
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

AASIM KHURSHID

Adaptive Face Tracking Based on Online
Learning

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Jacob Scharcanski

Porto Alegre
December 6, 2018

CIP — CATALOGING-IN-PUBLICATION

Khurshid, Aasim

Adaptive Face Tracking Based on Online Learning / Aasim
Khurshid. – Porto Alegre: PPGC da UFRGS,

.

116 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS,

. Advisor: Jacob Scharcanski.

1. Visual object tracking. 2. Face tracking. 3. Facial feature
tracking. 4. Tracking error predictor. 5. Online learning. 6. Incre-
mental PCA/ICA. 7. Dictionary learning. I. Jacob Scharcanski, .
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Dedications

To my mother Najma Nazir and my father Muhammad Khurshid.

ACKNOWLEDGMENT

I am grateful to Allah Almighty for this life, opportunities and keeping me blessed

throughout my life. I am also very appreciative of the prophet of Allah, Muhammad

(P.B.U.H) for his guidance and teachings. I am indebted to my parents (Muhammad Khur-

shid and Najma Nazir), my brothers (Aamir Khurshid, Omair Khan, and Awais Khan),

my sister (Annam Khan) and other family members for their constant support throughout

my entire life. I am very grateful to my advisor Prof. Jacob Scharcanski for his guidance

and help during my work. I would also like to thank Coordenação de Aperfeiçoamento

de Pessoal de Nível Superior (CAPES) for financial support and Instituto de Informática,

UFRGS for accepting me as a graduate student. I am grateful to my friends Aamir Khan

and Muhammad Farhan for their support from the early years of my graduation till now,

and Marcia Lima Rodrigues for her help and support during my stay in Brazil. Impor-

tantly, I want to pay my gratitude to my colleagues from the Laboratory (Cesar Salgado,

Eliezer Bernart, Eliezer Flores, Pablo Barcelos, Rafael Madeiros) and my friends in Brazil

who made my stay very pleasant and appreciable. Finally, I am very much indebted to

my thesis proposal committee members (Prof. Dr. Edison Pignaton De Freitas (UFRGS),

Dr. Maciel Zortea (IBM Reseach, Brazil), Prof. Dr. John Soldera (IFFAR)) for their help

in improving this work.

Aasim Khurshid

ABSTRACT

Object tracking can be used to localize objects in scenes, and also can be used for locating

changes in the object’s appearance or shape over time. Most of the available object track-

ing methods tend to perform satisfactorily in controlled environments but tend to fail when

the objects appearance or shape changes, or even when the illumination changes (e.g.,

when tracking non-rigid objects such as a human face). Also, in many available track-

ing methods, the tracking error tends to increase indefinitely when the target is missed.

Therefore, tracking the target objects in long (uninterrupted) video sequences tends to be

quite challenging for these methods. This thesis proposes a face tracking algorithm that

contains two operating modes. Both the operating modes are based on feature learning

techniques that utilize the useful data accumulated during the face tracking and imple-

ments an incremental learning framework. To accumulate the training data, the quality

of the test sample is checked before its utilization in the incremental and online training

scheme. Also, a novel error prediction scheme is proposed that is capable of estimat-

ing the tracking error during the execution of the tracking algorithm. Furthermore, an

improvement in the Constrained Local Model (CLM) is proposed that utilize the training

data to assign weights to the landmarks based on their consistency. These weights are used

in the CLM search process to improve CLM search optimization process. The experimen-

tal results show that the proposed tracking method (both variants) perform better than the

comparative state of the art methods in terms of Root Mean Squared Error (RMSE) and

Center Location Error (CLE). In order to prove the efficiency of the proposed techniques,

an application in yawning detection is presented.

Keywords: Visual object tracking. Face tracking. Facial feature tracking. Tracking error

predictor. Online learning. Incremental PCA/ICA. Dictionary learning.

Rastreamento de Faces Adaptativo Baseado em Aprendizagem On-line

RESUMO

Rastreamento de objetos pode ser usado para localizar objetos em cenas e pode ser tam-

bém usado para localizar mudanças na aparência ou na forma dos objetos ao longo do

tempo. A maioria dos métodos de rastreamento de objetos disponíveis tendem a apresen-

tar um desempenho satisfatório em ambientes controlados, mas tendem a falhar quando

a aparência ou a forma dos objetos muda (por exemplo, quando objetos não-rígidos são

rastreados), ou mesmo quando ocorrem mudanças de iluminação. Além disso, em muitos

métodos de rastreamento disponíveis, o erro de rastreamento tende a aumentar indefini-

damente quando o alvo é perdido. Portanto, rastrear objetos em sequencias de vídeos

longas (e ininterruptas) tende a ser bastante desafiador para os mesmos métodos. Essa

tese propõe um algoritmo de rastreamento facial que contém dois modos de operação.

Ambos os modos de operação são baseados em técnicas de aprendizado de feições que

utilizam os dados úteis acumulados durante o rastreamento da face e implementam um

framework de aprendizado incremental. Para acumular os dados de treinamento, a quali-

dade da amostra de teste é verificada antes de sua utilização no esquema de treinamento

on-line incremental. Adicionalmente, um esquema inovador de predição de erro é pro-

posto e é capaz de estimar o erro de rastreamento durante a execução do algoritmo de

rastreamento. Além disso, uma melhora em Modelo Local Restrito (Constrained Local

Model - CLM) é proposta e utiliza os dados de treinamento para designar pesos aos pon-

tos de referência (landmarks) baseados em suas consistências. Esses pesos são usados

no processo de busca do CLM a fim de melhorar o processo de otimização da busca do

CLM. Os resultados experimentais mostram que o método proposto de rastreamento (am-

bas variações) tem uma melhor performance que os métodos comparativos do estado da

arte em termos de Erro Quadrático Médio (Root Mean Squared Error - RMSE) e Erro de

Localização de Centro (Center Localization Error - CLE). A fim de provar a eficiência

das técnicas propostas, uma aplicação em detecção de bocejos é apresentada.

