the
8th ACM DEBS Conference. [S.l.: s.n.], 2014. v. 14, p. 266–269.

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 State of the art
	2.1 Evolution of distributed computing
	2.1.1 Utility computing
	2.1.2 Cluster computing
	2.1.3 Grid computing
	2.1.4 Cloud computing
	2.1.5 Distributed event stream processing systems
	2.1.6 Internet of things
	2.1.7 Fog computing
	2.1.8 Edge computing

	2.2 Smart grid
	2.2.1 Advanced metering infrastructure
	2.2.2 Demand side management
	2.2.3 Consumption forecasting

	2.3 Related work and discussion

	3 Garua: Architecture and implementation
	3.1 Architectural overview
	3.2 Cloud layer
	3.3 Edge layer
	3.4 Sensor layer
	3.5 Communication protocol
	3.6 Measurement algorithm

	4 Garua: Evaluation
	4.1 Communication evaluation
	4.2 Application evaluation
	4.2.1 Concurrency evaluation
	4.2.2 Scalability evaluation
	4.2.3 Impact of message windowing

	4.3 Simulated latencies
	4.3.1 Validation
	4.3.2 Throughput evaluation
	4.3.3 Windowing evaluation

	5 GaruaGeo: Architecture and implementation
	5.1 Architectural overview
	5.2 Cloud layer
	5.3 Aggregator layer
	5.4 Edge layer
	5.5 Sensor layer

	6 GaruaGeo: Evaluation
	6.1 Infrastructure setup and operators placement
	6.2 Exploring the impact of adding aggregators into the infrastructure
	6.3 Multiple aggregators in a given global region
	6.4 Groups of aggregators into a single region
	6.5 Multiple region edge analysis

	7 Conclusion and future works
	References

