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Abstract

The parameter σ(G) of a graph G stands for the number of Laplacian eigenvalues
greater than or equal to the average degree of G. In this work, we address the
problem of characterizing those graphs G having σ(G) = 1. Our conjecture is that
these graphs are stars plus a (possible empty) set of isolated vertices. We establish
a link between σ(G) and the number of anticomponents of G. As a by-product,
we present some results which support the conjecture, by restricting our analysis to
cographs, forests, and split graphs.

Mathematics Subject Classifications: 05C50; 97K30; 35Pxx

1 Introduction

Let G be a graph on n vertices and m edges and let d1 > · · · > dn be its degree sequence.
We denote by A(G) its adjacency matrix and by D(G) the diagonal matrix having di in
the diagonal entry (i, i), for every 1 6 i 6 n, and 0 otherwise. The Laplacian matrix of
G is the positive semidefinite matrix L(G) = D(G)−A(G). The eigenvalues of L(G) are
called Laplacian eigenvalues of G; the spectrum of L(G) is the Laplacian spectrum of G
and will be denoted by Lspec(G). Since it is easily seen that 0 is a Laplacian eigenvalue
and it is well-known that Laplacian eigenvalues are less than or equal to n it turns out
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that Lspec(G) ⊂ [0, n]. From now on, if Lspec(G) = {µ1, µ2, . . . , µn}, we will assume that
µ1 > µ2 > · · · > µn, where µn = 0.

Understanding the distribution of Laplacian eigenvalues of graphs is a problem that is
both relevant and difficult. It is relevant due to the many applications related to Laplacian
matrices (see, for example, [9, 10]). It seems to be difficult because little is known about
how the Laplacian eigenvalues are distributed in the interval [0, n].

Our main motivation is understanding the structure of graphs that have few large
Laplacian eigenvalues. In particular, we would like to characterize graphs that have a
single large Laplacian eigenvalue. What do we mean by a large Laplacian eigenvalue?
A reasonable measure is to compare this eigenvalue with the average of all eigenvalues.
Since the average of Laplacian eigenvalues equals the average degree d(G) = 2m

n
of G, we

say that a Laplacian eigenvalue is large if it is greater than or equal to the average degree.
Inspired by this idea, the paper [3] introduces the spectral parameter σ(G) which

counts the number of Laplacian eigenvalues greater than or equal to d(G). Equivalently,
σ(G) is the largest index i for which µi > 2m

n
. Since the greatest Laplacian eigenvalue µ1

is at least 2m
n

then it follows that σ(G) > 1.
There is evidence that σ(G) plays an important role in defining structural properties

of a graph G. For example, it is related to the clique number ω of G (the number of
vertices of the largest induced complete subgraph of G) and it also gives insight about the
Laplacian energy of a graph [11, 3]. Pirzada and Ganie [11] conjectured that σ(G) > ω−1.
Later, this conjectured was disproved in [3] by showing a counterexample within the class
of threshold graphs. Moreover, several structural properties of a graph are related to σ
(see, for example, [2, 3]).

In this paper we are concerned with furthering the study of σ(G). In particular,
we deal with a problem posed in [3] which asks for characterizing all graphs G having
σ(G) = 1; i.e., having only one large Laplacian eigenvalue. Our conjecture is that the
only connected graph on n vertices having σ = 1 is the star K1,n−1 and that the only
disconnected graph on n vertices having σ = 1 is a star together with some isolated
vertices. More precisely, we conjecture that graphs having σ = 1 are some stars plus a
(possibly empty) set of isolated vertices. From now on, K1,r + sK1 denotes the star on
r + 1 vertices plus s isolated vertices.

Conjecture 1. Let G be a graph. Then σ(G) = 1 if and only if G is isomorphic to K1,
K2 + sK1 for some s > 0, or K1,r + sK1 for some r > 2 and 0 6 s < r − 1.

In this work, we show that this conjecture is true if it holds for graphs which are
simultaneously connected and co-connected (Conjecture 11) and prove that Conjecture 1
is true for cographs, forests, and split graphs. The main tool for proving our results is an
interesting link we have found between σ and the number of anticomponents of G (see
Section 2). The interesting feature of this result is that it relates a spectral parameter with
a classical structural parameter. Studying structural properties of the anticomponents
of G may shed light on the distribution of Laplacian eigenvalues and, reciprocally, the
distribution of Laplacian eigenvalues should give insight about the structure of the graph.
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This article is organized as follows. In Section 2 we state definitions and previous
results concerning Laplacian eigenvalues. In Section 3, we present some new results which
establish the connection between σ and the number of nonempty anticomponents of G.
In Section 4, we present some evidence on the validity of Conjecture 1 by proving that
the conjecture is true when G is a cograph, a forest, or a split graph.

