
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VITOR DE OLIVEIRA GOMES

A Novel Image-Based Approach for

Detecting Vehicles in User-defined Virtual

Inductive Loops

Thesis presented in partial fulfillment

of the requirements for the degree of

Master of Computer Science

Advisor: Prof. Dr. Jacob Scharcanski

Porto Alegre,

2015

CIP – CATALOGING-IN-PUBLICATION

Gomes, Vitor de Oliveira

A Novel Image-Based Approach for Detecting Vehicles in

User-defined Virtual Inductive Loops / Vitor de Oliveira Gomes.

– Porto Alegre: PPGC da UFRGS, 2015.

77 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação, Porto Alegre, BR–

RS, 2015. Advisor: Jacob Scharcanski.

1. Vehicle detection. 2. Shadow detection. 3. Traffic monitor-

ing systems. 4. Virtual loops. 5. Image-based sensors. I. Schar-

canski, Jacob. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb

Coordenador do PPGC: Prof. Luigi Carro

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Be wary of folly.”

— ABENTHY

ABSTRACT

The number of vehicles circulating in modern urban centers is increasing and traffic data have

important applications for urban planning and development. Therefore, traffic monitoring sys-

tems are essential for managing modern urban centers and roadways. Nowadays, due to the

advances in computer vision, there is an ongoing research effort to replace traditional traffic

monitoring sensors (e.g. inductive loops, microwave, etc.) by image-based systems, which are

easier to repair and are more flexible to operate. These image-based systems have to be robust

against challenging situations that can severely affect the results, such as sudden illumination

changes, cast shadows and partial or total occlusions. In this work, our main contributions are

twofold: First, we propose a novel shadow detection scheme that combines hypergraph im-

age segmentation with color and texture information for accurate shadow detection. Second,

a vehicle detection scheme that uses an image-based sensor (camera) for detecting vehicles at

user-defined virtual loops, simulating the operation of inductive loops. Using the proposed vehi-

cle detection scheme, allows several user-defined virtual loops to be monitored simultaneously

with one camera. Initially, the background is modeled with an improved Gaussian Mixture

Models approach, and then the shadows detected at the virtual loops are removed to minimize

false vehicular detections. Next, vehicles are detected at the user-defined virtual loops using a

combination of efficient edge detection and color information. The proposed vehicle detection

scheme provides a vehicle detection signal that also can be used for counting vehicles at the user

defined virtual loops. The experimental results indicate that the proposed scheme can accurately

detect vehicles at user-defined virtual loops and provide their counts (with more than 98% accu-

racy, in average), besides being more robust to cast shadows and sudden illumination changes

than comparable methods that represent the state of the art. Also, experiments performed on

common and publicly shadow detection datasets suggest that our proposed hypergraph image

segmentation shadow detection approach is capable of obtaining accurate shadow detection re-

sults when compared with recent and relevant shadow detection methods.

Keywords: Vehicle detection. Shadow detection. Traffic monitoring systems. Virtual loops.

Image-based sensors.

RESUMO

O número de veículos em circulação nos grandes centros urbanos está aumentando e dados

de tráfego tem importantes aplicações para o planejamento e desenvolvimento urbano. Por-

tanto, esses dados são essenciais para o gerenciamento de cidades e rodovias. Hoje, devido

aos avanços em visão computacional, há diversas pesquisas focadas em substituir sensores de

monitoramento de tráfego tradicionais (por exemplo, loops indutivos, sensores de micro-ondas,

etc) por sistemas com sensores baseados em imagens, que são mais fáceis de reparar e pos-

suem maior flexibilidade de operação. Esses sensores baseados em imagens tem de ser robustos

contra situações desafiadores que podem afetar severamente os resultados, tais como mudanças

bruscas de iluminação, sombras e oclusões totais ou parciais. Neste trabalho, nossas contri-

buições são duas: Primeiro, propomos uma nova abordagem para detecção de sombras que

combina segmentação de imagens por hipergrafos com informações de cor e textura para ob-

tenção de resultados precisos. Segundo, um sistema de detecção de veículos que usa sensores

baseados em imagens (i.e. câmeras) para detectar veículos em loops virtuais definidos pelo

usuário, simulando o comportamento de um loops indutivos. Usando o método de detecção

de veículos proposto, diversos loops virtuais podem ser monitorados simultaneamente por uma

única câmera. Inicialmente, o fundo é modelado usando uma abordagem melhorada de modelos

de misturas de Gaussianas. Então, sombras são detectadas nos loops virtuais e removidas para

minimizar falsas detecção de veículos. Em seguida, veículos são detectados nos loops virtuais

definidos pelo usuário usando uma combinação de bordas (obtidas por um detector eficiente) e

informações de cores. O método de detecção de veículos proposto fornece um sinal de detecção

que também pode ser usado para contar veículos nos loops virtuais. Os resultados experimen-

tais mostram que nosso método proposto pode detectar e contar veículos de forma precisa (com

mais de 98% de acurácia, em média), além de ser mais robusto a sombras e mudanças bruscas

de iluminação que métodos comparáveis que representam o estado da arte. Além disso, experi-

mentos realizados em datasets de detecção de sombras públicos e comuns na literatura sugerem

que nosso método de detecção de sombras usando segmentação de imagens com hipergrafos

é capaz de obter resultados de detecção de sombras precisos quando comparado com outros

métodos recentes e relevantes.

Palavras-chave: Detecção de veículos. Detecção de sombras. Sistemas de monitoramento de

tráfego. Loops virtuais. Sensores baseados em imagens.

LIST OF ABBREVIATIONS AND ACRONYMS

GMM Gaussian Mixture Models

RGB Red, Green and Blue

HSV Hue, Saturation and value

FG Foreground

BG Background

GW Gabor wavelet

SGW Simplified Gabor wavelet

NCC Normalized Cross-Correlation

LIST OF SYMBOLS

α Lower threshold of the V channel in HSV color space of color-based shadow detection

β Upper threshold of the V channel in HSV color space of color-based shadow detection

τS Threshold of the S channel in HSV color space of color-based shadow detection

τH Threshold of the H channel in HSV color space of color-based shadow detection

τm Gradient magnitude threshold

τa Gradient direction threshold

τc Gradient direction correlation threshold

K Number of hypergraph partitions

τσ Standard deviation threshold of the V channel in hypergraph partitions

τp Shadow detection sensitivity parameter

τr Shadow classification voting threshold

τFG Minimum number of foreground pixels to active a virtual loop

τ low
γ Lower NCC threshold for detecting vehicles

τ high
γ Higher NCC threshold for detecting vehicles

τl Minimum required number of active frames to perform histogram comparisons

τH Histogram similarity threshold

τv Minimum required active frames to count a vehicle in a virtual loop

τz Binary signal similarity threshold

LIST OF FIGURES

Figure 1.1 Genius traffic system in Thailand ... 12
Figure 1.2 Example of the virtual loops defined for three video sequences. 13

Figure 3.1 Summary of the proposed vehicle detection scheme.. 21
Figure 3.2 Foreground mask and background model... 23
Figure 3.3 Shadow detection approach results... 26
Figure 3.4 Image hypergraph partition splitting .. 28
Figure 3.5 Summary of the proposed shadow detection scheme. .. 31
Figure 3.6 The SGW kernel family.. 34
Figure 3.7 Example of edge detection using SGW kernels ... 37
Figure 3.8 Schematics of the vehicle detection process... 42
Figure 3.9 Example of the binary signal representing passing vehicles 43
Figure 3.10 Median filter applied to binary signal... 44

Figure 4.1 Shadow masks obtained by the proposed hypergraph-based shadow detection..... 47
Figure 4.2 Example of changes in camera gain ... 49

Figure A.1 Graph, hypergraph and neighborhood hypergraph example.................................. 67
Figure A.2 Hypergraph coarsening illustration.. 70
Figure A.3 Illustration of the 3 steps of the multilevel approach... 71
Figure A.4 Hypergraph segmentation results... 72

LIST OF TABLES

Table 4.1 Information about the datasets used in the experiments... 45
Table 4.2 Parameters used to set the hMETIS tool package for our tests. 48
Table 4.3 Shadow detection results for all datasets.. 53
Table 4.4 Summarizing information about the videos used in the experiments. 54
Table 4.5 Vehicle detection results for video sequence 1... 55
Table 4.6 Vehicle detection results for video sequence 2... 56
Table 4.7 Vehicle detection results for video sequence 3... 57
Table 4.8 Vehicle detection and counting parameters used for each video sequence. 58
Table 4.9 Vehicle counting results for video sequence 1. .. 59
Table 4.10 Vehicle counting results for video sequence 2. .. 59
Table 4.11 Vehicle counting results for video sequence 3. .. 60

CONTENTS

1 INTRODUCTION.. 11
1.1 Thesis structure.. 13
2 RELATED WORKS .. 14
2.1 Foreground Detection .. 14
2.2 Vehicle Detection .. 14
2.3 Shadow Detection... 16
3 PROPOSED METHOD FOR VEHICLE DETECTION IN VIRTUAL LOOPS.......... 20
3.1 Foreground Detection and Background Modeling Using Gaussian Mixture Models 20
3.2 Shadow Detection and Removal ... 24
3.2.1 Shadow Detection Using Color and Gradient Information... 24
3.2.2 Improved Shadow Detection Using Hypergraphs... 27
3.2.3 Shadow removal.. 32
3.3 Fast Edge Detection ... 32
3.4 Vehicle Detection Using Edge and Color Information.. 38
3.4.1 Vehicle Counting... 42
4 EXPERIMENTAL RESULTS .. 45
4.1 Hypergraph-Based Shadow Detection Results.. 45
4.2 Vehicle Detection Results... 49
5 CONCLUSIONS AND DISCUSSION ... 61
5.1 Contributions of this Work ... 64
5.1.1 Stochastic Shadow Detection Using a Hypergraph Partitioning Approach.................... 64
5.1.2 Novel Image-based Approach for Detecting Vehicles.. 65
APPENDICES... 66
A - FUNDAMENTALS OF IMAGE SEGMENTATION USING HYPERGRAPHS....... 67
REFERENCES.. 73

11

1 INTRODUCTION

With the development of the great urban centers, the number of vehicles is increasing every

day. Therefore, traffic management systems become an important tool in the for urban develop-

ment. With the recent developments in computer vision, it is now possible to use video cameras

for these systems, instead of traditional sensors like ultra-sonic or microwave sensors (TIAN et

al., 2011). Using traditional video cameras has several advantages over other types of sensors.

With video cameras, it is possible to obtain more information about vehicles such as speed,

size, trajectory and color. Also, a single video camera can analyze several traffic lanes. Another

advantage is that it is possible to send the video feed itself to control stations. Finally, urban

centers may have several video cameras already installed for general monitoring purposes. This

allows traffic monitoring systems to use these cameras, reducing the installation costs for these

systems.

The aim of traffic monitoring systems is to estimate traffic parameters, such as the number

of vehicles that passed on a lane or to detect incidents (TIAN et al., 2011), such as vehicles

in the opposite road direction, vehicles stopped on forbidden areas, accidents, fire/smoke, etc.

Furthermore, new researches are being developed in behaviour analysis, aiming to increase

drivers safety (SIVARAMAN; TRIVEDI, 2013), for example, by detecting sudden braking

and reacting properly, faster than a human would react. These systems usually process videos

obtained by cameras in the vehicle and also have important applications for intelligent vehicles.

The traffic parameters obtained by traffic monitoring systems have great importance in the

planning and development of urban centers. They also can be used to reroute traffic and for traf-

fic light control and optimization, improving the traffic flow in the cities. Fig. 1.1 is an example

of a traffic system that indicates in real-time which streets have traffic jams (PORNPANOM-

CHAI; LIAMSANGUAN; VANNAKOSIT, 2008).

Traffic monitoring systems based on video cameras have advantages over other types of

sensors (e.g. magnetic or microwave) (BARCELLOS et al., 2014). These camera based traffic

monitoring systems can provide more information about the traffic than competing technologies

(e.g. vehicles colors, size and trajectory), are easy to install and upgrade, and potentially can

reduce the final monitoring system cost (BARCELLOS et al., 2014).

One of the most important step of traffic monitoring systems (and most computer vision

based systems in general) is the detection of objects of interest (i.e. the foreground). But, several

factors may negatively affect the foreground detection process, decreasing the performance of

these systems. Factors like, camera noise, occlusions, cast shadows, slow or sudden changes of

12

Figure 1.1: Genius traffic system, in Thailand. The system indicates in real-time which streets
may have traffic jams, allowing drivers to change their route and improving the traffic flow.

Source: (PORNPANOMCHAI; LIAMSANGUAN; VANNAKOSIT, 2008)

lighting in outdoors environments (i.e. when a cloud blocks the sun), weather conditions like

rain or snow, etc. Therefore, to obtain accurate results, it is necessary to develop techniques

robust against these adverse conditions.

In this work, our main contributions are: 1. a robust scheme for vehicle detection for user

defined virtual loops with high accuracy and 2. a hypergraph-based shadow detection scheme

with high shadow detection and shadow discrimination rate.

Our hypergraph-based shadow detection scheme combines color and texture information

with hypergraph image segmentation to achieve accurate shadow detection results. Even though

our current implementation was not suitable for real-time processing, our proposed scheme

provided state-of-the-art results in common, public shadow detection datasets.

Our vehicle detection scheme does not require any previous training and it is robust against

shadows, sudden and slow lighting changes. It also has low computational cost, running in real-

time for our tested video sequences. Virtual loops are regions of interest defined by the user

and they simulate the behaviour of traditional inductive sensors. For each lane, a virtual loop

is defined and a vehicle is detected when it passes over them. Fig. 1.2 illustrates these virtual

loops. Unlike many vehicle detection works that focus on counting vehicles, our proposed

approach is focused on detecting vehicles in the virtual loops with the highest possible accuracy.

Nonetheless, we also can use our accurate detection results to estimate the number of passing

13

Figure 1.2: Example of the virtual loops defined for three video sequences.

(a) (b) (c)

Source: Created by the author (2015).

vehicles in a lane. To the best of our knowledge, no other method that simulates an inductive

loop behaviour has been proposed. This work was developed in partnership with Digicon.

1.1 Thesis structure

The remaining of this thesis is organized in the following way: Chapter 2 provides a brief

summary of recent state-of-the-art works in the context of foreground detection, shadow detec-

tion, vehicle detection and traffic monitoring systems. Chapter 3 describes in detail our vehicle

and shadow detection schemes. In Chapter 4, we describe our experiments and present our re-

sults. Finally, in Chapter 5 we present our conclusions and have a final discussion. Appendix A

describes the fundamentals of image segmentation using hypergraphs, which is the basis of our

proposed shadow detection scheme.

14

2 RELATED WORKS

In this chapter, we describe some recent state-of-the-art vehicle detection and counting re-

search works. Also, since foreground and shadow detection are strongly related to our work,

we describe some recent and relevant works.

2.1 Foreground Detection

The first step of most image-based detection schemes is the foreground detection. The

method proposed by Zivkovic et al. (ZIVKOVIC, 2004) (ZIVKOVIC; HEIJDEN, 2006) builds

upon the Gaussian Mixture Models proposed in (STAUFFER; GRIMSON, 1999) and models

each pixel with a mixture of K gaussians. If a pixel does not fit into any of the gaussians of

the mixture, it is considered a foreground pixel. At every step, recursive equations are used to

update the mixture model (ZIVKOVIC, 2004). This method is fairly robust against noise and

multi-modal backgrounds and it has a low-computational cost suitable for real-time applica-

tions.

Noh and Jeon (2013) proposed a foreground detection method that uses multiple cues: pixel

texture, pixel color and region appearance. A codebook-based approach is used to cluster tex-

ture information and detect initial foreground regions. Then, an adaptive texture operator called

scene adaptive local binary pattern (SALBP) is applied. The codebook scheme is also used to

model color statistics. Finally, the texture and color operations are combined and the distance of

the extracted blobs is matched against the edge map to obtain an accurate foreground detection.

