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ABSTRACT

Several companies and standardization bodies have attempted to define standards and find

solutions for networks that support virtualization and programmability (also known as

Programmable Virtual Networks - PVNs), such as Juniper Junos, Cisco ONE, OpenFlow,

ETSI NFV, and IETF ForCES. These solutions provide an Execution Environment (EE)

that supports the deployment of Network Applications (NetApps). However, in the case

of PVNs, several tasks are complex and repetitive, mainly because the PVN owners must

have an extensive knowledge of the device instructions to deploy and manage NetApps.

A few years ago, Apple and Google overcame similar shortcomings by introducing online

marketplaces. The successful paradigm for mobile application stores could be applied to

the networking market, and this could help PVN owners to deploy and manage NetApps

in their PVNs. In this thesis, we review the state-of-the-art of network programmability

and virtualization, as well as discuss their main drawbacks. Following this, we analyze

the historical background of marketplaces with regard to networking paradigms to define

the essential design goals for a reference network marketplace. Thus, inspired by the

main drawbacks and essential design goals, we propose the App2net ecosystem. App2net

empowers PVN owners, who do not know the specific features of the underlying infras-

tructure, to deploy and manage NetApps in PVNs formed of different EEs. We conducted

a case study to evaluate our ecosystem, which contains all the steps for a third-party de-

veloper to describe and publish an innovative network service. Then, we describe the

main interactions for a PVN owner when deploying and managing this network service in

a PVN with heterogenous EEs. Also, we implemented a prototype of App2net to evaluate

the feasibility and the impact in terms of the distribution time, CPU usage, and network

overhead. When the baseline results are taken into account, App2net demonstrates an

ability to reduce the distribution time and the total network traffic generated. At the same

time, our ecosystem increases the CPU usage (required to execute it) and also had mini-

mal network overhead.

Keywords: Network Programmability. Network Marketplace. Network Applications.

Programmable Virtual Networks.





Implantando e Gerenciando Serviços de Rede em Redes Virtuais Programáveis

RESUMO

Várias empresas e órgãos de normalização têm tentado definir padrões e buscar soluções

para redes que suportam virtualização e programabilidade (também conhecidas como Re-

des Virtuais Programáveis - Programmable Virtual Networks - PVNs), tais como Juni-

per Junos, Cisco ONE, OpenFlow, ETSI NFV e IETF ForCES. Essas soluções fornecem

um ambiente de execução (Execution Environment - EE) que suporta a implantação de

Aplicações de Rede (Network Applications - NetApps). No entanto, no caso das PVNs,

diversas tarefas são complexas e repetitivas, principalmente porque os proprietários de

PVNs devem ter um amplo conhecimento das instruções dos dispositivos para implantar

e gerenciar os NetApps. Há alguns anos, a Apple e o Google superaram deficiências se-

melhantes ao introduzir lojas on-line. O paradigma de sucesso das lojas de aplicativos

móveis poderia ser aplicado ao mercado de redes, e isso poderia auxiliar os proprietários

de PVN a implantar e gerenciar NetApps em suas PVNs. Nesta tese, nós revisamos o es-

tado da arte da virtualização e programabilidade de redes, bem como discutimos as suas

principais desvantagens. Em seguida, nós analisamos o histórico das lojas em relação aos

paradigmas de rede para definir os objetivos essenciais de projeto para uma loja de rede

de referência. Assim, inspirados pelas principais desvantagens e pelos objetivos essenci-

ais de projeto, nós propomos o ecosistema App2net. O App2net capacita os proprietários

de PVN, que não conhecem os recursos específicos da infraestrutura subjacente, a im-

plantar e gerenciar NetApps em PVNs formadas por diferentes EEs. Nós conduzimos

um estudo de caso para avaliar nosso ecosistema, o qual contém todos os passos para

um desenvolvedor terceirizado descrever e publicar um serviço de rede inovador. Então,

nós descrevemos as principais interações para um proprietário de PVN, ao implantar e

gerenciar este serviço de rede em uma PVN com EEs heterogêneos. Ainda, nós imple-

mentamos um protótipo do App2net para avaliar a viabilidade e o impacto em termos do

tempo de distribuição, uso de CPU e sobrecarga da rede. Quando os resultados de base

são considerados, App2net demonstra uma habilidade para reduzir o tempo de distribui-

ção e o tráfego total de rede gerado. Ao mesmo tempo, nosso ecosistema incrementa o

uso da CPU (necessário para executá-lo) e também teve uma sobrecarga de rede mínima.

Palavras-chave: Programabilidade de Redes. Loja de Rede. Aplicações de Rede. Redes

Virtuais Programáveis..
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1 INTRODUCTION

Computer networks are built up using dedicated devices based on purpose-specific

hardware (FEAMSTER; REXFORD; ZEGURA, 2014). These devices (also known as

middleboxes) generally run closed source and proprietary software that carry out a wide

range of network services, such as traffic filtering, intrusion detection, routing, and switch-

ing. Both the middleboxes and combined software have undergone years of development

and testing to achieve stability and a reliable performance. As a result, there has been

an increase in capital expenditure (CAPEX) and operational expenditure (OPEX) which

restricts networking market to a few large companies. In addition, the growing number of

heterogeneous devices and the wide range of protocols, services, and technologies have

made computer networks an unfriendly environment for innovation. Thus, even straight-

forward and necessary changes (e.g., IPv6 and IPSec) depend on the commercial interests

of companies and replacement of middleboxes in the whole network, which sets up a huge

barrier for innovation, and is often referred to as “Internet Ossification” (KIM; FEAM-

STER, 2013).

In the 1990s, the concept of network programmability (LAZAR, 1997) arose and

made it possible to rapidly build, deploy, and manage new services in the network (CAMP-

BELL et al., 1999) and thus overcome the problem of “Internet Ossification” (FEAM-

STER; REXFORD; ZEGURA, 2014). Since then, several programmability-related tech-

nologies have emerged, such as Active Networks (TENNENHOUSE et al., 1997), Mo-

bile Agents (CHESS; HARRISON; KERSHENBAUM, 1997), and Script MIB (LEVI;

SCHOENWAELDER, 1999), and these allow developers to implement and deploy their

programs in the core network. However, none of these technologies were in fact adopted,

because they lack firm guarantees about the settings and applications deployed in the de-

vices, and there was a risk that failures could either interfere with or lead to a collapse

of the production network (MOORE; NETTLES, 2001). All this has hampered the rapid

introduction of innovative network services that can meet the demands of new users and,

as a result, network programmability still remains an open problem (NUNES et al., 2014)

(MACEDO et al., 2015) (MIJUMBI et al., 2016).

In the last few years, the main vendors of the networking devices (such as Cisco

(CISCO SYSTEMS, 2016), Juniper (JUNIPER NETWORKS, 2016b), and Extreme Net-

works (EXTREME NETWORKS, 2016)) have begun employing network virtualization

technologies. In the Network Virtualization Environment (NVE), it is possible to have
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multiple virtual networks (VNs) running simultaneously on top of a shared physical in-

frastructure (ESTEVES; GRANVILLE; BOUTABA, 2013). One essential feature of net-

work virtualization is isolation, which allows diverse network architectures to coexist in a

single physical infrastructure without affecting the production services, as well as virtual

network nodes to be created, moved, and deleted. The provision of these nodes to network

operators allows the deployment and execution of programs in an isolated way (CHOWD-

HURY; BOUTABA, 2009). Thus, if there is a misbehaving code, these programs do not

affect the production network. Finally, the network operator can easily delete a set of de-

vices that run misbehaving programs, and in this way prevent the physical infrastructure

from collapsing.

Currently, academia, industry (e.g., Cisco and Juniper), and standardization bodies

(e.g., ETSI and the IETF) are seeking to define standards and solutions for networks that

support virtualization and programmability (also known as Programmable Virtual Net-

works - PVNs) (FEAMSTER; REXFORD; ZEGURA, 2014) (MACEDO et al., 2015)

(CHOWDHURY; BOUTABA, 2009), such as OpenFlow (MCKEOWN et al., 2008),

ETSI NFV (NFV ISG, 2012), IETF ForCES (DANTU; ANDERSON; GOPAL, 2004),

Juniper Junos SDK (JUNIPER NETWORKS, 2015), and Cisco onePK (CISCO, 2012b).

These solutions provide an Execution Environment (EE) that supports the deployment of

innovative network services as diverse as multicasting (ZHANG et al., 2015), adaptive

video distribution (JIN; WEN; WESTPHAL, 2015), intrusion prevention system (XING

et al., 2014), and video transcoding (EGILMEZ; CIVANLAR; TEKALP, 2013). The

benefits of PVNs include: (i) the ability to rapidly introduce new network services,

(ii) a more open networking market for small companies and third-party developers, and

(iii) the possibility of having multiple virtual network architectures on the same physical

substrate. In addition, PVNs make the network more flexible and encourage innovation

through the so-called network softwarization (MANZALINI; CRESPI, 2016) (RAMOS

et al., 2014).

PVNs enable network services to migrate from middleboxes and proprietary software

to Virtual Network Appliances (VNAs), hosted on commercial off-the-shelf (COTS) ser-

vers. Essentially, VNAs are virtual machine instances that contain EEs and Network

Applications (NetApps), encoded by operators or third-party developers, who provide in-

novative network services. A single VNA can host just one NetApp (e.g., Firewall or

Load-Balancer) or an entire framework containing several NetApps (e.g., Firewall, An-

tivirus, Encryption, Intrusion Protection System, and Deep Packet Inspection). Although
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PVNs support a broad range of NetApps, it is not feasible to have a network that is solely

comprised of VNAs. The performance of COTS servers is limited, and the overhead in-

troduced by virtualization has proved to be an obstacle to high-speed network processing

because it reduces throughput and increases latency (WOOD et al., 2015). Because of

this, some NetApps (e.g., switching, routing, and error control) must still remain hosted

in middleboxes so that they can overcome performance constraints. Thus, VNAs and mid-

dleboxes coexist in the same network, where they can achieve a good performance and

offer flexibility (SEZER et al., 2013). Moreover, it should be noted that since there is no

common glossary of terms for PVNs, each technology refers to the same concepts in dif-

ferent ways; for example, NFV refers to NetApps as “network functions” whereas Open-

Flow calls them by different names such as “business applications” and “SDN control

software”. To overcome this problem, we have compiled a glossary that brings together

terms related to the same concepts but found in different technologies (see Subsection

2.3).

The programmability-related solutions mentioned above have attracted a good deal of

attention in recent years. The main research efforts in this area can be divided into two

groups. The first involves aggregating new features for each solution, including (but not

limited to) scalability (MA et al., 2015) (TOOTOONCHIAN; GANJALI, 2010), perfor-

mance (BRONSTEIN et al., 2015) (GELBERGER; YEMINI; GILADI, 2013) (TARIQ et

al., 2014), isolation (SHERWOOD et al., 2009) (SHIH et al., 2016), security (SON et al.,

2013) (BENTON; CAMP; SMALL, 2013) (BERNARDO; CHUA, 2015), management

(PALKAR et al., 2015) (WICKBOLDT et al., 2015), and debugging & tests (CANINI

et al., 2012) (VEITCH; MCGRATH; BAYON, 2015). The second group is concerned

with the development of new NetApps such as reliable multicasting (CEN; LI; WANG,

2015) (SHEN et al., 2015) (EDWARDS; GIULIANO; WRIGHT, 2002), topology discov-

ery (TARNARAS; HALEPLIDIS; DENAZIS, 2015) (PAKZAD et al., 2016), deep packet

inspection (ZHOU et al., 2010) (BREMLER-BARR et al., 2014), quality of experience

(GEORGOPOULOS et al., 2013), adaptive video distribution (JIN; WEN; WESTPHAL,

2015), and an intrusion prevention system (XING et al., 2014).

Despite its appeal, there are key factors that prevent the fast and broad adoption of

PVNs, including (SANTOS et al., 2015): (i) network end-users (hereinafter called PVN

owners) have to be able to match and understand the capacities of the network devices

that host NetApps, to meet the requirements of different NetApps; (ii) PVN owners

must themselves be able to sort out issues related to dependencies and conflicts among
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the NetApps; (iii) the heterogeneous of execution environments force PVN owners to

manually tune NetApps before running them; and (iv) NetApps are generally written with

a specific network architecture in mind (e.g., SDN and NFV) and, as a result, NetApps

are not usually agnostic with regard to the underlying networking technology. However,

so far, no effort has been carried out the deployment and management of network services

within heterogeneous EEs has not been carryed out from the standpoint of the PVN owner.

Hence, integrating VNAs or even NetApps with real-world production networks is an

arduous task, mainly because the PVN owners must have an extensive knowledge of the

device instructions so that they can deploy and manage them. Moreover, owing to a lack

of NetApp documentation, several tasks (e.g., transferring or configuring a new NetApp)

have become extremely complex and repetitive.

In the recent past, vendors of mobile devices successfully overcame similar shortcom-

ings by deploying online marketplaces. As the name suggests, these are platform-specific

online infrastructures in which developers offer applications (or just apps), of which PVN

owners make use. Although the first marketplaces targeted apps that were only provided

by the vendors themselves (i.e., third-party developers were not allowed), Google Play for

Android (GOOGLE, 2018), and Apple App Store for iOS (APPLE INC, 2018) devices

introduced a business model where third-party developers were able to offer apps to users

of mobile devices.

As in the case of the mobile device market, we argue that recent advances in PVNs and

network softwarization have the potential to open up the networking market to third-party

developers as well. In our view, the successful model of today’s marketplaces for mobile

devices can provide an inspiration and benefits to the networking market. A marketplace

can significantly accelerate the introduction of new NetApps, for instance, by automating

tasks related to deployment and management. However, network softwarization has par-

ticular features that require online marketplaces to be targeted at PVN ecosystems, which

include: network infrastructures based on heterogeneous paradigms (e.g., Cloud, NFV,

and SDN), diverse technologies (e.g., OpenStack, OPNFV, and OpenFlow), and the fact

that network services often combine different NetApps, which may cause dependency

issues and/or conflicts. In light of this, the overall goal of this thesis is to investigate

whether, from the standpoint of the PVN owner, it is feasible to have a platform that

is inspired in the online marketplaces and can deploy and manage innovative NetApps

regarding PVNs that contain heterogeneous EEs.
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1.1 Hypothesis and Research Questions

In this thesis, the following hypothesis is raised to overcome the limitations discussed

in the context of PVNs, particularly with regard to the deployment and management of

NetApps.

Hypothesis: a platform inspired in online marketplaces may enable PVN owners

with a limited knowledge of the underlying infrastructure to overcome the main

hurdles to introducing new NetApps into PVNs

In the past, the main reason why network programmability solutions were not adopted,

was that they raised concerns about security (MOORE; NETTLES, 2001). There was a

risk that the settings and NetApps deployed on the devices could carry out harmful ac-

tivities or have bugs, even if the EE was correctly implemented. Integrating virtualiza-

tion and programmability ensures isolation among VNs, and this prevents these kinds of

misbehaving programs (or even devices) from interfering with the production network;

however, it also imposes constraints on performance. Although this is a shortcoming, it

has not prevented new NetApps from being designed. Despite of this, even today, only a

tiny number of NetApps are deployed in PVNs. Thus, our first research question can be

defined as follows:

Research Question #1: What are currently the main hurdles to introducing new net-

work applications in Programmable Virtual Networks?

We will answer this Research Question #1 in Chapter 2, in which we determine the

main factors that hamper the introduction of a new NetApp within PVNs. Among these

factors, it should be noted that the PVN owner must have an extensive knowledge of de-

vice instructions and NetApps, before being able to deploy and manage new NetApps. As

a result, simple tasks, such as transferring or configuring a new NetApp, can become ex-

tremely complex and repetitive. Moreover, the initial settings must be manually replicated

in each EE to set up the logic rule for delegating the flow of packets to each new service.

All this makes integrating VNAs or even NetApps with production networks, an arduous

task. In our view, a platform that helps to deploy and manage NetApps could simplify the

processes described above, and improve the way that PVN owners adopt them.
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A short time ago, the market for mobile applications was closed, and only mobile

vendors were able to develop new applications for cell phones. However, as a result of

the introduction of Google Play Store (GOOGLE, 2018) for Android and Apple App

Store (APPLE INC, 2018) for iOS, the market for mobile applications was opened up.

This has allowed third-party developers to program and offer a wide range of new mo-

bile applications directly to the PVN owners. Moreover, these PVN owners are able to

install and manage distinct apps, even if they do not know the particular features of cell

phones. Similarly, the networking market was closed and proprietary; however, recent

advances in PVNs have allowed the networking market to be opened up to third-party

developers too and, furthermore, today, device vendors and academia are in a position to

recommend some marketplaces to PVN owners (JUNIPER NETWORKS, 2016a) (HPE,

2016) (RAMOS et al., 2014) (PINHEIRO et al., 2014). However, these marketplaces are

technology-dependent and in nearly all cases, do not support a carefully detailed NetApp

descriptor (i.e., one that supports relationships between NetApps such as conflicts and

dependencies). In our view, we could apply the successful paradigm of mobile app stores

in the networking market, and this could help PVN owners, who are ignorant of the un-

derlying infrastructure, to deploy and manage NetApps and VNAs in their PVNs. All this

leads on to our second research question which is as follows:

Research Question #2: In light of the successful paradigm of OS-specific app stores,

what are the essential design goals that can enable PVN owners, who lack any knowledge

of the underlying infrastructure, to deploy and manage the network applications?

We will answer this Research Question #2 in Chapters 3 and 4. First of all, in Chapter

3, we will determine and outline what marketplaces there are for different contexts, as well

as their essential design goals, and open research challenges. This includes a historical

and comprehensive roadmap of networking paradigms for a better understanding of the

online marketplaces and to show how paradigms and technologies have evolved over the

years. Another reason for discussing current online marketplaces is to define the essential

design goals and the research challenges that must be overcome to make the network mar-

ketplaces a reality. In light of the design goals and open research challenges, we propose

App2net ecosystem as a means of enabling PVN owners to deploy and manage NetApps

in PVNs with heterogeneous EEs. In addition, the App2net ecosystem enables third-party

developers to publish and describe the NetApps using several programmability-related
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technologies.

We divide our ecosystem into two main platforms, namely Marketplace for PRO-

grammable Virtual nEtworks (iMPROVE) and Applications to Network (app2net core).

The iMPROVE is a network marketplace for different technologies, such as NFV, OpenFlow-

based, and VyOS. This marketplace allows PVN owners to select, download, and trigger

the deployment of new network services. We extend the ETSI Network Service Descrip-

tor (NSD) (NFV ISG, 2014) to cover these processes and provide a detailed account of the

different technologies of NetApps and VNAs, as well as to describe issues of conflict. To

complete the lifecycle of a NetApp, we also introduce the app2net core for carrying

out processes in the NetApps. In this way, app2net core can assist PVN owners to

transfer, install, and configure the NetApp package among heterogeneous EEs in a trans-

parent way. Moreover, we design different transfer models based on a set of code transfer

techniques. These models allow us to transfer NetApp packages and configuration files

among PVN nodes to achieve different goals. Although App2net simplifies the deploy-

ment and management of NetApps from the standpoint of the PVN owner, it is essential

to evaluate the impact of our ecosystem and determine whether or not it is acceptable. All

this forms the basis of our third research question:

Research Question #3: Considering the distribution time, CPU usage, and network

overhead, what is the impact of using a platform on deploying applications in heteroge-

neous Programmable Virtual Networks?

To address this Research Question #3, in Chapter 5, we will make two different eval-

uations of our App2net ecosystem. In the first of these, we conducted a case study to

provide a detailed description of the interactions and outline the necessary activities for

a developer when publishing a network service in the App2net ecosystem. Next, we will

explore the interactions of a PVN owner, who desires to deploy this network service in

his/her PVN. In this case study, it is possible to check if our ecosystem is feasible and

whether or not it has enough simplicity to allow PVN owners, without any knowledge

of its underlying infrastructure, to deploy and manage NetApps for a PVN with differ-

ent EEs. Thus, we also discuss the management of this new network service by using

the App2net RESTful API. In the second evaluation, we implement and test a prototype

through realistic network topologies that are commonly found in the Internet. The results

allow us to determine which models can improve the code transfer. Following this, we
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also evaluate the impact introduced by our App2net ecosystem in terms of the distribution

time, CPU usage, and network overhead.

1.2 Thesis Roadmap

The remainder of this thesis is structured as follows.

• In Chapter 2, we review the research studies on network virtualization and pro-

grammability technologies. This is followed by a comparison of some of the fea-

tures of the programmability-related technologies. Finally, we compile and intro-

duce a glossary for this thesis. This glossary brings together the terms that are

related to the same concepts but found in different technologies.

• In Chapter 3, we discuss about current online marketplaces in different areas. From

a historical perspective, we point out the essential design goals and main stakehold-

ers. We also disccus the main research challenges that must be overcome to allow

the adoption of marketplaces by future networks. Finally, we review the current

landscape of marketplaces on the basis fo the previously identified design goals.

• In Chapter 4, we introduce the App2net ecosystem, which is split into two main

platforms, namely iMPROVE and app2net core. Throughout this chapter, we

extend the ETSI NSD to describe the particular features of NetApps within a large

number of technologies as well as examining issus of dependency and conflict.

Next, we specify a RESTful API to enable external software elements (e.g., another

system, platform, module, script, or network service) to request data, trigger ac-

tions, and send notifications and messages. Following this, we analyze a set of code

transfer techniques; and, then we design different models for code transfer based

on the identified techniques. Finally, we discuss our ecosystem with regard to the

design goals and research challenges outlined in Chapter 3.

• In Chapter 5, we carry out two main evaluations of the App2net ecosystem. First,

we conduct a case study to describe the main tasks of a third-party developer when

distributing and describing a network service for different technologies. We also ex-

plain the main interactions of a PVN owner that wants to deploy and manage a net-

work service in a PVN with EEs of several technologies. In the second evaluation,

we implement a prototype and evaluate it through the realistic network topologies
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that are generally found in the Internet. The results make clear the impact intro-

duced by App2net in terms of distribution time, CPU usage, and network overhead.

• In Chapter 6, we summarize some of the conclusions about matters related to this

thesis. Following this, we examine in detail and explain the answers to the research

questions. Next, we summarize the main contributions of this thesis. Finally, we

make suggestions for further research in this area.

• The Appendix includes a list of publications that show the results achieved in the

development of this thesis. This list also contains the main collaborations carried

out in papers that focus on related subjects.
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2 PROGRAMMABLE VIRTUAL NETWORKS: A HISTORICAL PERSPECTIVE,

TECHNOLOGIES, AND CURRENT SHORTCOMINGS

This chapter1 presents an outline of the main research topics related to this thesis.

First, in Section 2.1 we describe the network virtualization and its benefits and, then, we

review the main technologies employed to create virtual networks. Next, in Section 2.2,

we provide a historical perspective of the area of network programmability, by examin-

ing the kinds of technology which have evolved over time. Following this, we compare

some features of these technologies in so far as they are related to the management and

deployment of NetApps in heterogeneous PVNs. Finally, in Section 2.3, we summarize

the chapter and compile a glossary for this thesis, which brings together terms related to

the same concepts but found in different technologies.

2.1 Network Virtualization

As mentioned in the previous chapter, the scientific community regards network virtu-

alization as a feasible means of proposing, investigating, and deploying new features and

solutions in computer networks, by making them an integral part of the next-generation

networking paradigm. In fact, there is no general consensus about how network virtu-

alization should be defined and several definitions have been put forward (ANDERSON

et al., 2005) (ESTEVES; GRANVILLE; BOUTABA, 2013) (MERWE; KALMANEK,

2009) (KHAN et al., 2012). Wang et al. discuss some of these definitions and propose

one of their own that can combine different perspectives (WANG et al., 2013):

Network virtualization is any form of partitioning or combining a set of net-
work resources, and presenting (abstracting) it to users such that each user,
through its set of partitioned or combined resources has a unique, separate
view of the network. Resources can be fundamental (nodes, links) or derived
(topologies), and can be virtualized recursively. Node and link virtualization
involve resource partition/combination/abstraction; and topology virtualiza-
tion involves new address (another fundamental resource) spaces.

It was decided to base this thesis on the above definition because it covers a broad

spectrum of current network virtualization technologies. These technologies have been

grouped together in the following three categories: link virtualization, node virtualization,

and virtual networks (CARAPINHA; JIMÉNEZ, 2009) (WANG et al., 2013). Figure 2.1

1This chapter is based on the following paper: “A Survey on Programmable Virtual Networks: Where
Did We Come From, and Where Are We Going To?”. For more information about this paper see the
Appendix.
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provides a simple view of the main elements of a virtual network.

Figure 2.1: Main elements of a virtual network.

Source: adapted from Carapinha and Jiménez (CARAPINHA; JIMÉNEZ, 2009).

Link virtualization allows multiple separate virtual links to share the same physical

link (substrate node). On the basis of this definition, there are many ways to create virtual

links. First of all, there are multiplexing technologies (e.g., Time Division Multiplexing

- TDM, Frequency Division Multiplexing - FDM, and Wavelength Division Multiplex-

ing - WDM), which are widely used to split a single physical link into separate virtual

links. Likewise, physical links can be combined to create a single high-speed virtual link

(i.e., inverse multiplexing) while some virtual links can be grouped into a virtual link

aggregation. In addition, virtual links can be created by techniques that allow the pack-

ets to be tagged (e.g., Virtual Local Area Network - VLAN) and by tunnels that connect

the devices that are not physically adjacent (e.g., Generic Routing Encapsulation - GRE)

(CHOWDHURY; BOUTABA, 2010).

Node virtualization involves the isolation and partitioning of hardware resources.

The physical resources of a substrate node (e.g., CPU, memory, and link bandwidth) are

partitioned per virtual node in accordance with a set of requirements. In most cases,

two devices are virtualized: (i) Network Interface Cards (NICs), at the network edge;

and, (ii) routers, in the network core (WANG et al., 2013). VMware, QEMU, Citrix

XenServer, and Oracle VirtualBox share NIC hardware through a type of emulation soft-

ware called virtual NIC (vNIC). Hence, each virtual machine has an assigned vNIC and

a virtual switch connects several vNICs to a physical NIC. Single-root I/O virtualization

(SR-IOV) is a hardware enhancement that replaces the virtual switch, and thus provides

better throughput and scalability, and reduces CPU usage (DONG et al., 2010).
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There are two approaches that can be adopted to virtualize routers. In the first of these,

Linux-based network operating systems (e.g., Mikrotik, VyOS, Vyatta, and Quagga),

which provide software-based routing solutions, are installed in x86 and x86-64 virtual

machines. It should be noted that these virtual machines can be hosted on common hy-

pervisors (e.g., VMware, Citrix XenServer, and Oracle VirtualBox) that run on COTS

servers. The second approach involves physical routers that support hardware partition-

ing and are able to host a number of routing instances in a single device. These routing

devices are called logical routers by Cisco (CISCO, 2008) and protected system domains

by Juniper Networks (JUNIPER, 2012).

Virtual networks are collections of virtual network devices that are connected through

virtual links. Three kinds of collections are commonly implemented, namely Overlay

Networks, Virtual Private Networks, and Virtual Sharing Networks (CARAPINHA; JI-

MÉNEZ, 2009). An overlay network is built on an existing network, largely through

tunneling and encapsulation technologies. Overlay networks have often been created to

provide new services for an existing infrastructure such as Internet access networks (Dig-

ital Subscriber Line - DSL), multicast (Multicast Backbone - MBone), and IPv6 (IPv6

Backbone - 6Bone). A Virtual Private Network (VPN) is a network built on the infras-

tructure of a public network. That is, instead of using dedicated links to connect remote

devices, it uses the Internet infrastructure. VPN gives each node the illusion that there

is a direct connection to another node. Many companies deploy VPNs to connect their

offices to geographically distant areas, whereas employees or clients can use a VPN to

gain access to their company’s internal network remotely. VPNs can be created in differ-

ent layers such as Layer 2 VPN (L2VPN) and Layer 3 VPN (L3VPN) which are widely

deployed; but also in Layer 1 VPN (L1VPN).

Virtual sharing networks entail the use of technologies (e.g., VLAN or VPN) that al-

low physical resources to be shared with multiple virtual networks (VNs) instances while

causing segmentation between them. For example, in a university, there are two VNs:

students and teachers. Students can only have access to the file server whereas teachers

have access to the Internet, file server, and mail server. In this way, two VNs can share

physical routers and servers. However, these networks are segmented and have limited

connectivity to students. In this example, two VNs form one virtual shared network be-

cause they share the same physical infrastructure, although they are separated from each

other. It is worth mentioning that a VN can form a part of more than one category, thus,

in the example outlined above, the VNs are classified in virtual private networks too.
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According to Chowdhury and Boutaba (CHOWDHURY; BOUTABA, 2010), a net-

working environment supports network virtualization if it allows the coexistence of mul-

tiple VNs within the same physical infrastructure (also known as the substrate layer).

Each VN in a network virtualization environment (NVE) is a collection of virtual nodes

and virtual links. In other words, a virtual network is a subset of resources from the

substrate layer, which hosts the key virtual elements.

In Figure 2.2, there is a generic model of a network virtualization environment (ES-

TEVES; GRANVILLE; BOUTABA, 2013). The white ellipses in the diagram represent

physical elements, while the light gray (first level) and dark gray (second level) ellipses

represent virtual nodes. The continuous lines indicate the existence of a physical link

whereas the dashed lines indicate the virtual links between the virtual nodes. As can be

observed, the VN is a complete topology because it has all the elements that comprise

a production network such as routers, hosts, and links. The virtual routers are usually

connected to each other by IP tunnels that allow the use of a large number of applica-

tion protocols, transport protocols, routing algorithms, and other features included in the

current Internet (TOUCH et al., 2003). Network virtualization enables a single physical

component to form multiple VNs and at the same time, allows a VN to host the nodes

of another VN. Thus, novel network architectures can be created without significantly

interfering with the substrate layer, and also provide a high degree of flexibility to the

virtualization layer.

According to Anderson et al. (ANDERSON et al., 2005) and Merwe and Kalma-

nek (MERWE; KALMANEK, 2009), the network virtualization has several benefits and

provides the scientific community with the means to overcome the problem of “Internet

Ossification” (CHOWDHURY; BOUTABA, 2010). Below, there is a discussion of the

benefits of network virtualization and how it requires a better way to introduce network

programmability:

• Isolation - Network virtualization ensures that there is isolation between NVE and

the physical network resources, as well as between the VNs that share the same

NVE. Thus, it is possible to host multiple VNs within a single physical network

without affecting the network operations or interfering with the existing services.