Palavras-chave: Rastreamento dos objetos, Rastreamento facial, Aprendizado Incremen-

tal, Aprendizado por Dicionário, Reconhecimento de Bocejos.

LIST OF ABBREVIATIONS AND ACRONYMS

PCA Principal Component Analysis

ICA Independent Component Analysis

SVD Singular Value Decomposition

IK-SVD Incremental K-SVD

SKL Sequential Karhunen-Loeve

SVM Support Vector Machines

CLM Constrained Local Models

W-CLM Weighted Constrained Local Models

BP Basis Pursuit

MP Matching Pursuit

OMP Orthogonal Matching Pursuit

UITDL Unsupervised Information- Theoretic Dictionary Learning

NMF Non-Negative Matrix Factorization

MMDL-FT Multi-Model Dictionary Learning for Face Tracking

MMDL-FTU Multi-Model Dictionary Learning for Face Tracking with

Dictionaries Update

ILFT Incremental Learning for Face Tracking

AFRTM Adaptive Face Tracker with Resyncing Mechanism using CLM

AFRTM-W Adaptive Face Tracker with Resyncing Mechanism using W-CLM

MMI Multi-variate Mutual Information

ILRVT Incremental Learning for Robust Visual Tracking

MTCNN Multi-task Cascaded Convolutional Networks

KCF Kernelized Correlation Filters

SRDCF Spatially Regularized Discriminative Correlation Filters

iCCR Incremental Cascaded Continuous Regression

CLE Center Location Error

RMSE Root Mean Square Error

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

CDR Correct Detection Rate

BMA Block Matching Approach

SURF Speeded Up Robust Features

CAMShift Continuously Adaptive Mean Shift

MIL Multiple Instance Learning

AMS Appearance Model Selection

CONDENSATION Conditional Density Propagation

CAPES Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

IFFAR Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

IBM International Business Machines

P.B.U.H Peace Be Upon Him

CONTENTS

LIST OF FIGURES ...11
LIST OF TABLES ...12
1 INTRODUCTION...13
1.1 Contributions...17
1.2 Characteristic Evaluation of the Tracking Methods ...17
1.3 Thesis Organization ..18
2 LITERATURE REVIEW...19
3 FUNDAMENTAL CONCEPTS ON FACE TRACKING..29
3.1 Probability Distribution ...29
3.2 Background on Incremental Learning..29
3.2.1 Principal Component Analysis ..32
3.2.2 Incremental Update of the Eigenbasis ...34
3.2.3 Incremental Update of the Mean..37
3.3 Background on Dictionary Learning for Sparse Representation.......................37
3.3.1 Sparse Representation..39
3.3.2 Basis Pursuit(BP) ...40
3.3.3 Matching Pursuit (MP)..40
3.3.4 Dictionary Learning ...41
3.3.5 Incremental Dictionary Learning...42
3.3.6 Estimating New Dictionary Atoms ...44
3.4 Classification Methods and the Support Vector Machine (SVM) Classifier45
3.5 Constrained Local Models (CLM) ..46
3.5.1 CLM Model Building ..47
3.5.2 CLM Search ...48
3.6 Terminology...49
4 PROPOSED METHODOLOGY...52
4.1 Motion Model and Sampling ...53
4.2 Proposed Methodology for Multi-Model Dictionary Learning for Face Track-

ing (MMDL-FT) and MMDL-FT with Update Test (MMDL-FTU)...............58
4.2.1 MMDL-FTU Operating Mode...58
4.2.2 Dictionary Learning ...61
4.2.3 Incremental Dictionary Update..61
4.2.4 Multi-Model Dictionary Learning ...63
4.2.5 Reconstruction Dictionary ...63
4.2.6 Classification Dictionary..64
4.2.7 Appearance Model and Tracked Target Face Selection using MMDL..................65
4.2.8 Facial Landmarks Localization..67
4.2.9 Pseudo Code...67
4.3 Proposed Methodology for an Adaptive Face Tracker with Resyncing Mech-

anism (AFTRM) and AFTRM Weighted (AFTRM-W)69
4.3.1 AFTRM-W Operating Mode ...69
4.3.2 Incremental Update of Eigenbasis and Mean ..72
4.3.3 Weighted Constrained Local Models (W-CLM) as Re-syncing Feature Detectors74
4.3.4 CLM Weighted Search...75
4.3.5 Appearance Model and Tracked Target Face Selection...77
4.3.6 Tracking Error Predictor and Resyncing Mechanism..79

5 EXPERIMENTAL RESULTS ...82
5.1 Experimental Settings...82
5.1.1 Quantitative Evaluation Strategy ...84
5.1.2 Choice of Batch Size..85
5.2 Experimental Qualitative Results..86
5.2.1 Qualitative Evaluation of the MMDL-FT and MMDL-FTU Face Tracking

