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ABSTRACT
The aim of this paper is to introduce a risk measure, Extended Gini
Shortfall (EGS), that extends the Gini-type measures of risk and
variability by taking risk aversion into consideration. Our risk mea-
sure is coherent and catches variability, an important concept for
risk management. The analysis is made under the Choquet integral
representations framework. We expose results for analytic compu-
tation under well-known distribution functions. Furthermore, we
provide a practical application.
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1. Introduction

In modern risk management, a large number of risk measures have been proposed in
the literature. These measures are mappings from a set of random variables (financial
losses) to real numbers. At first, the focuses were on the variability over an expected
return, as is the case for the well-known Variance. After the collapses and crises in
financial systems, a prominent trend associated with tail-based risk measures has
emerged, especially with the most popular ones nowadays: the Value-at-Risk (VaR)
and the Expected Shortfall (ES). However, this kind of risk measures does not capture
the variability of a financial position, a primitive but relevant concept. To solution this
issue, some authors have proposed and studied specific examples of risk measures.

In this sense, Fischer (2003) considered combining the mean and semi-deviations.
Regarding tail risk, Furman and Landsman (2006) proposed a measure that weighs the
mean and standard deviation in the truncated tail by VaR, while Righi and Ceretta
(2016) considered penalizing the ES by the dispersion of losses exceeding it. From a
practical perspective, Righi and Borenstein (2017) explored this concept, calling the
approach as loss-deviation, for portfolio optimization. In a more general fashion, Righi
(2018) presents results and examples about compositions of risk and variability mea-
sures to ensure solid theoretical properties.

Recently, Furman, Wang, and Zitikis (2017) introduced the Gini Shortfall (GS) risk
measure which is coherent and satisfies co-monotonic additivity. GS is a composition
between ES and tail-based Gini coefficient. However, GS supposes that all individuals
have the same attitude towards risk, while agents differ in the way they take personal
decisions that involve risk because of discrepancies in their risk aversion.
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To incorporate such psychological behaviour in tail risk analysis, we introduce a
generalized version of the GS. This risk measure, called Extended GS (EGS), captures the
notion of variability, satisfies the co-monotonic additivity property, and it is coherent under
a necessary and sufficient condition for its loading parameter. The consideration of the
decision-maker risk aversion, joined to these properties, is in consonance to what agents
seek when searching for a suitable measure of risk. The approach followed in this article
leads us to a new family of spectral risk measures, proposed by Acerbi (2002), with an
attractive weighting function.

In this sense, we discuss, in a separated manner, the properties from the variability
term and our composed risk measure. Moreover, we discuss in detail the role of each
parameter in the mentioned weighting function. Furthermore, we expose results on
analytic formulations for computation of EGS under known distribution functions.
Our focus in this paper is on theoretical results, but this approach gives rise to further
forthcoming investigations. In this sense, risk forecasting of our new family of risk
measures is a subject that deserves a further and separate survey, which will be made
in a forthcoming work.

The rest of the paper is organized as follows. In Section 2, we present and
discuss some preliminaries such as essential properties of measures of risk and
variability, as well we elucidate the role of the signed Choquet integral. In section
3, we start with the Classical and Extended Gini functionals to introduce the
concept and explore properties about what we call Tail Extended Gini functional
and Extended GS. In Section 4, we give the closed-form of our risk measures class
for elliptical distributions and then derive the uniform, Normal and Student-t
cases. Section 5 illustrates an application of the introduced risk measures class
in practice.

2. Preliminaries

We first introduce some basic notation. Let ðΩ;A;PÞ be an atomless probability
space. All equations and inequalities are in the P almost surely sense. Let Lq,
q 2 ½0;1Þ, denote the set of all random variables (rv’s from now on) in ðΩ;A;PÞ
with finite qth moment and L1 be the set of all essentially bounded
rvs. Throughout this paper, X 2 L0 is a rv modelling financial losses (profits)
when it has positive (negative) values. For every X 2 L0; FX denotes the cdf of X,
and UX denotes any uniform ½0; 1� rv such that the equation F�1

X ðUXÞ ¼ X holds.
The existence of such rvs is assured in (Rüschendorf 2013, Proposition 1.3). We
denote xp as the p-quantile of X. Two rvs X and Y are co-monotonic when
ðXðωÞ � Xðω0ÞÞðYðωÞ � Yðω0ÞÞ � 0 for ðω;ω0Þ 2 Ω� Ω ðP� PÞ � almost surely.
Throughout the present paper, we deal with several convex cones X of rvs, of
which X ¼ L1 is of particular importance and L1 is always contained in X .

We begin by exposing definitions of both risk and variability measures. We assume
throughout the paper that all functionals respect the following property, which is
essential to obtain a functional directly from its distribution function.
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Definition 2.1. A functional f is said to be law invariant if it fulfils the following
property:

(A) Law Invariance: If X 2 X and Y 2 X have the same distributions under P,

succinctly X¼d Y , then f ðXÞ ¼ f ðYÞ.
Definition 2.2. A risk measure is a functional ρ : X ! ð�1;1�, which may fulfils the
following properties:

(B1) Monotonicity: ρðXÞ � ρðYÞ when X;Y 2 X are such that X � Y P-almost
surely.

(B2) Translation invariance: ρðX þmÞ ¼ ρðXÞ þm for all m 2 R and X 2 X .
(A1) Positive homogeneity: ρðλXÞ ¼ λρðXÞ for all λ>0 and X 2 X .
(A2) Subadditivity: ρðX þ YÞ � ρðXÞ þ ρðYÞ for all X;Y 2 X .
(A3) Co-monotonic additivity: ρðX þ YÞ ¼ ρðXÞ þ ρðYÞ for every co-monotonic

pair X;Y 2 X .

A risk measure is monetary if it satisfies properties (B1) and (B2), and it is coherent if
it satisfies furthermore (A1) and (A2).