This method presents good results in challenging situations such as dynamic background and

illumination changes due to the use of multiple cues.

The method proposed by St-Charles and Bilodeau (2014) builds upon the ViBe algorithm

(BARNICH; DROOGENBROECK, 2011), and uses a spatio-temporal descriptor to achieve

a better detection than comparable pixel-based methods. Local binary patterns occurring in

multiple frames are used to improve the foreground detection. This method has good detection

results, but a computational cost higher than pixel-based methods.

2.2 Vehicle Detection

There is a growing interest on image-based vehicle detection and some relevant recent con-

tributions to this area are discussed next.

Sanchez et al. (SANCHEZ et al., 2011) proposed a low cost approach for vehicle counting.

15

First, ‘enter’ and ‘exit’ regions are defined in the scene. Then, a background model is estimated

and vehicles are detected by using background subtraction. When a vehicle is detected in an

‘enter’ region, an identification number is assigned to it and the vehicle is tracked until it passes

through the ‘exit’ region. Tracking is performed by calculating the intersection between the

blobs of vehicles in a frame T and frame T − 1. The speed of the vehicles is also estimated and

if a vehicle becomes occluded, their position can be estimated using the vehicles’ speed until it

stops being occluded or leaves the scene.

Scharcanski et al. (SCHARCANSKI et al., 2011) uses particle filtering to track vehicles

and present an adaptive approach to handle occlusions. The method detected when a vehicle

becomes occluded or leaves the occlusion, operating in two distinct modes according to the

situation. In the normal mode, a Normal pdf (Probability Density Function) is used to generate

a set of particles to be tracked. In the occlusion mode, a joint Normal-Rayleigh pdf is used

to generate these particles. The main reason for this approach is that the Rayleigh function is

oriented towards the direction with greater movement activity of a vehicle being tracked and the

Normal function is oriented in the orthogonal direction, creating a ‘drift” effect in relation to

the Rayleigh function. This ‘drift’ effect moves the particles in the direction that an occlusion

was detected, tracking the occluded vehicles.

Gangodkar et al. (GANGODKAR; KUMAR; MITTAL, 2012) proposed a vehicle seg-

mentation method in complex conditions like adverse weather conditions (e.g.snow and rain),

camera noise and non-adequate illumination conditions. It uses an adaptive threshold and the

FSSAD (Full-search sum of absolute difference) algorithm. It also uses the notion of motion

energy, which is calculated by the summation of the absolute difference between pixels in im-

age patches. This motion energy results in good separation between dynamic backgrounds and

foreground objects, allowing the detection of vehicles in the complex conditions mentioned

before.

The method proposed by Yuan et al. (YUAN; ZHAO; WANG, 2013) performs vehicle

counting in day and night environments and detect vehicles using morphological operations

and color differences. A background model is estimated and updated frequently. Vehicles

are detected by comparing the current frame with this background model. To decrease false

detection, a secondary background model is estimated in the YCrCb color space. Using both

background models, vehicles are detected when they enter or leave the region of interest. This

method does not perform tracking on the vehicles.

Barcellos et al. (BARCELLOS et al., 2014) proposed a particle-based vehicle counting

approach. Particles are grouped according to motion coherency and spatial adjacency. First,

16

a foreground mask is generated using Gaussian Mixture Models to determine the position in

which the particles should be generated. Then, convex groups of particles are analyzed to

detect vehicles. These vehicles are then tracked using color similarity in adjacent frames. The

intersection of a vehicle with the virtual loops is estimated and a counter is incremented when

the vehicle leaves the virtual loop region.

2.3 Shadow Detection

Detection of moving objects (i.e. foreground detection) is an important step in many image-

based monitoring applications (CUCCHIARA et al., 2003), like traffic monitoring (SILVA;

SCHARCANSKI, 2010)(SCHARCANSKI et al., 2011)(BARCELLOS et al., 2014) and people

detection and/or tracking. Unfortunately, cast shadows have the same motion patterns as the

objects casting them, and most foreground detection methods tend to confuse cast shadows

with foreground objects (BENEZETH et al., 2010), downgrading the performance of these

methods. Besides, cast shadows usually are adjacent to moving objects, and the segmentation

process tends to merge foreground objects separated by cast shadows, leading to erroneous

object detection and recognition (SANIN; SANDERSON; LOVELL, 2010). Therefore, the

reliable detection of shadows is an important step in foreground and background detection.

Shadows occur when a light source is occluded by an object in the scene. The part of

the object that is not illuminated is called self-shadow and the area projected on the scene

corresponding to this occlusion is called cast shadow or moving cast shadow if the object is

moving.

To evaluate the performance of shadow detection methods, (PRATI et al., 2001) proposed

two metrics: the shadow detection rate and shadow discrimination rate, which are calculated as

follows:

η =
TPS

TPS + FNS

and ξ =
TPF

TPF + FNF

, (2.1)

where TP and FN are the true positive and false negative pixels detected in shadow (S) and

non-shadow (F) regions. The shadow detection rate (η) increases as the number of shadow

pixels detected increases. The shadow discrimination rate (ξ) is related to a correct separation

between foreground objects pixels and shadow pixels, therefore it decreases when a foreground

pixel is mistakenly labeled as a shadow pixel. Usually, the average of the two measures is used

as a single measure to evaluate the performance of these methods (SANIN; SANDERSON;

LOVELL, 2010). Also, there is a compromise between the two measures, and by increasing the

17

detection rate, the discrimination rate tends to decrease and vice-versa.

A recent survey on shadow detection (SANIN et al., 2012) organizes the available methods

in four categories: a) chromaticity-based methods; b) physically inspired methods; c) geometry-

based methods; and d) texture-based methods.

Cucchiara et al. proposed a chromaticity-based method (CUCCHIARA et al., 2003) that

tries to detect shadows by measuring the rate of change between the HSV components of a

video frame and a background reference. This method assumes that shadow pixels in the video

frame and in the background reference do not differ substantially in their hue component, and

have low saturation and intensity values. However, just color information may not be able

to discriminate correctly shadows and foreground objects that have darker colors similar to

shadows (e.g. dark cars and their cast shadows).

Physically-based methods try to learn the appearance of shadow pixels, and may achieve

higher accuracies than chromaticity-based methods (HUANG; CHEN, 2009). Unfortunately,

these methods tend to fail when dealing with objects having chromaticities similar to the back-

ground (SANIN et al., 2012).

Geometry-based methods evaluate geometric features of shadows, such as the shadow orien-

tation, size and shape (HSIEH et al., 2003). The disadvantage of these methods is that previous

knowledge of the scene is required, which often is unavailable (SHABANINIA; NAGHSH-

NILCHI, 2013). These methods may fail when the shadow region and the foreground object

have similar orientations (SANIN et al., 2012).

Texture-based methods assume that shadows preserve most of the scene textures. For ex-

ample, the method proposed in (SANIN; SANDERSON; LOVELL, 2010) uses chromaticity

information to identify shadow regions, and then uses gradient information to refine the initial

estimates of shadow or non-shadow pixels. This method provides good shadow detection re-

sults, and improves on the results of the chromaticity method in (CUCCHIARA et al., 2003)

by combining chromaticity and gradient information. However, significant color differences be-

tween foreground objects and cast shadows are required to obtain high quality shadow detection

with this method (SANIN; SANDERSON; LOVELL, 2010).

In a recent survey presented by Al-Najdawi et al. (2012), a different taxonomy was pro-

posed to organize shadow detection methods. The shadow methods are classified based on

object/environment dependency, or based on the implementation domain, which can be pixel

domain or transform domain. According to (AL-NAJDAWI et al., 2012), object/environment

dependent methods are designed to detect a particular type of shadow (e.g. vehicle or human

cast shadows) in a specific environment (e.g. indoor or outdoor scenes). Pixel domain methods

18

are further divided in monochrome domain and color domain methods, and use pixel infor-

mation (e.g. color) for shadow detection. Transform domain methods use different types of

information for shadow detection, such as frequency domain, texture, or yet geometric infor-

mation. Some transform domain methods are illustrated next.

The method proposed in Xu et al. (2005) removes insignificant cast shadows in video se-

quences based on edge and region information in multiple frames. A shadow is called insignifi-

cant when edges of the shadow region are not as sharp as the edges of the corresponding object.

First, a mask containing moving objects and cast shadows is obtained. Then, the Canny edges

detector is used to generate an edges map. The shadow regions are then removed using edge

matching and region growing in multiple frames. Finally, the boundaries of the objects are

improved and noise is removed by using a post-processing procedure. The motivation for this

approach is that an insignificant shadow region often appears in an area where the gray levels

change gradually from the background to the shadowed area. A disadvantage of this method is

that if the object moves slowly, there is little change at the boundary between the object and the

background, affecting negatively the results (XU et al., 2005).

Guo, Dai and Hoiem (2011) proposed a single-image shadow detection and removal method

based on a paired-regions approach. First, the image is segmented using the mean-shift algo-

rithm (COMANICIU; MEER, 2002), then a trained classifier is used to estimate the confidence

that each region is a shadow region. Next, regions with the same and different illuminations

are represented by a relational graph, which is partitioned using graph-cuts in shadow and

non-shadow regions. Finally, the results are improved by using image matting to smooth the

transitions between shadow and non-shadow regions, and shadow-free images are obtained by

relighting. A disadvantage of this method is that it requires training a shadow classifier, which

may involve manual labeling of shadow regions for generic scenes.

Another typical transform domain method (SHABANINIA; NAGHSH-NILCHI, 2013) han-

dles shadow detection using the robust wavelet watershed segmentation algorithm (JUNG;

SCHARCANSKI, 2005) (JUNG; SCHARCANSKI, 2004) (JUNG; SCHARCANSKI, 2002).

The segmented image regions are classified as shadow and non-shadow regions using a HSV-

based approach, similar to the method proposed by Cucchiara et al. (2003). A problem with this

method is that using only HSV color information to classify shadow and non-shadow regions

may lead to erroneous results when the foreground objects colors are similar to shadows.

The method proposed in (BULLKICH et al., 2012) uses the MTM (Matching by Tone Map-

ping) transformation as the distance between image patches of a video frame and a background

reference. Shadowing effects are assumed to be non-linear tone mappings of the background

19

gray levels. Since the MTM distance is invariant to non-linear mappings between corresponding

image patches in shadow and non-shadow-regions, this MTM distance results in small values

for shadowed areas and in large values for foreground patches that differ from the background

(BULLKICH et al., 2012). To detect shadows, the MTM transformation is applied to the spa-

tial neighborhood of each pixel in the foreground, generating a MTM distance map. The Otsu

thresholding method (OTSU, 1979) is then applied to the MTM distance map to discriminate

between shadow and non-shadow regions. Unfortunately, thresholding the MTM distance map

to guarantee an accurate discrimination between shadow and non-shadow regions is not trivial.

Khare, Srivastava and Khare (2014) proposed a shadow detection method based on the dual-

tree complex wavelet transform to measure the difference between a video frame and the back-

ground reference in the HSV color space. The dual-tree complex wavelet transform of the

difference images in the saturation and value channels is calculated. The standard deviation of

the wavelet coefficients is computed, each coefficient is adaptively thresholded, and the image

is reconstructed by discarding the wavelet coefficients that are associated to shadows. Finally,

morphological operations are used as post-processing. This method provides interesting results,

but since the wavelet coefficients are calculated based on color information only, the method

performance tends to decrease if the foreground objects have chromaticities similar to shadows.

In the next chapter, we describe in detail our proposed vehicle detection and shadow detec-

tion schemes

20

3 PROPOSED METHOD FOR VEHICLE DETECTION IN VIRTUAL LOOPS

In this chapter, we describe in detail each step of our proposed vehicle detection scheme. We

also describe in detail our hypergraph-based shadow detection approach. Our shadow detection

approach was not suitable for real-time processing, therefore for the vehicle detection system,

we decided to use a simplified approach able to perform in real-time. But, despite not being able

to run in real-time, our shadow detection approach provided state-of-the-art results in public and

common shadow detection datasets.

Initially, an improved Gaussian Mixture Model (ZIVKOVIC, 2004) is used to detect moving

vehicles, generating a foreground mask and a background model. The foreground mask is

used to detect vehicles in the virtual loop region. Shadows are detected and removed when a

foreground object (vehicle) is detected in the virtual loop. After the shadows are removed, we

detect the background edges using an efficient Gabor edge detector and compare the detected

edges in the current frame with the background edges. If the difference is significant, a vehicle

is detected in the virtual loop. Color histogram comparisons are used to improve the vehicle

detection results. Fig. 3.1 shows an overview of our proposed vehicle detection scheme. Each

step is detailed next.

3.1 Foreground Detection and Background Modeling Using Gaussian Mixture Models

To detect the foreground objects we use the GMM approach proposed in (STAUFFER;

GRIMSON, 1999) (ZIVKOVIC, 2004) (ZIVKOVIC; HEIJDEN, 2006). In this approach, each

pixel is modeled by a mixture of K Gaussians, which makes this model adequate for non-static,

multimodal backgrounds (BENEZETH et al., 2010).

Let ~x(t) denote a pixel in RGB at time t. This pixel may belong to the background (BG) or

to a foreground object (FG), and it is more likely to belong to the background if:

p(BG|~x(t))

p(FG|~x(t))
=
p(~x(t)|BG)p(BG)

p(~x(t)|FG)p(FG)
≥ 1. (3.1)

Since we assume no prior knowledge about the foreground objects, an uniform distribution

is assumed for the appearance (likelihood) of the foreground objects p(~x(t)|FG). Therefore, a

pixel belongs to the background if (ZIVKOVIC; HEIJDEN, 2006):

p(~x(t)|BG) > cthr (3.2)

where cthr = p(~x(t)|FG)p(FG)/p(BG) is adopted as a threshold value and p(~x(t)|BG) is the

21

Figure 3.1: Summary of the proposed vehicle detection scheme.

Input frame

Obtain the foreground mask and
the background model using

the improved GMM approach
(see Section 3.1)

Check if there are
foreground objects in
the virtual loops Li

(see Eq. (3.9))

Detect shadows using
color and gradient

information
(see Section 3.2)

Remove the shadows and
check if the foreground

objects still can be detected in
the virtual loop Li

(see Eq. (3.19))

Get the current frame and
the background edges

using simplified
Gabor wavelets
(see Section 3.3)

Compare the current frame and
the background edges using
the NCC similarity measure

(see Section 3.4
and Eq. 3.37)

Compare color
histograms using the

Bhattacharyya distance
(see Section 3.4

Eq. (3.40))

Obtain the final vehicle
detection result
V ti in the

virtual loop Li
(see Section 3.4
and Eq. (3.41))

Source: Created by the author (2015).

22

estimated background model. A training set χ is used to estimate the background model, which

is denoted by p̂(~x|χ,BG). In order to adapt to changes, like the illumination gradually changing

in an outdoor scene or new objects coming into the scene, the training set is updated by adding

new samples and discarding old ones (ZIVKOVIC; HEIJDEN, 2006). Therefore, a reasonable

adaptation period T is chosen, and at time t we have the training set χT = {x(t), ..., x(t−T)}, and

χT is updated for each new sample x(t). The estimated training set density p̂(~x|χT , BG+ FG)

with M components is given by:

p̂(~x|χT , BG+ FG) =
M∑
m=1

π̂mN (~x; ~̂µm, σ̂
2
mI), (3.3)

where ~̂µ1, ~̂µ2, ..., ~̂µM are the estimates of the means and σ̂2
1, σ̂

2
2, ..., σ̂

2
M are the estimates of the

variances of the M Gaussian components and N is a Gaussian PDF. The mixing weights de-

noted by π̂m are non-negative and add up to 1 (ZIVKOVIC; HEIJDEN, 2006). Given a new

data sample ~x(t) at time t, the model is updated according to the following recursive equations

(ZIVKOVIC; HEIJDEN, 2006):

π̂(t)
m ← π̂(t−1)

m + α(o(t)
m − π̂(t−1)

m), (3.4)

~̂µ(t)
m ← ~̂µ(t−1)

m + o(t)
m (α/π̂(t)

m)~δm, (3.5)

σ̂2(t)

m ← σ̂2(t)

m + o(t)
m (α/π̂(t)

m)(~δTm
~δm − σ̂2(t)

m), (3.6)

where ~δm = ~x(t) − ~̂µ
(t)
m , o(t)

m is the ownership of the new sample and α is a constant used

to limit the influence of old data (α = 1/T in our experiments). The ownership o
(t)
m of a

new sample is set to ‘1’for the ‘closest’ mixture component with the largest weight π̂m and

it is set to ‘0’for the other components. A sample is ‘close’ to a mixture component if its

squared distance to the component mean is less than k (e.g. k = 3) standard deviations (σm)

(ZIVKOVIC, 2004). The squared distance to the m-th mixture component is calculated as

D2
m(~x(t)) = ~δTm

~δm/σ̂
2
m. If no ‘close’ component is found, a new mixture component is generated

with π̂(t)
M+1 = α, ~̂µ

(t)
M+1 = ~x(t) and σ̂(t)

M+1 = σ0, where σ0 is some appropriate initial standard

deviation. If the maximum number of components M is reached, the one with the smallest π̂m

is discarded to accommodate the new component.