Method ...89
5.2.2 Qualitative Evaluation of the AFTRM and AFTRM-W Face Tracking Methods .94
5.3 Quantitative Evaluation and Discussion of the Proposed MMDL-FT, MMDL-

FTU, AFTRM and AFTRM-W Face Tracking Methods99
5.4 Evaluation of the Proposed Face Tracking Method in Yawning Detection103
6 CONCLUDING REMARKS ...107
6.1 Publications ...109
6.2 Submitted Article ..109
REFERENCES...110

LIST OF FIGURES

Figure 3.1 Pdf of a Gaussian distribution with µ=0 and σ = 1.30

Figure 4.1 Block diagram of the proposed face tracking method.53
Figure 4.2 Motion model example (p(χ(t)|χ(t − 1))) in image space; Affine pa-

rameter space, each point in affine parameter space is warped into a bounding
box in the image space..56

Figure 4.3 Motion model example (p(χ(t)|χ(t−1))); Tracked target face bounding
box (in red color) and candidate target face bounding boxes (in green color).57

Figure 4.4 Motion model example going from the previous frame to the current
frame (p(χ(t)|χ(t− 1)))...57

Figure 4.5 Tracked target face sample (red bounding box) and candidate target face
samples (green bounding boxes)...58

Figure 4.6 Block diagram of the proposed MMDL based face tracking method.62
Figure 4.7 Block diagram of the proposed AFTRM-W face tracking method73

Figure 5.1 Some example frames from the dataset with drivers performing differ-
ent actions. ..83

Figure 5.2 Batch size effect on error (ε) and number of resyncs (r).87
Figure 5.3 Batch size effect on error (ε) and number of resyncs (r) in multiple

videos (normalized to [0,1])..88
Figure 5.4 An example plot of cost function c(rτ , ετ) and batch size τ (τ = [1 16]).88
Figure 5.5 Results of the proposed MMDL-FTU method for different face condi-

tion evaluated in the tests, red = tracked landmarks, yellow = ground-truth
landmarks..91

Figure 5.6 RMSE across frames of 68 landmarks of the complete tested videos...........92
Figure 5.7 Mean Error across frames of all landmarks of the complete tested videos. ..93
Figure 5.8 Example figure showing face bounding box, facial landmarks, mean

face, tracked target face, reconstruction error, reconstructed face and most
important eigenbases...95

Figure 5.9 Results of the Incremental Learning for Face Tracking Algorithm with-
out Resync (ILFT). ...96

Figure 5.10 Results of the Incremental Learning for Face Tracking Algorithm with-
out Resync (ILFT). ...97

Figure 5.11 Plot of ∆(t) and ε(t)..98
Figure 5.12 Plot of ∆(t) and ε(t)..99
Figure 5.13 Plot of ∆̂(t) and ε̂(t) ...99
Figure 5.14 Results of the proposed Adaptive Face Tracker with Resyncing Mech-

anism (AFTRM-W). ...100
Figure 5.15 Results of the proposed Adaptive Face Tracker with Resyncing Mech-

anism (AFTRM-W). ...101
Figure 5.16 Illustration of a closed mouth (a,b,c,d,e) and yawning sequence (f,g,h,i,j).

...104

LIST OF TABLES

Table 1.1 Important characteristics of the face tracking methods...................................18

Table 2.1 Table of the evolution of the face tracking methods.26

Table 3.1 Table of symbols ...49

Table 5.1 Key characteristics of the selected videos from the dataset for detailed
evaluation. ...84

Table 5.2 Average RMSE εM and number of times resync is activated for different
batch sizes τ . ..86

Table 5.3 Average frames per second (fps) and number of times resync is activated
for different batch sizes τ86

Table 5.4 Average RMSE comparison of MMDL-FT, MMDL-FTU, AFTRM and
AFTRM-W with comparative methods (the best results are in bold).102

Table 5.5 Center Location Error (CLE) comparison of MMDL-FT, MMDL-FTU,
AFTRM and AFTRM-W with comparative methods (the best results are in bold).103

Table 5.6 Yawning Detection Results (the best result are in bold).106

13

1 INTRODUCTION

Object tracking essentially deals with locating, identifying, and determining the

dynamics of the moving (possibly deformable) target(s). The target(s) could be a single

object or parts of an object. In fact, object tracking may become quite challenging when

there are changes in the appearance or shape of the target, when the scene illumination

changes, temporary occlusions and/or tracking conditions are altered in time. Similarly,

noise and different lighting conditions during the day may affect the local illumination in

various ways (JUNG; SCHARCANSKI, 2004). Keeping these issues in focus, numerous

algorithms have been proposed in the literature for object tracking in video sequences

such as incremental learning for robust visual tracking (ROSS et al., 2008), Multiple

Instance Learning (MIL) discriminative classifier based tracking (BABENKO; YANG;

BELONGIE, 2009), Appearance and shape models for face detection and facial landmark

tracking (COOTES et al., 2001; LUCEY et al., 2009; CRISTINACCE; COOTES, 2006),

Continuously Adaptive Mean Shift (CAMShift) tracker (BRADSKI, 1998), and so on.

However, most methods available in the literature tend to perform well over short time

spans and under controlled conditions. Furthermore, in most of these methods, when the

object tracking method misses the target, the tracking error tends to increase indefinitely.

This work proposes to minimize this difficulty by using online learning scheme that uti-

lizes the data received during tracking to update the appearance model of the object (i.e.,

face). The appearance model is updated after checking the quality of the tracked target

object samples before utilizing this sample to update the appearance. Also, a resyncing

scheme is introduced that corrects the tracking process once the tracking error is estimated

to be high during runtime.