Remark 1. For interpretations of these properties, we refer the reader to (Föllmer and
Schied 2011, Chap 4) (Delbaen 2012; McNeil, Frey, and Embrechts 2005; Embrechts et
al. 2014). For example, both functionals, VaR and ES, are monetary and co-mono-
tonically additive, whereas ES is even coherent.

Definition 2.3. A functional ν : X ! ½0;1� is a measure of variability,1 which may
fulfil the following properties:

(C1) Standardization: νðcÞ ¼ 0 for all c 2 R .
(C2) Location invariance: νðX þ cÞ ¼ νðXÞ for all c 2 R and X 2 X .
(A1) Positive homogeneity: νðλXÞ ¼ λνðXÞ for all λ>0 and X 2 X .
(A2) Subadditivity: νðX þ YÞ � νðXÞ þ νðYÞ for all X;Y 2 X
(A3) Co-monotonic additivity: νðX þ YÞ ¼ νðXÞ þ νðYÞ for every co-monotonic

pair X;Y 2 X .

A measure of variability is coherent if it further satisfies (C1), (C2), (A1) and (A2).

Remark 2. For instance, the most classical measures of variability are the Variance and
the Standard Deviation. The variance functional satisfies properties (A), (C1), (C2) but
not (A1) or (A2), hence it is not coherent. On the other side, the standard deviation
functional, since satisfying all aforementioned properties, is coherent. Neither the
Variance nor the Standard Deviation is co-monotonically additive.

The notion of signed Choquet integral plays a pivotal role thereafter. It originates
from (Choquet 1954), in the framework of capacities, and is further characterized and
studied in decision theory by Schmeidler (1986, 1989).

Definition 2.4. A function h : ½0; 1� ! R is called a distortion function when it is non-
decreasing and satisfies the boundary conditions hð0Þ ¼ 0 and hð1Þ ¼ 1. Let h be a
distortion function, the functional defined by the equation:
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IðXÞ ¼
ð1
0
ð1� hðFXðxÞÞÞdx�

ð0
�1

hðFXðxÞÞdx (1)

for all X 2 X is called the (increasing) Choquet integral. Whenever h : ½0; 1� ! R is of
finite variation, I is called the signed Choquet integral.
Remark 3. When h is right-continuous, then Equation (1) can be rewritten as (Wang,
Wei, and Willmot 2017):

IðXÞ ¼
ð1
0
F�1
X ðtÞdhðtÞ: (2)

Furthermore, when h is absolutely continuous, with ϕ a function such that
dhðtÞ ¼ ϕðtÞdt, then Equation (2) becomes:

IðXÞ ¼
ð1
0
F�1
X ðtÞϕðtÞdt: (3)

In this case, ϕ is called the weighting functional of the signed Choquet integral I.

Remark 4. The signed Choquet integral is co-monotonically additive, as we can
readily see from representation (2) (cf. Schmeidler 1986). Moreover, we know from
Föllmer and Schied (2011); Yaari (1987; Theorem 4.88), that any law-invariant risk
measure is co-monotonically additive and monetary if and only if it can be repre-
sented as a Choquet integral. Furthermore, the functional I is sub-additive if and
only if the function h is convex (cf. Acerbi 2002; Yaari 1987). Moreover, as proved
in Furman, Wang, and Zitikis (2017), regarding the weighting functional ϕ, the
integral is monotone if and only if ϕ � 0 on ½0; 1� and it is sub-additive if and only
if ϕ is non-decreasing on ½0; 1�. The major difference between a (an increasing)
Choquet integral and a signed one is that the latter, being more general, is not
necessarily monotone.

One of the practical and theoretical reasons for what we are particularly interested in
signed Choquet integral is that we know that a suitable risk measure should be
monotone as argued by Artzner et al. (1999), but this issue is irrelevant for a measure
of variability. In other words, signed Choquet integral is relevant as long as a measure
of variability is concerned. The following theorem is enunciated with a complete proof
in Furman, Wang, and Zitikis (2017), it gives the characterization for co-monotonically
additive and coherent measures of variability.

Theorem 2.5. Let ν : Lq ! R be any Lq-continuous functional. The following three
statements are equivalent:

(i) ν is a co-monotonically additive and coherent measure of variability.
(ii) There is a convex function h : ½0; 1� ! R ; hð0Þ ¼ hð1Þ ¼ 0, such that

νðXÞ ¼
ð1
0
F�1
X ðuÞdhðuÞ; X 2 Lq: (4)

(iii) There is a non-decreasing function g : ½0; 1� ! R such that

νðXÞ ¼ C½X; gðUXÞ�; X 2 Lq: (5)
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with, C denotes the covariance.

Next, we recall a few partial orders of variability that have been popular in econom-
ics, insurance, finance and probability theory:

Definition 2.6. For X;Y 2 L1, X is second-order stochastically dominated (SSD) by Y ,
succinctly X�SSDY , if E½f ðXÞ� � E½f ðYÞ� for all increasing convex functions f .
If in addition, E½X� ¼ E½Y�, then we say that X is smaller than Y in convex order,
succinctly X�CXY .

2

Under this framework, we have the following properties for risk and variability
measures:

(B3) SSD-monotonicity: if X�SSDY , then ρðXÞ � ρðYÞ.
(C3) CX-monotonicity: if X�CXY , then νðXÞ � νðYÞ.

Remark 5. Let q 2 ½1;1�, on Lq all real-valued law-invariant coherent risk measures are
SSD-monotone. We refer the reader to Dana (2005), Föllmer and Schied (2011), Grechuk,
Molyboha, and Zabarankin (2009) for proofs of the above assertion, and to Mao andWang
(2016) for a characterization of SSD-monotone risk measures.