This isolation is of paramount importance when deciding how to introduce the net-

work programmability. In the past, some solutions were rejected because misbe-

having programs could lead to a collapse of the production network. Hence, the

use of a VN to support a programmability technology would reduce the degree of
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Figure 2.2: A generic network virtualization environment.
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Source: adapted from Esteves et al. (ESTEVES; GRANVILLE; BOUTABA, 2013).

interference from misbehaving programs within the production network.

• Flexibility - A virtual network node can be created, moved, and deleted without

disturbing other virtual nodes. Moreover, in the case of hardware failure or system

overloading, virtual nodes can migrate to another physical resource in a transparent

way, in accordance with the policies defined by operators. This means the PVN

owners can deploy and run their programs on virtual nodes. Thus, if new nodes

could be dynamically created, they would provide the PVN owners and their pro-

grams with more resources. As well as this, the virtual nodes can be moved to

another server in case of failures, and thus offer the PVN owner a more resilient

solution.

• Availability - Restarting and updating a given network service can be performed in

one virtual node without affecting other network services in the same NVE. In an

environment without virtualization, the update procedure affects all the users and

traffic in the network. Simple incremental updates are almost impossible since there

are conflicting interests between both the users and the Internet Service Providers

(ISPs). By supporting both virtualization and programmability, the PVN owners

can instantiate services which are of value to them, including different versions of

the same services that are used by other PVN owners without any interference.
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• Scalability - Initially, virtual network nodes only provide a small set of features,

but, as new demands arise, other features can be added, which results in a more

robust network architecture. A programmable platform can add new services in an

incremental way, and thus avoid the need for a further implementation of network

services while at the same time, enhancing the use of the NetApps that have already

been designed. It is worth noting that this kind of platform would make it possible

to examine and overcome issues of dependency and conflict among the NetApps,

and thus avoid the problem of PVN owners having to carry out new and complex

tasks.

• Reduced Costs - A single physical resource, like a LAN port, can be shared by

several VNs as this avoids the need to acquire dedicated equipment for each ser-

vice and, hence, reduces the CAPEX and OPEX. This is important because at the

outset, the devices of programmability technologies must be replaced by new ones

in the whole network, and this leads to prohibitive costs. With the introduction of

virtualization, no changes are required at the substrate layer; all that is needed is for

the virtual nodes to be replaced to support the new technologies, and thus make it

easier to carry out the update procedure of the devices.

2.2 Network Programmability

In the 1990s, DARPA recognized the shortcomings of IP networks, which were later

called “Internet Ossification” (FEAMSTER; REXFORD; ZEGURA, 2014). To overcome

this problem, the scientific community coined the term “network programmability” to de-

fine the ability of a network device (e.g., router or switch) to run a program on the net-

work. This ability allows new features and services to be developed (e.g., new protocols,

management solutions, monitoring systems, and deep packet inspection) without having

to replace the physical hardware (MERWE; KALMANEK, 2009). What is of particular

importance, according to Campbell et al. , is that network programmability has the ability

to build, deploy, and manage new services in the network at great speed (CAMPBELL et

al., 1999).

Today, academia, companies, and standardization bodies have acquired enough tech-

nological skills to explore and design new services, protocols, and network architectures.

Since the 1990s several programmability-related technologies have emerged with the
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same goal (such as Active Networks (TENNENHOUSE et al., 1997), Mobile Agents

(CHESS; HARRISON; KERSHENBAUM, 1997), and Script MIB (LEVI; SCHOEN-

WAELDER, 1999)). However, these technologies were prevented from being adopted

by two constraints: (i) the lack of safeguards or guarantees about the settings and ap-

plications deployed in the devices, which could interfere with, or lead to a collapse of,

the production network; and (ii) the increase in CAPEX and OPEX of the ISPs caused

by the continuous need to replace the network devices that underpin these technologies.

Below, in Figure 2.3, we summarize the main programmability-related technologies that

have emerged over the years.

Figure 2.3: Timeline of network programmability technologies.

1994 1998 2002 2006 2010 2014 20181996 2000 2004 2008 2012 2016

Mobile Agents

JunOS SDKActive Networks

Script MIB

Click Modular
Router

P4

ForCES

Cisco AON

NetFPGA
OpenFlow

Cisco ONE

NFV
POF

Source: the author (2018).

As previously mentioned, the introduction of virtualization provides several benefits

to computer networks, since it gives rise to new ideas about the network programmability.

Moreover, it means that network devices can only be replaced in a virtual way. Thus,

new technologies can be introduced without any changes in the physical devices, and thus

reduce the CAPEX and OPEX of the ISPs. In addition, the isolation enables VNs to

coexist with other VNs and the physical network and, in case of failures or misfunction,

these VNs or specific virtual nodes can be stopped or removed. In this way, they will affect

neither the other VNs nor the physical network. This means that the programmability

can be reintroduced and empower developers to create innovative services for the Future

Internet. In the next section, there is a description of the main programmability-related

technologies and their features.

2.2.1 Improved Nodes

Traditionally, the primary purpose of the network has been to deliver packets from

their source to the destination host without changing the payload of the packets. The

network devices check the headers, perform the routing, and correct any errors. The aim
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of the first programmability-related technologies was to open up and improve the network

devices. This means they define the elements that can enable the network nodes to run

a program. In these technologies, the programs were transmitted by the network or else

transferred to the specific nodes, in which they were executed. Three key technologies are

described below that allow the network to be programmed in this way: Active Networks,

Mobile Agents, and Script MIB.

Active Networks

In 1995/1996, the concept of “active networking” emerged from discussions within

the broad DARPA research community about the future direction of networking systems

(AUBRECHT; KOUTNY, 2012). According to Tennenhouse et al., Active Networks

represent a new approach to the network architecture. A network becomes active in two

situations: (i) when the network devices (e.g., routers or switches) can execute custom

programs on the packets that flow through them; and, (ii) when users can inject their

custom programs into the routers which examine the packets and run the appropriate

program. In an extreme case, there will be no difference between the internal and end-user

nodes since, if necessary, both will be able to run the same programs (TENNENHOUSE

et al., 1997).

Active Networks allow new services to be developed as well as improving their ex-

isting functionalities and performance. Various applications can be enhanced such as

network management, web proxies, reliable and efficient multicasting, and active caching

(PSOUNIS, 1999). Essentially, active networks adopt three approaches: integrated (active

packets), discrete (active nodes), and hybrid. In the integrated approach, every message,

or capsule that travels between the nodes, contains a fragment of a program (of at least

one instruction) that may include embedded data. Thus, the program is installed when

it is used. In the discrete approach, the packets only contain the identifiers of the pro-

grams (routines) that must be run. In this way, the active applications are installed into

the node on demand by means of a download scheme. In the hybrid approach, a network

based on the integrated approach can be programmed to emulate the discrete approach

and vice versa. In other words, programs can either be encapsulated in packages or be

installed via download (TENNENHOUSE; WETHERALL, 2002). There are several sig-

nificant studies on active networks: (i) SwitchWare architecture which addresses security

concerns (ALEXANDER et al., 1998), (ii) ANTS toolkit that allows new protocols to
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be developed (WETHERALL; GUTTAG; TENNENHOUSE, 1998), (iii) Smart Packets

for network management (SCHWARTZ et al., 1999); and, (iv) PLAN, a programming

language for management applications (HICKS et al., 1998).

Mobile Agents

An agent is a type of software that is able to carry out tasks in an execution envi-

ronment as well as to learn and cooperate with other agents. In addition, an agent is

autonomic, proactive, and reactive (LANGE; MITSURU, 1998). According to Chess et

al., Mobile Agents are programs, that are generally written in a scripting language, which

may be dispatched from one node and then transported to another for execution. In this

way, a mobile agent is independent of the execution environment which it sets out from,

since it is able to travel to the nodes in the network (CHESS; HARRISON; KERSHEN-

BAUM, 1997).

After it has been created, the mobile agent takes its “state” and “code” with it to an-

other execution environment, where it resumes its task of executing of activities. In this

context, the word “state” refers to the attribute values of the mobile agent that determine

which actions must be performed and what the next node will be. The “code” relates to

the routines that are necessary for execution. It should be noted that the transfer of a mo-

bile agent can be either partial or complete depending on the requirements for execution

(BIESZCZAD; PAGUREK; WHITE, 1998). Mobile agents offer a wide range of bene-

fits to applications, including the following: a reduction of network traffic and latency,

fault tolerance, encapsulation of protocols, and asynchronous and autonomous execution

(LANGE; OSHIMA, 1999).

In the past, mobile agents were studied as a viable alternative for programming the

network. However, they raise serious concerns about security and performance which

means that their use is avoided (CHESS; HARRISON; KERSHENBAUM, 1997). Today,

mobile agents are attracting a good deal of attention but in different areas such as sensor

networks (LIN et al., 2012) (IYENGAR; BROOKS, 2016), vehicular cloud computing

(GERLA, 2012), and smart grids (BERA; MISRA; RODRIGUES, 2015).

Script MIB

The Management Information Base (MIB) is a set of managed objects that represents
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the entities in a computer network, that allow a large number of management tasks to be

automated. Every object is an abstract view of a real resource of the system. Hence, all

the network resources that must be managed are modeled, and the resulting data structures

represent the managed objects. Users or managers can read and change these objects in

compliance with specific rules that grant permission (LEVI; SCHOENWAELDER, 1999).

The Script MIB module defined in RFC 2592 (LEVI; SCHOENWAELDER, 1999)

and RFC 3165 (LEVI; SCHOENWAELDER, 2001) can delegate and install management

functions (also known as “scripts”) in the network nodes. This MIB makes no require-

ments about the programming language; thus, these scripts can be written in any pro-

gramming language that is supported by the Script MIB implementation. As a result of

the SNMP requests, the manager can carry out several operations: (i) transferring scripts;

(ii) managing (i.e., installing, suspending, summarizing, and terminating) scripts; (iii)

sending parameters; (iv) monitoring and controlling the execution; and, (v) requesting

information about the results obtained.

Figure 2.4: A network node supporting the Script MIB.

Source: adapted from Schönwalder et al. (SCHONWALDER; QUITTEK; KAPPLER, 2000).

When running and controlling a script in Script MIB (as shown in Figure 2.4), the

manager first checks if the desired script has been installed in the node, which means

finding out if the ScriptTable has a record of this particular script (step 1). When in-

stalling a script, the manager checks the available programming languages in the Lan-

guageTable (step 2). Additionally, the manager also checks the installed extensions in
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the ExtensionTable if necessary. Next, the manager stores the data about the script in the

ScriptTable (step 3). At this time, the transfer can occur through two methods: “pull”

and “push’. In the pull method, a node receives the URL repository, and then, downloads

the script through the HTTP protocol. In the push method, a manager sends the script

to a node via SNMP messages. Following this, the node stores the received script in the

CodeTable. After the installation, the manager sends the settings to the node which stores

it in the LaunchTable (step 4). At this stage, a manager can start the script execution.

Finally, the node stores the results in the RunTable (step 5) and the manager can request

this data during a time interval.

Although the Script MIB provides flexibility with regard to the programming lan-

guages used, transfer methods, and ways of collecting data from the execution of the

distributed management scripts, it has serious limitations that prevent its wide adoption

as a form of network programmability technology (SCHONWALDER; QUITTEK, 1999)

(STRAUß, 2000). These include the following: (i) it focuses solely on distributed man-

agement, which makes it difficult to program applications with other purposes (e.g., video

transcoding and multicast); (ii) administrators have been discouraged from using third-

party scripts because they must grant root access to install and run the management scripts

in their devices; (iii) a lack of isolation among new applications and production networks,

which, in the case of a misbehaving code, could interfere with the whole network or lead

to its collapse; (iv) the management of scripts is a very complex task because distributing,

installing, and updating scripts in several devices require a considerable effort to ensure

they are synchronized and made usable; and, (v) security issues primarily related to the

integrity of the scripts, the traffic of sensible data, and the control to run scripts.

2.2.2 Software Routers

Software routers perform packet processing in software (BOLLA; BRUSCHI, 2007)

(FALL et al., 2011). Moreover, they are easily extensible; in other words, developers

can program and supplement new functionalities that can provide new services or sup-

port other technologies. These software routers often consist of Linux-based network

operating systems installed in x86/x86-64 virtual machines and hosted in COTS servers

(BOLLA; BRUSCHI, 2008). There are several implementations of software routers, for

instance, Mikrotik, Cisco CSR 1000v, Juniper vMX, VyOS, Vyatta, ClickOS, Quagga,

and Click Modular Router. Although these examples can be programmed, we wish to
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draw attention to the Click Modular Router because of its popularity and modularity.

Click Modular Router

Click Modular Router runs C++ small modules (also known as elements), which

perform simple router functions such as the reduction of the TTL of the packet, packet

classification, queuing, scheduling, and interfacing with a network device. Several ele-

ments are grouped and linked, to create a graph of the elements that represents a software

router (MORRIS et al., 1999). In this graph, the vertices are the elements and the edges

describe the path of the packets. Figure 2.5 shows a simple example of a router that first

counts the incoming packets, and then discards them. The FromDevice(eth0) element re-

ceives the packets from the eth0 interface and forwards them to the following element.

After this, the Counter counts the number of packets. Finally, the Discard element is

responsible for dropping the packets.

Figure 2.5: A simple example of a router in Click.

Source: adapted from Kohler et al. (KOHLER et al., 2000).

Click has three operational modes: simulation, user level, and kernel (KOHLER et

al., 2000). In the simulation mode, the click router works as an NS3 or NS2 module,

called NSClick. In the second mode, the user level, the click router runs as a user process

in a Linux system. Finally, in the kernel model, the Linux system is modified to enable

it to forward the received packets directly to the click router and then to the network

interfaces. Initially, Click was proposed as a single-threaded application, but currently,

there are parallel implementations in the kernel mode that reach up to 40 Gbps of packet

processing throughput (FALL et al., 2011). Although Click provides a custom language

service to specify the connections and dependencies among the elements, there is no

support to describe any conflicts between them.
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2.2.3 Customized Hardware Routers

Some solutions focus on the growing demand for high performance to packet pro-

cessing, and thus, they enable network operators and engineers to built up a customized

hardware router. In such solutions, a “developer” can modify all architecture of a router

since increasing memory buffers until implementing new protocols to L2/L3 (in hard-

ware level). Following, we describe the NetFPGA because it is the main solution in this

context.

NetFPGA

NetFPGA is the most popular open-source software and hardware platform for a fast

prototyping of networking hardware (e.g., modified Ethernet switches and IP routers).

NetFPGA uses a programmable NIC based on Field Programmable Gate Array (FPGA)

to run programs designed by multiple users such as researchers, teachers, or students

(GIBB et al., 2008). The users implement their programs in Verilog code, where they are

called modules. A pipeline organizes the system in several stages and this allows these

modules to be run. When a packet arrives, the NetFPGA processes it at each stage of the

pipeline. It should be noted that the stages are interconnected by means of two buses: the

packet bus and the register bus. The packet bus transfers the packets from one stage to the

next through a synchronous FIFO packet-based push interface. The register bus provides

another channel of communication that does not consume the bandwidth of the packet

bus. This allows that the information travels in both directions through the pipeline but

with a much lower bandwidth (NAOUS et al., 2008).

NetFPGA enables a wide range of users to create new prototypes in a modular way.

As a result, users can reuse, modify, and add new functionalities to pre-built modules,

or create a new one without the need for any pre-built modules (ZILBERMAN et al.,

2014). Several modules are available online for free download2. Some examples are

OpenFlow switch, common IPv4 and IPv6 routers, and monitoring systems. A solution

for installing or even arranging pre-built modules into new service modules, could ease

the management of these modules and thereby improve the adoption of NetFPGA as a

programmable solution in experimental networks; however, it is a very laborious task, and

2See the projects list for each version at the NetFPGA site: <http://netfpga.org/site/#/systems/
4netfpga-1g/applications/>

http://netfpga.org/site/#/systems/4netfpga-1g/applications/
http://netfpga.org/site/#/systems/4netfpga-1g/applications/
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there are no studies in the literature that deal with this issue. Despite its flexibility and

modularity, some significant concerns have been expressed by the NetFPGA community,

such as high latency, high memory usage, and the bandwidth restrictions of the registered

bus (NAOUS et al., 2008).

2.2.4 Software-Defined Networking

Software-Defined Networking (SDN) is an emerging network architecture in which

network control (the control plane) is decoupled from forwarding functions (the data

plane). This enables the network control to be directly programmable and the underlying

infrastructure to be abstracted for applications and network services (FEAMSTER; REX-

FORD; ZEGURA, 2014) (ONF, 2016). SDN provides programmability through well-

defined interfaces, and can lead to innovative network applications such as new protocols,

network management solutions, server load balancing, and energy-efficient networking

(XIA et al., 2015). In the next subsections, there is a review of two well-known SDN

architectures, namely OpenFlow (MCKEOWN et al., 2008) and ForCES (YANG et al.,

2004). Figure 2.6 shows the main elements of both architectures OpenFlow (left) and

ForCES (right). Due mainly to its disruptive characteristics (see below), ForCES is not

widely adopted as the OpenFlow (XIA et al., 2015) (HARES, 2013).

Figure 2.6: OpenFlow architecture (left) and ForCES architecture (right).
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Source: adapted from McKeown et al. (MCKEOWN et al., 2008) and Yang et al. (YANG et al.,
2013).

OpenFlow

OpenFlow emerged in 2008 as a means of allowing researchers to run experimental
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protocols in the campus networks (MCKEOWN et al., 2008). Essentially, OpenFlow

consists of four key elements: (i) the controller, a remote control entity that makes the

traffic forwarding decisions, and adds or deletes the flow entries to determine the path of

the flows across the network; (ii) a flow table which is a set of several flow entries; each

entry consists of match fields (used to match the incoming flows), an action (this defines

how to handle matching flows), and counters (used to collect statistics for each flow); (iii)

a secure channel, this connects switches to the controller, and ensures that commands

and packets are sent in a safe and reliable way; and, (iv) the OpenFlow protocol, which

provides an open and standard way for the controller to communicate with the switches.

When a packet arrives, the OpenFlow switch extracts the packet headers and matches

them with the flow table. If a matching entry is found, the switch handles the flow by

means of an action in the flow entry. If no flow entry matches the packet headers, the

switch handles the flow in accordance with a table-miss flow entry. The “table-miss” de-

fines which actions must be performed when no match is found for the flow. The possible

courses of action include dropping the flow, analyzing the next flow table, or sending the

packet to a controller via the secure channel. The controller uses the applications created

by operators, to determine which actions must be performed in this flow, for example,

forwarding to a specific port, dropping, modifying a header, or forwarding the flow to the

controller. After this, the controller adds, updates, or deletes the flow entries in the switch

flow table (ONF, 2015).

It should be noted that the OpenFlow controller can handle switches from different

network vendors, including virtual and software routers. Thus, several studies in both

academia and industry have drawn on OpenFlow and SDN concepts. In the first place,

there are many controllers with different features (MACEDO et al., 2015) such as NOX

- easy learning (GUDE et al., 2008), Onix - scalability and reliability (KOPONEN et al.,

2010), Beacon - dynamic application management (ERICKSON, 2013), and OpenDay-

light - which gives support to several protocols (MEDVED et al., 2014). In addition,

there are many applications in the literature such as reliable multicasting (SHEN et al.,

2015), management and visualization solutions (ISOLANI et al., 2015), adaptive video

distribution (JIN; WEN; WESTPHAL, 2015), and an intrusion prevention system (XING

et al., 2014). However, owing to the characteristics of OpenFlow and the performance

of the controller, applications that focus on data plane and packet data processing (e.g.,

deep packet inspection, cache, and transcoding) are beyond the scope of the OpenFlow

controller (NAKAO, 2013) (KUKLIŃSKI, 2014) (MACEDO et al., 2015).
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ForCES

In 2004, IETF proposed the Forwarding and Control Element Separation (For-

CES) Framework to redefine the architecture of network nodes by applying the concepts

of SDN (control and data plane separation and abstraction of physical elements) (YANG

et al., 2013). A ForCES network node consists of multiple Forwarding Elements (FEs)

and multiple Control Elements (CEs). FEs use the underlying hardware to provide per-

packet processing. In turn, CEs executes control/signaling functions and employs the

ForCES protocol to instruct FEs how to handle packets. Although FEs and CEs can be

combined in a single network device, this is not a requirement, which means these ele-

ments can be physically separated. In addition, FE and CE managers are proposed. The

first determines which CEs a FE should communicate (CE discovery). Similarly, the CE

manager determines which FEs a CE should communicate (FE discovery) (HALEPLIDIS

et al., 2015).

A particular characteristic of ForCES is the “pre-association phase”, when an FE man-

ager and a CE manager defines which FE(s) and CE(s) should be a part of the same net-

work element (CE discovery and FE discovery). Packet forwarding in an FE is based on

the abstraction of logical function blocks, which can be dynamically specified to create

new packet processing activities (HALEPLIDIS, 2015) (SALIM, 2015). ForCES provides

a more flexible forwarding model, redundancy, CE-FE discovery, and additional mech-

anisms for security. However, owing to the fact that the business model for the logical

function blocks is disruptive and there is a lack of support for open source, ForCES is not

widely adopted as an OpenFlow (XIA et al., 2015) (HARES, 2013).

P4

In the area of SDN, the aim of programmable data planes is to provide more flexible

programmability because they are protocol-independent (COSTA CORDEIRO; MAR-

QUES; GASPARY, 2017). In this context, we would like to highlight two key solutions,

namely P4 (released in 2014) (BOSSHART et al., 2014) and POF (which appeared in

2013) (SONG, 2013). Programming Protocol-Independent Packet Processors (P4)

enables developers to specify in detail how the network forwarding elements of the data

plane will process the packets. The abstraction model supports a programmable parser,
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which helps developers to define the new headers that will be used to create the match

actions for the packets. In addition, the model assumes that actions consist of protocol-

independent primitives supported by distinct forwarding elements (WANG, 2017). In

this way, developers create programs using the P4 language and, then, compile these

programs for each forwarding element. The P4 compiler takes the capabilities of these

elements into account to turn a device-independent program (written in P4) into a device-

dependent program (used to configure the forwarding elements). Thus, developers do

not need to know the specifications of the underlying forwarding elements concerning

the device type (e.g., switch or router) or even the technological systems (e.g., ethernet

switches, software switches, FPGAs, smart NICs or fixed-function switch Application

Specific Integrated Circuits (ASICs)) (DARGAHI et al., 2017).

P4 provides two kinds of operations to control the data plane: configure and popu-

late. Configure operations program the parser, order the stages of the match actions, and

specify the header fields processed by each stage. In that way, these operations make it

possible to determine the supported protocols and show how the forwarding elements will

process packets (MARTINS et al., 2018). Populate operations add and remove the entries

in the match action tables which were specified during the configuration phase. Note

that P4 creates the match actions by means of five primitives (BOSSHART et al., 2014):

(i) the set_field, this sets a value to a specific header field; (ii) the copy_field,

which copies the value of a header field for another field; (iii) add_header, this sets

a specific header instance and all its fields; (iv) the remove_header, which deletes

a header and all its fields from a packet; and, (v) the increment for incrementing or

decreasing the value in a field. Today, in P4 version 16, some devices can support ad-

ditional primitives, but, in these cases, the programs require external libraries coded by

manufacturers (YANG et al., 2017b). Although P4 offers a more flexible model to pro-

gram the network than OpenFlow, it focuses on the control of the forwarding elements.

Thus, again, applications that require packet data processing are beyond the scope of this

technology.

Protocol-Oblivious Forwarding (POF)

While P4 designs a programming language to program different devices, Protocol-

Oblivious Forwarding (POF) introduces forwarding elements that do not know any

forwarding protocols (DARGAHI et al., 2017). In addition, POF specifies a protocol-
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independent instruction set, which allows a network developer to define the protocol stack

and packet processing procedure (SONG, 2013). The instructions can be classified into

five different categories (YU et al., 2014): (i) editing, this kind of instructions assists

in editing the packet data by carrying out tasks such as writing, storing, copying, and

calculating values from different fields; (ii) forwarding, means these instructions can en-

able the packets to move forwards, backwards, or to a specific location; (iii) entry, this

category contains instructions to add, set, and remove flow entries into the match tables

of the forwarding elements; (iv) jumpm this category makes it possible to change the

packet data processing order; and, (v) flow instructions provide some operations about

the global status of the data flow. By following the instructions from the categories de-

scribed above, the POF controller can perform the matching of data flows through a tuple

<offset, length>, in which offset indicates the bit location in a packet that starts

the matching fields, and length specifies the size of the field in bits (LI et al., 2017).

In this way, POF provides a controller (based on OpenFlow controller) that can create

new protocol-independent network applications (SONG, 2013). However, as POF is an

OpenFlow-based solution, several features limit its ability to create and adopt applications

in a wide area that are targeted at data processing. These features include, but are not lim-

ited to, a centralized controller, the emphasis being only on controlling the network, and

controller performance.

2.2.5 Proprietary Solutions

Even though there are several programmability-related technologies, the vendors of

the main network devices have their own views about what can enable developers to pro-

gram the network. With regard to these approaches, two companies should be highlighted,

Juniper (JUNIPER NETWORKS, 2016b) and Cisco (CISCO SYSTEMS, 2016).

Juniper

The Juniper approach is divided into two solutions: the Junos Operating System

(OS) and Junos Software Development Kit (SDK). Junos OS is a unified network oper-

ating system based on FreeBSD which runs on most Juniper devices; it provides security,

robustness, resilience to failure, and a broad platform for the development of applications

(Junos SDK). In addition, the basic logical system of Junos OS is divided into three el-
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ements: (i) the control plane, this manages and controls the device which includes two

other planes; (ii) the data plane, this is dedicated hardware that filters and forwards the

traffic in compliance with a forwarding table; and (iii) the services plane, this is hosted on

optional and installable hardware (also known as service modules) that allows the running

of service applications (KELLY, 2013).

Since Junos SDK enables applications to be developed and used again, it is wholly

integrated in the Junos OS. Applications can be built, deployed, and finally, run natively

on the Juniper devices like other native processes. Junos SDK provides C and C++ APIs

for both the service plane and control plane. Hence, the applications can either control the

devices or perform packet data processing such as recording VoIP calls and monitoring

the quality of video streams (KELLY; ARAUJO; BANERJEE, 2009). Each application

runs on an isolated service module, which ensures the execution is carried out appropri-

ately and securely while avoiding disastrous failures in the network. Moreover, Juniper

adopts a rigorous procedure to determine if a developer is a viable candidate to publish

an application. Once that process is complete, the developer must have a valid signature

and an authorized administrator must run the application. As a result, the Junos OS not

only protects the applications running on that network but the underlying network as well

(GRILICHES, 2009).

Cisco

The Cisco strategy for network programmability is rather different from that of Ju-

niper. Initially, Cisco introduced the concept of Application-Oriented Networking (AON)

since it allows programs to be created that focus on the application layer (CISCO, 2005).

When seeking to support AON, it was necessary to add a new hardware module into

the Cisco devices like the service planning in the Juniper devices that restrict the usage

of Cisco AON. After this, in 2012, Cisco introduced the Open Network Environment

(ONE), which is a customizable framework that enables developers to create programs

to control the network. Cisco ONE supplements traditional SDN approaches (that de-

couple the control and data planes), while also giving strong support to other deployment

models, ranging from traditional Cisco network devices with integrated control and data

forwarding capabilities to virtual overlays with pure SDN (CISCO, 2012a).

Cisco ONE consists of two main elements: Open Network Environment Platform Kit

(onePK) API and eXtensible Network Controller (XNC). OnePK API abstracts the un-
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derlying differences between the operating systems and hardware, by providing access

to functions that are within the network devices (KIRAN; KINGHORN, 2015). For ex-

ample, if an application uses a onePK function call to read interface statistics, the same

function call will work across all the Cisco network devices. So far, onePK has been

able to support three programming languages, including Python, Java, and C. Cisco XNC

is an OpenDaylight-based controller which is capable of supporting multiple protocols

for device communication such as OpenFlow, onePK, and NETCONF (CISCO, 2012b).

Finally, Cisco XNC also provides a northbound Representational State Transfer (REST)

API for an application development (CISCO, 2014).

2.2.6 Network Functions Virtualization

In 2012/2013, the Industry Specification Group (ISG), under the auspices of the Eu-

ropean Telecommunications Standards Institute (ETSI), published the Network Func-

tions Virtualization (NFV) architectural framework. NFV enhances the flexibility of

network service provisioning and reduces the time needed for deployment services. NFV

moves packet processing from dedicated hardware middleboxes to network functions,

called Virtualized Network Functions (VNFs), by running virtual machines hosted on

COTS servers. This means that NFV decouples network functions from the underlying

vendor-specific hardware, which enables the VNF software to evolve separately from the

hardware and vice versa. The benefits offered by NFV allow the network operators to cre-

ate innovative services, and reduce CAPEX and OPEX. Furthermore, by using NFV, the

operator can easily scale the network services to meet the demands of multiple tenants.

These can also make it technically feasible and provide potential business opportunities

while at the same time, making the network more innovative (NFV ISG, 2012).

Figure 2.7 shows the NFV architecture according to ETSI ISG (NFV ISG, 2013). As

can be seen, the main elements of NFV include: (i) the NFV Infrastructure which repre-

sents all the hardware and software components that comprise the environment in which

the VNFs are deployed, managed, and executed; it also ensures that the VNFs are de-

coupled from the hardware resources, which means the software can be deployed with

different physical hardware resources; (ii) VNFs, which are network functions running

on virtual machines hosted on COTS servers; and (iii) NFV Management & Orchestra-

tion (MANO), which is reponsible for the orchestration and the lifecycle management of

the physical and software resources. To be more specific, NFV MANO is divided into
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Figure 2.7: The NFV architectural framework.
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three components: (i) Virtualized Infrastructure Manager (VIM) which monitors, con-

trols, manages, and allocates computing, storage, and network resources with VNFs; (ii)

VNF Manager (VNFM) which performs the VNF lifecycle management; in other words,

VNFM is responsible for instantiating, configuring, updating, scaling up/down, and ter-

minating the VNFs; and, (iii) the Orchestrator which coordinates and manages several

VIMs and VNFMs. The NFV MANO enables to create a Network Service Chaining, also

known as Service Function Chaining (SFC), which is a capability to create a service chain

of connected network services (such as firewalls, network address translation (NAT), and

intrusion protection) and connect them in a VN. This capability can be used by network

operators to set up suites or catalogs of connected services that enable the use of a single

network connection for many services, with different characteristics.