In this thesis, a face tracking method is proposed which contain two operating

modes. Both the operating modes are based on the incremental learning approach and up-

date the appearance model of the tracked target object using incremental Singular Value

Decomposition (SVD) algorithm (ROSS et al., 2008). Generally, there are two main com-

ponents in an object tracking algorithm, which are the motion model and the appearance

model. The motion model is responsible for handling the motion parameters of the object

and estimation of the candidate target object samples. Both operating modes of the pro-

posed tracking scheme in this thesis use the same motion model. The state of the tracked

target object is represented using the affine parameters τ , and its motion is modeled using

a Gaussian distribution. On the other hand, the appearance model is utilized to estimate

14

the tracked target object among the candidate target object samples. The operating modes

of the proposed face tracking algorithm in this thesis differ in the representation of their

corresponding appearance model. The appearance model of the first operating mode is

based on incremental learning of a multi-model K-SVD dictionary, that utilizes incremen-

tal SVD to update the dictionary atoms (see details in Section 4.2). This method performs

well, however, in complex scenarios like a rapid movement of the object, it tends to fail.

For this reason, the second variation of the method adds another component to make the

tracking process robust with an additional cost of time. The second operating mode of

the proposed tracking algorithm uses incremental SVD as a representation model instead

of sparse representation using dictionaries, that increases the speed at the cost of tracking

quality. Furthermore, in this tracking mode, a resyncing scheme is utilized to improve

the tracking process when the proposed tracking predictor indicates high tracking error.

A weighted Constrained Local Model (CLM) scheme is used as a resyncing scheme that

improves the tracking performance (see details in Section 4.3). Both these operating

modes are explained briefly in the following paragraphs, and the detailed explanation of

each method is presented explicitly for better understanding in their corresponding Sec-

tions 4.2 and 4.3, respectively in chapter 4.

Recently, the linear decomposition of data using a few atoms of a learned dictio-

nary, instead of using a pre-defined set of bases has produced interesting results in differ-

ent areas of machine learning and image processing, including object recognition (FANELLO

et al., 2013) and texture analysis (PEYRÉ, 2009). This suggests that the sparse learned

model using dictionaries can be effective for object detection, classification, and tracking.

In this work, the dictionaries are explored in the context of face tracking. A new approach

called Multi-Model Dictionary Learning for face tracking (MMDL-FT) is proposed that

build two dictionaries - a classification dictionary and a reconstruction dictionary - in par-

allel. Both the dictionaries are based on the k-SVD dictionary learning technique and

are combined into a single multi-model dictionary. The proposed MMDL-FT scheme

can reconstruct the face, in addition to discriminating the face from the background. The

proposed method learns the face appearance using dictionary atoms constructed from

patches, that are taken from positive and negative samples of the training data which are

collected during the tracking process.

Moreover, a smart approach is proposed to update the dictionaries incrementally

and efficiently, making feasible the application of the proposed method to realistic track-

ing scenarios. The dictionaries are updated during tracking so that it is capable of adapting

15

to the changes in the tracked target face along time. Furthermore, the proposed MMDL-

FT method collects training samples to update the two dictionaries during face tracking

using the proposed scheme (see details in Section 4.2.4). The quality of the samples

in terms of reconstruction error is assessed before utilizing them to update the dictio-

naries, which is an aspect that other methods that implement incremental learning seem

to lack (ROSS et al., 2008). Both the dictionaries are initialized using the SVD, which

is more efficient than initializing the process by combining random training samples as

proposed elsewhere (ELAD; AHARON, 2006). As both dictionaries are learned incre-

mentally, the number of atoms can increase until a limit is reached. Additionally, the

weights of the atoms are updated in an adaptive manner.

Similarly, online learning has been proposed as a relevant resource to improve vi-

sual tracking such as online random forests (SANTNER et al., 2010), incremental learning

using Principal Component Analysis (PCA) (ROSS et al., 2008), Karhunen-Loeve (KL)

transform as appearance model with dynamic update of image database (LEVEY; LIN-

DENBAUM, 2000) and Appearance Model Selection (AMS) (YUAN et al., 2013). These

visual tracking methods work in real-time, but usually tend to miss the target in complex

scenarios during special conditions such as when the head pose changes during the face,

cluttered background and/or object occlusions (COOTES et al., 2001). On the other hand,

shape and appearance models such as Active Appearance Models (AAM) (COOTES et

al., 2001), Active Shape Models (ASM) (COOTES; TAYLOR et al., 2004; BEHAINE;

SCHARCANSKI, 2012) and Constrained Local Models (CLM) (LUCEY et al., 2009;

CRISTINACCE; COOTES, 2006; WANG; LUCEY; COHN, 2008; SARAGIH; LUCEY;

COHN, 2009) can capture robust features even in cluttered or fast changing scenarios,

and these robust features can improve the tracking process if adequate training data is

provided. These methods often are based on local shape matching and require to mini-

mize the difference between a tracked target object and the learned target appearance (i.e.,

to maximize the match). Unfortunately, most shape and appearance model based methods

are not easily applicable to real time tracking due to their complexity. Nevertheless, com-

bining online learning with shape and appearance models can increase the online learning

efficiency (e.g., by using appearance models to correct the tracking process and reduce

tracking failures). The second operating mode proposed in this work combines an online

learning scheme with a shape and appearance model (i.e., CLM) that tends to improve

tracking robustness.