3. Extended Gini Shortfall

In this section, we expose our main contribution, which is based on the Gini
coefficient, a free-centre measure of variability that was introduced by Corrado
Gini as an alternative to the variance measure (e.g., Ceriani and Verme 2012;
Giorgi 1990, 1993). The Gini coefficient has been remarkably influential in numer-
ous research areas (e.g., Yitzhaki and Schechtman 2013, and the references therein).
Yitzhaki (1998) lists more than a dozen alternative presentations of the Gini
coefficient. We now present a formal definition.

Definition 3.1. The Gini coefficient is a functional Gini : L1 ! ½0;1� defined conform:

GiniðXÞ ¼ E½ X� � X��j j�; (6)

where, X� and X�� are two independent copies of X.

Remark 6. The Gini coefficient can be written in terms of a signed Choquet integral:

GiniðXÞ ¼ 2 �
1

0
F�1
X ðuÞð2u� 1Þdu: (7)

From Theorem 2.5, it follows immediately that the Gini coefficient is a coherent
measure of variability, and it is CX-monotone. Moreover, Equation (7) can be written
in terms of covariance (which is the most common formula of the Gini coefficient):

GiniðXÞ ¼ 4C½F�1
X ðUÞ;U� ¼ 4C½X;UX�: (8)

We recall that U can be any uniformly on ½0; 1� distributed rv, and UX is a uniform
½0; 1� rv such that the equation F�1

X ðUXÞ ¼ X holds.
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The Gini functional supposes that all individuals have the same attitude towards
risk. Nonetheless, the concept can be extended into a family of measures of
variability differing from each other in the decision-maker’s degree of risk aversion,
which is reflected in this paper by the parameter r. The basic definition of the
Extended Gini coefficient is based on the covariance term. We refer to Shalit and
Yitzhaki (1984), Yitzhaki (1983), Yitzhaki and Schechtman (2005, 2013) for an
overview of the Extended Gini properties. We now expose it in a formal sense.

Definition 3.2. The Extended Gini coefficient is a functional EGinir : L1 ! ½0;1�
defined conform:

EGinirðXÞ ¼ �2rC½X; ð1� FXðXÞÞr�1�; r>1: (9)

Remark 7. There are special cases of interest for the Extended Gini:

• For r ¼ 2: the Extended Gini coefficient becomes the simple Gini.
• For r ! 1: the Extended Gini reflects the attitude of a max-min investor who
expresses risk only in terms of the worst outcome.

• For r ! 1: the Extended Gini tends to zero and represents the attitude of a risk-
neutral individual who does not care about variability.

We now explore the characterization of the Extended Gini coefficient as a signed
Choquet integral. In this sense, note that from Equation (5) in Theorem 2.5, if one sets

grðuÞ ¼ �rð1� uÞr�1

for r>1 and u 2 ½0; 1�, we run into νðXÞ ¼ �rC½X; ð1� FXðXÞÞr�1�.
With that in mind, we now state and prove the formal result.

Proposition 3.3. The Extended Gini functional is a CX-monotone coherent measure of
variability, represented by the signed Choquet integral

EGinirðXÞ ¼ 2 �
1

0
F�1
X ðuÞð1þ grðuÞÞdu: (10)

Proof. We recall that U can be any uniformly distributed rv on ½0; 1� such that the
equation F�1

X ðUÞ ¼ X holds, where E½X� ¼ m. To obtain the proof, we need the claim

that E½ð1� FX;pðXÞÞr�1 Xj >xp� ¼ ð1� pÞr�1=r for X 2 L1, r 2 ð1;1Þ and p 2 ½0; 1Þ. To
prove it, we get that

E½ð1� FX;pðXÞÞr�1 Xj >xp� ¼ E½ð1� UÞr�1 Uj >p� ¼ 1
1� p

ð
R

ð1� uÞr�11½p;1�ðuÞdu

¼ 1
1� p

ð1
p
ð1� uÞr�1du ¼ 1

1� p
½�ð1� uÞr=r�1p

¼ ð1� pÞr�1=r:

Under this perspective, we can easily verify that E½ð1� FXðXÞÞr�1� ¼ 1=r. Thus, we get
the following:

300 M. BERKHOUCH ET AL.



EGinirðXÞ ¼ �2rC½X; ð1� FXðXÞÞr�1�
¼ �2rE½ðX

� EðXÞÞðð1
� FXðXÞÞr�1 � E½ð1� FXðXÞÞr�1�Þ�

¼ �2rE½ðF�1
X ðUÞ �mÞðð1� UÞr�1 � 1

r
Þ�

¼ �2r

ð1
0
ðF�1

X ðuÞ �mÞðð1� uÞr�1 � 1
r
Þdu

¼ �2r

ð1
0
F�1
X ðuÞðð1� uÞr�1 � 1

r
Þdu ¼ 2

ð1
0
F�1
X ðuÞð1þ grðuÞÞdu:

From this signed Choquet integral representation, the other claims in the proposition
follow immediately from Theorem 2.5 and the fact that all coherent measures of
variability are CX-monotone. This concludes the proof.

Remark 8. In this case, hr in Equation (4) of Theorem 2.5 is given by:

hrðuÞ ¼ uþ ð1� uÞr � 1; r>1 (11)

Based on the exposed content, we now turn the focus to an adaptation to the tails of the
distribution function. In this sense, we now introduce the Tail Extended Gini (TEGini)
function, as well formally prove its properties and Choquet integral representation.