Foreground objects usually are represented by mixture components with smaller weights

π̂m, then the background model can be approximated by selecting the first bmixture components

23

Figure 3.2: Illustration of the resulting foreground mask and background model: (a) original
frame; (b) foreground mask FG; and (c) background model B.

(a) (b) (b)

Source: Created by the author (2015).

with the largest weights (ZIVKOVIC, 2004):

p(~x|XT , BG) ∼
b∑

m=1

π̂mN (~x; ~̂µm, σ
2
mI). (3.7)

If the components are sorted to have decreasing weights π̂m, then we have:

BG = argmin
b

(∑b
m=1 π̂m > (1− cf)

)
, (3.8)

where cf is a measure of the maximum portion of the scene data that should be assigned to

foreground objects. At the end of this process we obtain a background model BG, and a binary

foreground mask FG in which pixels that belong to foreground objects have the value ‘1’, or

‘0’otherwise. Fig. 3.2 illustrates the resulting foreground mask and background model. If the

number of foreground pixels in a user-defined virtual loop is higher than a given threshold τFG,

the vehicle detection process is started. More formally, let Li be the i-th user-defined virtual

loop, FG(x, y) the foreground mask value of a pixel in position (x, y) and V ti the result of the

vehicle detection in the i-th virtual loop at a time t, such that V ti = 1 if a vehicle is detected in the

virtual loop Li, and V ti = 0 otherwise. Additionally, to guarantee that at least τFG foreground

pixels have been detected in the virtual loop Li, the following check is performed:

V ti = 0 if
∑

(x,y)∈Li

FG(x, y) < τFG . (3.9)

The foreground mask FG may contain vehicles cast shadows, which are artifacts that could

incorrectly activate a virtual loop. Therefore, if Eq. (3.9) is not satisfied, the next step of our

vehicle detection scheme is shadow detection.

24

3.2 Shadow Detection and Removal

The foreground mask FG (Section 3.1) may contain cast shadows pixels. Therefore, to

obtain accurate vehicle detection results we detect and remove the shadows.

To perform shadow detection we use color and gradient information (SANIN; SANDER-

SON; LOVELL, 2010). Cucchiara et al. (2003) proposed using color information to detect

shadows, since shadow regions should maintain most of the original color, but tend to have

lower luminance values. Therefore, the rate of change between the color components of the

current frame F and the background model B is measured in the HSV color space. However,

only color information may be insufficient to detect shadows when the foreground objects and

the shadows have similar color. Sanin, Sanderson and Lovell (2010) improved the method

proposed in (CUCCHIARA et al., 2003) by combining color information and texture gradient

information, since shadows tend to preserve most of the background textures. Consequently,

by combining both color and gradient information, it is possible to obtain higher discrimination

rates between shadows and their respective foreground objects.

Also, we improved on the method proposed by Sanin, Sanderson and Lovell (2010) by com-

bining color and texture information with hypergraph image segmentation. This shadow detec-

tion scheme provided state-of-the-art results on our experiments in shadow detection datasets,

but was not suitable for real-time processing. Therefore, we decided to use the color and

gradient-based shadow detection for the vehicle detection system.

In this section, we describe both the color and gradient shadow detection and our improved

hypergraph image segmentation scheme.

3.2.1 Shadow Detection Using Color and Gradient Information

The first step of the shadow detection stage is to use color information to create a rough es-

timate of the shadow regions. A pixel p is in this rough shadow estimate if (SANIN; SANDER-

SON; LOVELL, 2010):


α ≤ (F V

p /B
V
p) ≤ β , and

(F S
p −BS

p) ≤ τS , and

‖FH
p −BH

p ‖ ≤ τH ,

(3.10)

where F = {FH , F S, F V } and B = {BH , BS, BV } are the color components in HSV color

space, and α ∈ [0, 1], β ∈ [0, 1], τS ∈ [0, 255] and τH ∈ [0, 255] are thresholds defined experi-

25

mentally. In this step, the thresholds are set to values so that a large number of pixels is included

in this initial shadow regions estimate, which may later contribute to increase the shadow de-

tection rate. In our experiments, we used the following values: α = 0.21, β = 0.99, τS =

76 and τH = 93.

Next, the connected shadow components (shadow pixels blobs) are extracted from the

shadow mask using Eq. (3.10). Each connected componentRi is a candidate shadow region, and

the gradient magnitude |5p | and gradient direction θp are calculated at each pixel p(x, y) ∈ Ri

as follows:

| 5p | =
√
52
x +52

y, (3.11)

θp = atan2(5y/5x). (3.12)

where5x and5y are the gradient magnitudes in the x and y directions, respectively.

The next step is to calculate the difference between the gradient directions in the frame F

and background model B. To reduce the effect of noise, only the pixels with sufficient gradient

magnitude (i.e. | 5p | ≥ τm ∈ [0, 10]) are considered (SANIN; SANDERSON; LOVELL,

2010). In our experiments, a value of τm = 6 was adequate. This gradient direction difference

is calculated as follows:

4θp = arccos

[
5Fx5Bx +5Fy 5By

{(5F2
x +5F2

y)(5B2
x +5B2

y)}
1
2

]
. (3.13)

Finally, the correlation between the gradient directions in the frame F and background

model B is estimated for each region Ri by:

cRi =
{∑n

p=1 H(τa −4θp)
}
/n , (3.14)

where n is the number of pixels in Ri, and H(·) is the unit step function which evaluates to

‘1’if 4θp ≤ τa ∈ [0, π], and to ‘0’otherwise, cRi is the fraction of pixels in Ri with gradient

directions similar in the frame F and in the background model B. If cRi ≥ τc ∈ [0, 1], then the

region Ri is considered a shadow region. In our experiments, we used τa = π/10 and τc = 0.2.

At the end of this process, we obtain a shadow mask S. Fig. 3.3 shows the results of the shadow

detection scheme for a given video frame.

At the end of this process we obtain a shadow mask S, which is used to remove the vehicle’s

cast shadows.

26

Figure 3.3: Illustration of the results obtained with the proposed shadow detection approach: (a)
original frame with cast shadows; (b) foreground model obtained with the GMM background
modeling approach; (c) shadow mask obtained using color and gradient information (SANIN;
SANDERSON; LOVELL, 2010), and (d) foreground mask obtained after shadow removal.

(a) (b)

(c) (d)

Source: Created by the author (2015).

27

3.2.2 Improved Shadow Detection Using Hypergraphs

We build on the shadow detection approach described in Section 3.2.1 by performing hyper-

graph image segmentation and initially performing a rough classification in the resulting image

partitions as shadows or non-shadows partitions. Then, we combine this initial classification

with the color and gradient shadow detection to validate (or correct) our initial classification

label. This is performed as follows:

Initially, we pre-process an input frame F to improve the contrast between shadow and non-

shadow regions by normalizing its V component in the HSV color space. More formally, let

F = {HF , SF , V F} be the HSV components of the image F , the normalized V component can

be obtained by:

V F
m =

V F −min(V F)

max(V F)−min(V F)
, (3.15)

where V F
m is the normalized V component and V F is the original value of the V of a frame F .

Therefore, the pre-processed image Fm is obtained by substituting the original V component by

its normalized version (i.e. Fm = {HF , SF , V F
m }).

Then, we obtain initial shadow estimates using color and gradient information as described

in Section 3.2.1. Let xp(i,j) be the label of a pixel obtained with color and gradient information

as described in Section 3.2.1, such that: xp(i,j) = s if p(i, j) is a shadow pixel, or xp(i,j) = s̄

otherwise. These labels are going to be validated (or changed) later to obtain the final shadow

mask.

We perform a hypergraph image segmentation on the detected foreground objects and obtain

K partitions (for details about hypergraph image segmentation, please refer to Appendix A).

The number K of partitions is user-defined and each partition may contain more than one group

of foreground pixels (blob). Each partition is checked for this situation and partitions that

contain more than one blob are split until each partition contains only one blob. This splitting

process may result in K + L partitions, where L is the number of additional image hypergraph

partitions created by the splitting process. An illustration of this splitting process can be seen

in Fig. 3.4.

Then, we classify all pixels in each image hypergraph partition Pn as a shadow (or non-

28

Figure 3.4: Example of the image hypergraph partition splitting process: (a) partitions con-
sisting of more than one blob (orange and cyan partitions); (b) after the splitting process, all
partitions contain only one blob of foreground pixels.

(a) (b)

Source: Created by the author (2015).

shadow) pixels according to the following criterion:

xPn =

s if µFPn ≤ µBPn and σPn ≤ τσ,

s̄ , otherwise;
(3.16)

where xPn is the label of the pixels in the hypergraph partition Pn, µFPn and µBPn are the V

channel average of the HSV color pixels p ∈ Pn in the frame F and in the background reference

B, respectively, and σPn is the standard deviation of the V channel of the HSV color pixels

p ∈ Pn. The reasoning is that pixels belonging to shadow regions tend to be darker in the

current frame than in the background reference (which contains no shadows), therefore if the

foreground pixels are brighter in average (i.e. µFPn > µBPn), no further validation is required

and all pixels in Pn are classified as non-shadow pixels. Also, image shadow regions tend to be

more uniform in the V channel than foreground regions, so the pixels in an image hypergraph

partition Pn that have large intensity variability in average (i.e. σPn > τσ) are classified as

non-shadow pixels. In our experiments (see Section 4.1), we used τσ = 0.15.

Let Xp(i,j) be the final label for a pixel p(i, j). If the set of pixels in an image hypergraph

partition Pn is classified as a non-shadow (i.e. xPn = s̄) then ∀p(i, j) ∈ Pn the pixels labels

in Pn are set to Xp(i,j) = s̄ and the pixels in Pn are non-shadow pixels and do not need further

validation. On the other hand, an image hypergraph partition Pn classified as a shadow region

(i.e. xPn = s) may contain some pixels labeled as non-shadow pixels (i.e. xp(i,j) = s̄), so the

next step in the proposed shadow detection method is to validate the individual shadow or non-

shadow pixels labels using the image hypergraph partition labels (xp(i,j) and xPn), obtaining the

final shadow or non-shadow label Xp(i,j) for the pixels p(i, j) ∈ Pn forming a shadow mask for

the image.

29

The shadow pixels classification based on color and gradient information (see Section 3.2.1)

are validated by the hypergraph partitions detected as shadow regions using a stochastic majority

rule, and this process generates the final shadow mask, as described next. This is motivated by

the fact that at this stage some of the shadow pixels obtained with Eqs. (3.10), (3.13) and (3.14)

may be outliers or incorrectly labeled.

The image hypergraph segmentation approach generates image segments (hypergraph par-

titions) consisting of pixels that are visually similar and spatially close (see Appendix A), so

these image segments are color homogeneous. If most pixels in an image region Pn are shadow

pixels (or non-shadow pixels), then all pixels in the region Pn are classified as shadow pixels (or

non-shadow pixels). Therefore, pixels that have been estimated previously as shadow pixels are

validated (or relabeled as non-shadow pixels) by considering the label of similar pixels in their

neighborhoods, resulting in an improved shadow/non-shadow discrimination. This refinement

of the shadow detection process is described in more detail below.

The proportions of shadow/non-shadow pixels are estimated in each image hypergraph par-

tition Pn labeled as a shadow region (i.e. xPn = s) (see Eq. (3.16)),. If Pn has more shadow

pixels than non-shadow pixels, then Pn is validated as a shadow region, and the final shadow

mask labels Xp(i,j) of the pixels p(i, j) ∈ Pn are obtained as follows:

∀p(i, j) ∈ Pn , Xp(i,j) =



s , if
∑
p(i,j)∈Pn δ(xp(i,j),s)

N

≥
∑
p(i,j)∈Pn δ(xp(i,j),s̄)

N − τp

and xPn = s ,

s̄ , otherwise,

(3.17)

where p(i, j) is a pixel belonging to a partition Pn, Xp(i,j) is the final shadow mask label of

p(i, j) ∈ Pn, N is the total number of pixels in Pn; xp(i,j) = s if the pixel has been classified

as a shadow pixel using Eq. (3.10) and cRm ≥ τc (see Eq. (3.14)) and xp(i,j) = s̄ otherwise (see

Section 3.2.1); δ(a, b) is the Kronecker delta such that δ(a, b) evaluates to 1 if a = b or to 0

otherwise; and τp is a threshold. In our experiments τp = 0.24 (see Section 4.1).

The multilevel hypergraph partitioning algorithm is non-deterministic due to the random

bisection used in the initial partitioning phase (KARYPIS et al., 1999) (see Appendix A and

Fig. A.3), therefore the multiple partitionments obtained for the same hypergraph may differ,

leading to different shadow mask labels Xp(i,j) for the same pixels. Therefore, a stochastic

majority voting scheme is used as a final step to obtain the shadow mask pixels labels X̂p(i,j).

30

In this stochastic voting scheme, N hypergraph partitionments are obtained stochastically (see

Appendix A), and N classification labels Xp(i,j) are generated for each pixel p(i, j). Let X l
p(i,j)

be the shadow mask label of a pixel p(i, j) (see Eq. (3.17)) obtained in the l-th hypergraph

partitionment. The final shadow mask X̂p(i,j) contains the pixels p(i, j) that were classified as

shadows in at least τr ∈ [0, N] hypergraph partitionments, as indicated below:

Xp(i,j) = 1 if
{∑N

l=1 δ(X l
p(i,j), s) ≥ τr

}
,

Xp(i,j) = 0 otherwise.
, (3.18)

where δ(a, b) is the Kronecker delta. In our experiments, we used τr = 3 and N = 10.

A summary of the proposed hypergraph-based shadow detection scheme is shown in Fig. 3.5.

Also, our hypergraph-based shadow detection scheme is summarized below, step by step:

1. Build the weighted hypergraph of the video frame in the LAB color space, using the

DeltaE color distance (see Eq. (A.6)) and the provided foreground mask;

2. Obtain K image hypergraph partitions N times, and for each different partitionment do:

(a) Split the partitions Pn that contain more than one blob of pixels;

(b) Classify pixels p(i, j) by using the color (see Eq. (3.10)) and gradient correlation

information (i.e. cRm ≥ τc, where cRm is given by Eq. (3.14)) as shadow (or non-

shadow) pixels (i.e. xp(i,j) = s or xp(i,j) = s̄);

(c) Classify each partition Pn by using its mean (µFPn , µ
B
Pn) and its standard deviation

(σPn) of the V channel of the HSV color representation as a shadow (or a non-

shadow) partition (i.e. xPn = s or xPn = s̄), according to Eq. (3.16);

(d) Combine the classification labels obtained in (b) and (c) by calculating the pro-

portion of shadow pixels in each shadow hypergraph partition Pn. If a partition

Pn contains more shadow/non-shadow pixels, classify all pixels p(i, j) ∈ Pn as

shadow/non-shadow pixels, obtaining the l-th pixel labelX l
p(i,j) according to Eq. (3.17);

3. Obtain the final shadow mask X̂p(i,j) containing all pixels p(i, j) that were classified

as shadow pixels (i.e. X l
p(i,j) = s) in at least τr of the N partitionments, according

to Eq. (3.18).