The second operating mode of the proposed approach presented in this work im-

16

proves on a well-known object tracking method based on the incremental PCA (ROSS

et al., 2008). The proposed scheme learns from the data generated during the object

(i.e., face) tracking and corrects tracking mistakes with a resyncing mechanism. A dy-

namic tracking error predictor is proposed, which estimates the tracking correctness of

the tracked target face during tracking, and checks if the target has been missed. The

tracking error predictor adapts itself along time and tends to be consistent in long video

sequences. If the estimated tracking error is increasing, the tracking process is corrected

by a resyncing mechanism based on CLM. Moreover, an improvement in CLM called

Weighted CLM (W-CLM) is proposed that utilize the training data to assign weights

based on the consistency of each landmark (feature point) to be utilized in the CLM

search process (see details in Section 4.3.3). To each landmark, a weight is assigned

according to its consistency based on Multi-variate Mutual Information (MMI) (CRUYS,

2011). In this approach, the highest weight is assigned to the most consistent feature point

and so on, and this weight is utilized in the CLM search process named weighted-CLM

search (see details in Section 4.3.3). One of the possible applications of the proposed

tracking method is face tracking where CLM/W-CLM can be used to relocate the facial

landmarks when there is a tracking failure, and the target face has been missed. The pro-

posed technique called Adaptive Object Tracker with Resyncing Mechanism (AFTRM)

optimizes the CLM search process without using the weights. Whereas, also the proposed

Adaptive Object Tracker with Resyncing Mechanism Weighted (AFTRM-W) applies a

weight (calculated during the training phase) to every landmark in the search process.

In order to evaluate the proposed object tracking scheme in real world applica-

tions, we investigate its application in face tracking. Face tracking based on facial fea-

tures is relevant for a number of applications, such as yawning detection, expression anal-

ysis, human computer interfaces, and face recognition (OMIDYEGANEH et al., 2016;

VATER; IVANCEVIC; LEóN, 2017; SOLDERA et al., 2017; SOLDERA; DODSON;

SCHARCANSKI, 2017). Furthermore, image-based measurements can provide cost ef-

fective solutions for fatigue and vigilance systems if the detected facial features are accu-

rate (SHIRMOHAMMADI; FERRERO, 2014). In our experiments, the proposed method

is evaluated in a face tracking application - yawning detection in the context of a driving

scenario.

17

1.1 Contributions

The main contributions of the proposed method include:

• Multi-Model Dictionary Learning (MMDL), which combines two dictionaries (a

classification and a reconstruction dictionary) and MMDL is utilized for face track-

ing which tends to improve tracking robustness.

• An error prediction scheme to evaluate the correctness of the tracking process dur-

ing face tracking.

• Utilization of a resyncing mechanism based on the Constrained Local Models (CLM).

• An improvement in the classical CLM approach, namely Weighted CLM (W-CLM).

• An improvement in an application of the facial analysis (i.e., yawning detection).

1.2 Characteristic Evaluation of the Tracking Methods

Some important characteristics that can be used to evaluate the quality of the face

tracking methods are listed and explained briefly as follows:

• Training phase: The tracking method requires training data to train the model

beforehand in a training phase, and this model is used to track the target during

tracking.

• Real-time: The real-time tracking method tracks the target at the rate at which

the video is recorded by the camera. Real-time video processing means that the

method is capable to process thirty (30) frames per second. However, in track-

ing algorithms, the object has smooth transition in appearance or shape changes.

Therefore, it is possible to process sparse frames, i.e., skipping some frames every

second. In this document, we consider any tracking method that tracks more than

six (6) frames per second to be real-time because sparse video frames can be used

in tracking to extract meaningful information. In the proposed method, we skip five

(5) frames to extract the information to achieve real-time processing of the videos

in real-scenarios. This kind of processing is called near real-time processing.

• Error predictor: If the tracker provides an in built capability to track the correct-

ness of the tracking process.

18

• Resyncing: If the tracker uses some resyncing mechanism in case it fails to track

the target face at times. The resyncing is not necessarily related to the tracking

method. It is also possible to utilize a resyncing mechanism after every specific

number of frames.

• Robust: If the tracker is robust enough to not lose track of the face and keeps

tracking the face infinitely and under different tracking conditions.

• Online: If the tracker learns the appearance model incrementally and in an online

way so that it utilizes the useful data available during tracking to update the appear-

ance model. This makes the tracker capable of adapting to the recent changes in the

tracked target face and the tracking conditions along time.

Table 1.1 provides the characteristics of the proposed face tracking method in comparison

to the state of the art face tracking methods.

Table 1.1: Important characteristics of the face tracking methods.

Method Training Real-Time Error Predictor Resyncing Robust Online

(ROSS et al., 2008) No yes No No No Yes
(ZHENG; STURGESS; TORR, 2013) Yes Yes No No Yes No
(TERISSI; GÓMEZ, 2007) No Yes No No No Yes
(SÁNCHEZ-LOZANO et al., 2016) Yes No No No Yes Yes

MMDL-FT (Proposed) No Yes No No Yes Yes
MMDL-FTU (Proposed) No Yes Yes No Yes Yes
AFTRM (Proposed) Yes No Yes Yes Yes Yes
AFTRM-W (Proposed) Yes No Yes Yes Yes Yes

1.3 Thesis Organization

The remaining of this thesis is organized as follows: Chapter 2 reviews the relevant

work in the face tracking and motivates the proposition of our approach. The fundamental

concepts utilized in the proposed face tracking method are detailed in Chapter 3, the

proposed face tracking scheme with its variants is detailed in Chapter 4, followed by the

experimental results that are demonstrated and discussed in Chapter 5. Finally, Chapter 6

gives conclusions and future prospects of this work.