Definition 3.4. The Tail Extended Gini is a functional TEGinir;p : L1 ! ½0;1� defined
conform:

TEGinir;pðXÞ ¼ �2r
1� p

C½X; ð1� FXðXÞÞr�1jX>xp�; r>1; 0<p<1: (12)

Proposition 3.5. The Tail Extended Gini is standardized, location invariant, positively
homogeneous and co-monotonic additive. Moreover, it is a signed Choquet integral conform:

TEGinir;pðXÞ ¼ 2

ð1� pÞ2
ð1
p
F�1
X ðuÞ½grðuÞ þ ð1� pÞr�1�du: (13)

Proof. The fact that the Tail Extended Gini is standardized, location invariant, posi-
tively homogeneous is easily realized from its definition. For the Choquet representa-
tion, we again recall that U can be any uniformly distributed rv on ½0; 1� such that the
equation F�1

X ðUÞ ¼ X holds, where E½X� ¼ m. Thus, we obtain that

TEGinir;pðXÞ ¼ �2r
1� p

C½X; ð1� FXðXÞÞr�1jX>xp�

¼ �2r
1� p

E½ðX �mÞðð1� FXðXÞÞr�1 � ð1� pÞr�1=rÞjX>xp�
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¼ �2r
1� p

E½ðX �mÞðð1� FXðXÞÞr�1 � ð1� pÞr�1=rÞjX>xp�

¼ �2r
1� p

E½ðF�1
X ðUÞ �mÞðð1� UÞr�1 � ð1� pÞr�1=rÞjU>p�

¼ �2r

ð1� pÞ2
ð1
p
ðF�1

X ðuÞ �mÞðð1� uÞr�1 � ð1� pÞr�1=rÞdu

¼ 2

ð1� pÞ2 ½
ð1
p

F�1
X ðuÞð�rð1� uÞr�1 þ ð1� pÞr�1Þdu

þmr

ð1
p
ðð1� uÞr�1 � ð1� pÞr�1=rÞdu�

¼ 2

ð1� pÞ2
ð1
p
F�1
X ðuÞ½grðuÞ þ ð1� pÞr�1�du:

In fact, from the proof of the previous proposition we have thatð1
p
ðð1� uÞr�1 � ð1� pÞr�1=rÞdu ¼ 0. Finally, the Choquet representation implies co-

monotonic additivity. This completes the proof.

Remark 9. However, as shown in a counter example (for r ¼ 2) by Furman, Wang, and
Zitikis (2017), the Tail Extended Gini is not sub-additive. Therefore, unlike the
Extended Gini functional, the tail counterpart is not a coherent measure of variability.

Despite the fact that TEGini is not a coherent measure of variability, we will show
now that a linear combination of the ES with the Tail Extended Gini gives rise to a
coherent risk measure, the Extended GS, that quantifies both the magnitude and the
variability of tail risks. We now define such a combination.

Definition 3.6. Let p 2 ð0; 1Þ. We have that the Value at Risk and the ES are functionals
VaRp : L0 ! ð�1;1� and ESp : L1 ! ð�1;1� defined conform:

VaRpðXÞ ¼ inf x 2 R : FXðxÞ � pf g; (14)

ESpðXÞ ¼ 1
1� p

�
1

p
VaRqðXÞdq: (15)

Remark 10. It is a well-established fact that ES is a SSD-monotone co-monotonic
additive coherent risk measure. When the cdf FX is continuous, ES coincides with tail
conditional expectation E½XjX � xp�.
Definition 3.7. The Extended GS is a functional EGSλr;p : L

1 ! ð�1;1� defined
conform:

EGSλr;pðXÞ ¼ ESpðXÞ þ λTEGinir;pðXÞ; λ � 0: (16)

To be a reasonable tool for risk management, the properties of coherent risk measures
are desired. However, as mentioned in the previous section, TEGini is not sub-additive,
and as a measure of variability is not monotone. However, when λ is zero, then EGS
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obviously inherits all the properties of the ES which is coherent, but when λ is
sufficiently large, then the TEGini starts to dominate ES, and thus coherence of EGS
cannot be expected. Intuitively, as suggested by Furman, Wang, and Zitikis (2017),
there might be a threshold that delineates the value of λ for which EGS is coherent. We
now verify it in a formal way.

Proposition 3.8. The Extended Gini shortfall is translation invariant, positively homo-
geneous, and co-monotonically additive, which can be represented as a signed Choquet
integral conform:

EGSλr;pðXÞ ¼
ð1
0
F�1
X ðuÞϕλ

r;pðuÞdu (17)

where,

ϕλr;pðuÞ ¼
1

ð1� pÞ2 ½1� pþ 2λðgrðuÞ þ ð1� pÞr�1Þ�1½p;1�ðuÞ; u 2 ½0; 1�: (18)

Moreover, the Extended Gini Shortfall is a SSD-monotone coherent risk measure
for λ 2 ½0 ; 1=ð2ðr � 1Þð1� pÞr�2Þ�.
Proof. The translation invariance, positive homogeneity and co-monotonic additivity
are easily verifiable from the properties of ES and TEGini. Regarding the Choquet
representation, we have that:

EGSλr;pðXÞ ¼ ESpðXÞ þ λTEGinir;pðXÞ

¼ 1
1� p

ð1
p
F�1
X ðuÞduþ 2λ

ð1� pÞ2
ð1
p
F�1
X ðuÞ½grðuÞ þ ð1� pÞr�1�du

¼ �
1

p
F�1
X ðuÞ½ 1

1� p
þ 2λ

ð1� pÞ2 ðgrðuÞ þ ð1� pÞr�1Þ�du ¼
ð1
0
F�1
X ðuÞϕλr;pðuÞdu:

For coherence, it remains to prove that EGS is monotone and sub-additive for

λ 2 ½0 ; 1=ð2ðr � 1Þð1� pÞr�2Þ�. Note that ϕλr;p is an increasing function on ½0; 1�, there-
fore ϕλr;pðuÞ is non-negative if and only if ϕλr;pðpÞ � 0. Thus, ϕλr;p is non-negative if and

only if λ 2 ½0 ; 1=ð2ðr � 1Þð1� pÞr�2Þ�. This fact implies monotonicity and sub-additiv-
ity from the properties discussed on section 2. Thus, EGS is a coherent risk measure for
this choice of λ. Finally, SSD-monotonicity for this choice of λ, it is directly implied by
the fact that EGS is law invariant. This concludes the proof.