31

Figure 3.5: Summary of the proposed shadow detection scheme.

Background reference Provided foreground mask
Pre-processed

Frame

Shadow estimation using
HSV color and gradient

information (see
Eqs. (3.10), (3.13) and (3.14))

Shadow pixels
classification

Weighted neighborhood
hypergraph construction

Obtain N hypergraph
partitionments

Split partitions that
consist of more
than one blob

Shadow image
hypergraph partitions

classification

. . .
1 N

Classifiers combination,
obtaining N Xp labels (see Eq. (3.17))

. . .
1 N

Final classification by
stochastic majority

voting (see Eq. (3.18))

Result

Source: Created by the author (2015).

32

3.2.3 Shadow removal

After obtaining the shadow mask S (see Section 3.2.1), another check on the virtual loops

Li is performed to verify if the pixels previously detected as foreground in FG and also are in

S (see Eq. (3.9)) actually are shadow pixels. More formally, let F ′G = FG − S be the estimated

foreground mask, then a virtual loop Li is not activated if it does not contain vehicles and

contain only shadows, which is verified by:

V ti = 0 , if
∑

(x,y)∈Li

F ′G(x, y) < τFG , (3.19)

where V ti is the vehicle detection result for the virtual loop Li in the time instant t, F ′G(x, y)

denotes a pixel belonging to the estimated foreground mask F ′G without shadows, and τFG is the

same threshold used in Eq. (3.9). If equation Eq. (3.19) is satisfied, it means that the foreground

pixels detected on the virtual loop Li are shadow pixels and no further processing is performed

for this virtual loop. Otherwise, we proceed to the next step in our proposed vehicle detection

scheme (see Fig. 3.1).

3.3 Fast Edge Detection

The next step of our proposed vehicle detection method consists of detecting the edges in

the frame F and background modelB. These edges will be compared to check if the foreground

object in the virtual loop Li in fact is a vehicle. To perform the edge detection, we use simplified

Gabor wavelets (JIANG; LAM; SHEN, 2009), since this approach can generate accurate results

efficiently and is also highly parallelizable, improving the efficiency of the method.

The human visual system can be viewed as being composed of a filter bank and these fil-

ters responses can be modeled using Gabor functions of different frequencies and orientations

(JIANG; LAM; SHEN, 2009). In the spatial domain, a 2-D Gabor filter is a Gaussian kernel

function modulated by a sinusoid (JIANG; LAM; SHEN, 2009):

G(x, y) = exp
[
−x

2 + y2

2σ2

]
exp [jω(xcosθ + ysinθ)] , (3.20)

where σ is the standard deviation of the Gaussian function along the x and y directions, and

ω denotes the spatial frequency. The Gabor wavelets respond strongly to an edge if the edge

direction is perpendicular to the wave vector (ωcosθ, ωsinθ), and by measuring the response

magnitude, local properties of the images can be effectively estimated (JIANG; LAM; SHEN,

33

2009).

Pellegrino, Vanzella and Torre (2004) proposed to use the imaginary part of a Gabor filter

as an efficient and robust edge detector. The imaginary part of a Gabor wavelet is defined as

follows (JIANG; LAM; SHEN, 2009):

S(x, y) = exp
[
−x

2 + y2

2σ2

]
sin [ω(xcosθ + ysinθ)] . (3.21)

To detect multiple types of edges in the image, θ is set to 8 different orientations (i.e. θ =

kπ/8, k = 0, ..., 7), and ω · σ ≤ 1 (JIANG; LAM; SHEN, 2009). Since the extraction of

these Gabor features is computationally expensive, a simplified version of these Gabor wavelets

(GWs) is used instead (JIANG; LAM; SHEN, 2009). Next, this simplified approach is described

in detail.

First, the Gabor wavelet is quantized into a number of gray levels. The number of gray

levels of the simplified Gabor wavelet (SGW) depends on the number of quantization levels. If

more levels are used, the SGW will be more similar to the original GW, but the computational

cost is increased, therefore there is a trade-off between computational effort and approximation

accuracy. To determine the number of quantization levels the approach proposed in (CHOI

et al., 2008) is used. One of the quantization levels in the SGW is set to zero. The SGW is

antisymmetric, therefore the number of quantization levels of the positive and negative values

are equal and denoted as nl (JIANG; LAM; SHEN, 2009). Let A be the largest magnitude of

a GW, then the corresponding quantization levels for positive levels q+(k) and negative levels

q−(k) are defined as:

q+(k) = A
2nl+1

· 2k , q−(k) = − A
2nl+1

· 2k, (3.22)

where k = 1, ..., nl. By selecting different center frequencies and orientations, we can generate

a family of GW kernels using Eq. (3.21), and then quantize them according to Eq. (3.22),

obtaining a family of SGWs. Fig. 3.6 illustrates the results for a family of SGWs.

By convolving an image I with each of the GWs kernels generated with equation Eq. (3.21)

we can extract the edge features. This convolution can be efficiently calculated by using the

FFT (Fast Fourier Transform) algorithm, and finally the inverse FFT (IFFT) algorithm (JIANG;

LAM; SHEN, 2009). Concatenating the outputs of each of the SGWs kernels, we obtain a

34

Figure 3.6: The SGW kernel family generated with (a) ω = 0.3π and θ = 0; (b) ω = 0.3π and
θ = π/4; (c) ω = 0.3π and θ = π/2; (d) ω = 0.3π and θ = 3π/4; (e) ω = 0.5π and θ = 0; (f)
ω = 0.5π and θ = π/4; (g) ω = 0.5π and θ = π/2; (h) ω = 0.5π and θ = 3π/4;

(a) (b) (c) (d)→y
↓
x

(e) (f) (g) (h)

Source: Created by the author (2015).

feature vector φω,θ, of size NW ·NH :

φω,θ = [φω,θ(0, 0), φω,θ(0, 1), ..., φω,θ(0, NH − 1), φω,θ(1, 0), ..., φω,θ(NW − 1, NH − 1)]T ,

(3.23)

where T denotes the transpose, and NW and NH are the width and height of an image I . Even

if the FFT algorithm is used to reduce the computational cost, this operation still is computa-

tionally expensive. For nω different scales and nθ different orientations, the number of SGWs

involved is nω ·nθ (JIANG; LAM; SHEN, 2009), therefore we use the simplified Gabor wavelets

family in a more efficient manner, as described next.

Let φ′ω,θ(x, y) be an SGW local edge feature of an image I extracted by the SGW with scale

ω and orientation θ. The resulting local edge feature, φ′′ω,θ(x, y) at a pixel (xc, yc) is obtained

as the absolute maximum of the features extracted with the family of generated SGWs kernels.

More formally, let nω be the number of scales used, and nθ the number of orientations, the

resulting edge feature for a pixel (xc, yc) is calculated as:

φ′′ω,θ(xc, yc) = max
{
φ′ωi,θj(xc, yc), i = 0, 1, ..., nω and j = 0, 1, ..., nθ

}
. (3.24)

In our experiments, we used two different scales ω0 = 0.3π and ω1 = 0.5π, and four

35

different orientations θj = jπ/4 for j = 0, ..., 3 (JIANG; LAM; SHEN, 2009). Since edges are

localized in an image, the size of the SGWs are used as either 3× 3 or 5× 5. Two quantization

levels for the positive and negative magnitudes of the GWs were used to create the SGWs

(see Eq. (3.22) and Fig. 3.6), denoted q1 and q2. Suppose a SGW is centered at the pixel

position (xc, yc), the resulting edge features for this SGW, φ′ω,θ(xc, yc) are computed efficiently

as follows:

1. ω = 0.3π and θ = 0 (Fig. 3.6 (a))

φ′0,0(xc, yc) = q1(I(xc − 1, yc + 1) + I(xc + 1, yc + 1)

−I(xc − 1, yc − 1)− I(xc + 1, yc − 1))

+q2((I(xc, yc + 1)− I(xc, yc − 1)),

(3.25)

2. ω = 0.3π and θ = π/4 (Fig. 3.6 (b))

φ′0,1(xc, yc) = q1(I(xc, yc + 2) + I(xc + 2, yc)

−I(xc, yc − 2)− I(xc − 2, yc))

+q2(I(xc, yc + 1) + I(xc + 1, yc)

+I(xc + 1, yc + 1)− I(xc, yc − 1)

+I(xc − 1, yc)− I(xc − 1, yc − 1)),

(3.26)

3. ω = 0.3π and θ = π/2 (Fig. 3.6 (c))

φ′0,2(xc, yc) = q1(I(xc + 1, yc − 1) + I(xc + 1, yc + 1)

−I(xc − 1, yc − 1)− I(xc − 1, yc + 1))

+q2(I(xc + 1, yc)− I(xc − 1, yc)),

(3.27)

4. ω = 0.3π and θ = 3π/4 (Fig. 3.6 (d))

φ′0,3(xc, yc) = q1(I(xc, yc − 2)

+I(xc + 2, yc)− I(xc − 2, yc)− I(xc, yc + 2))

+q2(I(xc, yc − 1) + I(xc + 1, yc) + I(xc + 1, yc − 1)

−I(xc − 1, yc)− I(xc − 1, yc + 1)− I(xc, yc + 1)),

(3.28)

36

5. ω = 0.5π and θ = 0 (Fig. 3.6 (e))

φ′1,0(xc, yc) = q2(I(xc, yc + 1)− I(xc, yc − 1)), (3.29)

6. ω = 0.5π and θ = π/4 (Fig. 3.6 (f))

φ′1,1(xc, yc) = q2(I(xc, yc + 1) + I(xc + 1, yc)

−I(xc, yc − 1)− I(xc − 1, yc)),
(3.30)

7. ω = 0.5π and θ = π/2 (Fig. 3.6 (g))

φ′1,2(xc, yc) = q2(I(xc + 1, yc)− I(xc − 1, yc)), (3.31)

8. ω = 0.5π and θ = 3π/4 (Fig. 3.6 (h))

φ′1,3(xc, yc) = q2(I(xc, yc − 1) + I(xc + 1, yc)

−I(xc, yc + 1)− I(xc − 1, yc)).
(3.32)

The computation of φ′ω,θ(xc, yc) requires no more than 2 multiplications and 22 additions

(JIANG; LAM; SHEN, 2009), therefore the computational costs required to calculate the SGWs

features at a given pixel (xc, yc) is much lower than by using GWs. This still can be improved

if instead of calculating all the four orientations, we use only 2 orientations for each scale to

determine if a pixel is an edge pixel, since the number of edge pixels usually is much smaller

than the number of non-edge pixels (JIANG; LAM; SHEN, 2009). This is done by selecting

the two SGWs with orientations θ = 0 and θ = π/2, and scale ω = 0.3π (i.e. φ′0,0(x, y) and

φ′0,2(x, y)). If a pixel (xc, yc) is an edge pixel, then either φ′0,0(x, y) or φ′0,2(x, y) should be larger

than a threshold T1 (i.e. if both
∣∣φ′0,0(x, y)

∣∣ < T1 and
∣∣φ′0,2(x, y)

∣∣ < T1, then the pixel (xc, yc)

is not an edge pixel). If this is the case, the remaining SGW features φ′ω,θ do not need to be

calculated, greatly reducing the computational cost (JIANG; LAM; SHEN, 2009). If the pixel

(xc, yc) is a strong edge, then
∣∣φ′0,0(x, y) + φ′0,2(x, y)

∣∣ will be larger than another threshold,T2,

and no further computation is needed. Otherwise, the other six φ′ω,θ are calculated.

At the end of this process, we obtain the edges for the frame F and background model B,

Fe and Be, respectively, Fig. 3.7 illustrates the resulting edges calculated with the SGWs. The

next step of our proposed method consists of using edge information and color information to

validate the activation of the virtual loop Li, determining if it in fact contains a vehicle.

37

Figure 3.7: Example of the edge detection using the SGW kernels: (a) original frame; (b)
resulting frame edges, Fe; (c) background model; and (c) resulting background edges, Be.

(a) (b)

(c) (d)

Source: Created by the author (2015).

38

3.4 Vehicle Detection Using Edge and Color Information

The GMM foreground detection has the disadvantage of not being robust to sudden illu-

mination changes, which causes false positives and leads to erroneous foreground detection

results (BENEZETH et al., 2010). Pourmohammad, Fallahpour and Karimifar (2012) proposed

using edge features and the NCC (Normalized Cross-Correlation) measure to perform tem-

plate matching. This approach has the advantages of being robust to illumination changes and

noise, and having low computational cost, allowing real-time applications (POURMOHAM-

MAD; FALLAHPOUR; KARIMIFAR, 2012). We adapted this template matching approach for

our vehicle detection scheme using the edge information obtained as described in Section 3.3

to determine if a vehicle is in the virtual loop region Li.

The Cross-Correlation and Normalized Cross-Correlation are well-known similarity mea-

sures and are widely used in template matching, tracking and stereo matching problems (POUR-

MOHAMMAD; FALLAHPOUR; KARIMIFAR, 2012; HIRSCHMULLER; SCHARSTEIN,

2007; SEBASTIAN, 2007; HEO; LEE; LEE, 2011). Template matching consists in finding a

given template in an image, and often this is done by sliding the template in the image and mea-

suring a similarity score at each position. The use of cross-correlation for template matching is

based on the squared Euclidean distance (LEWIS, 1995):

d2
f,t(u, v) =

∑
x,y

[f(x, y)− T (x− u, y − v)]2 , (3.33)

where f is the frame (image) and the sum is over all positions x, y in the window containing the

template t positioned at (u, v). By expanding Eq. (3.33) we obtain:

d2
f,t(u, v) =

∑
x,y

[
f 2(x, y)− 2f(x, y)t(x− u, y − v) + T 2(x− u, y − v)

]
, (3.34)

where the term
∑
T 2(x − u, y − v) is constant. Since the term

∑
f 2(x, y) is approximately

constant for a given frame, then the cross-correlation term representing the similarity measure

between the frame and the template is defined as (LEWIS, 1995):

c(u, v) =
∑
x,y

f(x, y)T (x− u, y − v). (3.35)

However, the approach described by Eq. (3.33) has a few limitations, such as it is not in-

variant to illumination changes across the scene, the range of c(u, v) is dependent of the size

39

of the template, and if the image energy
∑
f 2(x, y) varies with location (u, v), the correlation

between the template and the exact matching region may result in a lower similarity measure

value than between the template and an image bright spot (LEWIS, 1995). Therefore, to over-

come these limitations the image and template vectors are normalized to unit length, obtaining

the Normalized Cross-Correlation measure as follows (BRIECHLE; HANEBECK, 2001):

γ =

∑
x,y

[
f(x, y)− f̄u,v

] [
T (x− u, y − v)− T̄

]√∑
x,y

[
f(x, y)− f̄u,v

]2∑
x,y

[
T (x− u, y − v)− T̄

]2 , (3.36)

where f(x, y) is the intensity value of the image f of size Mx ×My at the pixel (x, y), x ∈

{0, ...,Mx − 1}, y ∈ {0, ...,My − 1}, T is the template of size Nx × Ny, f̄ and t̄ are the

mean intensity values of the window of size Nx × Ny centered at the position (u, v) of the

template T on the image f , respectively. The NCC measure γ ∈ [0, 1], and a score of NCC=1

indicates an exact match. In template matching, the NCC value γ for a given template T is

evaluated at each point (u, v) of the image f , such that u and v defines the shift in the x and y

directions, respectively, of the template T . The position (u, v) that results in the highest γ value

is considered to be the correct match.