When seeking to instantiate a new network service for a tenant, an operator interacts

with the Orchestrator that requests a new virtual machine instance to the VIM in accor-

dance with the pre-defined policies and requirements set out in the network service de-

scriptor. After allocating the virtual resources to the new virtual machine, the Orchestrator

sends configuration information to VNFM, which takes the necessary steps to instantiate

and configure the VNF properly. Assuming this tenant already has multiple VNFs that

are instantiated, then, on the basis of all the descriptors, the Orchestrator must define the

new network connectivity among the VNFs, which is called a “forwarding graph” (NFV

ISG, 2014). With regard to this graph, the VIM configures the virtual links and virtual

interfaces so that it can forward the packets correctly. It is worth noting that a single VNF
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can represent the degree of cooperation between multiple VNFs; for example, a VNF “se-

curity” can represent a set of VNFs from different vendors, including firewall, encryption,

the intrusion protection system, and deep packet inspection.

2.3 Summary and Discussion

In this chapter, we examined the main concepts and benefits of both network vir-

tualization and network programmability. We also sought to describe the well-known

programmability-related technologies and their main features. A comparison will now be

made of these technologies with regard to seven aspects linked to the management and

deployment of NetApps. The results of this comparison are shown in Table 2.1. It should

be noted that the expression “partial” means that the technology partially supports the

particular aspect or that some studies support it. Following this, the aspects in question

are examined in detail.

Programs - When the area of network programmability was analyzed, it was found

that each technology refers to developed programs that make use of different terms. For

example, when a network that supports Active Networks technology is used, a developer

can install routines into the nodes to add some functionalities. In the same way, if a

network is used to support Script MIB, a developer can install scripts into nodes to carry

out the management. After this, the terms were listed that refer to the elements that the

developers implement. Thus, the ways in which these elements are installed and managed

could be compared.

Level of Programmability - All the technologies mentioned above enable the net-

work to be programmed. However, each technology focuses on different levels. For

instance, OpenFlow focuses on controlling the flows in a network. Thus, a developer can

define new paths for packets that are in accordance with the developed application. On

the other hand, the Click Modular Router is concerned with providing new functional-

ities for the nodes; for example, a developer can use Click Modular Router to create a

new software router that supports an OpenFlow protocol. Three levels of programmabil-

ity were found when the specific technologies were compared: (i) at the device level,

the technologies were grouped together so that the components of the network devices

(physical or virtual) could be supplemented, removed or even altered; (ii) at the control

level, the technologies were classified to enable the network behavior to be controlled,

monitored or changed by, for example, altering the path of the packets; (iii) at the service
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Table 2.1: Comparison of programmability-related technologies.

Technology Programs Level of
Programmability

Application

Distribution Installation Configuration Description Management

Active Networks Capsule; Routine Service Supported Supported Partial Not Supported Not Supported

Mobile Agents Mobile Agent Service Supported Not Supported Partial Not Supported Not Supported

Script MIB Script Control Supported Supported Supported Partial Supported

Click Modular Router Element Device Not Supported Not Supported Not Supported Not Supported Not Supported

NetFPGA Module; NetFPGA
Package

Device Not Supported Not Supported Not Supported Not Supported Not Supported

OpenFlow Application; SDN
Control Software;
Business Applica-
tion

Control Partial Partial Not Supported Partial Partial

ForCES Control Function Control Not Supported Not Supported Not Supported Not Supported Not Supported

P4 P4 Program Control Not Supported Not Supported Not Supported Not Supported Not Supported

POF Application Control Not Supported Not Supported Not Supported Not Supported Not Supported

Juniper Junos OS + SDK Juniper Extension
Toolkit Application

Service; Control Not Supported Supported Supported Not Supported Not Supported

Cisco AON Bladelet Service Not Supported Supported Supported Not Supported Not Supported

Cisco ONE + onePK + XNC Application; onePK
App

Control Partial Supported Not Supported Supported Not Supported

NFV VNF; Network
function

Service Not Supported Partial Supported Supported Supported

level, we grouped together the technologies that can handle and use the data travelling in

the network. It is worth noting that several technologies can be included at more than one

level, but they have a specific focus which we have taken into account. Thus, the main

focus of OpenFlow is on the control level, although a developer could program a typical

application at a services level such as deep packet inspection.

Application Distribution - This aspect represents the capacity to distribute applica-

tions in the network. Thus, it can be assumed that one type of technology supports the

distribution if there are mechanisms for the developers to disseminate their applications

such as repositories or detailed distribution processes.

Application Installation - Here, an account is taken of the ability to install programs

in the network nodes. In light of this concept, P4 offers some facilities that can be used

by developers to deploy their P4 programs; for example, a compiler to turn a device-

independent program into a device-dependent program. However, this compiler creates

an executable file for specific devices, and it does not automate any process to install P4
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programs into devices. For this reason, we believe that P4 does not support the installation

process. It should be noted that there is a difference between installation and instantiation.

Installation is the ability to add a new application to the existing nodes whereas instantia-

tion is the ability to create new virtual instances of network nodes in an NVE. Hence, on

the basis of this definition, NFV can instantiate programs, but it cannot install programs,

even though the result of the process is similar. In view of this, we recognize that NFV

partly supports the installation process.

Application Configuration - We investigated if the technologies are able to configure

a program that is already being executed can be configured. This is based on the assump-

tion that the configuration process is supported if a developer can submit a file for settings

or establish parameters which customize the execution of the applications in the nodes. In

addition, some technologies send the programs to the nodes combined with parameters so

as to customize the execution; in these cases, it is assumed that the configuration process

is partly supported.

Application Description - When seeking to automate distribution, installation, and

configuration processes, some technologies define files that can describe the applications

that have been developed, as well as the actions that they can carry out; these files are

called descriptors. When the technology supports and defines the content of the descrip-

tors, the application description can be regarded as fully supported. In the event of there

being a simple description of applications (e.g., tables in Script MIB), it is assumed that

there is a partial support.

Application Management - This aspect includes the capacity to start, pause, resume,

and stop the execution of programs in the nodes. Hence, it can be presumed that one

technology supports the application management if there are mechanisms or processes

for carrying out the actions outlined above.

It is worth observing that OpenFlow does not support any of the processes that have

been analyzed. However, the OpenDaylight controller gives an opportunity to third-party

developers to submit their applications to a git repository. After the applications have

been reviewed by the community, new versions of the controller make them available to

the other users. Thus, a user can install these third-party applications “on-the-fly”. In

addition, the Beacon controller allows PVN owners to manage the installed applications,

through operations such as starting, pausing, and resume. Even though the support is

provided by the OpenDaylight and Beacon controllers, the partial support for distribution,

installation, description, and management can be attributed to OpenFlow, because these
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processes are not available if another controller is used. Furthermore, as the Cisco XNC

is an OpenDaylight-based controller, it inherits these features from the OpenDaylight.

Despite of this, we classified the Cisco solutions as fully supported because the XNC is

the only controller available. However, in Cisco XNC, the distribution process is more

limited, because the controller is only compatible with the Cisco applications.

As can be seen in this chapter, there are several technologies that enable developers

to program the network. However, there is no unified glossary for PVNs, and thus each

technology refers to the same concepts in different ways. For example, NFV refers to

NetApps as network functions whereas OpenFlow calls them by different names such as

business applications and SDN control software. In light of this, we decided to compile a

glossary which brings together the terms related to the same concepts but found in several

technologies. The glossary used in this thesis is shown in Table 2.2 below.

Table 2.2: Terms used in this thesis.

Term Acronym Definition

Execution Environments EEs One node (physical or virtual) or part of a node that executes
a network application. In this thesis, it is assumed that one ex-
ecution environment supports just one programmability tech-
nology.

Network Applications NetApps Programs coded by developers that provide a network service.
The same network application can be coded to several pro-
grammability technologies. Thus, there are a number of net-
work application packages (one per technology).

Network Application Package NetApp Package An individual file or set of files that contain the code which
provides a network service. Only one package has the files
that support one kind of programmability technology.

Network Service – The functionality provided by a network application or a vir-
tual network appliance.

Programmable Virtual Networks PVNs Virtual networks that support some level of programmability.

Virtual Network Appliances VNAs Virtual machine instances containing one or more network ap-
plications as well as one well-defined execution environment
that supports one kind of programmability-related technology.

Even in an NVE, a virtual network usually consists of virtual nodes from differ-

ent vendors such as Vyatta, Quagga, and Cisco. Moreover, in many cases, different

programmability-related technologies are supported. Today, several authors argue that the

virtual networks which support the NFV and SDN technologies, are those that are most-

commonly used (MATIAS et al., 2015) (AKHTAR; MATTA; WANG, 2016). In addition,
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these technologies offer a flexible and dynamic environment, which are essential require-

ments to overcome the problem of Internet Ossification (FEAMSTER; REXFORD; ZE-

GURA, 2014) (BOUBENDIR; BERTIN; SIMONI, 2016). However, so far, none of the

programmability-related technologies have been able to carry out the distribution, instal-

lation, configuration, and management of network services in heterogeneous PVNs from

the perspective of the PVN owner. In addition, only a few academic research studies sup-

port some of the processes needed (e.g., distribution, configuration, and management),

although all of them are technology-dependent.

Integrating NetApps or even VNAs with production networks is a very hard task. The

PVN owners must have an extensive knowledge of device instructions and NetApps be-

fore they can deploy and manage the network services. As a result, simple tasks, such as

transferring or configuring a new NetApp, are extremely complex and repetitive. All this

is due to several shortcomings that have been found in the PVNs including the following:

(i) neither the technological nor academic world has been able to automate the NetApp

distribution by taking account of heterogeneous EEs; (ii) the same tasks (e.g., distribution

of NetApps) have different and conflicting requirements (e.g., minimal network interfer-

ence or distribution time) in each stage of the service lifecycle (i.e., deployment, opera-

tion, and optimization); (iii) the initial settings must be manually replicated in each EE to

set up the logic for delegating data flows to each new service; (iv) the absence of reposito-

ries and the unavailability of NetApps for download restrict the distribution of developed

services to just a few PVN owners; (v) to add new services, PVN owners must now ad-

dress dependency and conflict issues in the VNAs and also among NetApps; and, (vi)

there is no descriptor to detail the VNAs or NetApps of heterogeneous programmability-

related technologies, and thus prevent the automation of some tasks (e.g., management,

configuration, and conflict detection of NetApps).



59

3 NETWORK MARKETPLACES: THE CURRENT LANDSCAPE, DESIGN GOALS,

AND RESEARCH CHALLENGES

The emergence of PVNs (i.e., networks that support virtualization and programma-

bility) has attracted the attention of academia, industry (e.g., Cisco and Juniper), and

standardization bodies (e.g., ETSI and IETF). This is because it offers an opportunity to

use this paradigm to reduce CAPEX and OPEX, as well as to make innovations in the pro-

duction network, and thus overcome the problem of Internet Ossification. Marketplaces

akin to online application stores have become an essential means of enabling developers

to publish and distribute network applications independently. However, research efforts

are necessary to ensure these online application stores are more widely adopted in fu-

ture computer networks. For a better understanding of this context, in Section 3.1, we

set out a historical roadmap of networking paradigms and marketplaces to assess how

paradigms and technologies have evolved over the years. Furthermore, in Section 3.2.2,

we discuss current online marketplaces to identify the essential design goals and main

stakeholders. In Section 3.3, we highlight the significant challenges that must be faced to

make the adoption of marketplaces a reality in future networks. Finally, in Section 3.4,

we summarize this chapter1 with a brief discussion of network marketplaces.

3.1 A Historical Perspective

In the recent past, there a number of significant shortcomings in the mobile market

that impeded the deployment of applications on mobile devices, namely: (i) the het-

erogeneity of execution environments (i.e., cell phones); (ii) the dependence of appli-

cations on specific technologies or architectures; and, (iii) the fact that the installation

and uninstallation processes were remarkably complex and impossible to carry out by

typical users. Vendors of mobile devices have successfully overcome these shortcomings

through the deployment of online marketplaces. As the name suggests, online market-

places are platform-specific online infrastructures in which developers offer applications

(or just apps), which are consumed by end-users. Although the first marketplaces targeted

apps that were only provided only by the vendors themselves (i.e., third-party developers

1This chapter is based on the following paper: “Network Marketplaces: The Current Landscape, Design
Goals, and Research Challenges”. For more information about this paper see the Appendix.
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were not allowed), Google Play2 for Android and Apple App Store3 for iOS devices, in-

troduced a business model where third-party developers were able to offer apps to users

of mobile devices.

Online marketplaces have evolved alongside the emergence of new technologies. The

popularity of smartphones, for example, created a market for innovative apps, which led

the mobile vendors to make use of their marketplaces as a way to offer applications to

end-users. A historical perspective of online marketplaces is illustrated in Figure 3.1.

Each paradigm corresponds to a secondary horizontal line parallel to the main timeline,

on which the technologies and marketplaces are plotted. These marketplaces were se-

lected on basis of a previous analysis, which indicated that these solutions had a market

dominance (with regard to the number of customers and services available) in every tech-

nology and paradigm that we examined.

Figure 3.1: Timeline of technologies and marketplaces.
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The 3rd Generation Partnership Project (3GPP) released the 3G Networks specifi-

cations in the early 2000s, which was a milestone in the mobile networks. Later on,

in the mid-2000s, the popularity of smartphones boosted the mobile market (OLIVER,

2009). Although several mobile platforms were developed (e.g., BlackBerry, Symbian,

and Windows Mobile), Apple and Google opened up the market of apps, by introducing,

2<https://play.google.com/>
3<https://itunes.apple.com/>

https://play.google.com/
https://itunes.apple.com/
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whole ecosystems comprising operational systems (i.e., iOS and Android) and market-

places (e.g., Apple App Store and Google Play) in 2007 and 2008 respectively, to provide

new apps and features to smartphone end-users. Later, in 2010, Microsoft also adopted

this strategy by making both Windows Phone and Windows Store4 available. As a result,

the combination of mobile platforms and marketplaces allowed third-party developers to

offer a broad range of new apps. By way of illustration, in 2017, Google Play offered

around 3.1 million different apps, and its revenue is forecast to add nearly 10 billion U.S.

dollars to the world economy (PORTAL, 2017).

Although cloud computing emerged at the beginning of the 2000s (ZHANG; CHENG;

BOUTABA, 2010), it was only consolidated from 2006 onwards, when providers started

to offer on-demand services over the cloud. In 2006, Amazon announced an on-demand

computing platform, called Elastic Compute Cloud (EC2), and two years later, in 2008,

Microsoft entered this market by making available the Microsoft Azure cloud computing

platform. Later, in 2010, OpenStack was also introduced as an open-source cloud en-

abler. As a result of the wide adoption of this paradigm, in 2011, the National Institute

of Standards and Technology (NIST) published a definition of cloud computing (MELL;

GRANCE, 2011). At the same time, several companies invested in marketplaces as an

easy way to distribute applications and services over the cloud. Among them, four mar-

ketplaces are worth highlighting: Amazon Web Service (AWS) Marketplace5, Microsoft

Azure Market6, Juju Charm Store7, and OpenStack Catalog8. AWS Marketplace contains

a collection of cloud computing services for EC2. Azure Market provides a collection

of integrated cloud services with solutions for data storage, database management, mo-

bile services, and networking. Juju Charm is a project under the auspices of Canonical9,

which consists of a marketplace for the modeling of applications and services for clouds.

Finally, the OpenStack Catalog hosts ready-to-use applications that customers can deploy

within private or public OpenStack clouds.

In computer networks, SDN is a paradigm characterized by decoupling the network

control (control plane) from the forwarding functions (data plane) (WICKBOLDT et al.,

2015). As seen in Chapter 2, one of the first significant attempts to standardize SDN was

4<https://www.microsoft.com/store/apps/>
5<https://aws.amazon.com/>
6<https://azure.microsoft.com/marketplace/>
7<https://jujucharms.com/>
8<https://apps.openstack.org/>
9Canonical Ltd. is a UK-based privately-owned computer software company that supports several free

and open-source software or tools designed to improve collaboration between free software developers and
contributors, such as Juju Charm Store and Ubuntu Linux distribution.

https://www.microsoft.com/store/apps/
https://aws.amazon.com/
https://azure.microsoft.com/marketplace/
https://jujucharms.com/
https://apps.openstack.org/
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ForCES (YANG et al., 2004), which defined an architectural framework and combined

protocols for establishing communication between control and the forwarding elements.

In 2007, Juniper released the Junos SDK to allow the development of applications in

Junos OS and since 2009, Juniper has maintained the Juniper Developer Network (JDN10)

and Juniper Professional Services Marketplace (JPSM11) to foster a community of Net-

Apps developers. At the end of 2008, however, OpenFlow became established as the

most important SDN implementation. Shortly after the first specification of OpenFlow,

the Open Network Foundation (ONF) became responsible for OpenFlow standardization

procedures (from 2011 onwards). In turn, Hewlett-Packard Enterprise (HPE) released the

HPE VAN SDN controller at the beginning of 2013. Immediately after this, in 2014, HPE

introduced a marketplace for SDN applications (HPE SDN App Store12), which allows

PVN owners to deploy services, by aligning the network with business needs.

With regard to the virtualization of network functions, between 2012-2013, the Eu-

ropean Telecommunications Standards Institute (ETSI) established the NFV architectural

framework (MIJUMBI et al., 2016). NFV removes packet processing from dedicated

hardware middleboxes to VNFs, and runs in VMs hosted on COTS servers. From 2012

onwards, several solutions were put forward for accelerating the adoption of NFV, such

as open platforms (e.g., ClickOS in 2012 and OPNFV in 2014) and frameworks that sim-

plify the development of VNFs (e.g., Cisco Open Network Environment (ONE) in 2013).

In addition, key players have devoted a good deal of effort to facilitate the distribution

of VNFs: Cisco Marketplace13 (released in 2014) offers applications and hardware solu-

tions from Cisco itself, as well as from partner companies, whereas the T-NOVA project14

(started in 2015) proposes a marketplace that enables PVN owners to purchase and deploy

VNFs that can meet their demands. In 2016, the Open Baton project15 made available a

marketplace for downloading VNFs that are compatible with the Open Baton NFV Or-

chestrator and VNF Managers.

As outlined in this section, there is a trend towards marketplaces for each technology.

We believe that PVNs could similarly benefit from a marketplace, for example, by open-

ing up the NetApps market for third-party developers. By doing this, we can capitalize

on these previous efforts and identify the design goals and research challenges that are

10<https://developer.juniper.net/>
11<https://juniper.taskit.io/>
12<https://marketplace.saas.hpe.com/sdn/>
13<https://marketplace.cisco.com/>
14<https://www.t-nova.eu/>
15<https://openbaton.github.io/>

https://developer.juniper.net/
https://juniper.taskit.io/
https://marketplace.saas.hpe.com/sdn/
https://marketplace.cisco.com/
https://www.t-nova.eu/
https://openbaton.github.io/
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needed to achieve a marketplace for NetApps. These issues will be discussed in the next

sections.

3.2 Network Marketplaces

In general, marketplaces can be used to publish and deploy apps in different environ-

ments (MARTIN et al., 2017). As well as this, typical marketplaces for smartphones,

such as Google Play and Apple App Store, rely on proprietary interfaces and having full

control over the APIs and the underlying technology. In view of this, these examples of

marketplaces provide a sophisticated programming environment for developers, but only

for a specific technology; in addition, the interactions between different apps are generally

rather restricted.

In our view, network marketplaces are platforms that enable network operators to

purchase and deploy different network services on their PVNs. It is worth to note that

network marketplaces must be capable of handling a diverse and heterogeneous environ-

ment, in which there is a broad range of devices, protocols, technologies, and NetApps. In

contrast to current mobile marketplaces, the network marketplaces have several additional

aspects and requirements that they must handle and manage. Moreover, production net-

works are very sensitive for both customers and companies, because failures may lead to

the disruption of services and systems, and may cause severe financial losses. Therefore,

in the following, we discuss the main stakeholders, design goals, and research challenges

that, in our view, must be supported by network marketplaces to enable their broad adop-

tion in the future network.

3.2.1 The Main Stakeholders

We envisage that a range of different actors will interact directly with a network mar-

ketplace, for example, PVN owners and third-party developers. We illustrate these two

actors and their interactions in Figure 3.2. However, other actors must be included be-

cause, to some extent, they also take part in the network service life cycle, examples of

these are service providers, infrastructure providers, and network customers. In the fol-

lowing section, we discuss the responsibilities of these actors, their roles, and the way

they interact with a network marketplace.
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PVN owners can purchase NetApps from the marketplace, which will then be re-

sponsible for deploying them in the PVN. The purchasing methods and deployment of

NetApps can change significantly. For example, in a domestic environment, PVN owners

might deploy NetApps as an energy-saving in their network (Figure 3.2). In a university,

the owner could deploy a load balancing NetApp to improve the distribution of workloads

across multiple servers. In a small company, PVN owners could seek a complete moni-

toring solution to observe the network behavior. In addition, the PVN owners are able to

draw up guidelines to purchase NetApps that meet their customers needs. For example, in

an enterprise, the PVN owner may require guidelines for improving security, which might

consist of two NetApps (e.g., Deep Packet Inspection (DPI) and Firewall). As a result,

when a network customer hires this service, the PVN owner must automatically purchase

the corresponding NetApps from the marketplace, which will subsequently deploy them

in the PVN.

Third-party developers might be either vendor development teams or independent pro-

grammers that code and publish NetApps (Figure 3.2). While vendors tend to provide

services for their specific technologies (e.g., Cisco DPI), independent programmers usu-

ally develop general purpose NetApps that offer broad applicability (e.g., a Generic Video

Transcoding). In network marketplaces, the developers must be able to publish NetApps

and choose what fees to levy (see “publish” and “pricing” design goals).

Figure 3.2: Interactions between different roles of the marketplace.
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Like PVN owners, service providers must be able to purchase NetApps to meet both

their own and their customer needs. However, a service provider could acquire a load

balancer to improve the distribution of workloads across multiple mail servers. As well

as this, it could purchase a DPI and a Firewall to form a new network security service,
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which could then be offered to customers. In fact, from the standpoint of the marketplace,

there is no difference between PVN owners and service providers.

Infrastructure providers supply the virtual machines, which will host the PVN nodes.

It should be noted that this actor does not interact directly with marketplaces. Instead,

PVN owners hire nodes to run NetApps. In addition, PVN owners can use their own

physical/virtual infrastructure to host PVN nodes and run NetApps, thus avoiding addi-

tional costs. It is worth noting that the infrastructure providers do not have to relinquish

their autonomy. The network marketplaces will just access the virtual devices that were

opened by the PVN owners.

Network customers use the services transparently; thus, they have no knowledge of

the NetApps, marketplaces, or developers. Although these customers do not interact with

marketplaces, they are essential to the decision-making process because their needs rep-

resent the requirements of new NetApps.

3.2.2 Design Goals

In the following section, we discuss the main design goals that must be taken into

account when developing of the network marketplaces; these were grouped into three

key categories: offer and distribution, network environment, and applications. These

designs goals (highlighted in bold throughout this section) were compiled on the basis

of a thorough analysis of features found in the different areas of existing marketplaces,

which were discussed in Section 3.1. In addition, Tables 3.1, 3.2, and 3.3 summarize the

current panorama of marketplaces. With the aid of these tables, we are able to provide

an overview of the key solutions and indicate how they relate to the design goals outlined

here. We have obtained this information directly from the documentation related to the

marketplaces. It should be pointed out that some marketplaces may require local modules

installed in the PVN to achieve a particular design goal (when applicable this is made

clear in Tables 3.1, 3.2, and 3.3).

Offer and Distribution

As seen above, users play different roles depending on their functions, for instance,

that of a PVN owner or developer. Hence, the first design goal that a network marketplace

should support is access control. This can ensure that the marketplaces can prevent mali-
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cious users from obtaining undue access to services/resources and limit the tasks that they

can carry out (SHABTAI et al., 2010). Thus, users must have different levels of access

to carry out on specific actions, such as downloading NetApps, publishing updates, and

managing deployed NetApps. Before taking any action performed in the marketplace, the

user must first reveal his/her access credentials. If authorized, the user will, for example,

be able to browse in the NetApp Catalog, filter the available NetApps, install NetApps, or

even publish a new NetApp.

All the marketplaces, from different paradigms, enable access control to achieve a

minimum security level and to restrict the number of actions taken, such as publishing

new applications (Table 3.1). In addition, insofar as the marketplaces support more fea-

tures, they create new roles and actions for their customers. For instance, Google Play,

HPE SDN, JDN/JPSM, and Open Baton enable PVN owners to deploy and update the ap-

plications, whereas AWS, Juju Store, Microsoft Azure, and T-NOVA enable PVN owners

to deploy, update, and manage the applications.

The network marketplaces must provide mechanisms to assist the publishing (ARNT-

ZEN; JOHANSEN, 2005) and allow third-party developers to upload and describe Net-

Apps. By interacting with the marketplace, developers can provide valuable information

about new NetApp, such as supported technologies, pricing, access rights, and minimum

hardware requirements. Two key aspects must be taken into account as well. First, the

marketplaces must ensure the authenticity of the third-party developers, by protecting

PVN owners from the installation of malicious NetApps. For example, Juniper adopts a

rigorous procedure to determine whether or not a developer is a viable candidate to publish

a NetApp in JDN/JPSM. Once completed, the developer must have a valid signature and

an authorized administrator must run the application. As a result, Juniper not only protects

the NetApps running on that network but the underlying network as well (GRILICHES,

2009). Second, the marketplace must allow third-party developers to maintain their own

repositories. By having their repositories, developers and companies are able to host the

NetApp packages themselves, thus enhancing the NetApp distribution, as well as pre-

serving their confidentiality and autonomy. Both OpenStack (OPENSTACK, 2017) and

T-NOVA (RAMOS et al., 2014) allow PVN owners and developers to configure additional

external repositories for the installation of new applications.

Marketplaces must allow developers to decide their pricing model, and determine

how NetApps will be charged (LLORENTE, 2017). Several pricing models are currently

in use, two of which should be highlighted (KANDPAL; GAHLAWAT; PATEL, 2017):
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Table 3.1: Overview of marketplaces concerning the design goals of offer and distribution.

General
Information Design Goals of Offer and Distribution

Marketplace Paradigm Access control Publish Pricing Notifications

App Store
Google Play

Windows Store
Mobile

Publish, deploy,
and update Third-party developers Fixed-price Life cycle and updates

AWS Cloud
Publish, deploy,

update, and manage
Amazon services and
certified developers

Pay-as-you-go
and fixed-price

Life cycle, runtime,
and updates

Juju Store Cloud
Publish, deploy,

update and manage
Juju community and

third-party developers Fixed-price Not supported

Microsoft Azure Cloud
Publish, deploy,

update, and manage
Microsoft apps and
certified developers

Pay-as-you-go
and fixed-price

Life cycle, runtime,
and updates

OpenStack Catalog Cloud Only to publish
Free Software and

OpenStack communities Fixed-price

Life cycle, runtime,
and updates

(requires local
modules)

Cisco Marketplace Cloud, NFV Only to publish
Cisco partners and
certified developers Fixed-price Not supported

HPE SDN SDN
Publish, deploy,

and update
HPE SDN and

community apps
Fixed-price Not supported

JDN/JPSM
Cloud, SDN, and
Juniper Solutions

Publish, deploy,
and update

Juniper partners and
certified developers

Juniper policy and
fixed-price

Not supported

T-NOVA NFV
Publish, deploy,

update, and manage
T-NOVA and

certified NetApps

Pay-as-you-go,
T-NOVA policy

(auctions),
and fixed-price

Life cycle, runtime,
and updates

Open Baton NFV
Publish, deploy,

and update
Open Baton only Fixed-price Not supported
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pay-as-you-go and fixed-price. In the first, the developers can stipulate a preset rate (pre-

paid or postpaid) for using every application deployed, which takes account of the time or

size limits (AMAZON, 2016b). AWS and Microsoft Azure are built on the pay-as-you-go

model. In the second model, developers set a price for the application, which means that

the PVN owners pay a fixed price to use it without any time or size limits (CUADRADO;

DUENAS, 2012). Google Play, Apple App Store, and Cisco Market are marketplaces that

rely on the fixed-price model. T-NOVA also offers a new pricing model, which involves

an auction, where whoever offers the highest bid will have access to the entire NetApp’s

code (RAMOS et al., 2014).

The marketplace should allow the configuration of different pricing models (e.g., pay-

as-you-go and fixed-price) and also of several parameters (e.g., payment per hour of

used NetApps or per packets processed). It is worth noting that in the case of third-

party developers, there are also in-app payments (e.g., premium instances) or additional

fees (CUADRADO; DUENAS, 2012); however, network marketplaces do not need to be

aware of these in-app payments.

Notifications can ensure that the stakeholders will be informed of important events

in the marketplace (CUADRADO; DUENAS, 2012) (ESPOSITO; CIAMPI, 2015). On

the one hand, PVN owners can register to receive notifications of relevant events. For

instance, someone might be interested in events such as new NetApp updates or poor

NetApp performance. On the other hand, third-party developers must be told about the

feedback or NetApp failures, which are provided by PVN owners. Furthermore, life cycle

events (e.g., dependency failure, conflicts, and deployment status) are pushed to the PVN

owner by default. As well as providing event-related notifications, the marketplace must

also collect resource monitoring data (e.g., CPU and memory usage).

In academia, several research studies have discussed the design of event brokers

and notification systems (LIU; PLALE, 2003) (ARLEIN; BETGÉ-BREZETZ; ENSOR,

2008) (SALLAM; UDGATA, 2011) (GUSEV et al., 2014). We compare the market-

places, which implement a notification system and the notifications that are supported

(Table 3.1). For example, Google Play, Microsoft Windows Store, and Apple App Store

provide notifications about life cycle events (e.g., installation and deployment status) and

application updates. In addition, Microsoft Azure, OpenStack Catalog, and T-NOVA also

provide notifications about runtime (e.g., SLA and statistical data).
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The Network Environment

The network marketplace must seamlessly interact with the PVN to deploy new Net-

Apps automatically (i.e., through minimum intervention by the owner). For example,

take the case where the PVN supports two technologies: SDN using a POX controller

and NFV using ClickOS. In this case, the marketplace must only allow the deployment

of NetApps if it is designed for these two technologies (SDN and NFV) and execution

environments (POX and ClickOS). Furthermore, NetApps can be grouped into packages

for particular services; for example, a “firewall load balancing service” would generally

contain two individual NetApps (a Firewall and a Load Balancer).