Remark 11. From the previous Proposition we can link the EGS with its acceptance set,

which is defined as AEGSλr;p
¼ X 2 L1 : EGSλr;pðXÞ � 0
n o

. It is well-known, (see Föllmer

and Schied 2011) for instance, that this set is convex, law invariant, monotone, closed
for multiplication with positive scalar and addition between co-monotonic variables.
Moreover, we have that AEGSλr;p

contains L1þ and has no intersection with
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X 2 L1 : X‚L1þ
� �

. It is direct to verify, from Translation Invariance of EGS,

that EGSλr;pðXÞ ¼ inf m : X þm 2 AEGSλr;p

n o
.

Remark 12. We have that EGS can be represented as convex combination of ES at

distinct levels of p, a Kusuoka representation, conform EGSλr;pðXÞ ¼
ð1
0
ESpðXÞμðdpÞ,

where ϕλr;pðuÞ ¼
ð
½1�u;1Þ

1
s μðdsÞ. Here, μ is a probability measure over ð0; 1�. These

representations are linked to the well-known dual representation, conform

EGSλr;pðXÞ ¼ E½XQ�, where F�1
Q ðuÞ ¼ ϕλ

r;pðuÞ. We can think about Q as the relative

density (Radon-Nikodym) of an alternative probability measure absolutely continuous
in relation to P.

Remark 13. From the previous Proposition, we get that the Extended GS is part of the
spectral risk measures class, introduced in (Acerbi 2002), characterized by the weighting
function ϕλr;p, which enables to reflect the individual’s subjective attitude towards risk.
In Furman, Wang, and Zitikis (2017), a specific case is introduced (r ¼ 2), which
assigns the same weighting function to all decision-makers. Thus, there is a connection

to the individual’s risk aversion function. As a result, it is more legitimate for ϕλ
r;p to be

dependent on the parameters r, p and λ.
We now provide a result and interpretation about how this weighting function ϕ

behaves in relation to changes (partial derivatives) of each variable (parameter) among
u, r, p and λ. It is valid to point out that, by the spectral representation, results can be
directly understood as the effect each parameter has over values for EGS.

Proposition 3.9. Consider the weighting function

ϕλr;pðuÞ ¼ ϕðu; r; p; λÞ ¼ 1� pþ 2λ½ð1� pÞr�1 � rð1� uÞr�1�
ð1� pÞ2 1½p;1�ðuÞ;

where u 2 ½0; 1�, p 2 ð0; 1Þ, r>1, and λ 2 ½0; 1=ð2ðr � 1Þð1� pÞr�2Þ�. We have that:

(i) The interval for values of λ that make EGS subadditive has superior limit non-
decreasing in p, if r � 2 and non-increasing in p otherwise. Moreover, the interval is non-
decreasing in r if, and only if, r � 1� 1

lnð1�pÞ ;
(ii) ϕ is non-decreasing in u;
(iii) ϕ is non-decreasing in λ;
(iv) ϕ is non-decreasing in p if, and only if

u � 1� 1� p� 2λðr � 3Þð1� pÞr�1

4λr

 ! 1
r�1ð Þ

;

(v) ϕ is non-decreasing in r if, and only if

ð1� pÞð1�pÞ � exp ð1� uÞr�1½r lnð1� uÞ þ 1�� �� � 1
r�1ð Þ

:
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Proof. For (i), we must remember that EGS is sub-additive when

λ 2 ½0; 1=ð2ðr � 1Þð1� pÞr�2Þ�. Consider the functional

Bðr; pÞ ¼ 1

2ðr � 1Þð1� pÞr�2

that represents the threshold that λ shall not exceed. Regarding p, we get

@B
@p

ðr; pÞ ¼ B0
pðr; pÞ ¼

ðr � 2Þð1� pÞ1�r

2ðr � 1Þ :

It is direct that the sign of B0
p depends on the sign of r � 2. Thus, Bðr; pÞ is non-

decreasing in p for r � 2 and non-increasing otherwise. Regarding r, we thus have that

@B
@r

ðr; pÞ ¼ B0
rðr; pÞ ¼

�1
2

ð1� pÞr�2½1þ ðr � 1Þ lnð1� pÞ�
½ðr � 1Þð1� pÞr�2�2

:

The sign of B0
r depends on the sign of CpðrÞ ¼ 1þ ðr � 1Þ lnð1� pÞ. The decreasing

function Cp maps ð1;1Þ to ð�1; 1Þ, then there exists a unique critical value r0 ¼
1� 1

lnð1�pÞ such that Bp non-increases over ð1; r0� and non-decreases on ðr0;1Þ.
For (ii), the claim follows from the fact that EGS is a spectral risk measure. More

specifically, we have that

@ϕ

@u
ðu; r; p; λÞ ¼ 2λrðr � 1Þð1� uÞr�2

ð1� pÞ2 1½p;1�ðuÞ;

which is non-negative any case.
Regarding (iii), the claim is direct by definition of EGS. More specifically on the

weighting function we obtain

@ϕ

@λ
ðu; r; p; λÞ ¼ 2½ð1� pÞr�1 � rð1� uÞr�1�

ð1� pÞ2 1½p;1�ðuÞ:

We can note that this expression is non-decreasing in u with critical value when

u ¼ 1� ð1� pÞr� 1
r�1. Thus, @ϕ

@λ � 0 when u � 1� ð1� pÞr� 1
r�1 � p, since r

1
r�1 � 1. But

u � p is the only case that matters because of the indicator function in @ϕ
@λ .