In our vehicle detection scheme, we want to measure the NCC similarity between the frame

edges Fe and background edges Be in the virtual loop region Li. Therefore, we can rewrite

Eq. (3.36) as follows:

γLi =

∑
x,y

[
BLi
e (x, y)− B̄e

Li
] [
FLi
e (x, y)− F̄e

Li
]

√∑
x,y

[
BLi
e (x, y)− B̄e

Li
]2∑

x,y

[
FLi
e (x, y)− F̄e

Li
]2
, (3.37)

where FLi
e andBLi

e are the edges magnitudes of the frame F and backgroundB (see Section 3.3)

in the virtual loop region Li, and F̄e
Li and B̄e

Li are the mean values of the edges magnitudes of

the frame F and background B in the virtual loop region Li. If the edges magnitudes FLi
e and

BLi
e are similar (i.e. high γLi value), we consider that this region does not contain any vehicle

and V ti = 0. Otherwise, if the difference is significant (i.e low γLi value), it is assumed that

there is a vehicle in the region Li at the time instant t, and we set V ti = 1.

Since vehicles usually are longer than the virtual loop regions Li, using only edge infor-

mation tends to provide inaccurate vehicle detection results, especially when only the vehicles

smooth regions are inside the region (i.e. there is not enough edge information in the vehicle

region). To overcome this limitation and improve our detection results, we also compare color

histograms using the Bhattacharyya distance (ZWENG; RITTLER; KAMPEL, 2011), with the

40

color histogram similarity calculated as follows:

dH(H1, H2) =

√√√√1−
∑
i

√
(H1(i) ·H2(i))√∑
iH1(i) ·

∑
iH2(i)

, (3.38)

where H1 and H2 are the two histograms, and i represents the color bins. The Bhattacharyya

distance evaluates to ‘0’ if the histograms match completely. The last step of our proposed

vehicle detection method is to combine edge and the color information to determine the final

value of V ti .

First, we define two NCC thresholds, τ low
γ ∈ [0, 1] and τ high

γ ∈ (τ lowγ , 1]. If for a virtual loop

Li, γLi ≤ τ low
γ (see Eq. (3.37)), then the difference is considered significant and a vehicle is

assumed to be in the virtual loop region Li (i.e. V ti = 1). If γLi > τ high
γ then a high similarity

is assumed between the frame edges Fe and the background edges Be in the virtual loop region

Li, and no vehicle is detected in Li (i.e. V ti = 0). However, for the case τ low < γLi ≤ τ high,

if the virtual loop Li has been active for at least τl frames, we compare the histogram of the

current frame F t in the virtual loop region Li with the histograms of the previous l frames in

this region with Vki = 1 , k = {t − l, ..., t − 1}, where l is the number of previous frames

in which a vehicle in the virtual loop region Li was detected. The motivation to include this

step is the following: If a virtual loop Li was active before (i.e. V ti = 1) when a vehicle was

detected in the region Li, it should only be deactivated (i.e. V ti = 0) when the vehicle leaves

the region Li completely. Therefore, if the histogram of the current frame F t in Li is similar

to the histograms of the previous frames in Li, then we can assume that the vehicle is still in

the virtual loop Li. In our experiments, τ low
γ and τ high

γ were adjusted for each video sequence to

obtain the best results (see Section 4.2).

To describe this process more formally, let F = {F l
Li
, ..., F t−1

Li
} be the set of l previous

frames that showed a vehicle in the virtual loop region Li (i.e. V ti = 1). We proceed to the next

step if the virtual loop Li has been active for at least τl frames as follows:

Cti =
t−1∑

k=t−l−1

δ(Vki , 1) ≥ τl, (3.39)

where δ(a, b) is the Kronecker delta such that δ(a, b) = 1 if a = b, and δ(a, b) = 0 otherwise. If

the condition in Eq. (3.39) is satisfied, we measure the similarity of the histogram of the virtual

loop region Li of the current frame F t
i with each one of the histograms of Li of the previous

active frames, and estimate how many of the previous frames have similar Li histograms, and

41

this is expressed as follows:

Ht
i =

∑
Fk∈F u(τu − dH(HF ti

, HFki
))

l
, (3.40)

where u(·) is the unit step function, which evaluates to ‘1’ if dH(HF ti
, HFki

) ≤ τu ∈ [0, 1], or

to ‘0’ otherwise; dH(·) is the histogram similarity function and is given by the Bhattacharyya

distance (see Eq. (3.38)); HFki
is the histogram of the k-th frame, and HF ti

is the histogram

of the current frame in the virtual loop region Li, and l is the number of elements in the set

F . In our experiments, the value of τu was adjusted experimentally for each video sequence

(see Section 4.2). Since vehicles usually are longer than virtual loops, by using the temporal

detection history of the virtual loop region false negatives can be avoided (e.g. caused by smooth

regions of the vehicles with low edge content), such that the virtual loop reports ‘0’ only after

the vehicle left the loop Li completely. Therefore,Ht
i evaluates the similarity ratio between the

active loop Li in the current frame and the active loop Li in previous frames. If this ratio is

higher than a threshold τH, we can assume that a vehicle is still passing through this loop region

Li. The final detection result for a virtual loop Li is defined as follows:

V ti =


1, γLi ≤ τ lowγ or,

(γLi ≤ τhighγ and Cti ≥ τl andHt
i ≥ τH),

0, otherwise.

(3.41)

Fig. 3.8 summarizes this vehicle detection process.

42

Figure 3.8: Schematics of the vehicle detection process using both edge and color information
(see Eq. (3.41)).

Calculate the NCC γLi

between Fe and Be in
the virtual loop region
Li (see Eq. (3.37))

γLi ≤ τ lowγ ?

Vehicle is detected,
V ti = 1

γLi ≤ τhighγ ? Cti ≥ τl ? (See
Eq. (3.39))

Ht
i ≥ τH ?

(See Eq. (3.40))

No vehicle is detected,
V ti = 0

yes

no

no

yes

no

yes

yes

no

Source: Created by the author (2015).

3.4.1 Vehicle Counting

We can use the measured vehicle detection results to count the number of vehicles that

passed in a virtual loop region Li. This is performed by analyzing the variation in the binary

signal obtained by the vehicle detection result. A vehicle in a virtual loop Li is counted when

the signal varies from ‘0 to ‘1’ and then back to ‘0’ . Fig. 3.9 illustrates vehicles binary signal in

a virtual loop Li. To prevent noise, only vehicles that activated the virtual loop Li for at least τv

43

Figure 3.9: Example of the binary signal representing passing vehicles in a virtual loop Li for a
few frames of one of our video sequences. Each peak represents a passing vehicle.

650 655 660 665 670 675 680 685 690 695 700

0

0.2

0.4

0.6

0.8

1

vehicle vehicle

Source: Created by the author (2015).

frames are counted. To describe it more formally: Let Zi = {V t−li , ...,V ti} be the binary signal

in the virtual loop Li of the previous l frames, such that V t−l−1
i = 0 and V t−li = 1 (i.e. the virtual

loop was inactive and became active). A vehicle is counted only if:

V
t−1
i = 1 and V ti = 0, and∑
V∈Zi V ≥ τv

(3.42)

where V t−1
i = 1 and V ti = 0 is the vehicle detection result for the current frame and previous

frame, and Zi is the binary signal of the previous l frames. To reduce the effects of noise in

the vehicle detection binary signal Zi, a median filter with size w is applied. The median filter

is chosen due to its simplicity and edge preserving properties. It reduces the number of false

positives that could be caused by variations in the signal while one vehicle is passing the virtual

loop Li.

To prevent counting errors when a vehicle passes through adjacent virtual loops at the same

time (i.e. when changing lanes), the vehicle detection signal in adjacent virtual loops regions

Li and Li+1 (i.e. Zi and Zi+1) is compared according to the following equation:

d(Zi, Zi+1) = 1−
∑
Va∈Zi, Vb∈Zi+1

|Va − Vb|
l

(3.43)

44

Figure 3.10: Example of median filter applied to a binary signal Zi (a) binary signal with noise;
(b) filtered binary signal with a median filter.

30 35 40 45 50 55

0

0.2

0.4

0.6

0.8

1

30 35 40 45 50 55

0

0.2

0.4

0.6

0.8

1

(a) (b)

Source: Created by the author (2015).

where d(Zi, Zi+1) is the signal similarity such that d(Zi, Zi+1) = 1 means that the signals are

identical and l is the number of elements in the sets Zi and Zi+1.

If the signals are sufficient similar (i.e. d(Zi, Zi+1) ≥ τz), we assume they belong to the

same vehicle and use the foreground mask F ′G to calculate the number of foreground pixels

accumulated in the regions Li and Li+1 during the vehicle passage. Finally, the vehicle count is

incremented only for the region that accumulated the highest number of foreground pixels. The

values of τv and τz were adjusted experimentally for each video sequence (see Section 4.2).

In the next chapter, we describe our experiments and results.

45

4 EXPERIMENTAL RESULTS

In this chapter, we present our shadow detection and vehicle detection and counting re-

sults, describe our experimental setup and discuss implementation details. First, we present our

hypergraph-based shadow detection approach results, followed by our vehicle detection scheme

results.

4.1 Hypergraph-Based Shadow Detection Results

In order to validate our hypergraph-based shadow detection scheme, we performed experi-

ments on seven popular video sequences that are publicly available (SANIN et al., 2012), and

measured the shadow detection (η) and shadow discrimination (ξ) rates. We also used the aver-

age of these two measures (η+ξ
2

) as a third measure (SANIN et al., 2012). We chose those video

sequences because they are commonly used to validate shadow detection methods (SANIN et

al., 2012), and have the ground truth data and foreground masks available. Summarizing infor-

mation about these datasets can be seen in Table 4.1.

Table 4.1: Information about the datasets used in the experiments.

Dataset Highway 1 Lab Highway 3 Campus Room Hallway CAVIAR

Frame Example

Number of frames 8 14 7 53 22 13 1125
Resolution 320x245 320x240 320x240 320x240 320x245 320x240 384x288

Scene Outdoor Indoor Outdoor Outdoor Indoor Indoor Indoor
Objects Vehicles People Vehicles People People People People
Shadow Strong Light Strong Light Light Light Light

Source: created by the author (2015).

For the comparative methods, we chose the methods in (HUANG; CHEN, 2009) (SANIN

et al., 2012) (BULLKICH et al., 2012).

The method proposed by Huang and Chen (2009) uses physically-based principles, and

tries to learn the appearance of shadow pixels. Sanin et al. (2012) proposed to use chromaticity

and gradient information to achieve high shadow detection (η) and discrimination (ξ) rates.

The method proposed by Bullkich et al. (2012) uses the MTM (Matching by Tone Mapping)

distance between image patches to detect shadows. For more details of the comparative methods

see Section 2.3.

46

We implemented our shadow detection scheme using MATLAB and used the hMETIS

(HMETIS. . . ,) hypergraph partitioning library. In our experiments, parameters were adjusted

experimentally. For the image hypergraph construction, we set the grid distance β = 2. For

sequences with strong shadows, the color distance λ = 10. For videos with light shadows, the

color distance of λ = 4 produced more accurate results (see Eq. (A.4)). Also, we used the

number of partitions K = 51. The parameters we used for the hMETIS tool are summarized in

Table 4.2.

The sequences Highway 1 and Highway 3 contain vehicles on a road and their cast shadows.

Some passing vehicles have dark colors, similar to their shadows, generating difficulties for

chromaticity-based shadow detection methods to discriminate between the vehicles and their

shadows.

The method proposed in (SANIN; SANDERSON; LOVELL, 2010) combines color and gra-

dient information and obtains better results, but it requires large color differences between shad-

ows and vehicles to perform well. Our stochastic hypergraph-based shadow detection scheme

combines color and gradient information, as well as information on the pixels vicinities, to clas-

sify the segmented image regions as shadow or non-shadow, and that may explain its improved

shadow detection and shadow/vehicle discrimination rates (see Table 4.3).

The video sequences Lab, Campus, Hallway, Room and CAVIAR contain light shadows cast

by people walking in different environments. Despite the shadows being light, the foreground

objects and shadows do not have similar colors, avoiding the chromatic problems mentioned

before and improving the shadow detection results for all methods (see Table 4.3).

To illustrate the variability occurring in the shadow masks X̂p(i, j) due to the stochasticity

of the hypergraph partition algorithm, we measured the worst and best results of 10 different

hypergraph partitionments obtained in our tests. We also measured the results obtained using

the stochastic majority voting scheme expressed by Eq. (3.18) for N = 10 and τr = 3 (see

Table 4.3). Qualitative results obtained by our proposed method and the comparative methods

can be seen in Fig. 4.1. Visually, the shadow masks generated by our method tend to be more

accurate than those obtained by comparative methods, representing the state of the art in shadow

detection (HUANG; CHEN, 2009) (SANIN et al., 2012) (BULLKICH et al., 2012).

Quantitative results of the tests with our proposed method and for the comparative methods

(HUANG; CHEN, 2009) (SANIN et al., 2012) (BULLKICH et al., 2012) for each dataset, and

the average results considering all the seven sequences can be seen in Table 4.3.

For the seven video sequences our method with the proposed voting scheme (see Eq. (3.18))

obtained better detection rates (η) than all comparative methods and comparable discrimination

47

Figure 4.1: Shadow masks obtained by the proposed hypergraph-based shadow detection
scheme and by the comparative methods for the datasets. (a) original frame; (b) ground-truth
mask; (c) shadow mask obtained by the method proposed by Bullkich et al. (2012); (d) shadow
mask obtained by the method proposed by Huang and Chen (2009); (e) shadow mask obtained
by the method proposed by Sanin, Sanderson and Lovell (2010); (f) shadow mask obtained by
the method proposed by our proposed method.

(a) (b) (c) (d) (e) (f)

Source: Created by the author (2015).

48

Table 4.2: Parameters used to set the hMETIS tool package for our tests.

Parameter Value

Number of partitions 51

Number of runs 10

UB factor 1

Matching Scheme Hyperedge

Refinement Policy Fiduccia-Mattheyses(FM)

V-cycle Refinement On good intermediate solution

Reconst Reconstructs

Color distance (λ) 10 (strong shadows) and 4 (light shadows)

Grid distance (β) 2

Source: Created by the author (2015).

rates (see Table 4.3), resulting in a higher average measure η+ξ
2

for all video sequences, except

in the CAVIAR sequence for which the method proposed by Bullkich et al. (2012) obtained a

higher average measure. Even by considering the worst results of the 10 executions, our method

still performed better than the comparative methods for most sequences. By averaging the re-

sults for all video sequences, our method obtained a better detection rate (η) than all comparative

methods in the worst case, best case and by using the proposed voting scheme (see Eq. (3.18)).

The obtained average discrimination rate ξ was higher than the average discrimination rates

obtained by (BULLKICH et al., 2012) and (HUANG; CHEN, 2009), and comparable to the

ξ obtained by (SANIN; SANDERSON; LOVELL, 2010). In average, our shadow detection

results using the η+ξ
2

measure was better than those obtained by all comparative methods.

The experimental evidence suggests that our proposed method with the stochastic majority

voting rule, potentially helps obtaining more accurate shadow detection in video sequences.

Our results show that the proposed shadow detection scheme potentially can achieve better

qualitative and quantitative results than recent shadow detection methods, that are representative

of the state-of-the-art in shadow detection. However, our current implementation was unable

to perform in real-time, therefore we decided not to use this approach in the vehicle detection

scheme.

In the next section, we present our vehicle detection results.

49

Figure 4.2: Example of the changes in camera gain caused by the buses passing through the
virtual loop too close to the camera (top view).

Source: Created by the author (2015).

4.2 Vehicle Detection Results

In order to evaluate our vehicle detection scheme, and compare it to other approaches repre-

sentative of the state of the art, we performed experiments on 3 challenging urban traffic video

sequences with top views. The virtual loops Li were defined manually, and there is one virtual

loop per lane. The first video sequence contains light cast shadows and buses that change the

camera gain as they pass through the virtual loops, which translates into a sudden change in

illumination (see Fig. 4.2). The second video sequence does not contain shadows, but contains

buses passing through the virtual loops, causing changes in the camera gain (illumination sud-

den changes). The third video sequence contains vehicles with their cast shadows. Table 4.4

contains summarizing data about the 3 video sequences.