As seen in Chapter 2, the deployment of NetApps can be based on instantiation or

installation (YOU; JUNG, 2014). Some applications are modular and portable; in this

case, the deployment procedure entails instantiating the NetApp in the host environment

(e.g., by deploying a DPI VM over a Xen hypervisor (HUANG et al., 2011)). Other

types of applications may depend on environment configuration or source code compi-

lation; in these cases, the deployment procedure will install the NetApp, and carry out

the required configuration tasks in the execution environment (e.g., by updating an SDN

controller to support multicast flows (HUNGYO; PANDEY, 2016) or uploading a Juniper

Extension Toolkit application to support dynamic Quality of Service (QoS) in Juniper de-

vices (NETWORKS, 2015) (NETWORKS, 2017)). A Generic Deployment Platform is

required for all the necessary actions related to the instantiation or installation of Net-

Apps. The Generic Deployment Platform can integrate a single ecosystem that supports a

range of programmable technologies or find a solution for each specific technology, such

as Management and Orchestration (MANO Orchestrator) (NFV ISG, 2014) for NFV or

OpenDayLight controller (MEDVED et al., 2014) that allow the installation of NFV and

SDN NetApps respectively. In Table 3.2, we summarize which marketplaces can provide

services for installation, instantiation, or just downloading the applications.

Marketplaces must be infrastructure-agnostic, in other words, they must support

the coexistence of different technologies within the same infrastructure. For instance, T-

NOVA seeks to support NetApps regardless of the underlying NFV technology (RAMOS

et al., 2014) (e.g., ClickOS and Dockers) and Cisco Marketplace allows partners and certi-

fied developers to publish NetApps in different paradigms (e.g., NFV and Cloud) (CISCO,

2016) (CISCO, 2017). Adapters and drivers (i.e., translation elements) that address the

particular features of each technology must be used to ensure that the network market-
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Table 3.2: Overview of marketplaces concerning the design goals of the network environ-
ment.

Design Goals of the Environment

Marketplace Deployment Infrastructure-Agnostic Monitoring and
SLAs Management

App Store
Google Play

Windows Store
Install third-party apps Particular mobile OS Not supported

AWS
Instantiate VMs and

install third-party software
Amazon infrastructure

Monitoring and specification
of SLAs for instances

Juju Store
Instantiate containers and

install third-party NetApps
Public and

hybrid clouds Not supported

Microsoft Azure
Instantiate VMs and

install third-party software
Microsoft Azure

infrastructure
Monitoring and specification

of SLAs for instances

OpenStack Catalog
Instantiate and install

app packages, templates,
and environments

Public and
private

OpenStack clouds
Not supported

Cisco Marketplace
Redirects to download

in developer’s site
Cisco technologies Not supported

HPE SDN Download only
HP products and
SDN technology

Not supported

JDN/JPSM Download only
Juniper Devices
and Junos OS

Not supported

T-NOVA
Instantiate VMs

containing the NetApps
NFV technologies

Monitoring and specification
of SLAs for NetApps (VNFs)

Open Baton Download only NFV technologies Not supported
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places are agnostic to technologies and paradigms. Also, new adapters and drivers can be

attached as a means of supporting new Generic Deployment Platforms and technologies,

and legacy drivers can be replaced to enable the deployment of new NetApps (i.e., by

supporting new features).

We envisage that marketplaces will have the ability to handle several adapters to in-

teract with different Generic Deployment Platforms (e.g., Open Source Mano (HOBAN

et al., 2017), OpenDayLight (MEDVED et al., 2014), Cisco eXtensible Network Con-

troller (CISCO, 2014), and OpenStack (OPENSTACK, 2017)). In turn, if the market-

places comprise an entire system for deploying applications, they must manage and con-

trol the drivers, which abstract the nuances and enable network marketplaces to commu-

nicate with the underlying physical or virtual devices from different technologies (e.g.,

OpenFlow, JunOS, and ClickOS) and vendors (e.g., Cisco, Juniper, or Brocade). In our

analysis (Table 3.2), we examine both adapters and drivers to observe which underlying

infrastructures are supported by each marketplace. For instance, AWS only supports the

Amazon infrastructure, while T-NOVA supports several NFV orchestrators.

The network marketplace should also have the ability to monitor the Service Level

Agreements (SLAs) and detect any violations caused by deployed NetApps. For exam-

ple, if a deployed NetApp does not comply with the SLAs (e.g., having throughput of at

least 100 Mbps), the network marketplace should detect this violation and notify the PVN

owner. As one of the key ideas of marketplaces is to abstract low-level configurations and

constraints, it is possible the adopt policies that define high-level goals (SCHEID et al.,

2017). The specific knowledge of NetApps and technologies can be abstracted in the form

of a Softgoal Interdependency Graph16 (SIG) (CHUNG et al., 2000), which is depicted in

Figure 3.3. In the SIG representation, the top non-functional requirements (e.g., Security)

are satisfied by different middle-level non-functional requirements (e.g., Inspection, In-

tegrity, and Availability) that satisfy this requirement, either positively (solid “+” edge) or

negatively (dashed “–” edge), to this requirement. A positive indicator means that when a

NetApp is deployed, it can help to meet a non-functional requirement. On the other hand,

a negative indicator means that the deployment of this NetApp may have a negative effect

on meeting a non-functional requirement.

Network marketplaces could enforce policies to detect SLA violations. In addition,

they could lead to an alteration of the SIG and thus trigger the NetApps deployment.

In this way, when a PVN owner writes a policy that specifies that his/her infrastructure

16It is worth mentioning that the SIG can be altered to reflect the nuances of each environment.
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Figure 3.3: A refinement of non-functional requirements.
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needs Security, this policy will be refined to match the modeled SIG. This means that

the marketplace will select the NetApps that assists positively in satisfying the Security

requirement and will notify the PVN owner of any possible negative effects of the de-

ployment of related NetApps (i.e., negative contributions). In our analysis, we focus on

investigating whether marketplaces can monitor and detect the SLAs violations, even if

they do not support the policies. As can be seen in Table 3.2, AWS and Microsoft Azure

assist in both the monitoring and detection of SLAs violations. On the other hand, Open

Baton, Cisco Marketplace, and HPE SDN fail to support either the monitoring of SLAs

or the detection of SLAs violations.

Applications

Consistency is a paramount design goal when building a successful application (PRI-

TCHETT, 2008). In our view, consistency is also essential for the success of the mar-

ketplaces. Network marketplaces need to maintain a consistent state for the deployed and

available NetApps, underlying technologies, and external repositories. For example, if a

NetApp is removed from the marketplace, or if it ceases to be supported by the developer,

the marketplace must determine the cause of this failure, delete all the related files and

entries from the repositories, and notify the PVN owners (HERBAUT et al., 2015).

Several studies in different areas claim that marketplaces must support multiple exter-

nal repositories (MENYCHTAS et al., 2012) (BUREGIO et al., 2007) (SANTOS et al.,

2017). In this scenario, repositories may become inconsistent (e.g., have conflicting data
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within the same NetApp) or stop working (e.g., through loss of connection or corrupted

files) (SCHEFFCZYK et al., 2003) (VOUILLON; COSMO, 2013); in view of this, mar-

ketplaces must also determine what is the consistent state of external repositories and, if

necessary, repair them. It is worth noting that network marketplaces should at least be

able to temporarily remove the affected NetApps from the catalog. In our analysis (Ta-

ble 3.3), we investigate which actions are supported by each marketplace. For example,

AWS and OpenStack fix broken repositories, notify PVN owners about instances states,

and resolve the problem of unsupported applications (i.e., temporarily remove them from

the catalog), whereas Cisco Marketplace and HPE SDN do not support actions related to

consistency.

Applications may establish several relationships with each other, the two main ones

being dependencies and conflicts (VOUILLON; COSMO, 2013). A dependency is a con-

dition must be satisfied for the correct execution of the NetApp (NFV ISG, 2014). This

condition may be a requirement of another NetApp or even underlying technologies. In

an enterprise environment, a visualization NetApp may depend on a specific monitoring

NetApp to provide visual reports about the network state. If the monitoring NetApp is

not deployed, the visualization NetApp may operate on a restricted mode and provide

more limited reports. In another environment, a reliable multicast NetApp may solely

depend on a dynamic QoS NetApp, which means, the reliable multicast will not operate

if the dynamic QoS NetApp is not deployed (JUNIPER, 2010). In addition, some Net-

Apps may require on particular technologies to be deployed (e.g., a load balancer NetApp

implemented for a POX controller in SDN environments).

Several conflicts can occur in a network environment (DZIUBINSKI; GOYAL; MI-

NARSCH, 2016), such as policy conflicts (CANINI et al., 2015) (HAMED; AL-SHAER,

2006), resource conflicts (NFV ISG, 2014), or even conflicts between NetApps (SCH-

WABE; GUTIÉRREZ; KARL, 2016) (CANINI et al., 2014). The marketplaces must

provide mechanisms that can help developers to describe known conflicts between Net-

Apps as well as their degree of severity. For instance, in a minor conflict, a load balancer

NetApp may reduce the performance of a cache server. In a critical scenario, a trust-based

multicasting NetApp may lead to the improper operation of a DPI NetApp. The market-

place should analyze these conflicts and prevent incompatible NetApps in the same PVN.

Furthermore, the network marketplace must check the conflicts and dependencies before

triggering the deployment of new NetApps.

As can be seen in Table 3.3, we found that Juju Store, Microsoft Azure, AWS, and
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OpenStack Catalog make it possible to describe conflicts and dependency issues and

check them before deploying new apps. However, most network marketplaces fail to ad-

dresss the question of conflicts and dependencies, including Cisco Marketplace, JDN/JPSM,

and HPE SDN. T-NOVA is the only exception to this because it addresses dependency is-

sues among NetApps. Besides, it is worth stressing that mobile marketplaces are able

to encapsulate all the dependencies (e.g., libraries and others applications) in a single

package.

Table 3.3: Overview of marketplaces concerning the design goals of applications.

Design Goals of Applications

Marketplace Consistency Relationships Management

App Store
Google Play

Windows Store

Resolve the problem of
unsupported apps,

and fix broken repositories

Packages encapsulates
apps dependencies

Partial life cycle
(collecting data,

updating, and deleting)

AWS

Resolve the problem of
unsupported apps,

give notification of instances states,
and fix broken repositories

Dependency and
conflict issues

Complete life cycle

Juju Store
Resolve the problem of

unsupported apps
and fix broken repositories

Dependency and
conflict issues

Complete life cycle
(requires local modules)

Microsoft Azure

Resolve the problem of
unsupported apps,

give notification of instances states,
and fix broken repositories

Dependency and
conflict issues

Complete life cycle

OpenStack Catalog

Resolve the problem of
unsupported apps,

give notification of instances states,
and fix broken repositories

Dependency and
conflict issues

Complete life cycle
(requires local modules)

Cisco Marketplace Not supported Not supported Not supported

HPE SDN Not supported Not supported Not supported

JDN/JPSM Not supported Not Supported Not supported

T-NOVA

Resolve the problem of
unsupported apps,

give notification of instances states,
and fix broken repositories

Dependency issues Complete life cycle

Open Baton Not supported Not supported Not supported

Once NetApps are deployed over the infrastructure, we argue that the network mar-
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ketplaces must assist the management of the NetApps life cycle (ERICKSON, 2013)

(VALOCCHI et al., 2017). It is possible to pause, resume, or even configure the execu-

tion of a specific NetApp depending on the performance events of a particular network.

For example, during the peak hour traffic, a PVN owner can reduce the sampling rate (i.e.,

reconfigure) of a deployed DPI to deal with the problem of an overloaded network, and

thus avoid poor customer experience. In a more extreme case, this owner could pause

the execution of the DPI. When there is a reduction in the volume of network traffic, the

PVN owner could set up the default configuration of the DPI execution, or even resume

it, to prevent unwanted access. For this reason, the marketplace must allow PVN owners

to carry out several management tasks, which include installing, starting, pausing, resum-

ing, configuring, updating, uninstalling, and collecting data from a NetApp (RAMOS et

al., 2014) (CISCO, 2014). These tasks are crucial to ensure the correct execution of the

whole network environment complies with the constraints defined by the SLAs, as well

as to meet the needs of the PVN owners.

The marketplace should provide an API to support the management tasks described

above. Today, a number of marketplaces offer similar APIs for these kinds of tasks.

For example, Microsoft Azure API (MICROSOFT, 2016) and AWS API (AMAZON,

2016a) allow customers to create programs to manage virtual hosts, snapshots, images,

and virtual networks. With the aid of local modules, Juju Store (CANONICAL, 2017)

and OpenStack Catalog (OPENSTACK, 2017) can offer several services in the managed

nodes, such as virtual machine instantiation, application management, and underlying

hardware management. In the context of the network, T-NOVA provides an API that

covers the complete life cycle of applications management, whereas Cisco Marketplace,

HPE SDN, JDN/JPSM, and OpenBaton do not support any management tasks in their

applications.

3.3 Research Challenges and New Directions

Network marketplaces must deal with specific challenges and aspects. While con-

ventional marketplaces (e.g., Google Play and Apple App Store) are mostly concerned

with publishing and deployment, network marketplaces (e.g., Juju Charm Store (YANG

et al., 2017a) and T-NOVA (RAMOS et al., 2014)) must address striking aspects, such as

placement, auditing, and the recommendation of NetApps. Besides, there are additional

challenges (e.g., heterogeneity, legacy support, and the continuous introduction of new
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technologies) which must be dealt with. In identifying the leading questions that remain

open from our standpoint, this discussion of future research directions is based on the

previous analysis of the design goals and our experiences in this thesis.

3.3.1 Business Model

Undoubtedly, designing a business model is a critical research challenge for the adop-

tion of network marketplaces. Today, there are two methods that are widely used for

NetApps acquisition: fixed-price and pay-as-you-go. The first one denotes that the cus-

tomers must pay an amount that is determined in advance by NetApps and can use the

service without any time or size limits. Google Play, JDN, and Cisco marketplace are ex-

amples that use this method for NetApps acquisition. The pay-as-you-go method defines

a preset rate (prepaid or postpaid) to use NetApps, that takes account of the time or size

limits. For example, a developer can offer a NetApp for trusted multicasting and a preset

rate per flow route. AWS and Microsoft Azure are marketplaces that use this method for

some NetApps.

In our point of view, the future network marketplaces must employ two other methods

for NetApps acquisition: holding auctions and custom-built method. Although some

marketplaces hold simple auctions (see Subsection 3.2.1), in which the highest bidder

acquires the NetApp, in our opinion, both third-party developers and network customers

should be able to initiate an auction. Thus, in the developers’ auction, the highest bid

from a customer acquires the NetApp whereas, in the customers’ auction, the lowest bid

will mean that the developer has to provide the NetApp for the desired network service.

Finally, in the custom-built method, third-party developers negotiate with customers to

develop a NetApp for specific needs. As a result of this negotiation, there will be an

agreement about the final price, requirements, SLAs, deadlines, and desired features of

the new NetApp, which will still need to be programmed.

3.3.2 Evolution-Aware

Network technologies are in constant evolution. There was evidence of this in the re-

cent paradigm shifts on PVN development, which include the decoupling of data and the

control plane through SDN and the virtualization of the network functions provided by
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NFV. Hence, future marketplaces must find the means to support new network paradigms

seamlessly. Some efforts have need made to develop middlewares that allow the execution

of different NetApps in heterogeneous environments (WETTINGER et al., 2016) (GARCÍA-

VALLS; BELLAVISTA; GOKHALE, 2017).

With regard to the current marketplaces, T-NOVA provides an orchestration layer to

allow the deployment of VNFs, service provisioning, and resource management in NFV

technologies. Juju store offers local modules that can instantiate NetApp containers over

public and hybrid clouds. HPE SDN allows NetApps to be deployed in networks indepen-

dently of SDN technologies. However, those efforts are tailored to particular paradigms,

and still require researchers to develop middlewares with well-defined APIs that can be

incorporated into marketplaces so that NetApps can be executed regardless of the network

infrastructure.

Let us consider a visualization NetApp developed for both SDN and cloud environ-

ments. The marketplace must abstract the particular technological nuances so that the

publishing and deployment can take place in both environments. For example, the PVN

owners could use the same REST methods, e.g., publish() and deploy(), for the publishing

and deployment tasks in SDN and cloud environments. However, both network market-

places and Generic Deployment Platforms must be able to execute the specific commands

in each environment. Moreover, these commands must be comprehensive enough to al-

low, with minor modifications, the NetApp to operate in emerging paradigms, such as

NFV.

There must also be mechanisms to handle management requests in accordance with

the specified features of the environments. For example, a monitoring NetApp, developed

for both SDN and NFV environments, may trigger a predefined action when detecting a

saturated Web server. In an NFV, this action could start another instance of the Web server.

In an SDN environment, it could divide the flows between the several Web servers (if they

exist). It should be noted that third-party developers must provide these different actions

or provide means for the PVN owners to configure them. However, the marketplace must

provide the necessary mechanisms for these different actions by means of the same system

call from the NetApp. Hence, dealing with a heterogeneous environment is a significant

research challenge.
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3.3.3 Auditing

PVN owners should be able to check if the deployed NetApps are providing the ad-

vertised functionalities. This means that the network marketplaces must adopt auditing

mechanisms to gather information about the execution of NetApps. For example, a PVN

owner may deploy a network service for Distributed Denial-of-Service (DDoS) preven-

tion. Upon request, the markeplace must provide reports to the PVN owner with evidence

that the deployed NetApp is actually preventing DDoS attacks. As well as this, PVN own-

ers may not have a wide technical knowledge, and thus it is important that these reports

should be easy to understand.

The auditing reports must determine not only if a NetApp meets the established SLAs,

but also how NetApps affect the environment in which their run. Thus, research efforts

should be aimed at design mechanisms that combine monitoring information (e.g., traf-

fic pattern and resource usage) and diagnostic models (e.g., classification and machine

learning approaches) to produce comprehensive reports. Another factor is that the con-

solidation of the next generation mobile broadband technologies and the expansion of

the Internet of Things (IoT) are pushing NetApps close to PVN owners. This strength-

ens the influence of management decisions (e.g., resource allocation, scaling of NetApps

instances, and chaining strategies) on applications that depend on the execution environ-

ment of the PVN. In this climate, applications that deal with human health and safety

(e.g., decisions made for autonomous vehicles and health-care agents) depend on the pre-

cise functioning of the NetApps running on the PVN, where a single error can put a life

at risk. Moreover, when something goes wrong in any part of the system, it has an impact

on human life. Thus, someone should have a legal liability; the auditing mechanisms can

help to assign responsibilities. For example, they can help to discover the wrong man-

agement decisions or coding errors in NetApps. However, scientific research and moral

discussions must follow the same path so that they can determine these legal responsibil-

ities.

Although in this thesis we classify auditing as an open research challenge for the entire

network environment, currently, there are efforts being made to deal with specific tasks.

In the context of NFV, Bless and Flittner (BLESS; FLITTNER, 2014) set out an auditing

mechanism to help customers to check if the resources allocated by the service providers

are in compliance with the established SLAs. Carella et al. (CARELLA et al., 2015) also

use monitoring information to compare Key Performance Indicators when auditing QoS
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and for an elastic scaling of resources. With regard to SDN, auditing mechanisms provide

an effective way of determining network correctness on the basis of specifications and

tracing the root cause of problems (AKHUNZADA et al., 2015).

3.3.4 Recommendation of NetApps

A plethora of NetApps will be available in network marketplaces, and some may

share similar goals. An open research challenge is to provide the means to distinguish, or

aggregate, these NetApps to meet a specific requirement. For example, security-related

NetApps can offer security capabilities at different levels, such as inspection firewalls for

L3 packets and intrusion prevention systems that detect malicious traffic patterns. The

challenge is how to define which NetApps must be selected by PVN owners to meet their

target requirements.

In the literature, there are several recommendation systems in diverse areas. Burke

proposes a system that combines knowledge-based recommendation and collaborative

filtering to recommend restaurants (BURKE, 2002). Also, clustering techniques have

been employed to address the recommendation of applications and products (LINDEN;

SMITH; YORK, 2003) (LU et al., 2015). Ricci et al. discuss the basic recommender

systems ideas and concepts to understand the techniques used to provide suggestions for

items that are most likely of interest to a particular user (RICCI; ROKACH; SHAPIRA,

2015). Bobadilla et al. aim to provide an overview of recommender systems as well as

collaborative filtering methods and algorithms; they also provide an original classification

for these systems that are incorporating social information to recommend items to the

people (BOBADILLA et al., 2013).

Assigned scores could help to clarify how well each NetApp addresses a specific

non-functional requirement. Thus, a clustering algorithm (e.g., k-means (MACQUEEN,

1967)) could be used to classify the NetApps that share similar scores in a desired number

of clusters (ISINKAYE; FOLAJIMI; OJOKOH, 2015) (JU; XU, 2013). For instance, let

us consider a set of NetApps that has scores for security and performance. Figure 3.4

shows how these NetApps can be grouped into clusters at three different levels. The

x-axis of the graph represents the security requirement score of the NetApp, while the y-

axis shows the performance requirement score. These scores range from 0, meaning that

the NetApp can provide 0% of such a requirement (e.g., security), to 100, which means

providing 100% of the same requirement. This means there are NetApps that provide
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a high-level security, but provide a low-level performance; and NetApps that provide a

low-level security but a high-level of performance.

Figure 3.4: Example of NetApp clustering.
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In a recent study (SCHEID et al., 2017), Scheid et al. proposed an intent refinement

process that clusters VNFs according to user-defined contexts. In another study (JACOBS

et al., 2017), Jacobs et al. provide a mechanism to calculate the affinity score for each pair

of VNFs in a service function chain. However, further research is still necessary to fully

integrate these solutions into network marketplaces. A reliable recommendation mecha-

nism for NetApps must address several challenges, including: (i) the need to consolidate

the classification mechanism, (ii) defining the number of NetApps in each cluster, (iii)

providing ways to assess classification correctness; and (iv) how to establish affinity and

anti-affinity relationships between the NetApps.

3.3.5 Placement

Finding the best placement of NetApps within the substrate infrastructure is difficult

because each PVN owner may have different priorities and goals. Besides, some NetApps

may require a specific location for execution. For example, while firewalls are better

placed at the network edge (i.e., close to the external link), an IP media transcoder (i.e.,

a NetApp that processes media streams) must remain close to the content servers. A
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placement mechanism must take into account predefined criteria and provide automated

and manual mechanisms to define optimal locations for NetApps. The placement criteria

might include: minimal network delay, energy saving, deployment costs, and resource

utilization.

The placement problem has been widely investigated in the literature on virtual net-

works over the years. For instance, Haas et al. (HAAS; DROZ; STILLER, 2001) estab-

lished a framework to enable QoS-aware service deployment over programmable virtual

heterogeneous networks. Wu et al. (WU et al., 2013) proposed an SDN-based solution

to instantiate new virtual nodes and manage the virtual networks through the use of a cen-

tralized server and distributed agents. Moens and Turck (MOENS; TURCK, 2014) sought

to optimally place VNFs and network services on the basis of established policies in the

context of NFV. Luizelli et al. (LUIZELLI et al., 2015) formalize the network function

placement and chaining problem and propose an Integer Linear Programming model to

solve the placement in the NFV context. In SDN networks, Hock et al. (HOCK et al.,

2013) tackled the problem of best positioning distributed controllers. However, network

marketplaces must also enable the easy and flexible placement of NetApps with regard to

both different technologies and concurrent or conflicting placement criteria.

3.3.6 Security

Network marketplaces have particular security issues related to stakeholders and ex-

ternal elements that require special attention. We expect that NetApps will be developed

and published by several third-party developers and that different environments will de-

ploy these NetApps. For these reasons, the marketplace must employ security mecha-

nisms to prevent the environment from becoming a target of malicious attacks. For in-

stance, if a PVN owner acquires a NetApp for energy saving in his SDN network, the

marketplace must assure the integrity of the NetApp and also provide a secure communi-

cation channel (e.g., by using cryptography) to deploy and send management commands

to the NetApp. This would prevent malicious users from interfering with the commu-

nication (e.g., man-in-the-middle attacks to steal sensitive data) or sending commands

to perform undesired actions (e.g., installing malicious software or stopping services).

Besides, malicious users could develop NetApps to initiate attacks against third-party en-

vironments (REYNAUD et al., 2016). In view of this, marketplaces should employ tools

to ensure the integrity of NetApps.



82

Mechanisms to deal with the three cornerstones of security (SCOTT-HAYWARD;

O’CALLAGHAN; SEZER, 2013) (i.e., confidentiality, integrity, and availability) are re-

quired to establish a secure relationship between the PVN owners and developers. The

required functionalities include: (i) validating the NetApps execution, (ii) certifying the

NetApps source code, and (iii) ensuring a secure communication between the execution

environments and the marketplace.

3.3.7 Descriptors

NetApp descriptors are essential elements for the adoption of marketplaces. Cur-

rent network marketplaces (e.g., AWS and OpenStack Catalog) support these descriptors

to represent the main features of NetApps, such as versioning, dependency, and pricing.

However, a number of key issues remain unsupported. For example, with regard to the ap-

plication relationships, descriptors must also help developers to specify conflicts between

the NetApps; in the case of auditing, the descriptors must provide tags that advertise the

NetApps functionalities (e.g., a security NetApp that prevents DDoS attacks); regarding

to recommendation, these tags must express the level at which a given NetApp satisfies

a set of goals (e.g., security and performance); and, with regard to placement, they must

determine which placement criteria should be included. The definition of these tags is not

a trivial task, owing to aspects concerning the subjectivity of the information (e.g., what

data should be included and how to collect it to check if a NetApp is delivering what it

promises) and using significant information (e.g., the placement criteria employed in the

NFV paradigm could be different from those employed in the cloud paradigm).

Several research efforts have concentrated on the development of descriptors as a way

of standardizing applications and their execution within a particular environment. For

example, ETSI proposes the Network Service Descriptor (NSD) to specify the nuances

of NetApps in NFV environments (NFV ISG, 2014) and OpenStack describes the ap-

plications in a manifest using the Murano specifications (OpenStack, 2013) for cloud

environments. As a result, tags, parameters and commands are generally only compatible

with the particular target technology, which makes these descriptors unsuitable for a mar-

ketplace that will help in the management of general purpose technologies. Therefore,

significant research efforts are still required to investigate the provision of standardized

descriptors that can fully accommodate the identified needs.
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3.4 Summary and Discussion

PVNs allow innovative NetApps to coexist in heterogeneous infrastructures and to be

rapidly developed by third-party developers. However, the diversity of NetApps and the

number of upcoming technologies make the management and deployment of NetApps by

PVN owners a laborious task, and also prevents the PVNs from becoming popular. Tra-

ditionally, marketplaces (e.g., mobile application stores) have helped to overcome similar

challenges. In this chapter, we identified and discussed the current research efforts, design

goals, and open research challenges with regard to network marketplaces.

By analyzing the historical perspective of marketplaces, we can notice that market-

places are inherently related to three key categories, namely: offer and distribution, net-

work environment, and applications. On the basis of analysis and the key categories, we

were able to compile a list of the main design goals for a reference network marketplace,

which include the following: (i) access control; (ii) publishing guidelines; (iii) pric-

ing methods; (iv) notifications about important events; (v) deployment of NetApps; (vi)

support of different technologies; (vii) the monitoring/management of SLAs; (viii) the

question of consistency with regard to NetApps and repositories; (ix) the relationship

between NetApps, in special, dependencies and conflicts; and, (x) the management of the

NetApps lifecycle. It is worth highlighting that, in our opinion, this set of design goals

comprises the suitable features of the future network marketplaces.

We also discussed the research challenges raised by the adoption of network market-

places. We found that issues regarding business models, evolution-awareness, auditing,

recommendations, placement, security, and NetApps description, still require consider-

able investigation by researchers. In our view, significant research is needed to integrate

the different technologies and thus provide a flexible and useful PVN. This investigation

should include: (i) discovering the best allocation/sharing of underlying resources (i.e.,

through computing, memory, storage, and the network), as a means to scale up/down

virtual resources an thus optimize the provided service; (ii) defining technologies of

abstractions to enable the standardization of methods to carry out specific actions (e.g.,

deployment and management) within several infrastructures and NetApps; (iii) determin-

ing the best chaining among NetApps to reduce costs as well as improve the performance

of the services; (iv) enabling the simple build up of PVNs by using virtual nodes from

different virtual infrastructure providers; and, (v) security/privacy issues in PVNs that

involve several stakeholders.
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4 APP2NET ECOSYSTEM

In this chapter1, we introduce the conceptual App2net ecosystem to enable PVN own-

ers to install, configure, and manage NetApps. Our ecosystem also helps third-party

developers to distribute and describe NetApps in the context of PVNs. In fact, we di-

vide our ecosystem into two key platforms, namely Marketplace for PROgrammable

Virtual nEtworks (iMPROVE) and Applications to Network (app2net core). It is

worth noting that both platforms can operate in an isolated way, but all the features re-

main available when PVN owners use the whole App2net ecosystem (i.e., iMPROVE and

app2net core platforms).

First of all, we propose iMPROVE as a means of simplifying the distribution and de-

scription of network services provided by NetApps and VNAs in PVNs with multiple

Execution Environments (EEs). We designed a platform for repositories where both Net-

Apps and VNAs can be stored, published, and distributed. We also introduced a concep-

tual marketplace for different technologies, such as NFV, OpenFlow-based, and VyOS.

This marketplace enables PVN owners to select, download, and trigger the deployment

of new network services. Furthermore, the European Telecommunications Standards In-

stitute (ETSI) Network Service Descriptor (NSD) (NFV ISG, 2014) has been extended to

support the NetApps and VNAs of several programmability-related technologies, as well

as to describe issues of conflict.

In completing the lifecycle of a Network Application (NetApp), we also introduce the

app2net core platform to tackle the problem of deploying NetApps with regard to

PVNs. For this reason, the aim of app2net core is to enable PVN owners to transfer,

install, and configure the NetApp package among heterogeneous EEs in a transparent

way. Moreover, we analyze the key features of a set of code transfer techniques, which

are, then, grouped together. Finally, we design different transfer models based on the

set of techniques previously described. These models are employed to transfer NetApp

packages and configuration files among the PVN nodes to achieve particular goals (e.g.,

minimal distribution time and minimal overhead).

The rest of this chapter is structured as follows. In Section 4.1, we present an overview

of the App2net ecosystem architecture as well as the interface for the two key platforms.

Section 4.2 provides a detailed account of the iMPROVE platform and our extension for

1This chapter is based on the following papers: “App2net: A platform to transfer and configure appli-
cations on programmable virtual networks” and “iMPROVE: Enhancing the Introduction of Services on
Programmable Virtual Networks”. For more information about these papers see the Appendix.
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the ETSI NSD. In Section 4.3, we describe the app2net core platform and the its

main components. There is also a discussion of the techniques employed and the models

designed for transferring NetApps packages are introduced. Section 4.5 concludes with

some final remarks about this chapter.