For item (iv), we begin by noticing that

@ϕ

@p
ðu; r; p; λÞ ¼ 1� 2λðr � 3Þð1� pÞr�2 � 4λrð1� uÞr�1ð1� pÞ�1

ð1� pÞ2 1½p;1�ðuÞ;

which is a non-decreasing expression in u. Thus, we have that @ϕ
@p � 0 if, and only if,

u � 1� 1� p� 2λðr � 3Þð1� pÞr�1

4λr

 ! 1
r�1

:

APPLIED MATHEMATICAL FINANCE 305



Finally, regarding item (v), we follow the same reasoning to get

@ϕ

@r
ðu; r; p; λÞ ¼ 2λ½lnð1� pÞð1� pÞr�1 � ð1� uÞr�1 � r lnð1� uÞð1� uÞr�1�

ð1� pÞ2 :

This is a complex expression which can assume both positive and negative values since
some terms in numerator posses distinct signs without a domination. Moreover,
isolating u or r is not trivial. Nonetheless, after some manipulation, we obtain that @ϕ

@r �
0 if, and only if, ð1� pÞð1�pÞ � exp ð1� uÞr�1½r lnð1� uÞ þ 1�� �� � 1

r�1ð Þ
. This concludes

the proof.

Remark 14. The non-linear behaviour of the partial derivatives found by the previous
proposition is related to the function grðuÞ ¼ �rð1� uÞr�1, which is central to the
theory we develop, which is not trivial for r�2, the case considered in Furman, Wang,
and Zitikis (2017). As one can easily note, it recurrently appears in the expression for
partial derivatives. Hence, our contribution is by extending the canonical case to a
situation where more complexity regarding r can be addressed.

Since p reflects the prudence level, which is usually close to 1 in practice, then r0 in
the proof of item (i) is in general close to 1. Thus, for practical matters, the superior
limit for λ is non-decreasing in most relevant values of r. The most complex parameter
sensitivities are regarding the prudence level p and the generalization term r, respec-

tively, in items (iv) and (v), because both @ϕ
@p and @ϕ

@r are expressions that can assume

both positive and negative values since some terms in numerator posses distinct signs
without a domination. This can be explained due to the fact that ϕ is a weighting
function and changes in p and r alter how much ‘mass’ is put to any probability level u.

Because

ð1
0
ϕλr;pðuÞdu ¼ 1, it is necessary that the increase on ϕðuÞ for some values of u

be compensated by some decrease in others.
Regarding prudence level, item (iv) in the previous proposition emphasizes that ϕ

non-decreases in p for larger values of u. This is in consonance with practical intuition
because more weight is put to extreme probabilities. Moreover, this is corroborated
when we verify the variations of ϕ regarding u and p, where we obtain the non-negative
expression

@2ϕ

@u@p
¼ 4λrðr � 1Þð1� uÞr�2

ð1� pÞ3 1½p;1�ðuÞ:

When we consider the sensibility of variations regarding u and r, in a case we get

@2ϕ

@u@r
¼ 2λð1� uÞr�2½ð2r � 1Þ þ ðr2 � rÞ lnð1� uÞ�

ð1� pÞ2 1½p;1�ðuÞ;

there is divergence about sign – first term inside brackets is non-negative while the
second is non-positive, corroborating with the previous argument. Nonetheless, ϕ is
non-decreasing in r, a situation where r behaves more like a risk aversion coefficient,
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when a non-decreasing function of p, ð1� pÞð1�pÞ is greater than a threshold that is an
expression depending on both u and r. Repeating the argument of practical choices for
the prudence level, p will be close to 1 and ϕ will be increasing in r for more values of u.
In this sense, r must be understood as a generalization parameter for a family of EGS
risk measures rather than a single linear risk aversion coefficient.

4. Extended Gini Shortfall for Usual Distributions

In this section, we provide analytical formulations to compute the proposed Extended
GS to known and very used distribution functions. In that sense, a location-scale family
is a family of probability distributions parameterized by a location parameter and a
non-negative scale parameter. Suppose that Z is a fixed rv taking values in R . For α 2 R

and β 2 ð0;1Þ, let X ¼ αþ βZ. The two-parameter family of distributions associated
with X is called the location-scale family associated with the given distribution of Z; α is
called the location parameter and β the scale parameter. The standard form of any
distribution is the form whose location and scale parameters are 0 and 1, respectively.
In this section, we restrain our attention into standardized rvs. In general, when X ¼
αþ βZ for α 2 R and β 2 ð0;1Þ, we have, directly from their properties, both
ESpðXÞ ¼ αþ βESpðZÞ and TEGinir;pðXÞ ¼ βTEGinir;pðZÞ.

In what follows, we start with the general elliptical family and then specialize the
obtained result to uniform, normal and Student-t distribution cases. We recall that X is

an elliptical distribution if X¼d αþ βZ, where Z is a spherical distribution. Let Z be a
spherical rv with characteristic generator ψ : ½0;1Þ ! R ; succinctly Z,SðψÞ. When Z
has a probability density function (pdf), then there is a density generator g : ½0;1Þ !
½0;1Þ such that

ð1
0
z�1=2gðzÞdz<1, we succinctly write Z,SðgÞ. We can express the

pdf f : R ! ½0;1� of Z by f ðzÞ ¼ cgðz2=2Þ, where c>0 is the normalizing constant. The

mean E½Z� is finite when

ð1
0
gðzÞdz<1, in which case we have E½Z� ¼ 0 because the

pdf f is symmetric around 0. Under this condition, we define the function �G : ½0;1Þ !
½0;1Þ by �GðyÞ ¼ c

ð1
y
gðxÞdx, which is called the tail generator of Z. We now state and

prove the main result in this section.