2 Definitions

In this article, all graphs are finite, undirected, and without multiple edges or loops. All
definitions and concepts not introduced here can be found in [13]. We say that a graph is
empty if it has no edges. A trivial graph is a graph with precisely one vertex; every trivial
graph is isomorphic to the graph which we will denote by K1. A graph is nontrivial if it
has more than one vertex.

We use the standard notation ∆(G) to denote the maximum degree of a graph G.
Let G1 and G2 be two graphs such that V (G1) ∩ V (G2) = ∅. The disjoint union of

G1 and G2, denoted G1 + G2, is the graph whose vertex set is V (G1) ∪ V (G2), and its
edge set is E(G1) ∪ E(G2). We write kG to represent the disjoint union G + · · · + G of
k copies of a graph G. The join of G1 and G2, denoted G1 ∨ G2, is the graph obtained
from G1 +G2 by adding new edges from each vertex of G1 to every vertex of G2.

A vertex v of a graph G is a twin of another vertex w of G if they both have the
same neighbors in V (G) \ {v, w}. We say that a graph G′ is obtained from G by adding
a twin v′ to a vertex v of G if V (G′) = V (G)∪ {v′}, v′ is a twin of v in G′, and G′ − v′ is
isomorphic to G.

By G[S] we denote the subgraph of G induced by a subset S ⊆ V (G).
We use G to denote the complement graph of a graph G. An anticomponent of a graph

G is the subgraph of G induced by the vertex set of a connected component of G. More
precisely, an induced subgraph H of G is an anticomponent if H is a connected component
of G. Notice that if G1, G2, . . . , Gk are the anticomponents of G, then G = G1 ∨ · · · ∨Gk.
A graph G is co-connected if G is connected.

A forest is a graph with no cycles and a tree is a connected forest. The complete graph
on n vertices is denoted by Kn. A universal vertex of a graph G is a vertex v adjacent to
every vertex w different from v. A star is a graph isomorphic to K1 or to a tree with a
universal vertex. We use K1,n−1 to denote the star on n vertices, where K1,0 is isomorphic
to K1 and K1,1 is isomorphic to K2. The chordless path (respectively, cycle) on k vertices
is denoted by Pk (respectively, Ck).

A stable set of a graph is a set of pairwise nonadjacent vertices. A clique of a graph
is a set of pairwise adjacent vertices.

Throughout this article, given two graphs G and H, we write G = H to point out that
G and H belong to the same isomorphism class.

Brouwer and Haemers [1] provided a lower bound for the k-th Laplacian eigenvalue of
a graph in terms of dk, answering a conjecture raised by Guo [6].

Theorem 2 ([1]). Let G be a graph on n vertices. If G is not isomorphic to Kk+(n−k)K1,
then µk(G) > dk − k + 2.
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Throughout this article we will use the lower bounds corresponding to the cases k =
1 [5] and k = 2 [7].

It is easy to prove that the Laplacian spectrum of the disjoint union G1 + G2 is the
union of the Laplacian spectrums of G1 and G2. The next result allows to determine the
Laplacian spectrum of the join G1 ∨G2, from those of G1 and G2.

Theorem 3 ([8, Theorem 2.20]). Let G1 and G2 be two graphs with Laplacian spectrums
µ1 > µ2 > · · · > µn1 = 0 and λ1 > λ2 > · · · > λn2 = 0, respectively. Then the Laplacian
eigenvalues of G1∨G2 are n1 +n2; n2 +µi, for 1 6 i 6 n1− 1; n1 +λi, for 1 6 i 6 n2− 1
and 0.

3 Relating σ and the number of anticomponents

This section is devoted to establish a link between σ(G) and the number of anticomponents
of G.

In virtue of Theorem 3, the following result immediately holds.

Lemma 4. If G = G1 ∨ · · · ∨ Gk, with k > 1, is a graph on n vertices, then n is a
Laplacian eigenvalue of G with multiplicity at least k − 1.

Lemma 5. If G has k anticomponents, then k 6 σ(G) + 1.