We implemented our method in C++ and OpenCV. The simplified Gabor edges detector was

implemented in GPU using OpenCL to improve the efficiency. For the methods in (ZIVKOVIC;

HEIJDEN, 2006), (NOH; JEON, 2013) and (ST-CHARLES; BILODEAU, 2014) the back-

ground subtraction library in (SOBRAL, 2013) was used. Our experiments were performed

in a computer with an Intel Core I5 M520 2.40 Ghz CPU, 8 GB ram and an Ati Mobility HD

5650 video card running Windows 10 operating system.

To evaluate the performance of our method, we used several measures: accuracy, detection

error, predictive value (or precision), sensitivity (or recall) and f-score. These measures are

defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (4.1)

50

Detection Error =
FP + FN

TP + TN + FP + FN
, (4.2)

Predictive value =
TP

TP + FP
, (4.3)

Sensitivity =
TP

TP + FN
, (4.4)

F-Score = 2× Predictive value× Sensitivity
Predictive value + Sensitivity

, (4.5)

where TP are the true positives, FP are the false positives, TN are the true negatives and

FN are the false negatives. A true positive occurs when a vehicle was correctly detected at the

virtual loop (i.e. V ti = GT tLi = 1), where GT tLi is the ground-truth value for the virtual loop

Li at the time instant t. A false positive occurs a vehicle is detected in the virtual loop Li (i.e.

V ti 6= GT tLi) and GT tLi = 0. A true negative occurs when the sensor correctly detects that no

vehicle was in the virtual loop Li (i.e. V ti = GT tLi = 0). A false negative occurs when the

sensor does not detect a vehicle present in the virtual loop Li (i.e. V ti 6= GT tLi and GT tLi = 1).

The ground-truths were obtained manually, and for each frame we verified if vehicles were

inside the virtual loop regions. We measured the values for each lane to obtain the detection

results for a video sequence, then we considered all the lanes as a single lane and applied the

measures described before (i.e. TP = TP1 + TP2 + TP3, FP = FP1 + FP2 + FP3, TN =

TN1 + TN2 + TN3 and FN = FN1 + FN2 + FN3). The accuracy measures all the times

the system correctly detected (or not detected) a vehicle in Li. Predictive value and sensitivity

measures only consider the time instants when a vehicle is in the virtual loop Li. The predictive

value decreases when the system incorrectly detects a vehicle in Li, and the sensitivity decreases

when the system incorrectly detects that no vehicle is in Li. There is a compromise between

the predictive value and the sensitivity, therefore the F-Score tries to combine them into a single

measure. The results for each video sequence and the processing times for each method are

presented in Tables 4.5 to 4.7.

To the best of our knowledge, no other method that simulates a virtual inductive loop is avail-

able in the literature. Therefore, we chose recent and relevant foreground detection schemes to

compare with our proposed method. We compared our proposed vehicle detection scheme

with the methods in (ZIVKOVIC; HEIJDEN, 2006), (NOH; JEON, 2013) and (ST-CHARLES;

BILODEAU, 2014). By measuring the accuracy, detection error, predictive value and sensitiv-

51

ity as well as the processing time per frame. Results for the 3 video sequences can be seen in

Table 4.5, Table 4.6 and Table 4.7.

The first video sequence contains light cast shadows and sudden camera gain changes, but

the proposed method showed robustness to these situations in our experiments (see Table 4.5).

The method proposed by (ZIVKOVIC; HEIJDEN, 2006) was not affected by the light shadows,

but was not robust against the sudden illumination changes. The method proposed by (NOH;

JEON, 2013) was not affected by the light shadows, but presented detection errors against the

sudden illumination changes. The method proposed by (ST-CHARLES; BILODEAU, 2014)

presented the best results among the comparative methods obtaining accuracies higher than

90%, but it was not robust against sudden illumination changes. Our proposed method was able

to achieve more accurate results than the comparative method with a low computational cost.

The second video sequence does not contain shadows but contains sudden illumination

changes. The comparative methods had slightly worse results for the second video sequence,

due to more illumination changes situations (see Table 4.6). The proposed method obtained the

most accurate results and was not affected by illumination changes.

The third video sequence contains strong cast shadows that can really affect negatively the

results. The proposed method was relatively robust to the shadows, and was able to obtain an

average of 98.48% accuracy, but shadows tend to affect negatively the predictive value and the

sensitivity. The comparative methods were not robust against the shadows, obtaining lower pre-

dictive value (i.e. higher false positives) and F-Score measures. The proposed method was able

to obtain more accurate results, with an average of 98.48% accuracy and 89.6% F-Score measure

(see Table 4.7). There is a compromise between the shadow detection rate and shadow discrim-

ination rate (SANIN et al., 2012). By adjusting the parameters to increase the shadow detection

rate, the false positives caused by shadows tends to decrease, leading to higher predictive val-

ues. However this would decrease the shadow discrimination rate, and the sensitivity measure is

negatively affected. Therefore, we tuned the shadow detection parameters to achieve the highest

F-Score measure. We adjusted experimentally the parameters for each video sequence, namely

the τ low
γ , τ high

γ , τl and τH. A summary of the parameters values used in our experiments can be

seen on Table 4.8.

The proposed vehicle detection approach was able to achieve an average accuracy higher

than 98% in all three video sequences. For the videos 1 and 2, high predictive value, sensitivity

and F-Score also were obtained (higher than 96%). We also compared the processing time of

all methods (see Table 4.5, Table 4.6 and Table 4.7). Our method had a processing time just

a little higher than the method proposed in (ZIVKOVIC; HEIJDEN, 2006) and lower than the

52

comparative methods in (NOH; JEON, 2013) and (ST-CHARLES; BILODEAU, 2014). The

highest processing time was for video sequence 3, due to the shadow detection and removal

schemes. The proposed method potentially is suitable for real-time processing.

To evaluate our vehicle counting scheme, we compared with the method proposed by (YUAN;

ZHAO; WANG, 2013). This method was chosen because it is a recent vehicle counting method

that does not perform tracking. The counting ground-truths (including the false positives and

false negatives) were obtained manually. The results can be seen on Tables 4.9 to 4.11. For

the first video sequence, both the method in (YUAN; ZHAO; WANG, 2013) and our proposed

method counted the total number of vehicles correctly, but our proposed method presented less

false positives (vehicles counted multiple times) and false negatives (vehicles not counted). For

the video sequence 2, our proposed method had a more accurate counting and also less false

positives and false negatives. For video sequence 3 which contains strong cast shadows, the

method proposed by (YUAN; ZHAO; WANG, 2013) resulted in a less accurate count (1.68%

error) with more false positives and negatives (57 and 60, respectively). Our proposed method

presented a more accurate total vehicle count (1.12% error), and less false positives and false

negatives (33 and 31, respectively).

The experiments show that our vehicle detection scheme can potentially be used to accu-

rately count vehicles in traffic video sequences with challenging situations. In the next chapter,

we present our conclusions.

53

Table 4.3: Shadow detection results for all datasets and the average results. For each dataset,
first row is the shadow detection rate η, second row is the shadow discrimination rate ξ and third
row is the average of the two measures η+ξ

2
.

Datasets
Methods

Bullkich et al. (2012) Huang and Chen (2009) Sanin et. al. (2010) P. Worst P. Best P. Voting

Highway 1

72.00% 50.49% 81.84% 86.75% 87.92% 87.89%

95.08% 84.81% 94.26% 93.50% 94.67% 94.34%

83.54% 67.65% 88.05% 90.12% 91.29% 91.11%

Lab

67.94% 82.11% 85.99% 91.14% 91.13% 92.50%

73.69% 84.96% 96.65% 93.85% 94.46% 93.23%

70.82% 83.53% 91.32% 92.49% 92.80% 92.86%

Highway 3

79.61% 43.88% 62.23% 67.62% 69.10% 64.94%

60.88% 70.95% 90.68% 85.29% 86.78% 90.14%

70.25% 57.42% 76.45% 76.46% 77.94% 77.54%

Campus

74.59% 80.90% 77.74% 80.39% 82.25% 84.36%

77.60% 48.22% 83.39% 80.66% 80.69% 78.95%

76.10% 64.56% 80.56% 80.52% 81.47% 81.66%

Room

72.86% 80.72% 91.36% 91.44% 92.11% 92.47%

97.48% 89.91% 94.50% 93.98% 93.91% 93.47%

85.17% 85.31% 92.93% 92.71% 93.01% 92.97%

Hallway

90.43% 82.62% 95.18% 94.53% 94.71% 95.16%

77.06% 87.73% 95.73% 95.92% 96.87% 95.94%

83.74% 85.18% 95.46% 95.22% 95.79% 95.55%

CAVIAR

91.57% 84.52% 93.77% 93.66% 93.80% 94.76%

86.76% 68.22% 82.07% 82.52% 82.62% 81.15%

89.16% 76.37% 87.92% 88.09% 88.21% 87.96%

Average

78.43% 72.18% 83.82% 86.50% 87.28% 87.44%

81.22% 76.40% 90.84% 89.38% 90.00% 89.60%

79.83% 74.29% 87.33% 87.94% 88.64% 88.52%

Source: Created by the author (2015).

54

Table 4.4: Summarizing information about the videos used in the experiments.

Dataset

Video 1 Video 2 Video 3

Number of frames 4850 8976 17648

Resolution 320 × 240 320 × 240 320 × 240

Shadows Light cast shadows No shadows Strong cast shadows

Camera gain changes Yes Yes No

Source: Created by the author (2015).

55

Video 1 results

Method Lane Accuracy D. Error Predictive Value Sensitivity F-Score Time per frame

Zivkovic (2006)

1 98.37% 1.63% 86.07% 93.77% 89.75%

33.49 ms
2 98.27% 1.73% 80.72% 97.21% 88.20%

3 98.33% 1.67% 80.71% 96.74% 88.00%

Avg. 98.32% 1.68% 82.57% 95.80% 88.69%

Noh (2013)

1 97.96% 2.04% 95.00% 77.24% 85.20%

107.4 ms
2 99.24% 0.76% 97.04% 91.33% 94.10%

3 98.71% 1.29% 96.99% 83.88% 89.96%

Avg. 98.71% 1.28% 96.99% 83.88% 89.96%

St-Charles (2014)

1 98.91% 1.09% 92.93% 92.68% 92.81%

276 ms
2 99.26% 0.74% 92.84% 96.28% 94.53%

3 98.64% 1.36% 90.85% 87.30% 89.04%

Avg. 98.93% 1.07% 92.28% 92.19% 92.24%

Proposed

1 99.26% 0.07% 96.37% 93.76% 95.05%

35.40 ms
2 99.82% 0.02% 99.37% 97.83% 98.59%

3 99.50% 0.05% 93.53% 99.02% 96.20%

Avg. 99.53% 0.05% 96.40% 95.80% 96.51%

Table 4.5: Vehicle detection results for video sequence 1.

Source: Created by the author (2015).

56

Table 4.6: Vehicle detection results for video sequence 2.

Video 2 results

Method Lane Accuracy Detection Error Predictive Value Sensitivity F-Score Time per frame

Zivkovic (2006)

1 96.95% 3.05% 85.16% 87.41% 86.27%

31.49 ms
2 96.90% 3.10% 86.66% 90.72% 88.64%

3 95.05% 4.95% 60.17% 90.95% 72.42%

Avg. 96.30% 3.70% 78.25% 89.62% 83.55%

Noh (2013)

1 97.13% 2.87% 99.06% 74.52% 85.05%

105.6 ms
2 97.504% 2.50% 98.70% 82.36% 89.79%

3 99.29% 0.71% 98.33% 91.58% 94.83%

Avg. 97.97% 2.03% 98.72% 81.72% 89.41%

St-Charles (2014)

1 98.34% 1.66% 96.14% 88.43% 92.12%

275.4 ms
2 98.20% 1.80% 95.03% 91.22% 93.09%

3 97.07% 2.93% 72.77% 94.23% 82.12%

Avg. 97.87% 2.13% 88.97% 90.93% 89.94%

Proposed

1 99.43% 0.06% 99.15% 95.63% 97.36%

36.09 ms
2 99.40% 0.06% 99.39% 96.07% 97.70%

3 99.75% 0.03% 98.13% 98.28% 98.20%

Avg. 99.53% 0.05% 99.01% 96.42% 97.70%

Source: Created by the author (2015).

57

Table 4.7: Vehicle detection results for video sequence 3.

Video 3 results

Method Lane Accuracy Detection Error Predictive Value Sensitivity F-Score Time per frame

Zivkovic (2006)

1 98.57% 1.43% 87.20% 90.08% 88.62%

31.32 ms
2 95.50% 4.50% 69.34% 86.07% 76.80%

3 94.79% 5.21% 60.09% 97.37% 74.32%

Avg. 96.28% 3.72% 69.26% 91.04% 78.67%

Noh (2013)

1 98.52% 1.48% 85.74% 91.09% 88.33%

101 ms
2 95.29% 4.71% 67.06% 89.60% 76.71%

3 94.17% 5.83% 57.35% 96.42% 71.92%

Avg. 95.99% 4.01% 66.93% 92.35% 77.61%

St-Charles (2014)

1 98.74% 1.26% 88.13% 92.01% 90.03%

256.4 ms
2 95.48% 4.52% 68.81% 87.44% 77.02%

3 94.73% 5.27% 59.80% 97.51% 74.14%

Avg. 96.32% 3.68% 69.17% 92.15% 79.02%

Method

1 99.10% 0.90% 97.73% 87.32% 92.24%

45.09 ms
2 97.99% 2.01% 92.22% 83.78% 87.79%

3 98.36% 1.64% 87.88% 91.29% 89.55%

Avg. 98.48% 1.52% 92.01% 87.32% 89.60%

Source: Created by the author (2015).

58

Table 4.8: Vehicle detection and counting parameters used for each video sequence.

Dataset

Video 1 Video 2 Video 3

τ low
γ 0.94 0.9 0.91

τ high
γ 0.97 0.94 0.95

τl 1 1 2

τu 0.88 0.6 0.5

τH 0.25 0.5 0.35

τv 2 2 4

τz 0.6 0.6 0.6

Source: Created by the author (2015).

59

Table 4.9: Vehicle counting results for video sequence 1.

Video 1 vehicle counting results
Method Lane Count Abs. Error Error FP FN

Yuan, Zhao and Wang (2013)

1 38 0 0% 3 3
2 36 1 2.86% 1 0
3 9 1 10.00% 1 2

Total 83 0 0% 5 5

Proposed Method

1 38 0 0% 1 1
2 35 1 2.86% 0 0
3 10 1 10.00% 0 0

Total 83 0 0% 1 1

Ground-Truth

1 38 - - - -
2 36 - - - -
3 9 - - - -

Total 83 - - - -

Source: Created by the author (2015).

Table 4.10: Vehicle counting results for video sequence 2.

Video 2 vehicle counting results
Method Lane Count Abs. Error Error FP FN

Yuan, Zhao and Wang (2013)

1 46 6 11.54% 3 9
2 58 11 23.40% 10 0
3 27 2 6.90% 3 4

Total 131 3 2.34% 16 13

Proposed Method

1 46 6 11.54% 2 8
2 55 8 17.02% 3 0
3 25 4 13.79% 1 0

Total 126 2 1.56% 6 8

Ground-Truth

1 52 - - - -
2 47 - - - -
3 29 - - - -

Total 128 - - - -

Source: Created by the author (2015).

60

Table 4.11: Vehicle counting results for video sequence 3.

Video 3 vehicle counting results
Method Lane Count Abs. Error Error FP FN

Yuan, Zhao and Wang (2013)

1 48 27 36.00% 10 37
2 80 22 37.93% 34 12
3 48 2 4.35% 13 11

Total 176 3 1.68% 57 60

Proposed Method

1 65 10 13.33% 6 16
2 61 3 5.17% 15 12
3 55 9 19.57% 12 3

Total 181 2 1.12% 33 31

Ground-Truth

1 75 - - - -
2 58 - - - -
3 46 - - - -

Total 179 - - - -

Source: Created by the author (2015).