19

2 LITERATURE REVIEW

Numerous algorithms have been proposed in the literature for visual object track-

ing which are capable of identifying and locating the target object(s) in consecutive

frames of a video sequence (YILMAZ; JAVED; SHAH, 2006; SANTNER et al., 2010;

COLLINS; LIU; LEORDEANU, 2005; TERISSI; GÓMEZ, 2007). The work on visual

tracking started with the use of different features, transformations and also explored many

color spaces for robust tracking (CHRYSOS et al., 2014). For instance, Mean-Shift ap-

proach (CHENG, 1995) is a non-parametric approach that climbs the gradient of a prob-

ability distribution to find the nearest peak. In this method, the probability distribution

is static, and it only updates the mean when there is a significant change in color, shape

or size of the object. Whereas, in a continuous video sequence, the distribution derived

from the object can change and move from one frame to the other. For this reason, the

static mean-shift algorithm is not suitable for tracking applications. Bradski et al. (BRAD-

SKI, 1998) proposed a variation to Mean-Shift called Continuously adaptive mean shift

(CAMSHIFT). The CAMSHIFT use histogram methods to produce adaptive probability

distribution for object tracking in video sequences.

Other popular techniques are based on linear and non-linear filtering including

Kalman filters and particle filters. Conditional density propagation for visual tracking

(CONDENSATION) algorithm is among the techniques that use Kalman filter (BLAKE;

ISARD, 1997). The CONDENSATION algorithm uses factored sampling that generates

samples randomly based on the previous observations instead of a Gaussian distribution

as performed in Kalman filtering. The output of the sampling process is a weighted sam-

ple set of fixed size in each iteration. These samples are used as candidate samples which

may contain the tracked target object. The tracked target object is selected among these

candidate samples based on an appearance model (e.g., Principal Component Analysis).

Also, 3D models have been explored for robust tracking, such as Malciu et al. (MALCIU;

PRÊTEUX, 2000) which uses a generic 3D model to track the target object in a video

sequence. They proposed to locate the tracked target object by matching 2D image fea-

tures taken throughout the video sequence and the 3D object features of a generic head

model. The 3D model features correspond to the geometry of the model, while the 2D

image features correspond to the optical flow in the head region in the consecutive video

frames and the texture features of the head in the current frame. Furthermore, in order

to increase the frame rate in handling the rigid head motion and face deformation, their

20

method utilizes a non-linear optical flow based on interpolation.

Similarly, Terissi et al. (TERISSI; GÓMEZ, 2007) proposed an algorithm for fa-

cial motion tracking of an avatar based on a video sequence of a real person. This method

predicts the location of the landmarks on the human face in two steps; the first step is

based on the image segmentation and pattern comparison techniques that predict the posi-

tion of each landmark independently by a matching process taking into account its texture

information in the previous frame. The second step is based on Independent Component

Analysis (ICA) technique that predicts the final location of the landmark in the current

frame. Furthermore, in this method, Independent Components (ICs) are used to learn dif-

ferent facial expressions extracted from training videos. However, this algorithm tends to

fail in the tracking of the facial features as the number of frames increases, which authors

of the paper attribute to the propagation of tracking error. One of the main reasons for the

failure of such methods is that they employ fixed appearance models of the target object.

Such models are trained with the data available before the tracking begins, which limits

the possible appearance changes that the system can handle.

Some researchers modeled the human face as a texture mapped cylinder and treated

the object tracking as an image registration problem (CASCIA; SCLAROFF, 1999; CAS-

CIA; SCLAROFF; ATHITSOS, 2000). The registration problems usually lead to higher

error in cases of variations in illumination conditions and object motion. To handle this

problem, the method proposed in (CASCIA; SCLAROFF, 1999) models the registration

error using a linear combination of texture mapping templates and orthogonal illumina-

tion templates. An improvement made in the previous work from the authors that uses the

same template model, however, to achieve stable on-line tracking a weighted least-squares

minimization of the registration error is used (CASCIA; SCLAROFF; ATHITSOS, 2000).

Tracking rigid objects using 3D model is usually classified as general model-free

tracking because it does not take into account local changes happening in the structure

or shape of the object. On the other hand, non-rigid object tracking has fascinated more

researchers due to its importance in certain areas like facial analysis, gaming applica-

tions, etc. Face analysis is arguably one of the most extensively studied field in image

processing and computer vision due to its applications in security, expression analysis, fa-

tigue detection, gesture detection and other automated applications (LANITIS; TAYLOR;

COOTES, 1995; CHIANG et al., 2003; WANG; LUCEY; COHN, 2008; SARAGIH;

LUCEY; COHN, 2009; CHRYSOS et al., 2014; SÁNCHEZ-LOZANO et al., 2016; SOL-

DERA et al., 2017; VATER; IVANCEVIC; LEóN, 2017). However, all these applications

21

require the correct detection of facial features which include mouth, eyes, lips.