Proof. Let G = G1 ∨ · · · ∨ Gk where G1, . . . , Gk are the anticomponents of G. For any
graph G with at least one vertex we have that σ(G) > 1 and thus the assertion follows
when k = 1. We may assume that k > 2. Lemma 4 implies that n is a Laplacian
eigenvalue of G with multiplicity at least k − 1 in G. Thus µk−1(G) = n which implies
that σ(G) > k − 1.

Remark 6. The upper bound given by Lemma 5 is sharp when σ(G) > 1. Indeed, for
s > 2 consider the graph G = 4K2 ∨K1 ∨ · · · ∨K1, where s is the number of K1’s. The
average degree of G is s + 7 − 48

s+8
and it has s + 1 anticomponents. Since its Laplacian

eigenvalues are s + 8, s + 2, s, and 0 with multiplicities s, 4, 3, and 1, respectively, it
follows that σ(G) = s.

We use `(G) to denote the number of nonempty anticomponents of a graph G. Recall
that a nontrivial graph has at least two vertices. The following result looks further into
the case where equality holds in Lemma 5 showing that σ(G) is an upper bound for `(G).

Theorem 7. Let G be a graph having k = σ(G) + 1 anticomponents. Then `(G) 6 σ(G).
Moreover, if σ(G) = `(G), then the remaining anticomponent of G is empty but nontrivial.

Proof. Write G = G1 ∨ · · · ∨ Gk where G1, . . . , Gk are the anticomponents of G. Since
σ(G) > 1 then k > 2. We set the following notations for each i ∈ {1, . . . , k}:

ni = |V (Gi)|, mi = |E(Gi)|, µ
(i)
1 = µ1(Gi).
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Assume that G1, . . . , G` are the nonempty anticomponents. Since k > 2 and we are
assuming that σ(G) = k − 1 it turns out that µk(G) < d(G). Therefore, for each i ∈
{1, . . . , k} such that ni > 1 we have that

n− ni + µ
(i)
1 6 µk(G) <

2m

n
=

2
∑k

j=1mj + 2
∑

16i<j6k ninj

n
,

the first inequality holds by Theorem 3. Equivalently,

µ
(i)
1 <

2
∑k

j=1mj − (n2 − 2
∑

16i<j6k ninj)

n
+ ni

=
2
∑k

j=1mj −
∑k

j=1 n
2
j + nni

n
.

(1)

As a consequence of Theorem 2, we obtain the following lower bound for each i ∈
{1, . . . , `}:

µ
(i)
1 > ∆(Gi) + 1 > d(Gi) + 1 =

2mi

ni

+ 1. (2)

Combining (1) and (2), we deduce that, for each i ∈ {1, . . . , `},

2ni

k∑
j=1

mj − ni

k∑
j=1

n2
j + nn2

i − 2nmi − nni > 0. (3)

Arguing towards a contradiction, suppose that `(G) = k. If we sum up the left-hand
side of (3) for each i ∈ {1, . . . , k}, we obtain

2n
k∑

j=1

mj − n
k∑

j=1

n2
j + n

k∑
i=1

n2
i − 2n

k∑
i=1

mi − n2 = −n2

which is not a positive quantity. This contradiction proves that G has at most k−1 = σ(G)
nonempty anticomponents and our first assertion follows.

Assume now that `(G) = k−1. Suppose that Gk is trivial. Hence nk = 1 and mk = 0.
Summing up to the left-hand side of (3) for each i ∈ {1, . . . , k − 1}, we obtain that

−2
k−1∑
j=1

mj +
k∑

j=1

n2
j − n2 = −2

k−1∑
j=1

mj − 2
∑

16i<j6k

ninj

should be a positive number. This contradiction shows that Gk must be nontrivial.

Recall that a bipartite graph is a graph whose set of vertices can be partitioned into
two (possibly empty) stable sets called partite sets of the bipartite graph. A complete
bipartite graph is a bipartite graph isomorphic to rK1 ∨ sK1 for two positive integers r
and s. We denote by Kr,s the complete bipartite graph isomorphic to rK1 ∨ sK1. The
upper bound σ(G) on `(G) for those graphs having exactly σ(G)+1 anticomponents is not
tight when σ(G) = 1. Indeed, the following result shows that if a graph G has σ(G) = 1,
then G has no nonempty anticomponents.
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Corollary 8. If G is a graph on n vertices with σ(G) = 1 and G is disconnected, then
G = K1,n−1.

Proof. In virtue of Lemma 5, the number of anticomponents of G is at most 2. Since G is
disconnected, we conclude that G has precisely two anticomponents G1 and G2 and thus
G = G1 ∨G2.