4.1 An Overview of the App2net Ecosystem Architecture

The purpose of the App2net ecosystem is to deploy, manage, and distribute NetApps

in PVNs that use heterogeneous EEs. These EEs can be hosted on virtual or physical

devices. We consider that the deployment consists of three key actions, namely transfer,

install, and configure NetApps. In Figure 4.1, we provide an overview of the interactions

of the external stakeholders to our proposed ecosystem. At the outset, it is assumed

that there is a traditional best-effort, TCP/IP network that mediates the communication

between the App2net ecosystem and PVN nodes.

Figure 4.1: Overview of the external interactions of the App2net ecosystem.
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Two of the main stakeholders are discussed here: third-party developers and PVN

owners (Figure 4.1). The developers can make NetApps and their initial functional set-

tings available, as well as the VNAs. All these files are stored in different repositories

(see “Databases and Repositories” in the Subsection 4.1.1), namely, DB & Statistics, Net-

App Catalog, and NetApp Code Repository (NACR). The developers or even companies

sometimes prefer to keep the files that provide the network service within their own in-

frastructures. This requires the developers to install a driver into these repositories, which

are called External Third-party Repositories.

The PVN owners interact with a Generic Virtual Platform Manager (e.g., OpenStack

(OPENSTACK, 2016), Eucalyptus (EUCALYPTUS, 2015), or Aurora (WICKBOLDT et

al., 2014)) to set up a PVN on one or several Infrastructure Providers. However, it should

be pointed out that these steps are beyond the scope of our ecosystem. After this, the
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PVN owners can select and trigger the deployment of a NetApp or VNA, which provide a

new network service (e.g., a deep packet inspection firewall, video encoding/transcoding,

and trust-based broadcasting) in their PVNs. To this end, App2net offers a Web Portal

that allows PVN owners to carry out actions without knowing the specific features of

the underlying environment. Through this Web Portal, the PVN owner can invoke the

elements needed to deploy the NetApps or VNAs, and thus avoid complex interactions

with it.

In Figure 4.2, we provide an overview of the general elements of the App2net ecosys-

tem. Let us suppose that a developer wants to release a new network service, for example,

a reliable multicast. First of all, it must first send the NetApp package, VNA image, and

NAD file through the Developers Portal (see “The Web Portal” in the Subsection 4.1.1)

of the App2net ecosystem. Then, the iMPROVE platform stores these files in the corre-

sponding repositories and makes the reliable multicast network service available in the

Marketplace.

Figure 4.2: Overview of the general elements of the App2net ecosystem.
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First of all, the PVN owner interacts with App2net through of the PVN owner’s Por-

tal. Then, the PVN owner provides information about the PVN (e.g., node addresses

and its supported programmability technologies). Afterward, the PVN owner selects the

NetApps that must be deployed in the Marketplace. As can be seen in Figure 4.2, these

NetApps and their initial functional settings are stored in NACR and NetApp Catalog

repositories. Following this, the PVN owners can tune these initial functional settings so

as to adjust the execution of the new network service to their PVN.
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To be more specific, when installing a new network service, the iMPROVE platform

sends the NetApps list (including the dependent packages) to the app2net core plat-

form and supplies information about the nodes. After this, the app2net core carries

out the necessary actions to install and configure these NetApps into PVN nodes following

the tuned settings. Next, the PVN owner is able to collect data and statistical information

from the NetApp execution. It is worth noting that a single PVN node can host several

different NetApps. Below, we outline the general elements of the App2net ecosystem that

enable the deployment and description of new network services transparently.

4.1.1 General Elements of the App2net Ecosystem

The App2net ecosystem requires several key elements to support its processes, includ-

ing Databases and Repositories, Web Portal, User Manager, and Repository Gatherer. All

these elements enable the App2net ecosystem to: (i) interact with Developers and PVN

owners; (ii) store relevant data about PVNs, NetApps, VNAs, users, and the relationships

between them; (iii) send notifications to stakeholders and run the user management; and,

(iv) communicate and manage the repositories. The main features of each element are

described in detail below.

The Web Portal

We design the Web Portal to be responsible for all the interactions between the plat-

form and the essential stakeholders, and thus allows them to register new platforms or

components, record PVN information, and trigger actions in the App2net ecosystem. We

suggest dividing the Web Portal into three main modules: the Developer’s Portal, the

PVN Owner’s Portal, and the Marketplace. The Developer’s Portal provides interfaces

and forms, which allow the developers to register NetApps, VNAs, and external reposito-

ries. These interfaces also enable developers to offer, withdraw, and update their NetApps

and VNAs. Finally, developers can access the feedback provided by the PVN owners as

well as track and manage reported bugs.

In the PVN Owner’s Portal, PVN owners can register and configure their infrastruc-

tures where each PVN is formed. It is also possible to obtain an overview of all the

network services deployed and a summary of how the NetApps are executed. Through

this Portal, PVN owners can customize the settings of the network services deployed and,



89

thus adapt them to their environments and needs. It should be noted that this Portal will

show the messages and notifications arising from the network services or App2net ecosys-

tem elements. Last but not least, the Marketplace has a set of several Web interfaces that

can be used by the PVN owners to find and choose the NetApps. Once the PVN has

been configured, a user can trigger the deployment of the NetApps and VNAs required

by using the Marketplace. If the deployment results in an error, the PVN owner will re-

ceive the message error via Marketplace and must solve the problem by trying to make

the deployment again.

User Manager

The User Manager element sends notifications to stakeholders and is responsible for

the user management process. This element is split into two modules, essentially User Ac-

cess Controller and User Notifier. Before interacting with the platform, the PVN owner’s

credentials have to be checked. This verification must be made by using asymmetric keys

and involves the User Access Controller carrying out actions related to user management,

like authenticating and granting permission. This module also restricts access to the net-

works and related operations depending on the permissions assigned to each user, and

prevents the PVNs and nodes from being handled improperly.

The User Notifier sends messages to both the essential stakeholders: the developers

and PVN owners. When a NetApp or VNA update has been registered, the User Notifier

sends a message containing data about the update, which can be done automatically (see

Subsection 4.2.1). However, if an error occurs during the update process or if the PVN

owner wishes to authorize this process, the Notifier module requests the PVN owner to

make an intervention. It should be noted that if an error occurs and the owner does not

address the problem, this module will periodically require an intervention, depending

on the owner’s preferences. If there is no problem, the process continues as normal.

Moreover, the Notifier informs the developers when a PVN owner reports a new bug or if

there is a conflict in their network services.

The use of asymmetric keys allows the App2net ecosystem to perform two important

functions: (i) authentication, in which the public key checks if the holder of the paired pri-

vate key that requests the login; and (ii) message encryption, in which only the paired pri-

vate key holder can decode the message encrypted with the public key. Thus, an essential

step for ensuring secure communication between App2net and the third-party developers,
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is the generation and change of these asymmetric keys. First, a user must generate his/her

pair of keys (i.e., a public and private key) using, for example, a Rivest-Shamir-Adleman

(RSA) algorithm implementation. Then, the developer downloads the public key from

the App2net ecosystem and sends his/her public key to the registration process. After

the public keys have been changed, all communication between the App2net ecosystem

and developers must be established in a secure channel using the RSA keys to autenti-

cate them, and thus mitigating classic network attacks (e.g., man-in-the-middle, spoofing,

eavesdropping, and other malicious actions). Likewise, PVN owners must also generate

and send their RSA public keys to ensure the security of communication between PVNs

and App2net ecosystem.

Databases and Repositories

We recommend that all the necessary data are stored in three different elements: DB &

Statistics, NetApp Catalog, and NetApp Code Repository (NACR). In fact, these elements

can be implemented in just one database; but, we advocate in favor to split them up to

allow the developers and companies to host the NetApp packages and VNA images in

their repositories, and thus enhance the NetApp/VNA distribution. Hence, the DB &

Statistics stores all the system data and NetApp statistics, which includes the following:

feedback from the users and reviews, updates, description of services, reported bugs, the

number of downloads, description of the PVNs, user credentials, the repository data, and

public/private keys.

The App2net ecosystem (to be more specific, the iMPROVE platform) saves the con-

tent of the NAD files in the NetApp Catalog, and thus includes the vendor, version, cate-

gories, dependencies, conflicts, virtual hardware requirements, internal forwarding graph,

supported technologies, hashes (i.e., checksums used to verify the integrity of NetApp

packages), initial functional settings, and required commands. In addition, the App2net

stores all the NetApp packages and VNA images in the NACR. As mentioned previously,

there may be multiple external online repositories, which are managed by third-party de-

velopers or companies. It is worth pointing out that these repositories must also contain

NAD files so that the Repository Gatherer can import them, and register the related Net-

Apps and VNAs via the iMPROVE platform.
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The Repository Gatherer

When desired NetApps are available in the NACR, the PVN owner only needs to

request their installation by the Marketplace. However, the developers or even companies

sometimes wish to store NetApps and VNAs in their own repository. In this case, a

developer registers its repository rather than NetApps or VNAs and provides data such as

the IP address, access credentials, and asymmetric keys. Then, the Repository Gatherer

installs the correct driver. This driver collects information about available NetApps and

VNAs and establishes the communication with the App2net ecosystem and PVN nodes.

The Repository Gatherer also configures, communicates, and manages the repositories

and keeps an updated list of available NetApps and VNAs. To do this in an External Third-

party Repository, the Gatherer imports all the available NAD files and sends them to the

iMPROVE platform for registration. In addition, it must periodically check that NAD

files include or update the records in the NetApp Catalog; in this way, the developer can

configure the time interval required for this verification process. It should be stressed that

the NetApp package or VNA image must remain in the External Third-party Repository.

Before deploying a new network service, the Repository Gatherer validates the used

External Third-party Repositories that are included by using the asymmetric keys to en-

sure their authenticity. After this, the Gatherer checks the integrity of all the used NetApp

packages or VNA images, by comparing the calculated hash with the hash stored in the

NetApp Catalog. Moreover, the Gatherer sends the hash data to app2net core plat-

form; this means that the app2net core sends this hash to the PVN nodes that will

check the integrity of the NetApps after downloading them. When the deployment pro-

cess has ended, the app2net core stores the deployment data in the DB & Statistics.

If there is no communication between the External Third-party Repositories and PVN

nodes, the Repository Gatherer must be given all the necessary files from the repositories

(i.e., the NetApp package and its dependent packages) and send them to the PVN nodes

via the app2net core platform. It should be noted that communication between the

PVN nodes and External Third-party Repositories may not be established for several rea-

sons, such as unauthorized access, firewall restrictions, and connectivity problems.
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4.1.2 App2net RESTful API

The App2net ecosystem reveals some of its main functions through a RESTful API,

which allows interested third-party developers to extend or automate a number of actions,

including: (i) monitoring NetApps and PVNs, (ii) collecting data about management

tasks, (iii) rollbacking IT changes if an error occurs; and (iv) triggering predefined con-

figurations when some thresholds have been reached. As a result of the modular architec-

ture of the App2net ecosystem, an interested developer can replace an existing element

(e.g., Conflict Estimator, Dependency Verifier, or Infrastructure Handler) with a new one.

The new element must be able to carry out at least the same actions as the replaced ele-

ment. Furthermore, third-party developers can program new modules that contain addi-

tional features. Thus, PVN owners can plug these modules into the App2net ecosystem

(e.g., a billing module, pricing module, or recommendation module).

As can be seen in Figure 4.2, developers can also create entirely new platforms (e.g.,

Visualization Platform, Policy Platform, Generic Virtual Platform Manager, and Monitor-

ing Platform). We distinguish between modules and platforms through their interaction

with the App2net ecosystem. The modules provide new Web interfaces as well as some

relevant data for the App2net elements and interact via App2net RESTful API. For exam-

ple, a new Affinity Estimator module can collect data about deployed NetApps and PVN

nodes, which are provided by the app2net core platform. Thus, this data could be

used in a recommendation calculus to estimate which new NetApp is best suited to the

environment of the deployed NetApps. In this way, the iMPROVE modules could use this

recommendation for offering new NetApps to PVN owners via the Marketplace.

Platforms also interact via App2net RESTful API, but, they just trigger actions or

consume the data made available by the App2net ecosystem. For instance, a Policy Plat-

form could trigger management actions in nodes to set up the entire PVN and establish

predefined high-level rules. This can be illustrated by the following situation, an owner

observed high traffic in his/her PVN with a high rate of blocked flows during a time inter-

val lasting 07:00 AM to 10:00 PM. However, during the night, the DPI receives almost no

flows because the company is closed and none of the employees is using the network. To

reduce energy expenditures, the PVN owner could write the following policy “pause the

DPI from 10:00 PM to 07:00 AM”. Thus, the Policy Platform could trigger a management

action to pause the DPI network service in all the PVN nodes during the predefined time

interval (from 10:00 PM to 07:00 AM). In this case, the App2net ecosystem will pause
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the DPI network service, and thus reduce the amount of required processing.

In another example, a Visualization Platform was able to get data about the PVN (e.g.,

PVN nodes, deployed NetApps, and costs) to compile a new visual report that enables

PVN owners to have a better understanding of how to reduce operational and capital

expenditure. Although this is not specified in the methods, we would like to highlight

the fact that all the requests must generate an embed token (one per session) in the login

process (login method). The main exposed methods are listed below.

• Method: checkUpdates.

Parameters: PVN or Network service identifier.

Operation: Generates a list of all pending updates.

Return: List of pending updates.

• Method: collectExecutionData.

Parameters: PVN; Network service identifier.

Operation: Returns relevant information about the NetApp execution. The returned data include

those described in the NAD file by developers and the default data (see “output” in the Sub-

section 4.2.4).

Return: Returns a dictionary containing all the information about the network service execution in

all the PVN nodes in an aggregated way.

• Method: configurePVN.

Parameters: VXDL file.

Operation: Through this method, the App2net ecosystem can read a VXDL file and store data

about the PVN in the DB & Statistics, such as node addresses, supported technologies, ac-

cess credentials, the number of interfaces, supported protocols, and supported programming

languages. In addition to receiving and storing PVN information, this method triggers the

important tasks in our ecosystem. One of these tasks is installing drivers into the PVN nodes.

These drivers make it possible to get data about the EE in each node as well as to receive sys-

tem calls from the App2net ecosystem. In this way, our ecosystem can trigger processes and

execute commands straight into PVN nodes, for example, by installing a NetApp, collecting

data, and configuring network services.

Return: Success or failure.

• Method: deployNetworkService.

Parameters: PVN; Network service identifier; Technology identifier.

Operation: Deploys a network service in the PVN. The deployment of a network service can re-

sult in two different actions, namely installation or instantiation. The former means that the

NetApp package will be installed in the PVN nodes. The latter means that a VNA image will

be started (i.e., a new node) in the PVN.
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Return: Success or failure.

• Method: getCompatibleList.

Parameters: PVN identifier.

Operation: Generates a list of compatible network services, in other words, network services that

can be deployed in the PVN for the use of technologies and available EEs.

Return: List containing compatible NetApps and another list containing compatible VNAs.

• Method: getConflicts.

Parameters: Network service identifier; PVN identifier or Technology identifier and EE.

Operation: Produces a conflict list in accordance with the requirements of the installed NetApps

and dependency tree.

Return: List containing all known conflicts.

• Method: getData.

Parameters: PVN; Network service identifier; Data identifier.

Operation: Returns the output about the network service execution. Among the available execution

data are those described in the NAD file and the default data (see “output” in Subsection

4.2.4).

Return: Returns a dictionary with information about the network service execution. This method

only returns one parameter, but the data returned is about all the PVN nodes.

• Method: getDependencies.

Parameters: Network service identifier; PVN identifier or Technology identifier and EE.

Operation: Generates the dependency tree.

Return: List containing all known dependencies.

• Method: getDeployedNetworkServices.

Parameters: PVN identifier.

Operation: Generates a list of deployed network services.

Return: List containing installed NetApps and another list containing instantiated VNAs.

• Method: getFeedbacks.

Parameters: Network service identifier.

Operation: Generates a list of all the users feedbacks and scores already reported.

Return: List containing all the users feedbacks and scores.

• Method: getNADFile.

Parameters: Network service identifier.
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Operation: Returns the NAD file of a network service.

Return: NAD file.

• Method: getStatisticsAndInfo.

Parameters: Network service identifier.

Operation: Returns data about the network service, including the vendor, the number of down-

loads, related packages, supported technologies, known conflicts, and dependencies.

Return: Dictionary with related information.

• Method: listPVN.

Parameters: credentials.

Operation: Lists all the PVNs registered for the user.

Return: A dictionary with data about all the PVNs registered.

• Method: listRepository.

Parameters: None.

Operation: Creates a list with information about all the registered NACRs.

Return: A dictionary containing all the information about the registered NACRs.

• Method: login.

Parameters: credentials.

Operation: Allows a remote user or system authenticate in the App2net ecosystem. This method

returns an encrypted token that must be used in all other requests.

Return: tokenCrypt.

• Method: notifyEvent.

Parameters: PVN identifier; Network service identifier; Type; Event.

Operation: This method allows an event notification to be created for a network service.

Return: Success or failure.

• Method: notifyUsers.

Parameters: Message; Network service identifier.

Operation: Sends notifications to subscribed users via the Web Portal.

Return: Success or failure.

• Method: publish.

Parameters: NAD file; path or URI to packages/images.

Operation: Triggers the NetApp or VNA registration process.
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Return: Success or failure.

• Method: registerRepository.

Parameters: URI; Credentials; Assymetric public key.

Operation: Registers a new external NACR maintained by third-party developers or companies.

Moreover, the App2net ecosystem will import all NAD files and make these new network

services available in the marketplace.

Return: Success or failure.

• Method: removeNetworkService.

Parameters: PVN; Network service identifier; Technology identifier.

Operation: Removes a network service from the PVN. The removal of a network service can result

in two different actions, namely uninstallation and deletion. The first one means that the

NetApp package will be uninstalled from the PVN nodes. While the second one means that

the VM that hosts the VNA image will be deleted from the PVN.

Return: Success or failure.

• Method: retrieveActions.

Parameters: Network service identifier.

Operation: Generates a list of all supported actions and parameters.

Return: List of available actions.

• Method: retrieveDeployedServices.

Parameters: PVN identifier.

Operation: Returns a list of all deployed network services (NetApps and VNAs) containing iden-

tifiers and technologies.

Return: List of all deployed network services (NetApps and VNAs).

• Method: retrieveService.

Parameters: Parameters; PVN identifier.

Operation: Returns a network service list based on information about parameters.

Return: List containing network services.

• Method: runAction.

Parameters: PVN identifier; Network service identifier; Technology identifier; Action; Parame-

ters.

Operation: To execute a specific NetApp or VNA action through the PVN nodes that support a

specific technology.

Return: Success or failure.
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• Method: sendFeedback.

Parameters: Network service identifier; Feedback; Score.

Operation: Sends the user feedback and score for a network service to the iMPROVE platform.

Return: Success or failure.

• Method: sendMessage.

Parameters: User; Type; Message.

Operation: This method allows rhe network services, new platforms, or even new modules, that are

plugged in the App2net ecosystem, to send messages to a user. Network services, platforms,

and modules can only send messages to users that have agreed to receive messages from them.

Return: Success or failure.

• Method: selectPackage.

Parameters: Network service identifier; PVN.

Operation: Selects the correct version of the package by taking account of conflicts, dependencies,

and supported technologies.

Return: URI to packages/images; list of dependent packages.

• Method: signIn.

Parameters: Assymetric public key; credentials.

Operation: Registers a new user in App2net.

Return: Success or failure.

• Method: subscribeEvents.

Parameters: PVN identifier, Network service identifier, or Module identifier (Source); Module

identifier or Network service identifier (Destination).

Operation: This method allows a module or network service to receive generated events from a

PVN or during the execution of another network service or module.

Return: Success or failure.

• Method: updateNetworkService.

Parameters: PVN; Network service identifier; Technology identifier.

Operation: Updates a network service in the PVN. To update a NetApp, the app2net core

retrieves data about the installation or the last update process. By means of this data, the

Package Transfer module is able to validate the NACR or External Third-party Repository;

then, it informs the NACR and PVN nodes about the guidelines for the package transference.

After compatible nodes have obtained the NetApp package, the Package Installer recovers the

required actions from the NetApp Catalog. Following these actions, the Installer saves the

current configuration, and stops the NetApp execution in all the nodes that have the network
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service. Next, the Package Installer runs the necessary actions to update the NetApp. Finally,

the NetApp Configurator sets up the configuration that has been saved. In the case of a VNA

image, the NetApp Manager gets the current configuration from the PVN nodes; then, it

deletes the VM of network service and instantiates another VM with the new VNA image

version. Finally, the Configurator sets up the saved configuration for the new node.

Return: Success or failure.

• Method: unpublish.

Parameters: NAD file.

Operation: Removes a NetApp or VNA from the marketplace.

Return: Success or failure.

• Method: unregisterRepository.

Parameters: Repository identifier.

Operation: Unregisters an external available NACR. It is worth to note that the NAD files records

will be deleted from the NetApp Catalog and the network services will be removed from the

marketplace.

Return: Success or failure.

• Method: unsubscribeEvents.

Parameters: PVN identifier, Network service identifier, or Module identifier (Source); Module

identifier or Network service identifier (Destination).

Operation: Deletes the subscription to receive events from a PVN, network service or module. Af-

ter the unsubscription, no event from the PVN or network service will be sent to the receiver.

Return: Success or failure.

4.2 iMPROVE - Marketplace for PROgrammable Virtual nEtwork

iMPROVE simplifies the introduction of new services in PVNs that are based on dif-

ferent network technologies. It is setting up a platform that allows developers to send

their network programs (i.e., NetApps) to an online repository. This platform also enables

PVN owners to download and install NetApps that are compatible. When a PVN owner

has chosen the NetApp or Virtual Network Appliance (VNA), iMPROVE receives this

information from the Web Portal and carries out the necessary actions to select the correct

version of NetApp and solve issues of dependency and conflict. After this, iMPROVE

triggers specific commands to install and configure the NetApp or instantiate the VNA

through the app2net core platform (see Section 4.3).
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Figure 4.3: The conceptual architecture of iMPROVE.
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In more specific terms, iMPROVE carries out several actions including the following:

(i) publishing and storing NetApps packages, VNAs images, and the NetApp Descriptor

(NAD) file; (ii) enabling PVN owners to find and download NetApps and VNAs; (iii)

verifying issues of conflict; (iv) checking dependencies; and (v) establishing commu-

nication with the app2net core platform to trigger processes. Thus, the iMPROVE

platform acts as an orchestrator, since it contacts other elements and requests data from

them. For instance, the platform retrieves information about NetApps from the NetApp

Catalog, so that it can determine the compatibility of NetApps. It also attempts to match

its requirements with those of the PVN (e.g., supported programmability technologies and

used EEs), by finding out and displaying what compatible NetApps there are in the Mar-

ketplace. Finally, the PVN owner can select which NetApps will be installed. In Figure

4.3, the main components of iMPROVE are shown: NetApp Publisher, NetApp Retriever,

and NetApp Selector. In the next section, there is a description of these components and

their modules.
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4.2.1 The NetApp Publisher

We first describe how a developer releases a new network service. It must first send

the NetApp package, VNA image, and NAD file through the Web Portal. Later, the

NetApp Publisher registers it and makes the network service available to other users in the

Marketplace, as a means of allowing the PVN owners to deploy it in their networks. The

NetApp Publisher is split up into two main modules to ensure the platform is kept simple

and modular, as described below: NetApp Register and Update Checker. The NetApp

Register module imports data from the NAD file and stores them in the NetApp Catalog.

After this, this module checks whether the network service has been registered, (i.e., if

there is a record containing the vendor and identification in App2net DB & Statistics). If

there is no record, the Register stores the initial data about the network service lifecycle

in the DB & Statistics, such as categories, the company or developers responsible, last

update, and descriptive features.

When the developers update an existing network service (i.e., when there is a record

containing the same vendor and identification, but the version is different), the Update

Checker module checks which PVNs are affected. This module obtains the preferences of

the PVN owners from App2net DB & Statistics, and checks which NetApps packages or

VNA instances need to be updated. Some NetApps/VNA cannot be automatically updated

because of critical issues such as conflicts, unsuitable virtual hardware requirements, or

even the need for user confirmation. In these cases, the Checker sends these problems to

the User Notifier for human intervention.

4.2.2 The NetApp Retriever

The developers and PVN owners interact with the NetApp Retriever component,

which carries out a number of actions at various stages of the process. The main function

of the NetApp Retriever is to assist the users in finding the required services provided

by NetApps or VNAs. Furthermore, the Retriever collects the feedback from the users

and sends it to developers and thus provides important data about the NetApp lifecycle

(e.g., bugs found or new features requested). For the sake of simplicity, this component is

divided into two modules: Catalog Explorer and Feedback Collector.

When choosing a network service, the PVN owner interacts with the Catalog Explorer

through the Marketplace. First, the Explorer retrieves information about the PVN from



101

App2net DB & Statistics such as supported technologies, installed NetApps, feedback

from the users, and virtual hardware specifications. The NetApp Catalog provides data

about the available NetApps and then the Explorer module conducts a matching operation

with these data, which only shows the NetApps and VNAs that are compatible. The PVN

owner can specify the categories and keywords that are needed to refine the obtained

results, and thus enhance the search process. Finally, after a network service has been

chosen, this module triggers the NetApp Selector so that it can pick out the correct NetApp

package or VNA version and checks if there are any possible conflicts and dependencies.

The Feedback Collector is responsible for obtaining the users’ evaluations for each

network service and storing them in App2net DB & Statistics. These evaluations contain

a textual review and a rating score. The Collector module enables the users to report

bugs, errors, and unknown conflicts. Thus, this module is able to notify the responsible

developers of any problems that must be resolved. Likewise, when the developer submits

a patch to correct a bug, the Collector informs the interested PVN owners (who then report

it) about the update that has been received.

4.2.3 The NetApp Selector

This component is responsible for selecting the correct NetApp package, while taking

into account the version, virtual hardware requirements, supported technologies, and other

installed NetApps. It should be noted that the Selector only determines which version of

the NetApp package will be used on the basis of issues of dependency and conflict. For the

sake of clarity and simplicity, we have divided the Selector into three modules: Version

Resolver, Dependency Verifier, and Conflict Estimator.

Both of the action flows from the developers and owners arrive at the Version Re-

solver (Figure 4.3). Initially, this module requests NetApp Catalog information about all

the versions of the desired network service. On the basis of the installed NetApps, instan-

tiated VNAs, and PVN data, the Resolver identifies the last version that is compatible;

this means, the last version of the NetApp package or VNA image that is supported by the

PVN and in accordance with both the technologies and virtual hardware requirements.

Although the Version Resolver selects a compatible version, there are sometimes con-

flicts with the installed or dependent NetApps and, in this case, in the next iteration, the

Resolver selects another NetApp version.

Once one NetApp or VNA version has been selected, the Dependency Verifier module
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will check the dependency tree. The Verifier does this by obtaining the NetApp depen-

dencies, which are given information by the developers in the NAD file and stored in the

NetApp Catalog. Afterward, this module finds out if the NetApps have been installed in

the PVN and then, determines which dependencies are needed. In this way, the Verifier

determines the nested dependencies that form the NetApps list for each dependent Net-

App. It should be stressed that if a dependent NetApp has already been installed, it is not

included in the NetApps list.

On the completion of these steps, the Conflict Estimator module conducts the conflict

analysis. First of all, this module obtains the necessary information, such as the installed

NetApps, the dependency tree, and supported technologies. The Estimator then compiles

the conflicts of all the installed and dependent NetApps in a known conflicts list. Fol-

lowing this, the Estimator establishes if there is any dependent or installed NetApp in it.

Whenever the Estimator finds a conflict, the selection process restarts and returns to the

Version Resolver which then ignores the used NetApp version in the next iteration. If by

the end of the process, no available version fulfills the requirements, the PVN owner is

requested to make an intervention to address the problems that have been found. In addi-

tion, the module registers a new bug for the responsible developers with the used data, and

sends a message to inform about the bug. It is important to note that the developers can

employ several mechanisms to identify the conflicts and find other means of mitigating

them.

4.2.4 NetApp Descriptor

The ETSI specifies the NSD file (NFV ISG, 2014) which provides details of the net-

work service in a simple XML notation, including the vendor, identification, version,

dependencies, and virtual hardware requirements. In this work, the ETSI NSD has been

extended to support all the features of the App2net ecosystem. Our extension, called

NetApp Descriptor (NAD), makes it possible to describe the NetApps and VNAs of sev-

eral programmability-related technologies as well as their specific features. This is based

on ETSI NSD, which only supports the NFV technology; thus, several tags have been

included to support different technologies.

Our extension includes two tags under the heading of the NSD: categories and pack-

ages. The first tag (categories) allows us to add several keywords related to the network

service. This tag enables us to merge the similar network services together, as well as
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Table 4.1: Extended tags for the NetApp descriptor.

Tag Parent Tag Description

category categories Adds a category (also known as the keyword) related to the network service.
This groups together the similar network services to be grouped together as well
as helping the PVN owners to find a correct service.

technology packages The main tag to provide information about the technologies that are supported
by the network service.

identifier technology The string that identifies a programmability technology, for instance, openflow,
nfv, and cisco-onepk.

version technology A supported version of the programmability technology.

location technology The main tag to describe the URIs of the NetApp packages or VNA images.

location_flag technology This flag takes into account the application-network interaction and the location
of the nodes within the PVNs. Thus, it stipulates in which nodes the App2net
ecosystem must install the NetApp (e.g., custom nodes, border, ingress, egress,
or all the nodes that are possible values).

ee technology The execution environment necessary to run the NetApp.

type technology Describes the type of package in detail. Two values are supported “netapp” and
“vna”.

hash technology Informs the Secure Hash Algorithm-256 (e.g., SHA-256) hash about the pack-
age. This hash is used in the validation process.

outputs technology Makes new relevant information available about the NetApp execution. PVN
owners can get these data through the Web Portal or external platforms. It can
also get it via collectData (in an aggregated way) or getData (in an indi-
vidual way) methods from App2net RESTful API.

conflicts technology Maps all the known conflicts between the NetApps and VNAs; this means, this
NetApp or VNA operates improperly when the NetApp/VNA target is used.

initial_config technology Describes the initial functional settings of a NetApp, which might be a simple
command or a set of commands.

manage_action technology The main tag to specify the necessary commands and parameters that are needed
to manage a NetApp (e.g., install, start, restart, pause, resume, uninstall, and
configure). Note that only the supported actions are described.

helping the PVN owners to find a correct service. The second tag (packages) describes

all the information about the packages including conflicts, supported technologies, ini-

tial functional settings, available management actions, version, and the necessary EE. In

Table 4.1 there is a description of the main tags proposed for our extension.