Proposition 4.1. Let Z,SðgÞ, E½Z� finite, and p 2 ð0; 1Þ. Then, we have:

ESpðZÞ ¼
�Gðz2p=2Þ
1� p

; (19)

TEGinir;pðZÞ ¼ 2rðr � 1Þ
1� p

E ð1� FZðZÞÞr�2�GðZ2=2Þ Zj >zp
� �

þ 2½1� rð1� pÞr�2�ESpðZÞ: (20)

Proof. For ES. we have that:
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ESpðZÞ ¼ E½Z Zj >zp� ¼ 1
1� p

�
1

zp
zf ðzÞdz ¼ c

1� p
�
1

zp
zgðz2=2Þdz ¼ c

1� p
�
1

z2p=2
gðxÞdx

¼
�Gðz2p=2Þ
1� p

:

Concerning to TEGini, we get:

TEGinir;pðZÞ ¼ �2r
1� p

E½Zð1� FZðZÞÞr�1 Zj >zp� � E½Z Zj >zp�E½ð1� FZðZÞÞr�1 Zj >zp�
� �

E½Zð1� FZðZÞÞr�1jZ>zp� ¼ 1
1� p

E½Zð1� FZðZÞÞr�1 1fZ>zpg�

¼ 1
1� p

ð1
zp
zð1� FZðzÞÞr�1f ðzÞdz

Note that zf ðzÞdz ¼ �d�Gðz2=2Þ and �Gðz2=2Þ ¼ ð1� pÞESpðZÞ. Integration by parts
leads to:

E½Zð1� FZðZÞÞr�1 Zj >zp� ¼ 1
1� p

ð1� pÞr�1�Gðz2=2Þ
� ðr � 1ÞE½ð1� FZðZÞÞr�2�GðZ2=2Þ Zj >zp�

¼ ð1� pÞr�1ESpðZÞ � ðr � 1ÞE½ð1� FZðZÞÞr�2�GðZ2=2Þ Zj >zp�:

Finally, similarly to the proof of Proposition 3.3, we have:

E½ð1� FZðZÞÞr�1 Zj >zp� ¼ ð1� pÞr�1

r
:

This completes the proof.

Remark 15. Note that Var(Z) is finite whenever

ð1
0
z1=2gðzÞdz<1, in which case Var(Z) is

equal to

ð1
�1

�Gðz2=2Þdz (by an integration by parts). Hence, we have that f �ðzÞ ¼
�Gðz2p=2Þ=VarðZÞ is a pdf. In this case we get the expression

TEGinir;pðZÞ ¼ 2rðr�1Þ
1�p VarðZÞE ð1� FZðZÞÞr�2f �ðZÞ Zj >zp

� �þ 2½1� rð1� pÞr�2�ESpðZÞ.
We now focus on the case of a standard uniform rv Z,U½�1; 1�. In this sense, we

have the following Corollary.

Corollary 4.2. Let Z,U½�1; 1� and p 2 ð0; 1Þ. Then, we have:

ESpðZÞ ¼
1� z2p
4ð1� pÞ ; (21)
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TEGinir;pðZÞ ¼ r

3ð1� pÞ2
1� zp

2

� 	r�1

þ 2½1� rð1� pÞr�2�ESpðZÞ: (22)

Proof. The standard uniform is a spherical distribution with density

fZðzÞ ¼ 1
2
1½�1;1�ðzÞ ¼ 1

2
1½0;1=2�ðz2=2Þ; z 2 ½�1; 1�:

Thus, we obtain gðzÞ ¼ 1½0;1=2�ðzÞ and c ¼ 1
2 . In this case, the tail generator is given by:

�GðyÞ ¼
ð1
y

1
2
gðtÞdt ¼ 1

4
� y
2
:

Hence, we obtain

�Gðz2p=2Þ ¼
1� z2p

4
; ESpðZÞ ¼

1� z2p
4ð1� pÞ

To prove the result for TEGini, we use Remark 15. Thus, we obtain:

TEGinir;pðZÞ ¼ 2rðr � 1Þ
3ð1� pÞ E

1� Z
2

� 	r�2

f �ðZÞ Zj >zp

" #
þ 2½1� rð1� pÞr�2�ESpðZÞ;

with

E
1� Z
2

� 	r�2

f �ðZÞ Zj izp
" #

¼ 1
4ð1� pÞ �

1

zp

1� z
2

� 	r�2

dz

¼ 1
2ð1� pÞðr � 1Þ

1� zp
2

� 	r�1

:

This completes the proof.

In this next corollary, we deal with the standard Normal rv Z,Nð0; 1Þ whose cdf we
denote by Φ.

Corollary 4.3. Let Z,Nð0; 1Þ and p 2 ð0; 1Þ. Then, we have:

ESpðZÞ ¼ Φ0ðzpÞ
1� p

; (23)

TEGinir;pðZÞ ¼ 2rðr � 1Þ
1� p

E ð1�ΦðZÞÞr�2Φ0ðZÞ Zj >zp
� �

þ 2½1� rð1� pÞr�2�ESpðZÞ: (24)

Proof. The standard normal is a spherical distribution with density generator

gðzÞ ¼ expð�zÞ; c ¼ 1=
ffiffiffiffiffiffi
2π

p
and Gðz2=2Þ ¼ Φ0ðzÞ. Thus, Equation (23) follows
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immediately from Equation (19). To establish the second part, we use Remark 15
with VarðZÞ ¼ 1.

Finally, we expose a corollary concerning to the Student-t distribution. Let n 2 R
�
þ,

we say that Z has a standard Student-t distribution with n degree of freedom if its pdf is:

fnðzÞ ¼ 1ffiffiffi
n

p
Betaðn=2; 1=2Þ 1þ z2

n

� 	�ðnþ1
2 Þ
; z 2 R

where Betaða; bÞ stands for the Beta distribution. We set θ ¼ nþ1
2 and kθ ¼ n

2 . Then, we
denote Z,tðθÞ with parameter θ> 1

2 and the pdf can be rewritten as:

fθðzÞ ¼ cθ 1þ z2

2kθ

� 	�θ

; z 2 R

where cθ ¼ ð ffiffiffiffiffiffiffi
2kθ

p
Betaðθ� 1=2; 1=2ÞÞ�1. The expected value of Z is well-defined only

for θ>1 and the variance of Z is finite only if θ> 3
2 . Let Fθ be the cdf of Z.