Online learning has emerged as a relevant resource for visual tracking. Online

learning approaches utilize useful data that becomes available during the tracking process

to accommodate possible changes in the appearance and/or shape of the target during

the tracking process (ROSS et al., 2008; LEVEY; LINDENBAUM, 2000; BABENKO;

YANG; BELONGIE, 2009). A method that uses a variation of CONDENSATION al-

gorithm to model the distribution called incremental learning for robust visual tracking

(ILRVT) (ROSS et al., 2008) has been successful for rigid object tracking. ILRVT learns

the eigenbases in an online fashion and does not need any training as compared to other

eigentrackers such as Eigentracking: Robust matching and tracking of articulated objects

using a view-based representation (BLACK; JEPSON, 1998), which requires an offline

training with the data available before the tracking process has started. The data repre-

sentation model update is based on PCA and uses a forgetting factor to ensure that less

modeling effort is spent on fitting older observation data. The method shows effectiveness

in indoor and outdoor environments with sufficient adaptability to changes in pose, scale,

and illumination. However, once the tracked target object is missed, the error keeps on

increasing, and the tracking fails indefinitely.

Babenko et al. (BABENKO; YANG; BELONGIE, 2009) trained a Multiple In-

stance Learning (MIL) discriminative classifier, which bootstraps itself by using the cur-

rent tracker state to extract positive and negative examples. However, slight inaccura-

cies may arise and will be followed by a tracking target drift. Zheng et al. (ZHENG;

STURGESS; TORR, 2013) recently proposed a learning scheme that combines the ap-

pearance of facial landmarks using binary features and logical operations to achieve real-

time tracking. The methods described above work well for limited periods of time, but

are prone to introduce slight inaccuracies which may lead to drift with losing tracking

after a while. To tackle this problem, tracking error predictor could be helpful if it can

automatically detect the inaccuracies in the tracking process. Hence, a necessary action

could be taken, e.g., resync the tracker with a comprehensive feature detector to improve

the performance, which could make tracking more robust and stable.

Non-rigid object tracking is important in many areas like hand tracking, face track-

ing, animal tracking etc, with varied applications ranging from game design to facial

analysis applications and surveillance (BLACK; JEPSON, 1998; COOTES et al., 2001;

CHRYSOS et al., 2014). The non-rigid object which attracted overwhelming attention

happened to be face, although, the interpretation of human face is quite challenging due

22

to its vast variability (LANITIS; TAYLOR; COOTES, 1995). Non-rigid face tracking

is usually treated as tracking a certain number of landmarks on the face that define the

shape and appearance of the tracked target face at any particular moment of time t. Some

prominent works on facial landmark tracking include (LANITIS; TAYLOR; COOTES,

1995; BLACK; JEPSON, 1998; ESSA; PENTLAND, 1994; ESSA et al., 1996; ESSA;

PENTLAND, 1997; CORTES; VAPNIK, 1995; COOTES et al., 2001; COOTES; TAY-

LOR et al., 2004; BEHAINE; SCHARCANSKI, 2012; CRISTINACCE; COOTES, 2006;

CHRYSOS et al., 2014; SÁNCHEZ-LOZANO et al., 2016). Some works combined

the physical models with geometric models to describe the facial structure and expres-

sions (LANITIS; TAYLOR; COOTES, 1995; BLACK; JEPSON, 1998; ESSA; PENT-

LAND, 1994; ESSA et al., 1996; ESSA; PENTLAND, 1997). The work of Essa et

al. (ESSA; PENTLAND, 1994), (ESSA et al., 1996) used a geometric and a physical

model of skin and muscle. Both of these models are driven by the optical flow to describe

different facial expressions. In this method, the visual observation of the facial expres-

sion analysis system is modeled using optical flow, which is complemented by a physical

model that models the muscle motion. Soon after, an improvement of the algorithm fol-

lowed which models facial motion using the Kalman filter based algorithm for the motion

estimation along with the physical model to measure different facial expressions (ESSA;

PENTLAND, 1997). Koelstra et al. (KOELSTRA; PANTIC; PATRAS, 2010) uses an

affine registration to remove the translation and rotation affects and then utilize Motion

History Images (MHIs) method (RUECKERT et al., 1999), to extract dense facial mo-

tion in consecutive frames in a video sequence. After this, a quad-tree decomposition is

performed to select the regions related to each Action Unit (AU). Next step uses the Gen-

tleboost and Hidden Markov Model (HMM) classification methods to classify the video

sequence into segments containing different facial expressions. A recent tracking algo-

rithm called Face Flow (SNAPE et al., 2015) presents an optical flow based approach that

formulates dense motion in facial shape as an energy minimization problem. The ma-

jor contribution of the paper includes a model-based formulation that adopts a low-rank

optimization, which makes it efficient to calculate the motion.

In order to achieve high tracking accuracy, some methods chose to combine multi-

ple techniques which could also be used independently to track objects (RANGANATHA;

GOWRAMMA, 2017; SALHI et al., 2017). Ranganatha et al. combine Continuously

Adaptive Mean Shift (CAMShift) and Kalman filter to track a human face in video se-

quences (RANGANATHA; GOWRAMMA, 2017). This method utilizes a cascaded face

23

detection scheme to detect a face as an initialization, followed by key feature detection

using Speeded Up Robust Features (SURF). These features are then used to localize the

target face by estimating the center location and bounding box containing the target face

using CAMshift and Kalman filter respectively. Salhi et al. combines multiple approaches

to solve a face tracking problem which include Block Matching Approach (BMA), Mean-

shift, Camshift, and Kalman filter (SALHI et al., 2017). This method uses BMA to detect

the face in the beginning and then applies Meanshift, Camshift and Kalman filter together

to achieve high confidence score for tracking the target face. The block matching algo-

rithm used in this method is based on color histograms, which makes it difficult to apply

in the applications prone to lighting condition changes along time.