In Figure 4.4 there is an example of a NAD file for a video transcoder and cache.
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Figure 4.4: An example of a NAD file that employs the proposed tags.

 1 <?xml  ver si on=" 1. 0"  encodi ng=" UTF- 8" ?>
 2 . . .
 3     <cat egor i es>
 4         <cat egor y>vi deo</ cat egor y>
 5         <cat egor y>t r anscodi ng</ cat egor y>
 6         <cat egor y>cachi ng</ cat egor y>
 7     </ cat egor i es>
 8     <packages>
 9         <t echnol ogy>
 10             <i dent i f i er >openf l ow</ i dent i f i er >
 11             <ver si on>1. 0</ ver si on>
 12             <ee>pox</ ee>
 13             <t ype>net app</ t ype>
 14             <hash>29a8b9009509b39d542ecb229787cdf 48f 05e739a9322895e9e9858d7c487c80</ hash>
 15             <l ocat i on>
 16                 <ur i >f i l e: / / / r eposi t or y/ ser vi ces/ openf l ow/ pox/ vi deo- t r ans- cachi ng- 1. py</ ur i >
 17             </ l ocat i on>
 18             <l ocat i on_f l ag>al l </ l ocat i on_f l ag>
 19             <i ni t i al _conf i g>
 20                 <command>vi deo- t r ans- cachi ng- 1. py - - set - v i deo=640 - - set - cache=100MB</ command>
 21             </ i ni t i al _conf i g>
 22             <manage_act i on>
 23                 <i nst al l >. / v i deo- t r ans- cachi ng- 1. py</ i nst al l >
 24                 <st ar t >. / v i deo- t r ans- cachi ng- 1. py - - st ar t </ st ar t >
 25                 <st op>. / v i deo- t r ans- cachi ng- 1. py - - t er mi nat e</ st op>
 26                 <conf i gur e>
 27                     <par amet er >
 28                         <val ue>vi deo</ val ue>
 29                         <command>. / v i deo- t r ans- cachi ng- 1. py - - set - v i deo=</ command>
 30                     </ par amet er >
 31                     <par amet er >
 32                         <val ue>cache</ val ue>
 33                         <command>. / v i deo- t r ans- cachi ng- 1. py - - set - cache=</ command>
 34                     </ par amet er >
 35                 </ conf i gur e>
 36             </ manage_act i on>
 37             <conf l i c t s>
 38                 <conf l i c t >
 39                     <i dent i f i er >t r anscodi ng- r oxi o</ i dent i f i er >
 40                     <ver si on>&l t ; 2. 1</ ver si on>
 41                 </ conf l i c t >
 42                 <conf l i c t >
 43                     <i dent i f i er >squi d- cache</ i dent i f i er >
 44                     <ver si on>al l </ ver si on>
 45                 </ conf l i c t >
 46             </ conf l i c t s>
 47             <out put s>
 48                 <out put >f l ows_pr ocessed</ out put >
 49                 <out put >codecs</ out put >
 50                 <out put >bi t r at e</ out put >
 51                 <out put >avai l abl e_vi deo_si zes</ out put >
 52                 <out put >compul sor y_mi sses</ out put >
 53                 <out put >capaci t y_mi sses</ out put >
 54                 <out put >conf l i c t _mi sses</ out put >
 55             </ out put s>
 56         </ t echnol ogy>
 57     </ packages>
 58 . . .

Source: the author (2018).

This NAD describes a NetApp (line 13), that means, an application that must be installed

in the PVN nodes. As can be seen, there are several categories (lines 3 to 7) that assist

PVN owners in finding this NetApp, such as video, transcoding, and caching. Lines 8 to

57 give information about the available package. In this case, there is just one package,

which is supported by POX controller using OpenFlow 1.0 (lines 10, 11, and 12). This

NetApp package is available in the NACR of iMPROVE because the URI points out the

local file system (line 16).

With regard to the location flag, the package will be downloaded by all the PVN nodes
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(line 18). After downloading corresponding files, the platform can carry out the package

validation using the informed SHA-256 hash (line 14). In this NetApp, just one command

can achieve the initial configuration (lines 19 to 21), which must be carried out in every

PVN node. Also, PVN owners or iMPROVE can trigger four management tasks (lines 22

to 36), namely, install, start, stop, and configure. In specific terms, the configure task can

be adjusted by two parameters: (i) video, which sets the resolution of video streaming

(lines 27 to 30); and, (ii) cache, which sets the size available for the used cache (lines 31

to 34). Moreover, developers describe two known conflicts. The first one states that this

NetApp is incompatible with versions older than 2.1 of NetApp transcoding-roxio (lines

38 to 41). The second one indicates that NetApp will operate improperly if the NetApp

squid-cache is installed in the PVN (lines 42 to 45).

In addition to default data, third-party developers have made new output data available

for the execution of the network service (lines 47 to 55), namely the following: processed

flows, codecs, bitrate, available video sizes, compulsory misses, capacity misses, and

conflict misses. By employing the getData and collectData methods of App2net REST-

ful API, PVN owners can obtain values associated with each output. As well as this,

another developer (or even a PVN owner) can program a new management script or plat-

form that relies on these values to trigger configurations or other actions. For instance, a

management script can monitor all the output data; and, by observing a high number of

capacity misses, it is able to trigger a request to increase the cache capacity, and hence

the storage capacity of the VM. In the same way, another solution could reduce the video

size or the average bitrate.

4.3 App2net Core - Applications to Network

The essential purpose of the app2net core is to deploy NetApps in PVNs that use

heterogeneous EEs. These EEs can be hosted on virtual or physical devices. We assume

that the deployment of a NetApp consists of three key actions, namely transfer, install, and

configure. To this end, the App2net ecosystem offers the PVN Owner’s Portal that allows

owners to interact with the app2net core when carrying out actions without knowing

the specific features of the underlying environment. In this way, the PVN owner is able

to invoke the app2net core platform components needed to deploy the NetApps, and

thus avoid complex interactions with the PVN.

In Figure 4.5, there is a detailed diagram of the conceptual architecture of the app2net
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Figure 4.5: The conceptual architecture of App2net.
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core and its four main components: Infrastructure Handler, NetApp Manager, Data Col-

lector, and System Notifier. Moreover, Figure 4.6 shows the main actions performed by

the PVN owner in the app2net core.

4.3.1 The Infrastructure Handler

After logging into the App2net ecosystem, the PVN owner interacts with the PVN

Owner’s Portal to configure the Infrastructure Handler with the nodes that form the PVN.

This only involves supplying information about the node addresses, supported programma-

bility technologies, and access credentials (actions 1 and 2). This configuration is ei-

ther carried out manually or imported from a Virtual Infrastructure Description Language

(VXDL) file (KOSLOVSKI; PRIMET; CHARAO, 2009).

We chose VXDL because it represents the infrastructure elements in a simple and

clean XML notation. It should be noted that the nodes that comprise the PVN can be

hosted both on the user’s infrastructure and on multiple geographically distributed Infras-

tructure Providers, as shown in Figure 4.1. The Infrastructure Handler is responsible for:



107

Figure 4.6: Sequence diagram of the main actions carried out in the app2net core.
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(i) installing drivers in the nodes (action 3); (ii) collecting data about the resources in the

PVN nodes, for example, network interfaces or programming languages (actions 4 and

5); (iii) maintaining the list of available devices per PVN; and, (iv) storing the VXDL

file and credentials for accessing devices in the DB & Statistics (action 6).

4.3.2 NetApp Manager

When required, NetApps are available in the NACR; the PVN owner only needs to

request their installation by the Marketplace that triggers the deployment process in the

NetApp Manager. The NetApp Manager is responsible for transferring, installing, unin-

stalling, and configuring NetApps. This Manager communicates and requests information

from the other components (actions 7 and 8). Initially, the Manager retrieves information

about the PVN nodes and their resources from the Infrastructure Handler (action 9). Then

the NetApp Manager retrieves a list of available NetApps (action 10) and a list of avail-

able VNAs (action 11) from the NetApp Catalog. After this, the Manager carries out the

task of matching the requirements with the resources in the nodes; this means it is only

possible to deploy the NetApp or VNA that is present in the compatible NetApps List or

compatible VNAs List (action 12). The NetApp Manager is formed of four modules: the

Node Selector, Package Transfer, Package Installer, and NetApp Configurator. Figure 4.7

shows the actions performed by the NetApps modules when deploying and configuring

a NetApp in a PVN. It should be noted that all the messages to repositories or the PVN
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are sent via the System Notifier, but these interactions have been hidden for the sake of

readability.

Figure 4.7: Actions carried out by the modules of the NetApp Manager when installing
and configuring a new NetApp.
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When a PVN onwer triggers the deployment of a new network service (Figure 4.7, ac-

tion 1), the Node Selector module identifies the compatible nodes and the NACR, which

holds the corresponding package (actions 2 and 3). A compatible node can install a spe-

cific NetApp that meets the minimum requirements for both software and hardware. After

this, the Selector defines which compatible nodes must install the NetApp, depending on

the requirements and the location flag (action 3) provided by the NetApp Catalog. This

flag takes into account the application-network interaction and the location of the nodes

within the PVNs. This means it is possible to install and run NetApps at strategic points

of the PVNs. For instance, a deep packet inspection firewall uses the location flag with a

“border” value; thus, it is only installed on the border nodes, which avoids additional and

unnecessary computing.

The location flag can take on five values: (i) border, this refers to boundary nodes and

all the data flows in a particular PVN; (ii) ingress, which includes the boundary nodes

and input data flows; (iii) egress, which denotes that the boundary nodes and output data

flows will be used; (iv) custom this allows a PVN owner to select which nodes and data

flows will be used by the NetApp; and (v) all refers to all the nodes and all the data flows.

It is important to mentioning that, when designating the location flag with a “custom”

value, the NetApp developer should set out the rules for handling the data flows; however,

the rules for choosing the nodes cannot be specified.
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The Package Transfer module receives information about the PVN nodes from the

Node Selector (action 4). Initially, the Transfer validates the authenticity of the NACR by

means of a hash that is encrypted by means of asymmetric keys (actions 5 and 6), which

are stored in the DB & Statistics. Next, this module sets out the guidelines (e.g., order

and initial transfers) that are required for transferring a copy of the NetApp package to

each network node (action 7). Afterward, the Package Transfer gives information about

these guidelines to the drivers of the NACR and PVN nodes, which perform the package

transfer (actions 8 and 9). Finally, the driver validates the package integrity by means

of the SHA-256 hashes that appear in the NetApp Catalog. For the sake of simplicity in

presentation, in Figure 4.7 there is a summary of the actions to inform the drivers about

the guidelines of transfers, as well as the package validation is concealed.

Once a NetApp has been transferred (actions 10 and 11), the Transfer instructs the

Package Installer to install the NetApp (action 12). After this, the Package Installer ob-

tains the available actions and adjustable parameters from the NetApp Catalog (action

13); and then, it sends the commands and parameters to install the NetApp in each com-

patible PVN node (action 14). With the aid of the NetApps Configurator, a PVN owner

can issue input commands to adapt and tune a NetApp execution to a specific PVN envi-

ronment (actions 15, 16, and 17). It should be stressed that NetApp developers provide

input commands and parameters in the NAD file through the registration process previ-

ously mentioned. By ending the installation process, the NetApp Manager is able to save

all the data about the deployment in the DB & Statistics.

4.3.3 Data Collector

A PVN owner can request data about the execution of a network service (Figure 4.6,

action 13). In this case, the Data Collector component requests the network service data

about its execution from each PVN node (action 14), namely, status, processed packets,

execution time, uptime, average CPU usage, memory usage, storage usage, packet losses,

bandwidth usage, and latency. In addition to these data, developers can make available

new metrics about their NetApps. For this reason, they must specify new values under

tag “outputs” in the NAD file (see Subsection 4.2.4). For instance, in a deep inspection

firewall NetApp, the developers could make available other relevant information, such

as rules, rule age, intrusion attempts, dropped flows, IPs blocked by Denial-of-Service

(DoS) attacks, error rate, packet processing rate, and node-internal transfer delay. After
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receiving data from all the nodes, the Data Collector aggregates them and sends a report

to the PVN owner (action 15). Besides, these data can be used to supply a monitoring

system and, in this way, check whether the NetApp is operating correctly and to provide

performance statistics.

4.3.4 System Notifier

The System Notifier consists of three modules, namely, Notifications Exchanger,

Event Subscriber, and Node Communication Layer. The first is responsible for send-

ing all the messages from the app2net core components to the nodes, as well as

receiving messages from the PVN nodes. For instance, the exchanged messages contain

data about the following: (i) package transfers, (ii) node priorities, (iii) used strategies,

(iv) NetApps management actions, (v) data for NACR authentication, (vi) data to val-

idate packages, (vii) data from the execution of NetApps, (viii) busy notifications, (ix)

deletion requests; and, (x) commands that must be performed in the PVN nodes. These

messages are coded in the JavaScript Object Notation (JSON) format. We decided to use

this format because it is lightweight and simple, and allows a quick exchange of messages.

PVN owners can set up the app2net core to trigger events on another platform. To

this end, owners must interact with the Event Subscriber module to indicate the interested

NetApps or PVNs. For example, the PVN owner registers a URL in Event Subscriber,

which must be triggered if a management event (e.g., deploy, install, or those detailed in

the NAD file) or even an error occurs. This URL points to a Monitoring Platform. In

this case, if a developer upgrades a NetApp and, the update process results in a NetApp

misbehaving or instability, the Monitoring Platform is able to detect this failure and re-

quest the downgrading of the NetApp via App2net RESTful API (see Subsection 4.1.2).

It is worth highlighting that the PVN owners must register URLs for each event and for

the network service that they are interested; in this way, the Event Subscriber can trigger

different URLs per event (in the PVN) or per network service.

The PVN nodes, NACR (internal), and External Third-party Repository (external)

must have a driver installed, which is coded and adapted to the features of each device.

Thus, different drivers are needed for each kind of technology, such as Vyatta, Cisco

ONE, Juniper Junos, and POX controller. The set of used drivers forms the Node Com-

munication Layer. This Layer carries out the following functions on PVN nodes: (i) ex-

ecuting commands to deploy and uninstall NetApps, (ii) collecting data from NetApps,
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(iii) triggering commands to configure the execution of NetApps, (iv) establishing the

communication between the nodes, (v) estimating the length of the delay to the NACR,

(vi) answering requests from the app2net core components; and, (vii) managing the

registration of the nodes and all the lists. It should be noted that if a PVN node is unable

to host a driver, the app2net core server can host the driver on its behalf. Thus, com-

munication between the app2net core and the PVN nodes will be guaranteed, even

though delays might be significantly longer.

4.4 Code Transfer Techniques

Different research areas have employed several techniques to perform the code trans-

fer, such as cloud computing (ZABOLOTNYI; LEITNER; DUSTDAR, 2013), controller

updates to SDN (VANBEVER et al., 2013), mobile networks (NAWAF; TORBEY, 2009),

and software updates (PAYNE; SHAIO; HOFF, 1999). However, these techniques have

been described by different names and, no study has attempted to classify and compare

them.

Regarding the scope of this thesis, diverse tasks have different and conflicting re-

quirements at each stage of the service lifecycle; then, we aim to analyze distinct ways

for transferring NetApps packages and initial configurations, as well as the main benefits

and drawbacks of each technique in the PVNs context. For instance, at the developing

stage, the developers want to distribute both NetApp packages and initial configurations

in the shortest time possible. This is because they must perform several tests using dif-

ferent versions and, consequently, they must distribute the files several times. However, a

PVN owner desires a minimal network interference (i.e., lower total traffic in the network)

when triggers the NetApp installation process (only once).

In view of this, we have sought to define the main features of the code transfer tech-

niques and arrange them in accordance with their purposes. Hence, they can be compared

and analyzed in the context of the PVNs. Initially, three groups were categorized: rank-

ing criteria, mechanisms, and strategies. In the next subsections each of these will be

examined in detail.
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4.4.1 Ranking Criteria

Different ranking criteria can be used to define the node priority policies during the

code transfer. These ranking criteria are metrics and rules that are adopted to calculate pri-

orities and sort the PVN nodes into different categories; thus, it is possible to ensure that

the nodes with a high priority receive the NetApp during the first transfers. In App2net

ecosystem, we suggest that the nodes were ranked on the basis of three criteria: available

bandwidth, average delay, and node degree. In an average delay, the node with the lowest

absolute value has the highest priority. Hence, the node with the lowest average delay

is the first to download the NetApp package. Instead, in the case of available bandwidth

and node degree, the node with the highest absolute value has top priority, since it is the

first to download the NetApp package. Of course, based on PVN owners requirements,

the App2net ecosystem can use other criteria, for instance, costs, energy, betweenness

centrality, closeness centrality, eigenvector centrality, throughput, packet loss, latency, or

jitter.

The available bandwidth of a link is the serviceable capacity for data transmission in a

time interval (JAIN; DOVROLIS, 2002). This value is obtained by applying Equation 4.1,

in which: (i) Aτi (t0) represents the available bandwidth of link i during a time interval

(t0, t0+τ), (ii) Ci is the capacity in link i; and (iii) uτi (t0) is the average utilization of link

i during a time interval (t0, t0 + τ), with 0 ≤ uτi (t0) ≤ 1. On the basis of this criterion,

initial transfers can become faster because bottlenecks are avoided at the beginning of the

NetApp distribution process.

Aτi (t0) ≡ Ci[1− uτi (t0)] (4.1)

The delay is the time for a packet to travel across the network from one node (the

source) to another node (the destination). Here, the criterion for average delay is the

average time (in milliseconds) obtained through the Round-Trip Time (RTT) of packets

between the source and destination nodes during a time interval. In this way, the NetApp

distribution occurs earlier when it is close (short RTT) to the source and/or in idle nodes.

Afterward, the NetApp package is sent to the distant and busy nodes.

According to Graph Theory, the node degree represents the number of links connect-

ing to a node. On the basis of this criterion, high degree nodes are privileged and receive

the NetApp package at the initial stage. Subsequently, these nodes are able to send the

received NetApp package to a larger number of neighbors, which makes the NetApp
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distribution faster. Two nodes can be regarded as neighbors when there is a direct link

between them.

4.4.2 Mechanisms

Mechanisms define the behavior of NetApp sources, and are just called repositories.

In PVNs, these repositories can be the NACR (also known as internal repository), External

Third-party Repositories, or PVN nodes that have already received the NetApp package.

We also examine three key mechanisms: push-based, pull-based, and hybrid. In push-

based, the repositories are “active”, which means that they start the NetApp package

transfers to the nodes. The Package Transfer module creates a list of the initial transfers

and priorities of the PVN nodes, called the transfer list. In this mechanism, the System

Notifier only sends this list to the repositories involved. Next, the repositories send the

NetApp package to the nodes in the transfer list, in accordance with the priorities of the

nodes. It should be pointed out that the high-priority nodes (those on the top of the list)

receive the NetApp at the initial stage.

In contrast, in pull-based, repositories are “passive”; that means, they just answer to

the requests from the PVN nodes. The System Notifier component sends messages to

nodes concerning which NetApps must be installed or upgraded. This component also

gives information about the calculations made to determine the priority of the nodes.

After that, each node clearly requests a given NetApp package from the repository. If the

repository cannot send the NetApp package immediately, the requests from these nodes

are stored in a standby list ordered by priorities. Then, the repository sends the NetApp

to those nodes at the top of the standby list, as soon as possible.

In the hybrid mechanism, the repositories behave in both an active and passive way. In

addition, the repositories both manage and use the transfer list and the standby list. First,

with regard to the initial transfers (at the push stage), the repositories send the NetApp

package directly to the nodes in the transfer list (active). In subsequent transfers (the

pull stage), the nodes request the NetApp package from the repository (passive). Finally,

if the requests are not answered, they are stored in the standby list and, after that, the

repositories will send the requested NetApp.



114

4.4.3 Strategies and Models

Strategies are the guidelines that control the behavior of PVN nodes during the Net-

App distribution process, as well as the number of supported simultaneous transfers. On

the basis of techniques found in the literature, we set out four strategies to transfer Net-

Apps packages in PVNs: Sequential, Parallel, Gossip, and Groups. Once the code transfer

techniques (ranking criteria, mechanisms, and strategies) have been grouped and defined,

we combine them in a way that allows us to build models. A model consists of a single

strategy that is applied to one particular mechanism and only employs one criterion for

ranking the nodes. In the app2net core, these models were implemented in the Pack-

age Transfer module. A detailed account of the strategies and developed models that are

employed is given below.

Sequential

The first strategy simulates a simple script that sends one NetApp package to the PVN

nodes; thus, there is only one transfer at a time. In this case, the NACR only sends the

NetApp to node B, after completing the transfer to node A. This is repeated until all the

nodes have the NetApp package. Since this strategy is an elementary, automatic, and

realistic approach, which could be applied by administrators in a real PVN; we decided to

use it as the baseline to compare its results with those obtained from the more elaborate

strategies. The implemented models in this strategy have the following features. In the

push-based mechanism, after receiving the transfer list, the NACR sends the NetApp

package to each node, and only starts a new transfer when it has finished the previous

one.

In the pull-based mechanism, the app2net core informs the nodes about the Net-

Apps packages that are needed and the criterion used. After, the nodes request these

packages from the NACR, which only answers one node at a time. When the NACR

cannot give an immediate answer, the requests from the nodes are stored in a standby list

that is arranged in order of priority. The NACR calculates the priorities on the basis of

the information supplied by the nodes. When a transfer is completed, the NACR selects a

high-priority node to send to the NetApp.

In the hybrid mechanism, the app2net core sends a transfer list to the NACR.

This list only includes half of the nodes, which have higher priority. In the push stage, the
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NACR sends the NetApp directly to each node in the transfer list. At the same time, the

app2net core informs the remaining nodes about the NetApp that is needed. These

nodes request the NetApp from the NACR, which stores all the download requests in the

standby list. After completing the push stage, the NACR starts the pull stage and, then,

answers the download requests from the nodes in the standby list in accordance with their

priorities.

Parallel

The second strategy aims to speed up the time to distribution by performing several

transfers at the same time (i.e., transfers in parallel). Thus, this strategy optimizes the

NACR bandwidth, avoiding to wait by congested links and low processing nodes. The

NACR simultaneously sends the NetApp package to multiple nodes until a threshold is

reached that is called the quota, which is calculated by Equation 4.2. In this: (i) n is

the number of PVN nodes, (ii) d(nodei, nodej) denotes the length of the shortest path in

hops between nodei and nodej; and (iii) nodei and nodej are the nodes of a connected

graph. This equation calculates the average shortest path length, which is a standard

network topology measurement. This measurement adapts the quota to the number of

nodes and calculates the average distance between them. Thus, there will be a large quota

of PVNs with many distant nodes; as a result, several transfers will occur in parallel, and

this improves the overall distribution time. It is important to note that the quota equation

considers the complete PVN topology.

quota =
∑
i 6=j

d(nodei, nodej)

n(n− 1)
(4.2)

In the push-based mechanism, after the transfer list has been received, the NACR

sends the NetApp package to x nodes at the same time. It should be noted that x is the

limit defined by the quota. Similarly, in the pull-based mechanism, the NACR accepts

x simultaneous requests from the nodes. In this way, the x nodes download the NetApp

in parallel; at the same time, the remaining requests are stored in the standby list. In

both mechanisms, after completing a transfer, the NACR sends the package to the node

with the highest priority in the transfer list (push-based mechanism) or in the standby list

(pull-based mechanism).

The hybrid mechanism combines the two previous behavioral patterns. In the push
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stage, the app2net core sends the transfer list to the NACR where it only includes

half of the PVN nodes. Following this, the NACR simultaneously sends the NetApp

package to the x nodes. After completing a transfer, the NACR sends the NetApp to the

next node with the highest priority in the transfer list. This process is repeated until all the

nodes that are included in the transfer list have received the package. At the same time,

the NACR waits for the download requests and stores them in the standby list. When the

pull stage starts, the NACR sends the NetApp package towards the x nodes in parallel.

Again, after a transfer is completed, the NACR answers the request from the node that

has the highest priority on the standby list.

Gossip

This strategy initially behaves like the parallel one, where the quota limits the number

of simultaneous downloads. However, the nodes that receive the NetApp package become

ghost repositories. A ghost repository sends the package to the remaining nodes, and

thus acts as an extra source of the NetApp packages. Hence, the number of sources is

incremental, and optimizes the NetApp distribution over a period of time. This strategy

adds a shared list; this is located in the NACR and contains all the nodes which must

receive the NetApp package. In the ghost repositories, there are local lists that contain all

the neighbors (i.e., just nodes directly connected with them), which have not received the

package already. These lists allow there to be multiple sources at the same time. It should

be underlined that before making a download from a ghost repository, the nodes must be

removed from the shared list. The node achieves this by sending a deletion request to the

NACR.

In the push-based mechanism, the NACR sends the NetApp package to nodes in the

transfer list. Again, the quota restricts the number of parallel downloads. After the nodes

receive the NetApp, they become ghost repositories. These nodes check which of their

neighbors are in the shared transfer list, which is located in the NACR. Each ghost reposi-

tory includes all the neighbors that have not yet received the NetApp in this local transfers

list and, then, it sends a deletion request to the NACR to remove its neighbor from the

shared transfer list, which must be confirmed. Subsequently, the ghost repository sends

the NetApp package to their neighbors, which after receiving the package, become new

ghost repositories. Note that the number of parallel transfers is limited by the quota com-

puted.
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In the pull-based mechanism, after becoming a ghost repository, the nodes create a

local standby list, which only takes account of the neighbors that remain in the shared

standby list. The ghost repositories then send a message to the nodes in their local standby

lists to give information about the NetApp available. If a node responds with a download

request, the ghost repository sends the NetApp package away. At the same time, the node

sends a deletion request to the NACR to remove it from the shared standby list. However,

if a node answers with a “busy notification”, it is removed from the local standby list. A

busy notification means that a node is downloading the NetApp, or else that the transfer

has been completed.

The hybrid mechanism only has slight variations from the previous models. The es-

sential difference is that the NACR only sends the NetApp via push-based calls, whereas

the ghost repositories only send the NetApp through pull-based calls. It is worth under-

lining that ghost repositories do not send deletion requests to the NACR, and that only the

PVNs nodes do this. In addition, the push and pull stages occur simultaneously.

Groups

In this strategy, the PVN nodes are divided into groups, in which the group members

will be interested in the same NetApp. The number of groups is equal to the quota (see

Equation 4.2); thus, in PVNs with a lot of distant nodes, there will be many groups, which

leads to an increase in the number of ghost repositories and also improves the overall

distribution time. First of all, Package Transfer module performs a master election among

all nodes of the PVN in accordance with the ranking criteria (i.e., available bandwidth,

average delay, or node degree). Note two important guidelines: (i) each group has a

single master; and, (ii) if there are several nodes candidates tied in the primary criterion,

then, those with the shortest average delay (short RTT) will be selected until filling the

vacancies.

After the Package Transfer has chosen the master nodes, the System Notifier informs

the remaining nodes (called slaves) about this selection. Regardless of the ranking criteria

used, the slaves register with the nearest master, which is identified by the shortest average

delay (short RTT). However, the number of members is not fixed, and varies in each

group. Once the groups have been formed, the NACR sends the NetApp to the master

nodes that become ghost repositories. This means that the slave nodes can only download

the NetApp from their selected masters. Again, the quota limits the number of parallel
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downloads.

The pull-based and push-based mechanisms of Groups and Gossip behave in a simi-

lar way. The main difference is that, in the groups strategy, the slave nodes only receive

the NetApp and will not become another ghost repository. In the hybrid mechanism, the

NACR transfers the NetApp to the master nodes by push-based calls. After that, the mas-

ters receive requests from the slaves to send the NetApp package using pull-based calls.

In this case, the NACR is behaving in an “active” way, whereas the ghost repositories are

behaving in a “passive” way.

4.5 Summary and Discussion

In this chapter, we introduced the App2net ecosystem to empower PVN owners to

deploy and manage NetApps in PVNs with heterogeneous EEs. Moreover, our ecosys-

tem enables developers to distribute and describe NetApps of different technologies. For

the sake of simplicity, we split up the ecosystem into two key platforms, iMPROVE and

app2net core. As can be seen throughout this chapter, iMPROVE allows developers

to store, publish, and distribute both NetApps and VNAs. We also proposed the Network

Application Descriptor (NAD), an extension of the ETSI Network Service Descriptor, to

describe NetApps and VNAs of different programmability-related technologies, as well as

to represent the issue of conflicts. The second platform, called app2net core, enables

PVN owners to trigger the deployment of NetApps in PVNs with heterogeneous EEs,

even without knowing the specific features of the underlying infrastructure. Finally, we

analyzed a set of code transfer techniques and investigated the main features for grouping

them. Furthermore, we have designed models for code transfer which combined some of

these techniques.

As seen in Chapter 3, we analyzed the main proposals for marketplaces in differ-

ent contexts (e.g., mobile market, cloud computing, and network). Following this, we

compiled a list of design goals, divided into three main categories, for network market-

places. We would now like to discuss how our ecosystem applied each of these design

goals in our ecosystem. The first category (i.e., offer and distribution) consists of four

design goals, namely access control, publish, pricing, and notifications. With regard to

access control, our ecosystem restricts access to different stakeholders through the User

Access Controller module in the User Manager element. This module carries out differ-

ent tasks related to access control: (i) authentication, in which it checks the credentials
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of stakeholders before granting access to our ecosystem; and, (ii) message encryption,

even though this action is not directly related to access control, it prevents messages (to

and from our ecosystem), from being intercepted and understood by malicious users or

systems. In this way, it prevents information theft and the sending of commands from

unknown sources.

Inspired by mobile marketplaces (i.e., Google Play Store, Apple App Store, and Win-

dows Store), the App2net ecosystem also enables any third-party developers to publish

their NetApps. In our ecosystem, we recommend no certification or other procedure to

determine if candidates are qualified to become developers. In our view, any developer

can create a “killer application” and, for this reason, all developers must be able to publish

their applications in our ecosystem. However, stakeholders must create a pair of asym-

metric keys to be able to carry out actions in the App2net, including to publish NetApps.

We do not propose elements or procedures for pricing NetApps, although it is dis-

cussed in Chapter 3 and included in our set of design goals. We believe that, in the

context of networks, pricing models must be closely linked with monitoring tasks. Thus,

a pricing model could be employed that includes the number of packets processed, cre-

ated routes, or even the amount of connected clients. We also believe that disruptions or

even service malfunction must reduce the price that is charged. In our view, this is a very

complex research goal, which in itself is a subject for another thesis. For this reason, we

do not provide mechanisms to support pricing in our ecosystem; however, we include a

modular architecture and an extensible API that allows new components to be added, for

accurate performance-based pricing models.