Suppose, for a contradiction, that G1 is a nonempty anticomponent of G. Because of
Theorem 7, we conclude that G2 is empty but nontrivial. Following the notation used in
the proof of Theorem 7, we have that m2 = 0. For i = 1, inequality (3) becomes

− 2n2m1 − n1n
2
2 + n2n

2
1 − n2

1 − n1n2 > 0. (4)

Since G2 is a nontrivial empty graph it follows that µ
(2)
1 = 0 and hence, for i = 2,

inequality (1) becomes
2m1 − n2

1 + n1n2 > 0. (5)

Summing up (4) and n2 times (5) gives

−n2
1 − n1n2 > 0.

This contradiction arose from supposing that G has some nonempty anticomponent.
Hence, both anticomponents of G are empty; i.e., G is a complete bipartite graph.

Since G = Kn1,n2 , where n2 > n1 > 1 and n = n1 + n2, the average degree of G is
equal to 2n1n2

n
. In virtue of Theorem 3, the Laplacian eigenvalues of Kn1,n2 are n, n2, n1

and 0, each with multiplicity 1, n1 − 1, n2 − 1 and 1, respectively.
Arguing towards a contradiction, suppose that n1 > 2. Hence µ2(G) = n2. Since

2n1 6 n, we deduce that d(G) = 2n1n2

n
6 µ2(G), which contradicts the fact that σ(G) = 1.

This contradiction proves that n1 = 1 and therefore we conclude that G = K1,n−1.

4 Graphs with σ = 1

In this section we provide some evidence in order to make plausible Conjecture 1. We
first verify Conjecture 1 for graphs having disconnected complement; namely, we prove
that the only graphs having σ = 1 and disconnected complement are the stars (including
the trivial star K1). Then, we prove that Conjecture 1 can be reduced to proving that the
only connected and co-connected graph with σ = 1 is K1. We then verify Conjecture 1
for cographs, forests, and split graphs.

4.1 Reduction to co-connected graphs

We first obtain a result which proves the validity of Conjecture 1 for graphs having
disconnected complement.

Corollary 9. Let G be a graph on n vertices such that G is disconnected. Then σ(G) = 1
if and only if G = K1,n−1.
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Proof. Assume first that G = K1,n−1. Then d(G) = 2 − 2
n
. If n = 2, the Laplacian

eigenvalues of G are 2 and 0. If n > 3, the Laplacian eigenvalues of G are n, 1 and 0,
each with multiplicity 1, n− 2 and 1, respectively. In any case we have that σ(G) = 1.

The ‘only if’ part follows from Corollary 8.

As a consequence of Corollary 9, Conjecture 1 is equivalent to the validity of the
following weaker conjecture.

Conjecture 10. Let G be a graph with connected complement. Then, σ(G) = 1 if and
only if G is isomorphic to K1, K2 + sK1 for some s > 0, or K1,r + sK1 for some r > 2
and 0 < s < r − 1.

4.2 Reduction to connected and co-connected graphs

We next show that the validity of Conjectures 1 and 10 can be reduced to the validity of
the following even weaker conjecture.

Conjecture 11. Let G be a connected graph with connected complement. Then, σ(G) =
1 if and only if G is isomorphic to K1.

A graph class G is closed by taking components if every connected component of every
graph in G also belongs to G. In particular, the class of all graphs is closed by taking
components. Below we prove that the reduction from Conjecture 1 to Conjecture 11 holds
even when restricted to any graph class closed by taking components.

Theorem 12. Let G be a graph class closed by taking components. If Conjecture 11 holds
for G, then Conjecture 1 also holds for G.

Proof. Let G be a graph in G with σ(G) = 1. Assume first that G is connected. If G is
co-connected, by hypothesis, G is isomorphic to K1. If G is not co-connected, then G is
isomorphic to K1,r for some r > 1, by virtue of Corollary 9.

Assume now that G is disconnected and let G = G1 + G2, where each of G1 and G2

has at least one vertex. We can assume, without loss of generality, that G1 is connected
and µ1(G1) > µ1(G2). If G1 were empty, then G2 would also be empty, contradicting
σ(G) = 1. Hence we can assume, without loss of generality, that G1 is nonempty. Let ni

and mi denote the number of vertices and edges of Gi, respectively, for each i ∈ {1, 2}.
Since σ(G) = 1,

2m2

n2

6 µ1(G2) < d(G) =
2(m1 +m2)

n1 + n2

.