Corollary 4.4. Let Z,tðθÞ, θ>1, and p 2 ð0; 1Þ. Then, we have:

ESpðZÞ ¼ cθkθ
ð1� pÞðθ� 1Þ 1þ z2p

2kθ

 !�ðθ�1Þ
; (25)

TEGinir;pðZÞ ¼ 2rðr � 1Þ
ð1� pÞðθ� 1Þ

cθkθ
cθ�1

E ð1� FθðZÞÞr�2fθ�1

ffiffiffiffiffiffiffiffiffi
kθ�1

kθ

s
Z

 !
Zj izp

" #

þ 2½1� rð1� pÞr�2�ESpðZÞ: (26)

Proof. The tail generator of the standard Student-t is given by:

gðzÞ ¼ 1þ z
kθ

� 	�θ

; z 2 R

Hence, we get that:

�GðzÞ ¼ cθ �
1

z
1þ t

kθ

� 	�θ

dt

¼ cθkθ
θ� 1

1þ z
kθ

� 	�ðθ�1Þ
;

which leads to:

�GðZ2=2Þ ¼ cθkθ
cθ�1ðθ� 1Þ fθ�1

ffiffiffiffiffiffiffiffiffi
kθ�1

kθ

s
Z

 !

Then, Equation (24) follows immediately from Equation (20).
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5. From Theory to Practice

In this section, we are going to provide an illustration for the practical usage of EGS. In
this sense, consider the EGSλr;p definition:

EGSλr;pðXÞ ¼
ð1
0
F�1
X ðuÞϕλr;pðuÞdu;

where,

ϕλr;pðuÞ ¼
1� pþ 2λ½ð1� pÞr�1 � rð1� uÞr�1�

ð1� pÞ2 1½p;1�ðuÞ;

with u 2 ½0; 1�, p 2 ð0; 1Þ, r>1, and λ 2 ½0; 1=ð2ðr � 1Þð1� pÞr�2Þ�:
In practice, the assessment of EGSλr;p can be reduced to evaluating its discrete version

proposed by Acerbi (2002) as a consistent estimator for spectral risk measures:

dEGSλr;pðXÞ ¼XN
i¼1

XðiÞϕi; (27)

where, XðiÞ; i ¼ 1; :::;N
� �

are the ordered statistics given by the N-tuple X1; :::;XNf g of
observations, and ϕi is the natural choice for a suitable weighting function given by:

ϕi ¼
ϕλr;pði=NÞPN

k¼1
ϕλr;pðk=NÞ

i ¼ 1; :::;N (28)

and satisfying
P
i
ϕi ¼ 1:

According to the expression of ϕλr;p, the EGS
λ
r;p is concerned only with losses beyond

the VaRp, thus we are interested in tail risks.

Remark 16. When r is sufficiently high, ð1� pÞr�1 � rð1� uÞr�1 ! 0 thus ϕλr;p ! 1
1�p .

That is to say, under this condition, EGSλr;p is confounded with ESp.
This remark ensures that, for a highly risk averse investor, we can simply use

ESp. In other words, ESp can be considered as a limit of EGSλr;p for a quite high risk

aversion degree. Furthermore, since more risk averse the investor is less risk he

takes then we can claim that EGSλr;p is at least equal to ESp i.e., EGSλr;p � ESp.
In the following, we illustrate the above approach with the use of a numerical

example. Our dataset consists of daily returns from the MASI index covering the period
of 15 November 2016 to the 15 November 2017, which includes a total of N ¼ 250
observations. The Moroccan All Shares Index (MASI) is a stock index that tracks the
performance of all securities listed in the Casablanca Stock Exchange located at
Casablanca in Morocco.3

The proposed methodology does not make any assumptions about the distribution
that describes the data, except that an Augmented Unit Root test is performed to make
sure that our data series is stationary. Moreover, as shown in Figure 1, the return graph
validates this verification since the series fluctuates around 0 and has no trend.

APPLIED MATHEMATICAL FINANCE 311



Remark 17. When defining the EGSλr;p we were making the convention that our rv X
represents financial losses (profits) when it has positive (negative) values. However, to
be in compliance with the real-world data, the latter convention is updated.

Using the sorted returns series, we calculate the VaRp value to identify the concerned
losses. Then, we affect to each value its own weight in accordance with the parameters
p; r; and λ as shown below in Table 1.

Figure 1. Graph of the daily observed MASI return.

Table 1. Weighted losses beyond VaR for p = 95% and r = 2.

Sorted Returns(%) Weights

⋮ ⋮
−1.146 0.04
−1.151 0.05

−1.160 0.05
−1.181 0.06
−1.270 0.06

−1.273 0.07
−1.304 0.08

−1.621 0.08
−1.685 0.09

−1.690 0.10
−1.880 0.10

−1.924 0.11
−2.090 0.11
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To fulfil the condition λ 2 ½0; 1=ð2ðr � 1Þð1� pÞr�2Þ�, we take λ arbitrarily as the
midpoint of the interval, thus λ ¼ 1

4ðr�1Þð1�pÞr�2 .

In Table 2 above, we report the calculation results of dEGSλr;p for different values of p and r.
This empirical exercise using the daily returns for the MASI index between 15

November 2016 and 15 November 2017 is a historical approach that illustrates the
practical use of EGSλr;p in the real world by considering the psychological attitude of
the investor. The obtained results confirm earlier remarks in the previous subsec-
tion: first, more the investor is risk averse less risks he takes and then smaller is the

amount of capital required to hedge his position; furthermore, we have EGSλr;p � ESp
and in a highly risk averse context (r � 20 for this survey) both risk measures can
be confounded.

Notes

1. Inspired from the deviation measures notion of Rockafellar, Uryasev, and Zabarankin (2006).
2. We equally say Y is a Mean Preserving Spread of X, succinctly YMPSX.
3. http://www.casablanca-bourse.com.
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