On the subject of notifications, the App2net ecosystem (i.e., the User Notifier module)

ensures that developers and PVN owners receive notifications about NetApp execution,

runtime, and updates. Moreover, in our ecosystem (specifically, in the System Notifier

component), modules or even NetApps can subscribe the events from network services

(through the subscribeEvents() method). Thus, an event that takes place in a network ser-

vice can trigger actions in another network service. For example, in a security service, an

event that informs a high rate of access in a web server can trigger the initialization of the

DPI service to mitigate a possible DDoS attack. Finally, any platform, network service, or

module can send messages (i.e., sendMessage() method) or events (i.e., notifyEvent and

notifyUsers) to the App2net ecosystem using the RESTful API.

We analyze the App2net ecosystem in terms of the network environment category. An

essential feature of our ecosystem is the deployment. We design the app2net core
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to be responsible for deploying NetApps and VNAs over different nodes (the NetApp

Manager component has the means to install NetApps and instantiate VNAs). Moreover,

our ecosystem allows the developers to specify the location flag, which represents the

best placement for that particular NetApp. Thus, when PVN owners request the deploy-

ment of NetApps, the App2net deploys NetApps with regard to the location flag defined

previously. A key feature of the App2net ecosystem is the support it gives to different

technologies (i.e., infrastructure-agnostic). The drivers that form the Node Communi-

cation Layer, enable App2net to deploy and manage network services over heterogeneous

nodes from diverse technologies, such as Vyatta, Cisco ONE, POX controller, OPNFV,

and P4 forwarding elements. However, the developers must program and adapt each dis-

tinct driver so that it can support the features of each device.

In App2net ecosystem, we think a basic support to the monitoring and SLA Man-

agement. We suggest a minimal set of procedures to cope with monitoring tasks. We

describe the Data Collector component in detail and how it can gather different data

about the NetApp execution from all the PVN nodes. Furthermore, we make the output

tag available in the NAD file, which enables developers to reveal new data about the exe-

cution of their NetApps. Although we recommend a minimal support to collect data, we

know that there are significant research opportunities to tackle both monitoring and SLA

Management tasks. Moreover, as explained above, we believe that this goal together with

pricing could integrate a new means of managing the NetApps execution (while also tak-

ing account of disruptions and malfunctions) and controlling the expenditure of the PVN

owners.

We employ several procedures and elements to investigate the design goals of appli-

cations. On the subject of consistency, we design the Repository Gatherer element to

deal with management and updates in the list of available NetApps and VNAs, stored in

the NetApp Catalog. This element must periodically check if there has been any change

in the External Third-party Repositories. When a developer requests a change in some

NAD file, which lists the available NetApps and VNAs, this element updates the NetApp

Catalog and notifies the PVN owners about these changes. Likewise, if a developer un-

publishes a network service or if an External Third-party Repository loses connectivity,

the Repository Gatherer shall remove all the affected NetApps and VNAs from the Cat-

alog, even if only temporarily. As well as this, the App2net ecosystem takes measures

to check the integrity of the NetApps packages and VNA images. To achieve this, the

drivers must validate the package integrity through the SHA-256 hashes obtained from
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the NetApp Catalog, before installing NetApps or instantiating VNA images. Moreover,

the developers specify these hashes under hash tag in the NAD file.

We have paid special attention to relationships between network services; in the NAD

file, the developers can describe both the dependencies and conflicts. When a PVN owner

triggers the deployment of a network service or when a developer has already updated

an installed NetApp, the NetApp Selector component takes steps to check whether there

is any conflict between the necessary services as well as the NetApps dependents that

must be installed to support the chosen network service. Finally, the App2net ecosystem

provides support for several management tasks. This involves creating the tag man-

age_action through which developers to designate the necessary commands and parame-

ters required for management tasks in NetApps. A PVN owner can trigger management

actions by interacting with the App2net Web Portal or via RESTful API with retrieveAc-

tions() and runAction() methods. We believe that in this way, App2net can give support

to the complete life cycle management, as well as, all the management actions listed by

the developers in the NAD file.

Even though the research challenges (discussed in the Chapter 3) offer open oppor-

tunities for future studies, we have taken a step forward by addressing some of them in

this thesis. For instance, in descriptors, our NAD enables developers to include data

that were not previously envisaged, such as placement, management actions, output data,

conflicts, and dependencies. However, it is clear that more in-depth research must be

undertaken to include challenges such as auditing and affinity. In addition, we introduce

a minimal set of actions and tags to cope with recommendation and placement. In the

case of recommendation, we have compiled the categories tag, which together with the

NetApp Retriever component can make a basic recommendation of NetApps based on the

categories informed by the PVN owners. With regard to matters concerning placement,

we propose the location_flag tag that allows the Node Selector module to choose which

PVN nodes must install the network service. It must be remembered that the location flag

can accept five different values, namely border, ingress, egress, custom, and all.

With regard to issues of security, we employ public and private keys to perform the

asymmetric encryption of the messages and thus create a secure channel between the

App2net ecosystem and PVN. In this way, we can prevent malicious users from inter-

fering with the communication (e.g., man-in-the-middle attacks to steal sensitive data) or

sending false commands to carry out undesired actions. Of course, this is not enough and

more robust elements, procedures, and tasks must be employed to ensure the security of
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network marketplaces. On the question of evolution-aware, we encourage the creation

of drivers to support new technologies or network paradigms. Although this solution en-

compasses underlying technologies to support new paradigms or even technologies, the

new drivers must be implemented. Thus, the complexity of the Node Communication

Layer is incremental and could reach such a high level, that it becomes impossible to add,

modify, or delete drivers from this layer. For this reason, we argue in favor of more in-

depth research that can find a transparent and sophisticated way to meet the challenge of

evolution-aware.
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5 EVALUATION AND ANALYSIS

In this chapter1, our App2net ecosystem is evaluated in two distinct ways. In the

Section 5.1, we conducted a case study to provide a detailed description of the interactions

and the necessary actions for a third-party developer when publishing a network service

in the App2net ecosystem. Following this, we explored the interactions of a PVN owner,

who desires to purchase and deploy this network service in his/her PVN. As a result, the

App2net ecosystem was shown to be a feasible platform which had enough simplicity to

carry out the actions required by both developers and PVN owners transparently. We also

discussed the management of this new network service via the App2net RESTful API.

The main elements and interactions are shown in the Figure 5.1.

In the second evaluation, which is outlined in the Section 5.2, we implemented a pro-

totype and that is tested on realistic network topologies commonly found in the Internet.

The results allowed us to assess the impact of the App2net ecosystem on CPU usage,

network overhead, and distribution time. Finally, in Section 5.3, we present some final

remarks and a discussion about the results obtained.

5.1 The Case Study

Let us suppose that an arbitrary third-party developer programs a new network service,

which provides a trust-based multicasting. This network service supports two different

technologies including NFV and OpenFlow. However, there are three different packages,

each one implemented for a specific programmability technology: (i) one for general

purpose NFV; (ii) one for NFV with ClickOS; and (iii) one for OpenFlow using a POX

controller. As well as the packages, the developer must create a NAD file that contains

all the information about the network service. Although there are three packages (one per

technology), only one NAD file is required to describe all the packages that appear under

the technology tag. Figures 5.2 and 5.3 show the core tags of the NAD file, especially

those related to our proposed extension.

In the case of NFV, there are two packages. The first is a VNA image that contains

the whole framework needed to support the network service (lines 9 to 24). This image

1This chapter is based on the following papers: “App2net: A platform to transfer and configure appli-
cations on programmable virtual networks” and “iMPROVE: Enhancing the Introduction of Services on
Programmable Virtual Networks”. For more information about these papers see the Appendix.
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Figure 5.1: Interactions between the App2net ecosystem and external elements.
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is a virtual machine containing the NetApp package and the necessary EE. The developer

does not send this image because it is available in an External Third-party Repository

(Figure 5.1 and Figure 5.2 lines 14 to 16). In the NAD file, the developer makes a list of

five distinct output data, namely: (i) “not_forward_multicast_packets which denotes the

number of multicast packets that were not forwarded; (ii) “multicast_traffic” designates

the number of active multicast flows and their sources; (iii) “multicast_clients” specifies

the number of the multicast clients and their addresses; (iv) “multicast_groups” describes

the data about multicast groups, such as sources, clients, and total data traffic; and, (v)

“trusted_nodes” shows data about nodes marked as “trusted”, which means, only those

trusted nodes are able to join into multicast groups. It is worth noting that this output

data can be obtained through App2net RESTful API via “collectData” and “getData”

methods.

The second package for the NFV is a NetApp implemented for the ClickOS EE (lines

25 to 57), and the NACR will host it. As this package is a NetApp (line 29), an existing

PVN node with support for NFV and ClickOS could install it. However, with regard to

the location flag (line 37), all the compatible nodes in the PVN must install the NetApp

that is responsible for processing all the data flows (i.e., both ingress and egress traffic).

In addition, the developer defines the initial settings (lines 31 to 33), which denotes that

all the nodes must be regarded as “trusted”. Furthermore, there are four different manage-

ment actions (lines 38 to 48): (i) “install”, which deploys the NetApp into the EE of the

PVN node (line 39); (ii) “start”, which initiates the execution of the NetApp according to

the initial or saved settings (line 40); (iii) “stop”, which shuts down the execution of the

NetApp and saves the settings used (line 41); and (iv) the “trusted-nodes”, which enables
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a PVN owner to configure which nodes must become “trusted” for the network service. It

should be noted that the information provided by the PVN owner (“trusted-nodes”) will

replace the expression $value0$ in line 45.

In the case of POX (lines 58 to 111), the NetApp package will also be hosted in the

NACR. Again, the developer defined the initial settings (lines 64 to 66). It is important to

remember that the PVN owner can change these settings during the installation process.

In addition to the management actions of the NFV NetApp (lines 38 to 48), the POX

version has two additional actions: (i) the “force-add-node”, which allows a “trusted”

node to be added without any need for the verification process (lines 76 to 79); and (ii)

the “force-remove-node” configuration allows a “trusted” node to be removed without

the verification process (lines 80 to 83). The location flag (line 89) determines that the

app2net core must install this NetApp in all the compatible nodes. Finally, there

are two known conflicts in the POX version, which include all the versions of multicast-

ufrgs (lines 91 to 94) and previous versions of the dpi-telefonica 4.0.2 (lines 95 to 98).

In other words, this trust-based multicasting operates improperly when multicast-ufrgs or

dpi-telefonica (< 4.0.2) are used. Note that in XML notation, the “<” is represented by

“&lt;”. Moreover, the expression $value0$ (lines 74, 78, and 82) will also be replaced

by the values attributed to each corresponding action.

When publishing the NetApp for downloading by the PVN owners, the developer must

register it in iMPROVE. First of all, the developer must log into the App2net ecosystem

via the Developer’s Portal. After making the login successfully, the developer fills in the

registration form and submits the two NetApp packages (one to OpenFlow using POX and

one to NFV using ClickOS) and the NAD file. After this, the Portal sends these files to

the NetApp Register, which reads the NAD file and stores the data in the NetApp Catalog.

Then, the Register also creates a new record in the DB & Statistics with the information

about the service obtained from the registration form and NAD file. In the next step, the

Publisher component uploads the NetApp packages to the local NACR. By this time, the

NetApp has been published and is available for a PVN owner to request its installation.

Assuming that the submitted packages update an existing network service, the Update

Checker checks in the DB & Statistics to find out if any PVNs are using this network

service. The Checker arranges these PVNs into two groups: (i) the PVNs that can update

the network service automatically; and (ii) the PVNs that require human intervention.

While the PVNs in the first group trigger the update processes for the network service, the

PVNs in the second group wait for human actions. It should be pointed out that iMPROVE
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Figure 5.2: Partial NAD file for trust-based multicasting (Part 1).

Physical node Virtual node

  1 <?xml  ver si on=" 1. 0"  encodi ng=" UTF- 8" ?>
  2 . . .
  3 <cat egor i es>
  4   <cat egor y>secur i t y</ cat egor y>
  5   <cat egor y>mul t i cast i ng</ cat egor y>
  6   <cat egor y>communi cat i on</ cat egor y>
  7 </ cat egor i es>
  8 <packages>
  9   <t echnol ogy>
 10      <i dent i f i er >nf v</ i dent i f i er >
 11      <ver si on>al l </ ver si on>
 12      <hash>3546705163bc40eef 80ddf 2cd11918aa</ hash>
 13      <t ype>vna</ t ype>
 14      <l ocat i on>
 15        <ur i >ht t p: / / myr eposi t or y. com/ ser vi ces/ nf v/ t r ust _mul t i cast _45. i mg</ ur i >
 16      </ l ocat i on>
 17      <out put s>
 18        <out put >not _f or war d_mul t i cast _packet s</ out put >
 19        <out put >mul t i cast _t r af f i cs</ out put >
 20        <out put >mul t i cast _cl i ent s</ out put >
 21        <out put >mul t i cast _gr oups</ out put >
 22        <out put >t r ust ed_nodes</ out put >
 23      </ out put s>
 24    </ t echnol ogy>
 25    <t echnol ogy>
 26      <i dent i f i er >nf v</ i dent i f i er >
 27      <ver si on>al l </ ver si on>
 28      <ee>cl i ckos</ ee>
 29      <t ype>net app</ t ype>
 30      <hash>e48f 694f c62f 4512317eda7e40ca2dac0447da10</ hash>
 31      <i ni t i al _conf i g>
 32        <command>expor t  TRUSTED_NODES=" al l " </ command>
 33      </ i ni t i al _conf i g>
 34      <l ocat i on>
 35        <ur i >f i l e: / / / r eposi t or y/ ser vi ces/ nf v/ c l i ckos/ t r ust _mul t i cast _45. cl i ck</ ur i >
 36      </ l ocat i on>
 37      <l ocat i on_f l ag>al l </ l ocat i on_f l ag>
 38      <manage_act i on>
 39        <i nst al l >cl i ck- i nst al l  t r ust _mul t i cast _45. cl i ck</ i nst al l >
 40        <st ar t >cl i ck- i nst al l  t r ust _mul t i cast _45. cl i ck</ st ar t >
 41        <st op>cl i ck- devi r t ual i ze t r ust _mul t i cast _45. cl i ck</ st op>
 42        <conf i gur e>
 43          <par amet er >
 44            <val ue0>t r ust ed- nodes</ val ue0>
 45            <command>expor t  TRUSTED_NODES=" $val ue0$" </ command>
 46          </ par amet er >
 47        </ conf i gur e>
 48      </ manage_act i on>
 49      <out put s>
 50        <out put >not _f or war d_mul t i cast _packet s</ out put >
 51        <out put >mul t i cast _t r af f i c</ out put >
 52        <out put >mul t i cast _cl i ent s</ out put >
 53        <out put >mul t i cast _gr oups</ out put >
 54        <out put >packet _l oss_r at e</ out put >
 55        <out put >t r ust ed_nodes</ out put >
 56      </ out put s>
 57    </ t echnol ogy>

Source: the author (2018).

sends notifications via the User Notifier (User Manager) to either inform the owners (first

group) or request a decision from the owners (second group) about the update process.

Before installing this update, NetApp Selector carries out a check of the dependencies

(Dependency Verifier) and conflicts (Conflict Estimator). These processes are required to

determine all the new dependencies and find out if any conflict is likely to occur between

the installed network services and new NetApps packages.

If there is no problem, iMPROVE triggers the “updateNetworkService” method to en-

sure that the app2net core updates the NetApp. However, if there is any problem,

iMPROVE requests the PVN owner to make an intervention. This intervention can in-
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volve other actions, for example, the replacement of NetApps that are causing unresolved

conflicts. After the PVN owner has addressed any problems found, iMPROVE can request

the NetApps update (“updateNetworkService” method) for the app2net core on the

basis of the owner’s definitions. Even though the PVN owners may not have addressed the

problems found or have decided not to make an update, the new NetApp is still available

and can be installed in compatible PVNs.

By triggering the “updateNetworkService” method (available in App2net RESTful

API), in PVNs that use the NetApp version of the trust-based multicasting network ser-

vice, the app2net core retrieves the data about the installation or the last update from

the DB & Statistics. Through this data, the Package Transfer module validates the source

repository, which might be the NACR or an External Third-party Repository (lines 14

to 17, 34 to 36, and 86 to 88). Next, this module sends an “update” notification, via

the System Notifier, to the PVN nodes that have been installed in the network service.

Here, we must point out two aspects. First, the “update” notification contains the trans-

fer guidelines, NACR, and new requirements. The second point is that there is no need

to define compatible nodes because they were chosen in the last process. This means

that the Transfer module only contacts the nodes that have installed the NetApp package.

Following these actions, the Package installer recovers the stop and update actions from

the NetApp Catalog and saves the current configuration of the trust-based multicasting

network service. Next, the Installer stops the NetApp execution and takes the necessary

actions to update the NetApp. Finally, the NetApp Configurator restores the saved con-

figuration in all the compatible nodes, and the NetApp Manager initializes the network

service execution.

Now, let us suppose the case of a PVN owner that wants to deploy the trust-based

multicasting service in his/her PVN. First, the owner interacts with the PVN Owner’s

Portal to configure his/her PVN into the App2net ecosystem. During this process, the

owner can send a VXDL file with the PVN data, such as supported technologies, nodes,

interfaces, and IP addresses. In the app2net core, the Infrastructure Handler makes

use of the VXDL file to install the corresponding drivers in each PVN node and get

additional information such as supported programming languages, available EEs, and

deployed network services. After ending the configuration process, the Infrastructure

Handler saves all these data in the DB & Statistics (Figure 5.1 and Table 5.1 summarize

some of them). Then, the owner uses the Marketplace, which is available in the App2net

ecosystem, to select and trigger the deployment process of the NetApp that provides this
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Figure 5.3: Partial NAD file for trust-based multicasting (Part 2).

 58    <t echnol ogy>
 59      <i dent i f i er >openf l ow</ i dent i f i er >
 60      <ver si on>1. 0</ ver si on>
 61      <ee>pox</ ee>
 62      <t ype>net app</ t ype>
 63      <hash>f 8af 1633168833725ded1835f f dcec44</ hash>
 64      <i ni t i al _conf i g>
 65        <command>. / t r ust _mul t i cast _45. py - - conf i g={ " t r ust ed- nodes" :  " al l " } </ command>
 66      </ i ni t i al _conf i g>
 67      <manage_act i on>
 68        <i nst al l >. / t r ust _mul t i cast _45. py - - i nst al l  - - f i l e=${ POX_HOME} / st ar t up. py</ i nst al l >
 69        <st ar t >. / t r ust _mul t i cast _45. py - - st ar t </ st ar t >
 70        <st op>. / t r ust _mul t i cast _45. py - - t er mi nat e</ st op>
 71        <conf i gur e>
 72          <par amet er >
 73            <val ue0>t r ust ed- nodes</ val ue0>
 74            <command>. / t r ust _mul t i cast _45. py - - t r ust ed- nodes=$val ue0$</ command>
 75          </ par amet er >
 76          <par amet er >
 77            <val ue0>f or ce- add- node</ val ue0>
 78            <command>. / t r ust _mul t i cast _45. py - - add- node=$val ue0$</ command>
 79          </ par amet er >
 80          <par amet er >
 81            <val ue0>f or ce- r emove- node</ val ue0>
 82            <command>. / t r ust _mul t i cast _45. py - - r emove- node=$val ue0$</ command>
 83          </ par amet er >
 84        </ conf i gur e>
 85      </ manage_act i on>
 86      <l ocat i on>
 87        <ur i >f i l e: / / / r eposi t or y/ ser vi ces/ openf l ow/ pox/ t r ust _mul t i cast _45. py</ ur i >
 88      </ l ocat i on>
 89      <l ocat i on_f l ag>al l </ l ocat i on_f l ag>
 90      <conf l i c t s>
 91        <conf l i c t >
 92          <i dent i f i er >mul t i cast - uf r gs</ i dent i f i er >
 93          <ver si on>al l </ ver si on>
 94        </ conf l i c t >
 95        <conf l i c t >
 96          <i dent i f i er >dpi - t el ef oni ca</ i dent i f i er >
 97          <ver si on>&l t ; 4. 0. 2</ ver si on>
 98        </ conf l i c t >
 99      </ conf l i c t s>
100      <out put s>
101        <out put >aver age_del ay</ out put >
102        <out put >not _f or war d_mul t i cast _packet s</ out put >
103        <out put >mul t i cast _t r af f i cs</ out put >
104        <out put >mul t i cast _cl i ent s</ out put >
105        <out put >mul t i cast _gr oups</ out put >
106        <out put >packet _l oss_r at e</ out put >
107        <out put >t hr oughput </ out put >
108        <out put >t r ust ed_nodes</ out put >
109      </ out put s>
110    </ t echnol ogy>
111 </ packages>
112 . . .

Source: the author (2018).

service. As can be observed in Figure 5.1, there are two technologies in the PVN, namely

NFV using ClickOS EE and OpenFlow using POX controller EE. In addition, Table 5.1

displays the installed network services in the PVN. Most of the services are installed in a

single technology, but, some of them (e.g., cache-squid) are installed in both technologies.

In iMPROVE, the Catalog Explorer retrieves the PVN data registered in the previ-

ous steps from DB & Statistics. By interacting with the Marketplace, the owner is able

to select two different categories: security and multicasting. He/She also supplies two

keywords: trust-based and communication. Following this, Explorer uses the categories

and keywords to filter the list of network services that are only OpenFlow technology-

related and that use a POX controller or NFV technology-related that use ClickOS. In this
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Table 5.1: Network services installed in the PVN.
Network Service Version Execution Environment

cache-squid 3.1 ClickOS, POX Controller
firewall-netfilter 10.0.1 ClickOS
ids-telofonica 1.9.8 ClickOS
nat-cisco 1.0 ClickOS
dpi-telefonica 4.0 POX Controller
load-balancer-ufrgs 0.98 POX Controller

way, the Marketplace only shows compatible NetApps (which use OpenFlow with POX

or NFV with ClickOs) where the categories and keywords match the stored NAD files,

and this enhances the search for the desired network service. Finally, the owner selects

the network service trust-based multicasting and triggers the selection process.

In the selection process, the Version Resolver module retrieves from the Catalog the

data about the last version of the NetApp and carries out checks of the dependencies

(Dependency Verifier) and conflicts (Conflict Estimator). In this case, the Estimator finds

a conflict with an installed NetApp (dpi-telefonica 4.0). Then, the process returns to the

Version Selector to retrieve data about the previous version of the NetApp. As there is no

previous version, User Manager notifies the PVN owner about the detected conflict. On

the one hand, the PVN owner could remove the dpi-telefonica from his/her PVN, and thus

restart the installation process. On the other hand, the PVN owner could update the dpi-

telefonica network service, which also mitigates the conflict because the last version of

the dpi-telefonica (4.3) is compatible with the trust-based multicasting (there is no known

conflict with this version mapped in its NAD file).

The owner updates the dpi-telefonica by just triggerring the update process via the

PVN Owner’s Portal (or triggering “updateNetworkService” method in App2net RESTful

API). In this way, the NetApp Selector will retrieve the last version of the dpi-telefonica

(4.3). Then, the app2net core takes the necessary actions to update this NetApp,

and the PVN owner can continue with the trust-based multicasting installation. Now that

it is without conflicts, iMPROVE can interact with the app2net core to trigger the

“deployNetworkService” method with the chosen NetApp and its dependencies.

When starting the deployment process, the Node Selector obtains the necessary data

to define the compatible nodes. These data include the available EEs (ClickOS and POX

controller), location flag (all), NACR, and PVN nodes. Since there are two available EEs

in this PVN, the Node Selector splits them into two subprocesses, one for each technology.

On receiving the necessary data, the Package Transfer module validates the NACR using a

hash encrypted by asymmetric keys previously stored in the DB & Statistics. This module
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generates the transfer guidelines (e.g., strategy chosen, method, ranking criteria, NACR

address, and URI of the package) and sends them to the NACR and compatible nodes

via the System Notifier. Next, the PVN nodes that support NFV download the NetApp

package (available in the NACR according to line 35) for ClickOS, whereas the nodes

that support OpenFlow download the NetApp package for the POX controller (available

in the NACR according to line 87).

In the next step, the Package Installer retrieves the available actions from the Catalog.

Each node group recovers different actions. The nodes that support NFV get four actions

(lines 38 to 48) and the nodes that support OpenFlow get six actions (lines 67 to 85).

The Installer sends these “install” actions (line 39 for NFV and line 68 for OpenFlow) to

drivers that execute them into compatible nodes. After deploying the network service, the

NetApp Configurator obtains the initial functional settings to configure the trust-based

multicasting in the nodes with ClickOS for NFV (line 32) and nodes with POX controller

for OpenFlow (line 65). Although the initial functional settings are different commands

(lines 32 and 65), they set up the same configuration in the network service. It is also

worth noting that the PVN owner can customize these initial settings before the Configu-

rator includes them in the nodes. Finally, even though just one network service has been

selected, app2net core installs two NetApp packages (one in ClickOS EEs and one

in POX controllers EEs).

After the deployment, the PVN owner can use the open methods of the App2net

RESTful API to manage the NetApp. Thus, the PVN owner could write a management

program, and in this way adapt the NetApp execution to the nuances of his/her envi-

ronment. For instance, owing to performance and security constraints, the trust-based

multicasting must be executed from 8:00 AM to 6:00 PM, and, at every hour, the PVN

owner must change the nodes that can connect to the multicast groups (called trusted

nodes). This means that, during the time interval, the owner must access the PVN Owner

Portal to include the new trusted nodes at each hour, without a management program.

When implementing a management program, the owner first obtains all the available

actions in each NetApp package from the App2net RESTful API (through the “retrie-

veActions” method). Since two different technologies form the PVN, by deploying the

trust-based multicasting, two NetApp packages were installed (one in ClickOS EEs and

another in POX controllers EEs). Although two packages implement the same network

service, each can make different management actions available. As can be seen in Figures

5.2 and 5.3, in the NFV ClickOS version, there are four available actions (lines 38 to 48)
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and six output data (lines 49 to 56). Similarly, in the POX version, there are six available

actions (lines 67 to 85) and eight output data (lines 100 to 109).

When automating the necessary actions, the PVN owner runs a management program

that triggers the necessary actions via the App2net RESTful API. Thus, when a com-

puter executes the management program, at 08:00 AM, it triggers a “start” action through

the “runAction” method in PVN nodes that have installed the trust-based multicasting

network service. Next, at every hour, the program obtains data about which nodes are

“trusted” (via the “getData” method and “trusted-nodes” output); then, it checks whether

or not the trusted nodes must be changed. In an affirmative case, the program also trig-

gers the “configure’ action to change them. In this way, nodes with ClickOS for NFV, run

the command given line 45, whereas nodes with POX controller for OpenFlow run the

command detailed in line 74.

In the case of automatic actions, the management program is responsible for sending

the required parameters. However, another platform or script can provide these parame-

ters too. At the end of the day (at 6:00 PM), as a result of the constraints defined by the

PVN owner, the management program triggers the “stop’ action to turn off the trust-based

multicasting execution. The owner or a program trigger a configure or start action only

once even for two different technologies; thus, the app2net core must run different

commands in the nodes depending on its supported technology (POX or ClickOS). How-

ever, the management action and parameters must be the same to do this, such as when

configuring “trusted-nodes” in nodes that support NFV ClickOS (lines 43 to 46) and in

nodes that support the POX controller (lines 72 to 75), as well as for starting the NetApp

execution in nodes that support NFV ClickOS (line 40) and in nodes that support POX

controller (line 69).

5.2 App2net Ecosystem Prototype and Experiments

In this section, we give a detailed account of the App2net ecosystem prototype2 and

the features of the test environment. Following this, we examine the feasibility of the

prototype and discuss the results obtained for code transfer and deployment by means

of the App2net ecosystem. In Figure 5.4, we detail the components and modules of our

prototype as follows: (i) red boxes represent the elements did not implement; (ii) green

boxes represent components and modules that are fully implemented; and, (iii) green

2The current version of our prototype can be download from <https://github.com/rlsantos/app2net>

https://github.com/rlsantos/app2net
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dashed boxes denote components and modules partially implemented, that means, just

essential features are available.

Figure 5.4: Representation of the implemented modules in App2net ecosystem prototype.
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Source: the author (2018).

The App2net ecosystem prototype was implemented by means of the Django 1.4.33,

Python 2.7.34, and PostgreSQL 9.1.65. This prototype was installed on a server with

four AMD Opteron 6276 processors (16 cores per processor) 2.30 GHz and 64 GB of

RAM, running an Ubuntu Server 12.04.3. Besides, the python-igraph6 library 0.6.5 was

employed for calculating the quota. The experiments were conducted on a PVN consisting

of by 51 VMs that were hosted on the server described above. These VMs were created

with two 2.3 GHz cores, 1 GB of RAM, and 1 Gbps vNIC, using two different EEs:

Vyatta Core 6.6 R1 and VyOS 1.0.4. Furthermore, the QEMU-KVM 1.0 hypervisor

and Open vSwitch 1.10.2 were required to host and connect these VMs. The Aurora

(WICKBOLDT et al., 2014) was used as the Generic Virtual Platform Manager, which

means, it was designed to create and manage the PVN infrastructure. This software was

installed in another server with an Intel Core 2 Duo 3.00 GHz and 2 GB of RAM, running

Ubuntu 13.04.

3<http://www.djangoproject.com/>
4<http://www.python.org/>
5<http://www.postgresql.org/>
6<http://igraph.org/python/>

http://www.djangoproject.com/
http://www.python.org/
http://www.postgresql.org/
http://igraph.org/python/
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5.2.1 Methodology and the Test Environment

A well-accepted classification of Internet topologies (LUIZELLI et al., 2016), de-

signed by Kamiyama et al. (KAMIYAMA et al., 2010), was adopted to ensure a high

degree of fidelity with regard to real-world networks. Kamiyama et al. (KAMIYAMA

et al., 2010) conducted a study that formalized the classification of ISP networks into

the three topology classes, namely: Ladder, Star, and Hub & Spoke. In their study, the

authors analyzed 23 commercial backbone networks (online and available at the CAIDA

website7) with the number of nodes ranging from 21 to 128. Through this analysis, the

authors defined a set of metrics that reflect the main topological properties present in each

backbone network. These metrics include, for instance, the degree of connectivity in the

network and the presence of hub nodes, which means, nodes with high connectivity and

concentrated. Thus, the authors map the relationship between these metrics and the type

of network topology of the backbone, so that these topologies can be categorized into one

of the previously described classes.