This implies that
2m2

n2

<
2m1 + 2m2

n1 + n2

<
2m1

n1

. (6)

As a consequence of (6) we have that

µ2(G1) <
2m1 + 2m2

n1 + n2

<
2m1

n1

= d(G1).
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We conclude that σ(G1) = 1. Since G is closed by taking components, G1 ∈ G. Thus, if
G1 were co-connected, then G1 = K1, contradicting the assumption that G1 is nonempty.
Hence G1 is not co-connected and, by Corollary 9, we have that G1 = K1,r for some r > 1.

From (6) we deduce that

µ1(G2) <
2m1 + 2m2

n1 + n2

<
2m1

n1

=
2r

r + 1
< 2,

and hence, by virtue of Theorem 2, we conclude that G2 must be empty. Then there exists
an integer s > 1 such that G2 = sK1 and therefore it turns out that G = K1,r + sK1. The
average degree of G is d(G) = 2r

r+1+s
. If r = 1, then σ(G) = 1 because the second largest

Laplacian eigenvalue of G is 0. If r > 2, then, as the second largest eigenvalue of G is 1
it follows that σ(G) = 1 if and only if s < r − 1.

A cograph is a graph with no induced P4. It is well-known that the only connected
and co-connected cograph is K1 [12]. Hence, Conjecture 11 holds trivially for cographs
and, by Theorem 12, Conjecture 1 holds for cographs.

4.3 Characterizing forests and split graphs with σ = 1

In this section, we verify Conjecture 1 for forests and split graphs.
A graph class G is monotone if G ∈ G implies that every subgraph of G also belongs

to G. Notice that every monotone graph class is closed by taking components. It can
be easily seen that the class of all forests is monotone and thus it is closed by taking
components.

Theorem 13. Conjecture 1 holds for forests.

Proof. Notice that if T is a connected and co-connected forest, then T is either K1 or a
tree with diameter greater than two. By virtue of Theorem 12, it suffices to show that
if T is a tree with diameter greater than two, then σ(T ) > 2. Assume that T is a tree
with diameter greater than two. Hence there exists two vertices v1 and v2 such that
d(v1) > d(v2) > 2 > 2− 2

n
= d(T ). By Theorem 2, µ2(T ) > d2(T ) > 2 > d(T ). Therefore,

σ(T ) > 2.

Let H be a set of graphs. We use the term H-free for referring to the family of those
graphs having no graph in H as induced subgraph. If H has just one element H, we write
H-free for simplicity. A split graph [4] is a graph whose vertex set can be partitioned into a
clique C and a stable set S, such a partition (C, S) of its vertices is called a split partition.
It is well known that the class of split graphs coincides with the class of {2K2, C4, C5}-free
graphs.

Theorem 14. Conjecture 1 holds for split graphs.

Proof. Let (C, S) be a split partition of the graph on n vertices G such that |C| = c and
|S| = n− c. We label the vertices of G so that C = {v1, . . . , vc} and S = {vc+1, . . . , vn}.
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We can assume, without loss of generality, that C is a maximal clique of G under inclusion
and di > di+1, for each i ∈ {1, . . . , n− 1}.

We claim that if G is a split graph with σ(G) = 1, then G is isomorphic to K1,r−1 +
(n− r)K1 for some r such that 2 6 r 6 n.

In order to prove our claim we assume that G is nonisomorphic to K1,r−1 + (n− r)K1,
for each r ∈ {2, . . . , n} and we will prove that σ(G) > 2. By virtue of Theorem 2, it
suffices to prove that d2 > d(G) or equivalently that

n∑
i=3

(d2 − di) > d1 − d2.

We will consider two cases.

1. Assume that d2 > c. Since C is a maximal clique, d2 − di > 1 for each i ∈
{c+ 1, . . . , n}. Hence

n∑
i=3

(d2 − di) >
n∑

i=c+1

(d2 − di) > n− c > d1 − d2.

2. Assume that d2 = c − 1. Our assumption on G implies that c > 2. Moreover, we
have that di 6 1 for each i ∈ {c+ 1, . . . , n}. Consequently, d2−di > 1 for each such
i and the reasoning follows as above.

Thus we have proved our claim. In particular, the only connected and co-connected split
graph with σ = 1 is K1; i.e., Conjecture 11 holds for split graphs. Therefore, by virtue of
Theorem 12, Conjecture 1 holds for split graphs.
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