61

5 CONCLUSIONS AND DISCUSSION

Nowadays, the number of vehicles circulating in great urban centers is increasing. There-

fore, traffic data have important applications in the development of cities. Traffic data can be

use to plan urban development, reroute traffic to avoid traffic jams, synchronize traffic lights,

etc. Many traffic monitoring systems use traditional sensors, such as microwave or magnetic

inductive loops. With the advances in computer vision there is an ongoing research effort to

replace traditional traffic monitoring sensors by image-based systems, which are easier to re-

pair and are more flexible to operate. Image-based systems usually rely on computer vision

techniques to detect the vehicles passing at specific locations, require less traffic interruptions

for their maintenance (in comparison with traditional sensors), and can be operated remotely

from traffic monitoring centers.

In this work, we proposed an image-based vehicular detection scheme for detecting vehicles

at user-defined virtual loops, simulating the operation of traditional inductive loops. Using the

proposed scheme, different user-defined virtual loops can be monitored simultaneously using

one camera. Unfortunately, there are many challenging situations such as sudden illumination

changes and cast shadows that can severely affect the results, resulting in inaccurate vehicular

detections. Our proposed vehicle detection system is able to handle these situations. Initially, an

approach based on Gaussian Mixture Models is used to obtain a foreground and a background

model. The foreground and background models are used for detecting the vehicles passing at

the user-defined virtual loops. To deal with the occurrence of shadows at the virtual loops, we

combine the background model along with color and texture information to detect shadows at

the virtual loops and to remove them before trying to detect vehicles. The background edges

are detected using an efficient Gabor filters implementation, and the vehicles are detected at the

virtual loops by comparing the detected background edges and the current frame edges. If the

difference in terms of edge information at a virtual loop is significant, a vehicle is detected at

that virtual loop. At each virtual loop, color and temporal vehicular detection information also

are evaluated to further increase the robustness of the vehicle detection process. The proposed

vehicular detection scheme outputs a vehicular detection signal for each monitored virtual loop,

and this signal can be used for detecting and counting the vehicles passing at each virtual loop

in a specific period of time.

We also proposed a novel hypergraph image segmentation shadow detection scheme, that

provides good shadow detection and discrimination results. This method combines hypergraph

image segmentation with color and texture information with a stochastic majority voting scheme

62

to obtain accurate shadow masks. First, the input image is segmented in multiple partitions us-

ing the hypergraph segmentation approach. This has the advantage of segmenting the image in

multiple partitions and each partition contains pixels that are spatially close and have similar

colors. Partitions that have average colors similar to the background are discarded (i.e. non-

shadow partitions). Then, the input image is compared against a background model using color

and texture information to obtain a rough shadow or non-shadow label for each pixel. Since

this rough shadow label may contain misclassified pixels, this information is combined with

the resulting partitionment obtained by the hypergraph image segmentation to validate or rela-

bel these pixels. The validation step is performed by verifying if a partition consists mostly of

pixels that were previously labeled as shadow pixels. In this case, every pixel in a partition is

considered a shadow pixels. Since the hypergraph partitionment algorithms are stochastic, the

image segmentation partitionment results may vary slightly. Therefore, to improve our detection

results, for a given input image we perform multiple partitionments and shadow pixels labels.

The final shadow mask is obtained by considering the pixels that were labeled as shadow pixels

multiple times. Our proposed shadow detection scheme was not suitable for real-time process-

ing, therefore, for the vehicle detection system, we decided to use a simpler and more efficient

approach to keep the whole system as efficient as possible. Nonetheless, our proposed shadow

detection scheme was capable of obtaining state-of-the art results when compared against recent

and relevant shadow detection methods.

We performed experiments of both the proposed shadow detection and the vehicle detection

schemes. For the proposed hypergraph image segmentation detection scheme, we performed

experiments on seven common and publicly available shadow detection datasets and measured

the detection rate, the discrimination rate and the average of both measures. Due to the stochas-

ticity of the method, we measured the worst and best results and also the results with our pro-

posed voting scheme. The experiments show that our proposed method was able to obtain more

accurate results, in average, than all the comparative methods (87% detection rate and 89%

discrimination rate). The video sequences used in the experiments consists of both indoor and

outdoor scenes and also light and strong cast shadows. These results show that the proposed

method is able to accurately detect shadows in different conditions.

For our vehicle detection system, our experiments were conducted with traffic videos con-

taining challenging traffic monitoring situations (e.g. shadows, partial occlusions, illumination

sudden changes, and long vehicles). The virtual loops were defined manually, and one virtual

loop was placed at each road lane. Based on these experiments, the proposed scheme poten-

tially can obtain a vehicular detection accuracy higher than 98% (in average). The processing

63

time per frame is comparable to the processing times of other methods representative of the

state of the art. Higher processing times are expected as the presence of shadows increases at

the virtual loops (since more processing is required for shadow detection and removal). Also,

the experimental results suggest that our proposed method can obtain accurate vehicle counts,

even in challenging situations (e.g. when shadows or sudden illumination changes tend to affect

the results, and generate several false positives and false negatives). Therefore, based on these

experiments, we may conclude that the proposed vehicular detection scheme potentially can be

used for real-time vehicle detection and counting at user-defined virtual loops.

Future work will focus on improving the performance of our shadow detection scheme and

integrating it with our vehicle detection system, as well as on conducting larger scale exper-

iments with the proposed vehicular detection (and counting) scheme, involving several user-

defined loops.

64

5.1 Contributions of this Work

In this section, we list the papers that resulted from our work, which were submitted to

Journals:

5.1.1 Stochastic Shadow Detection Using a Hypergraph Partitioning Approach

Abstract

Shadows pose a challenging problem in computer vision applications. Shadow detection

and removal methods are usually employed after foreground detection since shadows interfere

with objects’ segmentation, negatively affecting the results of tracking and motion detection

algorithms. These methods have a trade-off between the detection rate and discrimination rate.

We propose a new shadow detection method based on hypergraph segmentation that achieves

good results in both the detection rate and discrimination rate. First, a weighted hypergraph

of the image is constructed and partitioned. Then, we generate preliminary shadow and non-

shadow masks using chromaticity and gradient correlation information. Finally, the preliminary

shadow and non-shadow masks are used to classify the hypergraph partitions as shadows or

non-shadows partitions. The resulting shadow mask is generated by combining all shadow

partitions. With our approach, we were able to improve the state of the art in cast shadow

detection methods.

Keywords

shadow detection, chromaticity, gradient correlation, hypergraph segmentation

Submitted to

Pattern Recognition

Type: Journal

Qualis: A1

Impact Factor (10/13/2015): 3.096

Status

Under review.

65

5.1.2 Novel Image-based Approach for Detecting Vehicles in User-defined Virtual Induc-

tive Loops

Abstract

Traffic monitoring systems are essential for managing modern urban centers and roadways.

Nowadays, there is an ongoing research effort to replace traditional traffic monitoring sensors

(e.g. inductive loops, microwave, etc.) by image-based systems, which are easier to repair and

are more flexible to operate. We propose a new scheme that uses an image-based sensor (cam-

era) for detecting vehicles at user-defined virtual loops, simulating the operation of inductive

loops. Using the proposed scheme, several user-defined virtual loops can be monitored simul-

taneously with one camera. Initially, the background is modeled with an improved Gaussian

Mixture Models approach, and then the shadows detected at the virtual loops are removed to

minimize false vehicular detections. Next, vehicles are detected at the user-defined virtual loops

using a combination of efficient edge detection and color information. The proposed scheme

provides a vehicle detection signal that also can be used for counting vehicles at the user de-

fined virtual loops. The experimental results indicate that the proposed scheme potentially can

detect vehicles at user-defined virtual loops and provide their counts accurately (with more than

98% accuracy, in average), besides being more robust to cast shadows and sudden illumination

changes than comparable methods that represent of the state of the art.

Keywords

vehicle detection, traffic monitoring, shadow detection, virtual loops, image-based sensors.

Submitted to

Information Sciences

Type: Journal

Qualis: A1

Impact Factor (10/13/2015): 4.038

Status

Under review.

66

Appendices

67

AppendixA - FUNDAMENTALS OF IMAGE SEGMENTATION USING HYPERGRAPHS

We discuss here the theory behind hypergraph image segmentation, which are the basis of

our hypergraph-based shadow detection scheme.

Hypergraphs are an extension of graphs in which edges are allowed to connect arbitrary,

non-empty, sets of vertices (Rital; Miguet; Cherifi, 2005). Therefore, hypergraphs can model

more general types of relations than graphs, and are used in image analysis applications in-

volving data inter-dependencies (Rital; Miguet; Cherifi, 2005) (BRETTO; GILLIBERT, 2005)

(BRETTO; CHERIFI, 2000) (KANNAN; KANNA; ARAVINDAN, 2010). Hypergraphs may

be partitioned in a way to minimize a graph-cut cost function. The normalized cut method

proposed by Shi and Malik (SHI; MALIK, 1997) is an alternative criterion which attempts

to correct the tendency of the graph cut algorithms to favor isolated graph vertices. Rital,

Miguet and Cherifi (2005) proposed a weighted adaptive approach for image segmentation

using hypergraphs, which has the appeal of a strong theoretical basis. Most graph partition-

ing approaches try to find two sub-graphs A and B of a graph G that minimize a cost function

cut{A,B} =
∑

i∈A,j∈B w(u, v), wherew(u, v) is the weight of the edge connecting the vertices

u and v, with the following constraints: A ∪B = G, A ∩B = ∅ and A 6= ∅, B 6= ∅.

We used a modified version of the weighted adaptive image neighborhood approach pro-

posed in (Rital; Miguet; Cherifi, 2005). More formally, a hypergraph is denoted by a pair

H = (V,E), where V = v1, v2, ..., vn is the set of vertices (or nodes) and E = E1, E2, ..., Em,

where Ei ⊆ V and i = 1, ..,m, is the set of hyperedges.

Figure A.1: Graph, hypergraph and neighborhood hypergraph example: (a) graph illustration;
(b) hypergraph, and two sets of hypergraph vertices called hyperedges; (c) neighborhood hy-
peredge of the vertex v considering a distance of 1 (see Eq. (A.1) and Eq. (A.2)).

v

(a) (b) (c)

Source: Created by the author (2015).

Consider a graph G(V ; e), where e is the set of edges, and H(V,E) is the hypergraph with

68

the set of vertices of G and the hyperedges E representing the neighborhoods of these vertices,

namely the neighborhood hypergraph of the graph G (see Fig. A.1). In fact, we can associate a

neighborhood hypergraph to each graph G as follows:

HG = (V, (Ev = {v}
⋃

Γ(v))), (A.1)

where

Γ(v) = {u ∈ V, (v, u) ∈ e}. (A.2)

A color image can be represented by the following mapping:

I : V ⊆ Z2 → C ⊆ Zn. (A.3)

where the vertices of V are pixels and the elements of C are colors. A distance d on V defines a

grid (a connected, regular graph, without loops or multi-edges). A distance d′ can be defined on

C in terms of the color similarity between two pixels. We then define the neighborhood relation

in the image I by:

Γλ,β(v) = {u ∈ V,
∣∣∣d′

(I(v), I(u))
∣∣∣ ≤ λ and d(v, u) ≤ β}, (A.4)

where the neighborhood of v on the grid is Γλ,β(v). Consequently, we can associate an Image

Neighborhood Hypergraph(INH) to an image I (Rital; Miguet; Cherifi, 2005) as follows:

HΓλ,β(I) = (V, (v ∪ Γλ,β(v))v∈V). (A.5)

The predicate λ can be calculated adaptively (Rital; Miguet; Cherifi, 2005), but our experi-

ments suggest that a fixed λ value also can be used. The hypergraph segmentation approach in

(Rital; Miguet; Cherifi, 2005) was designed for grayscale images, so we modified the method

in (Rital; Miguet; Cherifi, 2005) to work with color images. We first convert the image to the

LAB color space and then use the ∆E∗ab distance (TKALCIC; TASIC, 2003), to estimate the

similarity between two colors according to the human perception:

∆E∗ab =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2, (A.6)

where L∗, a∗ and b∗ are the color components in the LAB color space.

Given the neighborhood hypergraph of the input color image representing the foreground

objects, we convert the image to grayscale and associate two weights to each vertex vi: wvi

69

and whi . The weight wvi is the grayscale intensity of the pixel (i.e. vertex) vi ∈ V , and the

weight whi is the mean grayscale intensity of the hyperedge hi containing vi. After constructing

a neighborhood hypergraph for the foreground objects (see Fig. 3.1), we obtain K hypergraph

partitions using the multilevel partitioning algorithm (KARYPIS et al., 1999).

The hypergraph partitioning problem is known to be NP-hard, and the algorithms most

often used are heuristic (AYKANAT; CAMBAZOGLU; UçAR, 2008). The multilevel paradigm

for hypergraph partitioning (LASALLE; KARYPIS, 2013) has become popular since it has

advantages as compared to other paradigms, like recursive bisection (RB), which recursively

splits the hypergraph in two partitions using heuristics until the desired number of partitions is

obtained. However, these heuristics may perform poorly when dealing with large hyperedges

or small vertex degrees (the degree of a vertex is the number of hyperedges containing that

vertex). Also, these heuristics tend to not provide a global view of the problem, often resulting in

sub-optimal solutions (AYKANAT; CAMBAZOGLU; UçAR, 2008). The multilevel paradigm

addresses these issues and tends to produce high-quality hypergraph partitionings (DEVINE et

al., 2006) (AYKANAT; CAMBAZOGLU; UçAR, 2008) (LASALLE; KARYPIS, 2013).

The multilevel approach for image hypergraph segmentation is divided in 3 main steps

(LASALLE; KARYPIS, 2013): I) coarsening; II) initial hypergraph partitioning; and III) un-

coarsening and refinement. In the coarsening step, a sequence of smaller (coarser) hypergraphs

is constructed. These smaller (coarser) hypergraphs preserve the structure of the original hy-

pergraph (i.e. the finer hypergraph) as accurately as possible (Rital; Miguet; Cherifi, 2005),

and coarsening is achieved by merging vertices and contracting the hyperedges of the original

hypergraph to form new hypergraph vertices in the coarser hypergraph (decreasing the size1

of the hyperedges). Fig. A.2 illustrates three different approaches for the coarsening process.

We tested these different coarsening approaches, and the hyperedge coarsening approach (see

Fig. A.2(b)) provided the best experimental results (see Section 4.1).

In the next step of the multilevel approach for image hypergraph segmentation, the coarsest

hypergraph is partitioned minimizing the cost of the hypergraph cut, which is followed by the

uncoarsening step. The last step of the hypergraph image segmentation process is uncoarsen-

ing, and the coarsest hypergraph partition is expanded again to re-introduce the vertices of the

original hypergraph in the obtained coarser hypergraph partitioning. Then, a hypergraph parti-

tion refinement algorithm is used to further improve this hypergraph partitioning, as discussed

next. The steps of the multilevel approach for image hypergraph segmentation are summarized

in Fig. A.3. The refinement algorithm reduces the cost of the hypergraph cut and improves the

1A hyperedge connecting k nodes has size k.

70

Figure A.2: Hypergraph coarsening illustration, top to bottom: (a) the hypergraph edge coarsen-
ing scheme in which pairs of connected vertices are merged together. The vertices are visited in
random order and for each vertex v, all vertices that belong to hyperedges incident at v are con-
sidered, and the pairs of vertices connected via the largest weight edge are merged (KARYPIS;
KUMAR, 1999); (b) hyperedge coarsening scheme in which a set of hyperedges is selected
and the vertices that belong to these hyperedges are contracted together, giving preference to
hyperedges with larger weights and smaller sizes (KARYPIS et al., 1999); and (c) modified hy-
peredge coarsening scheme, where after selecting the hyperedges that shall be contracted using
the hyperedge coarsening scheme described before, all the uncontracted hyperedges vertices are
considered in the contraction step. For each uncontracted hyperedge, the vertices that do not
belong to any other hyperedge (that suffered contraction) are contracted together (KARYPIS et
al., 1999).