Figure 5.5 provides a simple view of three representative Internet topology classes.

The network topologies arranged as Ladder (Figure 5.5(a)) are characterized by their lack

of hubs, as well as being formed by a set of loops. As a result, the topology tends to have

lower connectivity, the distance between the nodes (with regard to the number of hops) is

generally high. Star topology class has a small number of hubs connected to numerous

nodes with low connectivity (as can be seen in Figure 5.5(b)). In this class, the distance

between the nodes tends to be low, while traffic tends to concentrate on the hubs. Finally,

the Hub & Spoke class (Figure 5.5(c)) is characterized by a comparatively higher number

of hubs, which are usually interconnected. A further point is that a large number of nodes

are connected to one or more hubs.

In this thesis, our virtual nodes simulate programmable routers in a PVN and we

have arranged them in accordance with the Internet topology classes outlined above. In

this way, we were abre to produce samples of topologies using the IGen tool8. Each

PVN sample has 50 EEs and one NACR, which only stores one NetApp but two different

versions of the package (one for Vyatta and another for VyOS). We divided the VMs into

three groups that simulate their geographical distribution. Thus, the connections between

the groups were configured with a limited bandwidth rate of 100 Mbps and a delay of

7See the commercial backbone networks on the Center for Applied Internet Data Analysis (CAIDA)
website: <http://www.caida.org/tools/visualization/mapnet/Data/>

8<http://igen.sourceforge.net/>

http://www.caida.org/tools/visualization/mapnet/Data/
http://igen.sourceforge.net/
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Figure 5.5: Three representative Internet topology classes.

(a) Ladder (b) Star

(c) Hub & Spoke

Source: the author (2018).

16 ms, 24 ms, and 50 ms with a variation of 5 ms (as observed in the tests conducted

at the main network sites in Brazil). We limited: (i) the bandwidth rate by using the

configurations available in OpenVSwitch; and, (ii) the delay through the traffic control

commands available in the kernel.

To ensure size of NetApps was realistic, we analyzed a sample of applications imple-

mented with different network programmability-related technologies. As a result of this

analysis, we concluded that the size of most of the NetApps ranges between 100 KB and

1 MB. However, some network services and firmware have sizes up to 12 MB. Hence, we

included the following NetApps sizes: 100 KB, 500 KB, 1 MB, 5 MB, and 10 MB.

In our experiments, we analyzed three main evaluation metrics: distribution time,

CPU usage, and network overhead. The reason for making these metrics was that they

could enable us to evaluate the impact introduced by the App2net ecosystem on the de-

ployment of network services. First, we employed as evaluation metric of the time that

had elapsed until all the EEs obtained the NetApp package (regardless of what technology

the nodes support), which we call the NetApp “distribution time”. Thus, we were able

to check the speed of the App2net ecosystem for transferring packages to PVN nodes.

In this way, we could determine if the App2net would be more efficient than automating

scripts or even a PVN owner executing these transfers manually.

We synchronized all the nodes through the same Network Time Protocol (NTP) server
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to capture the distribution time. Next, we obtained the time at the start of the distribution

process by employing the time module available in the Python9. After every node has

completed the transfer, it sends a message to the App2net ecosystem prototype with the

end time. Finally, at the last node, the App2net calculates the total distribution time by

subtracting the time captured by the last node and the time captured at the beginning of

the process.

The CPU usage allows us to check how much processing our solution requires from

both repositories and PVN nodes. In some cases, the PVN owners are more interested

in a minimal processing interference than a minimal distribution time because the PVNs

require a high CPU usage from the nodes (e.g., the video transcoding network service).

We used pidstat command from the sysstat package10 in both the NACR and PVN nodes to

obtain the CPU usage rate. This command is a means of capturing the average CPU usage

of a specific process in each VM at every second. Our analysis is based on the calculated

average CPU usage from all the PVN nodes, which were captured using the pidstat in

each node, and the average CPU usage from the NACR also captured by pidstat.

The network overhead allows us to measure how much traffic our ecosystem needs

to add to the network to perform its essential functions. When estimating the overhead,

first, we log the data traffic of all the interfaces of each node using the Wireshark11. In

our prototype, the App2net ecosystem sends all the necessary messages through specific

ports. These messages include lists, actions, statistics, requests, system calls to trigger

actions, configurations, and others. By using the filters available in the Wireshark, we

are able to isolate the App2net traffic from other types of traffics. Then, we can estimate

precisely the network overhead that is introduced by our ecosystem.

We created different setups for each experiment to evaluate the performance of our

ecosystem more effectively. In every setup, we changed the topology, NetApp size, and

model for code transfer. In the following experiments, we executed the setups 30 times.

Hence, the values displayed in the following graphs are the averages calculated for all

the executions (JAIN, 2015). Furthermore, we also showed the confidence interval (error

bars) by calculating a confidence level of 99%, even though the confidence interval can

be minimal in most cases.

9For more information, see Python documentation: <https://docs.python.org/2/library/time.html>
10For more information, see Sysstat repository: <https://github.com/sysstat/sysstat>
11<https://www.wireshark.org/>

https://docs.python.org/2/library/time.html
https://github.com/sysstat/sysstat
https://www.wireshark.org/
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5.2.2 Analysis of the Experiments

Figures 5.6, 5.7, and 5.8 provide an overview of the results obtained by the models

which employed the hybrid mechanism and delay criterion in Ladder, Hub & Spoke, and

Star topologies, respectively. We chose to examine these models because they highlight

some of the differences between the strategies. Thus, the results obtained from other

models were not revealed for the sake of simplicity.

Figure 5.6: Strategies in the Ladder topology (hybrid-delay).
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Figure 5.6 shows the results obtained for models using the hybrid mechanism and

delay criterion in Ladder. These results reveal that Parallel has a good distribution time

for small NetApps (100 KB), but, that the time increases for large NetApps (5 MB and 10

MB). However, Gossip obtains the shortest times for almost all the file sizes. With regard

to the small NetApps, the reason for the different results obtained by Gossip and Parallel

is that the central NACR has enough processing capacity and carried out its transfers

so fast that the EEs had no time to act as repositories. However, as the package size

increases, Gossip offers additional ghost repositories that reduce delay and prevent the

central NACR from overloading. Despite of this, Groups obtains similar times in all the

package sizes, mainly because each master is only able to send the packages in parallel

for the nearest nodes, which prevents the congestion of links and the occurrence of high

delays.

As can be seen in Figure 5.7, the results obtained in the Hub & Spoke reveal a very

similar behavior to that of Ladder. However, in Hub & Spoke, two interesting cases
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Figure 5.7: Strategies in the Hub & Spoke topology (hybrid-delay).
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should be highlighted that are caused by the large number of links in the nodes. First

of all, the distribution time for Gossip and Groups is slightly higher than in Ladder. By

using the delay criterion, the ghost repositories must calculate the delay for more nodes by

increasing the distribution time. Second, the distribution time for Sequential and Parallel

strategies is somewhat better. Now, the NACR can send the NetApp package to multiple

EEs through several links, and thus avoid the congestion of links among the groups of

PVN nodes and reduce the hop distance between the NACR and EEs.

Figure 5.8: Strategies in the Star topology (hybrid-delay).
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Figure 5.8 shows the results obtained by models based on the hybrid mechanism and

delay criterion in Star. These results reveal that NetApp distribution times in Star are
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longer than (or equal to) those obtained for Hub & Spoke and Ladder, which corroborates

the view that the PVN topology influences the NetApp distribution process. In Star, the

low number of links and the centralized feature, in which only one node interconnects with

several branches, cause congestion and high delay, and thus results in a poor performance.

From an analysis of the results, it is clear that the Gossip strategy is less advantageous than

the others. As there is only one path to reach most of the EEs, Gossip cannot avoid delays

and congestion. Similarly, questions regarding topology are also an obstacle to other

strategies, and this might explain the similarities between Parallel, Groups, and Gossip

for large NetApps (10 MB).

Figure 5.9: The Gossip strategy in the Hub & Spoke topology (degree).
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Figure 5.9 shows the performance results for Gossip in Hub & Spoke when following

the degree criterion, and this reveals that all the mechanisms attain similar distribution

times for small files. As the file size becomes larger than 1 MB, the push-based mecha-

nism deteriorates; at the same time, the pull-based and hybrid mechanisms show a mod-

erate increase in time. We have not disclosed the results in the Ladder topology because

the transfer models showed identical results to those of Hub & Spoke. The degree is the

only criterion that has been displayed because it achieves the best results for this strategy.

Figure 5.10 shows that the push-based mechanism in Star performed quite well for

small files but poorly for larger ones. The reason for this is that the nodes actively transfer

the file to their neighbors. In contrast, the pull-based and hybrid mechanisms started with

a longer time to transfer the small files but showed a good performance for the larger ones.

This was because the nodes had to act as an extra repository and communicate changes in
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Figure 5.10: The Gossip strategy in the Star topology (degree).
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the standby list, as well as carrying out their regular routing tasks. Moreover, the repos-

itories have to wait for their neighbors to request the file which leads to intervals before

the starting-point of each transfer. In addition, the hybrid mechanism is also affected by

the problem of over-processing because it uses push in the first stage of the transfer, as

can be observed in the time it takes to make a transfer of the large files (5 MB and 10

MB).

We found the CPU usage of VMs was dissimilar while carrying out the experiments

with different models. For this reason, we ran the experiments again, but this time in-

cluding an analysis of the CPU usage. Here (in Figures 5.11 and 5.12), we took into

account the push-delay (in the NACR) and pull-links (in the PVN nodes) models. These

models were chosen because they show the higher values for the average CPU usage. In

the NACR, Parallel and Gossip (Figure 5.11) show a significant and incremental average

CPU usage. This results from the computing that is required by the NACR to control and

perform all the parallel transfers for the PVN nodes. By contrast, Groups and Sequential

have a small and steady average CPU usage rate for all the experiments. Sequential has

the lowest values for the average CPU usage rate because in this strategy there is only one

transfer at a time. Thus, the distribution time to all the PVN nodes received the NetApp

is very high and the computing required is minimal. Finally, in Groups, the CPU usage is

smoother because the NACR only transfers the NetApp to the masters.

First of all, it is important to highlight the need to take account of the average CPU

usage rate in PVN nodes. Thus, the results shown are the average CPU usage in 50
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Figure 5.11: Average CPU usage rate of the NACR (push-delay).
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PVN nodes of each topology (Figure 5.12); in this way, although some nodes have a high

CPU usage in different models, these rates can be softened in the average shown. In the

PVN nodes (Figure 5.12), it is clear that Gossip obtains a higher CPU usage rate than

the other strategies because the PVN nodes become ghost repositories after receiving the

NetApp; this means, they must transfer the NetApp package to other PVN nodes. In the

experiments with Gossip, we found that after becoming ghost repositories, there was a

considerable increase in the PVN nodes with the CPU usage. However, as previously

explained, these high values observed in the ghost repositories (few nodes) are smoothed

out in the average shown by the low processing of the other PVN nodes. Likewise, in

Groups, the small CPU usage of slaves conceals the high processing of the masters and

reduces the average CPU usage. In another way, in Sequential and Parallel, each PVN

node performs its transfer and only interacts with the NACR, which results in a small

average CPU usage.

By analyzing the average CPU usage of all the nodes (Figures 5.11 and 5.12), we can

determine that the Gossip models require a high processing from both the PVN nodes

(ghost repositories) (≈ 15%) and NACR (from ≈ 50% for small files to ≈ 85% for large

files). As the number of ghost repositories increases over time, the number of PVN nodes

with high processing also increases. Even though the Parallel strategy requires minimal

processing in PVN nodes (below 5%), it requires a huge CPU usage from the NACR

(from ≈ 50% for small files to ≈ 95% for large files). Finally, Groups strategy shows the

best performance with regard to the average CPU usage. The reason for this is that the
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Figure 5.12: Average CPU usage rate of PVN nodes (pull-links).
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processing required is low in both the NACR (≈ 10%) and PVN nodes (from ≈ 5% to

≈ 7%). It is noteworthy that the master nodes require high processing, but, in the overall

average CPU usage, the large number of slaves with negligible processing spreads out

these values.

One significant difference between the strategies analyzed, is the size and number

of messages exchanged to control the behavior of the PVN nodes and to handle all the

lists. For example, in Sequential, there are only a few messages exchanged between the

nodes, such as requests for downloads and information about the criterion that is used.

Otherwise, in Gossip, there is a significant number of messages, such as information

about current ghost repositories, busy notifications, shared list, deletion requests, and

quota information. In view of this, we also measured the communication overhead for

each strategy by 50 PVN nodes, one NACR, and the NetApp package of 100 KB. The

communication overhead is set out in detail in Table 5.2.

Table 5.2: Total network traffic and overhead generated by each strategy.

Strategies Total Network
Traffic

Reduction in the Total
Network Traffic

Percentage of
Reduction

Overhead Percentage of
Overhead

Sequential 54,629.62 KB 0.00 KB 0.00% 1,567.87 KB 2.87%

Parallel 53,619.85 KB 1,009.77 KB 1.85% 1,458.46 KB 2.72%

Groups 42,236.71 KB 12,392.91 KB 22.69% 1,875.31 KB 4.44%

Gossip 41,139.05 KB 13,490.57 KB 24.69% 2,085.75 KB 5.07%
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As expected, the overhead remained almost the same for most of the analyzed models,

and we only observed a small variation if the used mechanisms were changed. With

regard to the strategies, Gossip registered the highest observed overhead, around 2,085.75

KB (≈ 5.07%) of overhead in the total traffic generated. The Groups obtained 1,875.31

KB (≈ 4.44%) of overhead, whereas Sequential and Parallel achieved 1,567.87 KB (≈

2.87%) and 1,458.46 KB (≈ 2.72%) of overhead, respectively. Even though Groups and

Gossip require a large number of messages to control the behavior of the nodes and to

handle lists, these results demonstrate that the overhead is minimal, in light of the benefits

provided by these two strategies, for example, a better distribution time than that achieved

by Sequential and Parallel.

By analyzing the total traffic generated, we observed that Gossip and Groups had

obtained a higher overhead. However, these strategies also showed a considerable reduc-

tion in the total amount of network traffic generated. If the Sequential strategy is taken

as a baseline, in Gossip, the reduction observed was of 13,490.57 KB (≈ 24.69%) and,

in Groups, the reduction was 12,392.91 KB (≈ 22.69%). The reason for this reduction

is that both strategies created the new repositories (i.e., ghost repositories and masters)

along with the NetApp distribution process. Finally, Parallel obtained a tiny reduction in

the total network traffic generated because there are no extra repositories, which means

that the same NACR performs all the transfers. In terms of numbers, this reduction was

1,009.77 KB (≈ 1.85%) in comparison with the Sequential strategy.

5.3 Summary and Discussion

We began this chapter by conducting a case study to provide a detailed description

of the necessary actions needed for a third-party developer to publish and distribute an

innovative network service. We have shown that a single NAD file can describe packages

for three different technologies, including the initial settings, management actions, output

data, and known conflicts. In addition, we showed the simple steps needed for a user to

choose, deploy, and manage a new network service in the PVN. In the deployment phase,

the App2net ecosystem was shown to be feasible to deploy a single network service with

several packages in a PVN supporting two different technologies, namely ClickOS for

NFV and POX for OpenFlow. After deploying the network service, we described the pro-

cedures for a PVN owner to obtain all the available actions in each NetApp through the

“retrieveActions” from App2net RESTful API. Next, we explained how he/she could use
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these actions to create a management program, which could analyze the execution data

(via the “getData” method) and trigger the necessary actions (by means of the “runAc-

tion” method). In this way, the App2net ecosystem proved to be a viable alternative for

distributing, describing, deploying, and managing network services in PVNs that support

different programmability technologies.

We also implemented and tested an App2net ecosystem prototype and this took into

account the code transfer models that we have designed. The results obtained corroborate

the feasibility of a PVN owner using the App2net to transfer, install, and configure new

NetApps without knowing the specific features of the underlying environment. We eval-

uated the App2net ecosystem in the light of two different EEs (Vyatta and VyOS). The

evaluation results clearly reveal the influence of the PVN owner’s network topology on

the distribution times of NetApps for PVNs with heterogeneous EEs. We found that the

behavior of the strategies was similar in both the Hub & Spoke and Ladder topologies. In

these topologies, Gossip using the hybrid and pull mechanisms obtained the best distri-

bution times in most of the tests. With the degree (number of links) as the criterion, Hub

& Spoke achieved good distribution times, whereas, in the case of Ladder, the available

bandwidth performed better. In Star, the best performance was obtained with the Parallel

strategy and push mechanism using the degree and the available bandwidth criteria.

Finally, we also evaluated the average CPU usage and network overhead generated by

each strategy. Although Gossip obtains good distribution times, it requires a significant

CPU usage of both the NACR and the PVN nodes (≈ 85% and ≈ 16.5% respectively for

NetApps with a size of 10 MB). On the one hand, Gossip and Groups strategies show a

high network overhead (5.07% and 4.44% respectively). On the other hand, these strate-

gies reduce the total network traffic (24.69% for Gossip and 22.69% for Groups). Parallel

and Sequential strategies require low CPU usage from PVN nodes (≈ 3% and ≈ 1% for

NetApps with a size of 10 MB). However, although Parallel achieved the best distribution

time for Star, it still incurs a high CPU usage at the NACR (≈ 96% NetApps with a size of

10 MB). In summary, there is no single best strategy for a good distribution time, minimal

overhead, and minimal CPU usage of both NACR and PVN nodes. It is up to the PVN

owner to choose the best solution and trade-offs for each environment.
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6 CONCLUDING REMARKS

This thesis examined the state-of-the-art of network programmability and virtualiza-

tion, and discussed the main drawbacks of deploying and managing NetApps over PVNs

with different EEs. We compiled a glossary to bring together terms related to the same

concepts used in different technologies. Following this, we reviewed the historical back-

ground of marketplaces with regard to networking paradigms. On the basis of this review,

we discussed the essential design goals for a reference network marketplace, and then, we

highlighted the research challenges that must be overcome before that these marketplaces

can be established in future networks.

This thesis also introduced the App2net ecosystem to empower PVN owners, who do

not know the specific features of the underlying infrastructure, to deploy and manage Net-

Apps in PVNs formed by different EEs. We sought inspiration from the mobile market

that through the use of online marketplaces enables PVN owners without any knowledge

of devices to deploy apps on their smartphones too. This meant we were in a position to

analyze our ecosystem in terms of the design goals previously found in the review of on-

line marketplaces. When evaluating our ecosystem, we conducted a case study that traced

the steps in which a third-party developer can describe and publish an innovative network

service in the App2net ecosystem. Following this, we described the main steps needed

for a PVN owner to deploy and manage this network service in a PVN with heteroge-

nous EEs. In addition to this case study, a prototype was implemented, and its feasibility

was evaluated and discussed by taking account of the distribution time, CPU usage, and

network overhead.

The remainder of this chapter is structured as follows. First, the research questions are

answered, and then the hypothesis is supported by an outline of the work carried out in

this thesis. After this, we summarize the main contributions made by this thesis. Finally,

we make some predictions about further research studies needed in this area.

6.1 Answering the Research Questions and Confirming the Hypothesis

As discussed throughout this thesis, a few years ago, the market for mobile apps was

closed and limited to a few large companies that developed and deployed their apps on

specific smartphones. In this way, the smartphones were “black boxes” because no one

could install or change the apps that had already been deployed. However, Apple and
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Google opened up the market for third-party apps, by introducing, in 2007 and 2008,

respectively, online marketplaces (i.e., Apple App Store and Google Play) to provide new

apps and features for the smartphones end-users. Similarly, the networking market was

closed and limited to a few large companies. However, recent advances in PVNs have

opened it up it third-party developers too. In light of this, the investigation carried out

during this thesis has been aimed at corroborating the following hypothesis.

Hypothesis: a platform inspired in online marketplaces may enable PVN owners

with a limited knowledge of the underlying infrastructure to overcome the main

hurdles to introducing new NetApps into PVNs

At the beginning of this thesis, three research questions were defined to guide the in-

vestigation about this hypothesis and to provide evidence about its validation. Thus, on

the basis of this investigation, it is possible to answer these research questions as follows.

Research Question #1: What are currently the main hurdles to introducing new net-

work applications in Programmable Virtual Networks?

Answer: The isolation provided by network virtualization, allows PVNs to prevent mis-

behaving programs (or even devices) from interfering with the production network

and leading to its collapse, which was a severe drawback in the past. Thus, in the

case of misbehaving programs, the network operator can easily stop or delete a set

of devices that run them. Virtualization imposes constraints on performance, but

this does not prevent new NetApps from being developed. The review of the litera-

ture that was carried out in Chapter 2, showed that there were several drawbacks to

introducing NetApps in PVNs. These included the following: (i) the PVN owners

need to have an extensive knowledge of device instructions and NetApps before

they can carry out simple tasks (e.g., transferring and installing a NetApp), which

is arduous and repetitive; (ii) the same tasks (e.g., distribution of NetApps) have

different and conflicting requirements (e.g., minimal network interference or distri-

bution time) at each stage of the service lifecycle (i.e., deployment, operation, and

optimization); (iii) the initial settings must be manually replicated in each EE to

set up the logic rules for delegating the data flows for each new service; (iv) neither

the technological nor academic world has been able to automate the NetApp man-

agement by including different types of EEs; (v) the lack of repositories and the

unavailability of NetApps for downloading, restricts the distribution of developed
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services to just a few PVN owners; (vi) when deploying new services, the PVN

owners must now address issues of dependency and conflict between the NetApps;

and, (vii) there is no descriptor to provide a detailed account of the VNAs or Net-

Apps of different programmability-related technologies, which prevents some tasks

from being automated (e.g., management, configuration, and conflict detection in

network services).

Research Question #2: In light of the successful paradigm of OS-specific app stores,

what are the essential design goals that can enable PVN owners, who lack any knowledge

of the underlying infrastructure, to deploy and manage the network applications?

Answer: In different fields, online marketplaces allowed end-users to deploy and man-

age applications with minimal or no knowledge about the underlying infrastructure.

In Chapter 3, we reviewed the history of the marketplaces, and we identified the

design goals that comprise a set of the suitable features that should be provided

by network marketplaces. We argued that this set is divided into three main cate-

gories of design goals, namely: offer and distribution, network environment, and

applications. In the first category, offer and distribution, we identified four design

goals: access control; publishing guidelines; pricing methods; and notifications

of important events. The design goals for the network environment category in-

clude: deployment of NetApps; support for different technologies, which allows

NetApps to be “infrastructure-agnostic”; and monitoring and SLAs management.

In addition, in the applications category, we determined that there were three cru-

cial design goals, which include: consistency about NetApps and repositories; the

relationship between NetApps, in particular, dependencies and conflicts; and, the

management of the NetApps lifecycle. Finally, the survey about marketplaces in-

volved compiling a list of research challenges, which must be overcome to make the

adoption of network marketplaces a reality, in particular, with regard to challenges

such as business model, evolution-aware, auditing, recommendation of NetApps,

placement, security, and descriptors.

Research Question #3: Considering the distribution time, CPU usage, and network over-

head, what is the impact of using a platform on deploying applications in heterogeneous

Programmable Virtual Networks?
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Answer: The App2net ecosystem, described in detail in Chapter 4, empowers PVN

owners to deploy and manage NetApps in PVNs by means of heterogeneous EEs

without knowing the specific features of the underlying environment. The exper-

iments conducted in Chapter 5 show this impact in terms of the distribution time

of a NetApp, CPU usage, and network overhead introduced by our ecosystem. In

summary, considering the baseline results (obtained from the Sequential strategy)

the distribution time was reduced, on average, by 84% for Ladder and Hub & Spoke

topologies, while in the case of the Star topology, the distribution time was reduced

by approximately 76%. It should be noted that reduction was observed when com-

paring the baseline results (Sequential strategy) with the average values obtained

from the other strategies (Parallel, Gossip, and Groups). With regard to CPU us-

age, owing to the high values observed, two perspectives were analyzed: (i) the

average CPU usage of the repository from “push” strategy and delay criterion and

(ii) the average CPU usage of the PVN nodes from the “pull” strategy and link

criterion. With regard to the baseline results, the strategies of Parallel, Gossip, and

Groups increase the average CPU usage by ≈ 86%, ≈ 76%, and ≈ 3% respectively

in the NACR; and ≈ 2%, ≈ 16%, and ≈ 7% in the PVN nodes. Although all the

strategies increased the average CPU usage in both the NACR and PVN nodes,

they also reduced the distribution time. The reason for this increase in the average

CPU usage was that computing was required to control and perform the parallel

transfers for the PVN nodes. Finally, the App2net ecosystem generated low traffic

when communicating with the PVN nodes, and in all the analyzed cases, the total

network overhead was less than 6%. As well as this, all the strategies reduce the

total network traffic generated to transfer the same NetApp packages, for instance,

Parallel, Groups, and Gossip reduce the total traffic generated by 1.85%, 22.69%,

and 24.69% respectively, in comparison with the baseline results.

The investigation carried out during this thesis and the answers to the research ques-

tions provide us evidence of the feasibility of the App2net ecosystem for empowering

PVN owners to deploy and manage NetApps into PVNs. In this way, all information pro-

vided and discussed, supports the proposed hypothesis: “a platform inspired in online

marketplaces enables PVN owners with a limited knowledge of the underlying in-

frastructure to overcome the main hurdles to introducing new NetApps into PVNs”.
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We designed the App2net ecosystem by addressing the current hurdles to introducing Net-

Apps in PVNs (answer to Research Question 1) as well as the set of essential design goals

obtained from our historical analysis of online marketplaces (answer to Research Ques-

tion 2). For a better understanding of our proposed solution, in Section 4.5, we discussed

the App2net ecosystem in light of the design goals and research challenges previously

identified. In addition, we carried out two different evaluations of our ecosystem. In the

first, we conducted a case study to seek evidence about whether it was feasible for third-

party developers to describe and publish a network service for distinct programmability

technologies. Such case study also described all the steps that a PVN owner must perform

(who only has a minimal or no knowledge of the underlying infrastructure) to deploy and

manage this network service in a PVN formed of different EEs using App2net ecosystem.

In the second evaluation, we implemented a prototype of our ecosystem and after that,

carried out the performance analysis which included the distribution time, CPU usage,

and network overhead (answer to Research Question 3).

6.2 Summary of Main Contributions

This thesis has investigated whether it is feasible to design a platform, grounded in on-

line marketplaces, that can deploy and manage new NetApps for PVNs formed of different

EEs. The results of carrying out this investigation have led to the following contributions.

• A survey of network programmability technologies. The introduction of virtu-

alization provides several benefits to computer networks, by making it possible to

reintroduce the network programmability and overcome the problem of “Internet

Ossification”. Thus, the thesis included a review of the key programmability tech-

nologies and their features and made a comparison between the aspects required to

deploy and manage NetApps.

• A unified glossary of terms for network programmability. In the area of network

programmability, each technology refers to the same concepts in different ways.

For instance, NFV describes NetApps as network functions, whereas OpenFlow is

called by different names such as business applications and SDN control software.

For this reason, a glossary was compiled and used in this thesis to bring together

the different terms related to the same concepts found in multiple technologies.

• A survey of online marketplaces. Google Play and Apple App Store opened
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up the mobile applications market to third-party developers, and this also enabled

the smartphones end-users to deploy and manage applications with minimal or no

knowledge of their devices. In our view, the successful model of today’s market-

places for mobile devices can provide inspiration and benefit to the networking mar-

ket. For this reason, we reviewed the historical roadmap of networking paradigms

and marketplaces to assess how paradigms and technologies have evolved over the

years. We also investigated the current landscape regarding marketplaces for dif-

ferent paradigms, identified the essential design goals, and discussed the significant

challenges that must be overcome to make the adoption of marketplaces in future

networks a reality.

• The NetApp concept. This concept handled the network services as applications

that could be installed, uninstalled, and managed and is essential to foresee the kind

of marketplaces that are suitable for deploying and managing services in the future

networks.

• The App2net ecosystem architecture. The App2net ecosystem empowers PVN

owners to deploy and manage NetApps in PVNs by using different EEs without

knowing the specific features of the underlying environment. Our integrated archi-

tecture also specifies a marketplace, in which third-party developers can describe

and publish network services for different programmability technologies. Finally,

the App2net RESTful API provides access to external software elements to request

data, trigger actions, and send notifications and messages.

• The App2net RESTful API. The specification of the RESTful API that reveals the

main functions of the App2net ecosystem. This API enables a modular architecture

of App2net, in which an interested developer can replace an existing element with

a new one that carries out at least the same actions. Furthermore, developers can

program new modules that contain additional features. Thus, PVN owners can plug

these new modules in the App2net and, consequently, they customize the ecosystem

to better adapt to their requirements.

• Network Application Descriptor. An extension of the ETSI Network Service De-

scriptor, which makes it possible to describe the NetApps and VNAs of several

programmability technologies, as well as provide all the information needed about

the packages including conflicts, initial functional settings, available management

actions, version, and the necessary EE.
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6.3 Future Work

The investigation carried out in this thesis offers opportunities for further research.

These opportunities are described in this section as future work.

• Extending the Network Application Descriptor. Affinities and anti-affinities be-

tween NetApps and VNAs can be employed by the PVN owners to select new Net-

Apps. It is recommended that two NetApps with a high degree of affinity should

work together to provide an improved environment for a network service. How-

ever, there is a rist that two NetApps with a high degree anti-affinity can interfere

with each other’s performance or even prevent their correct execution. Hence, it

is of crucial importance to enable developers to map affinities and anti-affinities in

our Network Application Descriptor. In addition, the App2net ecosystem must be

identified and, if possible, change the order of data flows between the NetApps to a

better sequence.

• Integrating a solution for pricing and monitoring. Although we referred to pric-

ing and monitoring and SLA management as design goals, we did not provide the

necessary mechanisms to support them in our ecosystem. We believe that disrup-

tions or even service malfunction will inevitably reduce amount payable by the

PVN owners. Thus, in our view, this is a very complex research goal, and is really

a subject for another research endeavor.

• Tacking the research challenges. In our review of marketplaces, we found there

were several research challenges, for which we sought a palliative or straightfor-

ward solution in the App2net ecosystem. However, we are in favor of carrying

out more in-depth research to meet these challenges, which include the follow-

ing: security issues, evolution-aware, placement, NetApp recommendations, and

descriptors. Besides, there are two research challenges that must be addressed by

the academia in future studies: auditing and forming a business model. Of course,

new elements, procedures, tasks, or event platforms that are more robust, must be

included to overcome all these research challenges.
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