(a) (b) (c)

Source: Created by the author (2015).

71

image hypergraph partitioning quality. Three refinement algorithms were evaluated for this task,

namely: FM algorithm (FIDUCCIA; MATTHEYSES, 1982), which repeatedly moves vertices

between partitions to reduce the cut cost (KARYPIS et al., 1999); Early-Exit FM, which is a

simplified version of the FM algorithm that defines a maximum number of passes to be per-

formed, and each pass stops if after moving k vertices the cut cost is reduced (KARYPIS et

al., 1999); and Hyperedge Refinement(HER), that iteratively moves groups of vertices between

partitions until an entire hyperedge is removed from the hypergraph cut set (KARYPIS et al.,

1999). In our experiments, the FM algorithm provided the best results and is used in this work

as the image hypergraph partitioning refinement method.

Figure A.3: Illustration of the 3 steps of the multilevel approach used in this work for image
hypergraph segmentation (Rital; Miguet; Cherifi, 2005).

H1

H0

H1

H0

H2

Initial Hypergraph
Partitioning

C
oa

rs
e

ni
ng

U
ncoarsening an

d refinem
ent

Expanded PartitionRefined Partition

Refined Partition
Expanded Partition

Source: Created by the author (2015).

An illustration of the proposed image segmentation scheme based on image hypergraph

partitioning can be seen in Fig. A.4. Since we are only interested in the foreground objects

shadows, the foreground mask provided as input to our method is used to build the image

72

Figure A.4: Hypergraph segmentation results for a frame of the Highway dataset, and for a
frame of the Lab dataset: (a) original frame; (b) image hypergraph partitioning result. Each
color represents an image hypergraph partition corresponding to a foreground region, and black
regions correspond to the background.

(a) (b)

Source: Created by the author (2015).

hypergraph, which will be used to detect shadows regions in the foreground (see Fig. 3.1).

73

REFERENCES

AL-NAJDAWI, N. et al. A survey of cast shadow detection algorithms. Pattern Recognition
Letters, Elsevier B.V., v. 33, n. 6, p. 752–764, abr. 2012. ISSN 01678655.

AYKANAT, C.; CAMBAZOGLU, B. B.; UçAR, B. Multi-level direct k-way hypergraph
partitioning with multiple constraints and fixed vertices. Journal of Parallel and Distributed
Computing, v. 68, n. 5, p. 609 – 625, 2008. ISSN 0743-7315.

BARCELLOS, P. et al. A novel video based system for detecting and counting vehicles at
user-defined virtual loops. Expert Systems with Applications, Elsevier Ltd, n. October, oct.
2014. ISSN 09574174.

BARNICH, O.; DROOGENBROECK, M. V. Vibe: A universal background subtraction
algorithm for video sequences. Image Processing, IEEE Transactions on, v. 20, n. 6, p.
1709–1724, June 2011. ISSN 1057-7149.

BENEZETH, Y. et al. Comparative study of background subtraction algorithms. Journal of
Electronic Imaging, v. 19, n. 3, p. 03–33, 2010.

BRETTO, A.; CHERIFI, H. Noise detection and cleaning by hypergraph model. In:
Proceedings of the International Conference on Information Technology: Coding and
Computing. [S.l.: s.n.], 2000. p. 416–419.

BRETTO, A.; GILLIBERT, L. Hypergraph-based image representation. In: BRUN, L.;
VENTO, M. (Ed.). Graph-Based Representations in Pattern Recognition, Proceedings
of the 5th IAPR International Workshop (GbRPR 2005), Poitiers, France, April 11-13,
2005. [S.l.]: Springer, 2005. (Lecture Notes in Computer Science, v. 3434), p. 1–11. ISBN
3-540-25270-3.

BRIECHLE, K.; HANEBECK, U. D. Template matching using fast normalized cross
correlation. In: Proceedings of SPIE: Optical Pattern Recognition XII. [S.l.: s.n.], 2001.
v. 4387, p. 95–102.

BULLKICH, E. et al. Moving shadow detection by nonlinear tone-mapping. In: 19th
International Conference on Systems, Signals and Image Processing (IWSSIP). [S.l.: s.n.],
2012. p. 146–149. ISSN 2157-8672.

CHOI, W.-P. et al. Simplified Gabor wavelets for human face recognition. Pattern
Recognition, v. 41, p. 1186–1199, 2008. ISSN 00313203.

COMANICIU, D.; MEER, P. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 24, n. 5, p. 603–619,
May 2002. ISSN 0162-8828.

CUCCHIARA, R. et al. Detecting moving objects, ghosts, and shadows in video streams. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 25, n. 10, p. 1337–1342, oct.
2003. ISSN 0162-8828.

DEVINE, K. et al. Parallel hypergraph partitioning for scientific computing. In: 20th IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2006. [S.l.: s.n.],
2006. p. 1–10.

74

FIDUCCIA, C.; MATTHEYSES, R. A linear-time heuristic for improving network partitions.
19th Conference on Design Automation, 1982., p. 175–181, June 1982. ISSN 0146-7123.

GANGODKAR, D.; KUMAR, P.; MITTAL, A. Robust Segmentation of Moving Vehicles
Under Complex Outdoor Conditions. IEEE Transactions on Intelligent Transportation
Systems, v. 13, n. 4, p. 1738–1752, dec. 2012. ISSN 1524-9050, 1558-0016.

GUO, R.; DAI, Q.; HOIEM, D. Single-image shadow detection and removal using paired
regions. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2011). Washington, DC, USA: IEEE Computer Society, 2011. p.
2033–2040. ISBN 978-1-4577-0394-2.

HEO, Y. S.; LEE, K. M.; LEE, S. U. Robust stereo matching using adaptive normalized
cross-correlation. IEEE transactions on pattern analysis and machine intelligence, v. 33,
n. 4, p. 807–22, abr. 2011. ISSN 1939-3539.

HIRSCHMULLER, H.; SCHARSTEIN, D. Evaluation of cost functions for stereo matching.
In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07.
[S.l.: s.n.], 2007. p. 1–8. ISSN 1063-6919.

HMETIS - Hypergraph and Circuit Partitioning library.
Http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview, visited on: 15 nov. 2015.

HSIEH, J.-W. et al. Shadow elimination for effective moving object detection by gaussian
shadow modeling. Image and Vision Computing, v. 21, n. 6, p. 505 – 516, 2003. ISSN
0262-8856.

HUANG, J.-B.; CHEN, C.-S. Moving cast shadow detection using physics-based features. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). [S.l.: s.n.],
2009. p. 2310–2317. ISSN 1063-6919.

JIANG, W.; LAM, K.-M.; SHEN, T.-Z. Efficient edge detection using simplified gabor
wavelets. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a
publication of the IEEE Systems, Man, and Cybernetics Society, v. 39, n. 4, p. 1036–47,
aug. 2009. ISSN 1941-0492.

JUNG, C.; SCHARCANSKI, J. Robust watershed segmentation using the wavelet transform.
In: Proceedings of the XV Brazilian Symposium on Computer Graphics and Image
Processing. [S.l.: s.n.], 2002. p. 131–137. ISSN 1530-1834.

JUNG, C.; SCHARCANSKI, J. Wavelet transform approach to adaptive image denoising and
enhancement. Journal of Electronic Imaging, v. 13, n. 2, p. 278–285, 2004.

JUNG, C.; SCHARCANSKI, J. Robust watershed segmentation using wavelets. Image and
Vision Computing, v. 23, n. 7, p. 661 – 669, 2005. ISSN 0262-8856.

KANNAN, K.; KANNA, B. R.; ARAVINDAN, C. Root mean square filter for noisy images
based on hyper graph model. Image and Vision Computing, v. 28, n. 9, p. 1329 – 1338, 2010.
ISSN 0262-8856.

KARYPIS, G. et al. Multilevel hypergraph partitioning: applications in vlsi domain. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, v. 7, n. 1, p. 69–79, March
1999. ISSN 1063-8210.

75

KARYPIS, G.; KUMAR, V. Multilevel k-way hypergraph partitioning. In: Proceedings of
the 36th Annual ACM/IEEE Design Automation Conference. New York, NY, USA: ACM,
1999. (DAC ’99), p. 343–348. ISBN 1-58113-109-7.

KHARE, M.; SRIVASTAVA, R. K.; KHARE, A. Dual tree complex wavelet transform based
shadow detection and removal from moving objects. In: INTERNATIONAL SOCIETY FOR
OPTICS AND PHOTONICS. IS&T/SPIE Electronic Imaging. [S.l.], 2014. p. 90–97.

LASALLE, D.; KARYPIS, G. Multi-threaded graph partitioning. In: Proceedings of the 2013
IEEE 27th International Symposium on Parallel and Distributed Processing. Washington,
DC, USA: IEEE Computer Society, 2013. (IPDPS ’13), p. 225–236. ISBN 978-0-7695-4971-2.

LEWIS, J. P. Fast normalized cross-correlation. 1995.
Http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.6062, visited on: 15 nov.
2015.

NOH, S.; JEON, M. A New Framework for Background Subtraction Using Multiple Cues.
Computer Vision–ECCV 2012, n. 1, p. 493–506, 2013.

OTSU, N. A Threshold Selection Method from Gray-level Histograms. IEEE Transactions
on Systems, Man and Cybernetics, v. 9, n. 1, p. 62–66, 1979.

PELLEGRINO, F. A.; VANZELLA, W.; TORRE, V. Edge detection revisited. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, v. 34, n. 3, p.
1500–1518, 2004. ISSN 10834419.

PORNPANOMCHAI, C.; LIAMSANGUAN, T.; VANNAKOSIT, V. Vehicle detection and
counting from a video frame. 2008 International Conference on Wavelet Analysis and
Pattern Recognition, IEEE, p. 356–361, aug. 2008.

POURMOHAMMAD, A.; FALLAHPOUR, M.; KARIMIFAR, S. Scene matching based on
using edge features. In: 2012 8th International Conference on Information Science and
Digital Content Technology (ICIDT). [S.l.: s.n.], 2012. v. 1, p. 189–194.

PRATI, A. et al. Analysis and detection of shadows in video streams: a comparative
evaluation. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2001). [S.l.: s.n.], 2001. v. 2, p. II–571–II–576 vol.2. ISSN 1063-6919.

Rital, S.; Miguet, S.; Cherifi, H. Weighted Adaptive Neighborhood Hypergraph Partitioning for
Image Segmentation. In: SINGH, S. et al. (Ed.). 3rd International Conference on Advances
in Pattern Recognition. [S.l.]: LNCS, 2005. (Pattern Recognition and Image Analysis). ISBN
3-540-28833-3.

SANCHEZ, A. et al. Video-based distance traffic analysis: Application to vehicle tracking
and counting. Computing in Science Engineering, v. 13, n. 3, p. 38–45, May 2011. ISSN
1521-9615.

SANIN, A.; SANDERSON, C.; LOVELL, B. C. Improved Shadow Removal for Robust Person
Tracking in Surveillance Scenarios. 20th International Conference on Pattern Recognition,
IEEE, p. 141–144, aug. 2010.

SANIN, A. et al. Shadow detection: A survey and comparative evaluation of recent methods.
Pattern Recognition, v. 45, n. 4, p. 1684–1695, abr. 2012. ISSN 00313203.

76

SCHARCANSKI, J. et al. A Particle-Filtering Approach for Vehicular Tracking Adaptive to
Occlusions. IEEE Transactions on Vehicular Technology, v. 60, n. 2, p. 381–389, feb. 2011.
ISSN 0018-9545.

SEBASTIAN, P. Tracking using normalized cross correlation and color space. 2007
International Conference on Intelligent and Advanced Systems, IEEE, p. 770–774, nov.
2007.

SHABANINIA, E.; NAGHSH-NILCHI, A. Robust watershed segmentation of moving
shadows using wavelets. In: 8th Iranian Conference on Machine Vision and Image
Processing (MVIP). [S.l.: s.n.], 2013. p. 381–386. ISSN 2166-6776.

SHI, J.; MALIK, J. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 22, p. 888–905, 1997.

SILVA, L.; SCHARCANSKI, J. Video segmentation based on motion coherence of particles in
a video sequence. IEEE Transactions on Image Processing, v. 19, n. 4, p. 1036–1049, April
2010. ISSN 1057-7149.

SIVARAMAN, S.; TRIVEDI, M. M. Looking at Vehicles on the Road: A Survey of
Vision-Based Vehicle Detection, Tracking, and Behavior Analysis. IEEE Transactions on
Intelligent Transportation Systems, p. 1–23, 2013. ISSN 1524-9050.

SOBRAL, A. BGSLibrary: An opencv c++ background subtraction library. In: IX
Workshop de Visão Computacional (WVC’2013). Rio de Janeiro, Brazil: [s.n.], 2013.
Https://github.com/andrewssobral/bgslibrary, visited on: 15 nov. 2015.

ST-CHARLES, P.-L.; BILODEAU, G.-a. Improving background subtraction using Local
Binary Similarity Patterns. IEEE Winter Conference on Applications of Computer Vision,
p. 509–515, 2014.

STAUFFER, C.; GRIMSON, W. Adaptive background mixture models for real-time tracking.
In: Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference
on. [S.l.: s.n.], 1999. v. 2, p. 252 Vol. 2. ISSN 1063-6919.

TIAN, B. et al. Video processing techniques for traffic flow monitoring: A survey. 2011 14th
International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, p.
1103–1108, oct. 2011.

TKALCIC, M.; TASIC, J. Colour spaces: perceptual, historical and applicational background.
In: The IEEE Region 8 EUROCON 2003, Computer as a Tool. [S.l.: s.n.], 2003. v. 1, p.
304–308 vol.1.

XU, D. et al. Insignificant shadow detection for video segmentation. IEEE Transactions on
Circuits and Systems for Video Technology, v. 15, n. 8, p. 1058–1064, Aug 2005. ISSN
1051-8215.

YUAN, Y.; ZHAO, Y.; WANG, X. Day and Night Vehicle Detection and Counting in Complex
Environment. 2013 28th International Conference on Image and Vision Computing New
Zealand (IVCNZ 2013), IEEE, p. 453–458, nov. 2013.

77

ZIVKOVIC, Z. Improved adaptive gaussian mixture model for background subtraction. In:
Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR
2004. [S.l.: s.n.], 2004. v. 2, p. 28–31 Vol.2. ISSN 1051-4651.

ZIVKOVIC, Z.; HEIJDEN, F. van der. Efficient adaptive density estimation per image pixel for
the task of background subtraction. Pattern Recognition Letters, v. 27, n. 7, p. 773–780, may
2006. ISSN 01678655.

ZWENG, A.; RITTLER, T.; KAMPEL, M. Evaluation of histogram-based similarity functions
for different color spaces. Computer Analysis of Images and Patterns, p. 455–462, 2011.

	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Thesis structure

	2 Related Works
	2.1 Foreground Detection
	2.2 Vehicle Detection
	2.3 Shadow Detection

	3 Proposed method for vehicle detection in virtual loops
	3.1 Foreground Detection and Background Modeling Using Gaussian Mixture Models
	3.2 Shadow Detection and Removal
	3.2.1 Shadow Detection Using Color and Gradient Information
	3.2.2 Improved Shadow Detection Using Hypergraphs
	3.2.3 Shadow removal

	3.3 Fast Edge Detection
	3.4 Vehicle Detection Using Edge and Color Information
	3.4.1 Vehicle Counting

	4 Experimental Results
	4.1 Hypergraph-Based Shadow Detection Results
	4.2 Vehicle Detection Results

	5 Conclusions and Discussion
	5.1 Contributions of this Work
	5.1.1 Stochastic Shadow Detection Using a Hypergraph Partitioning Approach
	5.1.2 Novel Image-based Approach for Detecting Vehicles

	Appendices
	AppendixA - Fundamentals of Image Segmentation Using Hypergraphs
	References