In recent years, deep learning and neural networks have also been used in face

detection and tracking applications (GIRSHICK et al., 2014; REN et al., 2017; CHOI;

KIM, 2018; KWON et al., 2017). Girshick et al. utilize the region proposal and con-

volution neural network (CNN) to design the R-CNN for object detection (GIRSHICK

et al., 2014). It detects the objects in a scene and generates a mask for each instance as

well. However, it carries out the deep learning feature leaning for each region, which is

a slow and time-consuming process. Ren et al. uses a lightweight CNN and combines

the network with Kalman filter for face tracking. However, in occlusion scenarios, the

target face is detected by using only the Kalman filter, which may result in tracking fail-

ure when the target face is occluded (REN et al., 2017). The method proposed by Kwon

et al. incorporates Multi-task Cascaded Convolutional Neural Networks (MTCNN) and

Kernelized Correlation Filters (KCF) to track human faces at real-time speed (KWON

et al., 2017). This method utilizes color histograms and geometric features in order to

handle occlusions and provides a robust scheme for face tracking. Recently, Choi et al.

proposed a Deep Manifold Embedding Active Shape Model (DME-ASM) applied to Face

Tracking (CHOI; KIM, 2018). This method uses a manifold learning technique with ASM

for handling different poses, and a CNN is trained for categorizing the pose range. This

method shows good results on the database which is also built by the authors on different

pose scenarios. Despite the accuracy of the Neural Network methods, these methods have

a high dependency on hardware and dataset, which limits their scope in small organiza-

tions and in applications where the resources such as data and computational capacity are

low.

The problem of sparse facial feature tracking has attracted a lot of attention in

the recent past (COOTES; TAYLOR et al., 2004; COOTES et al., 2001; LUCEY et al.,

24

2009; CRISTINACCE; COOTES, 2006; BEHAINE; SCHARCANSKI, 2012; WANG;

LUCEY; COHN, 2008; SARAGIH; LUCEY; COHN, 2009; CHRYSOS et al., 2014;

SÁNCHEZ-LOZANO et al., 2016). Currently, the deformable face tracking has con-

verged to tracking a set of facial landmarks, however, most of these methods require an

initialization (CHRYSOS et al., 2014). The most popular techniques in facial landmark

detection involve face detection followed by a landmark localization technique. A varia-

tion called model free tracking initializes a bounding box around the center of the face,

followed by the landmark localization within the tracked bounding box. Furthermore,

hybrid methods have also been investigated that place bounding box for the landmark

localization to improve the robustness.

Appearance and shape models (COOTES; TAYLOR et al., 2004; COOTES et al.,

2001; LUCEY et al., 2009; CRISTINACCE; COOTES, 2006; WANG; LUCEY; COHN,

2008; SARAGIH; LUCEY; COHN, 2009) are popular feature detector methods, that tend

to provide accurate results if sufficient training data is available. Shape models like Ac-

tive Shape Models (ASM) use texture models in small regions around the landmarks

to minimize the distance between the corresponding landmarks and use constraints on

global shape deformation. The key difference of ASM from the previous model based

approaches is that ASM only allows the deformation in the model that is consistent with

the training set, to fit the test data (COOTES et al., 1995). The allowable deformation is

called Allowable Shape Domain (i.e., any allowed shape) and any point in this domain

can be achieved by using a mean shape and a set of eigenvectors with its corresponding

eigenvalues (weight of the variance) which represent the variation in shapes of the object.

The initial experiments of ASM were performed on transistor shapes and hand

shapes, however, later it showed good performance on other non-rigid objects as well,

such as faces (BEHAINE; SCHARCANSKI, 2012). The work by Behaine et al. (BE-

HAINE; SCHARCANSKI, 2012) proposed an improvement in the ASM landmark selec-

tion scheme in the context of face recognition. The method selects robust landmarks and

assigns higher weights to the most relevant facial landmarks, which tends to enhance the

performance of the face classification in an ASM based approach. On the other hand,

Active Appearance Model (AAM) combines a shape model with a statistical model of

appearance (COOTES et al., 2001). AAM uses an appearance model of the whole target

region as a reference and seeks to minimize the difference between the shape of this global

appearance model and the target shape. To build a statistical appearance model, each train-

ing sample is warped in such a way that its landmark points match the mean shape. Next,

25

gray level information is sampled from the normalized image over the region covered by

the mean shape. This way shape and appearance of any sample can be summarized by

the shape and appearance model, which are represented in a high-dimensional space (i.e.,

PCA). However, in strong head movements, the applicability of AAM may suffer due to

its high sensitivity to initialization and results in low robustness (VATER; IVANCEVIC;

LEóN, 2017). Vater et al. proposed to automate the initialization process by embedding

an iris localization scheme (VATER; IVANCEVIC; LEóN, 2017).

Constraint Local Models (CLM) (CRISTINACCE; COOTES, 2006; LUCEY et

al., 2009) capitalize advantages of both the AAM and the ASM approaches and combines

the shape and texture information while maintaining local constraints, so that the target

object can be located more efficiently. CLM uses PCA to build the shape model, and each

shape may be represented using eigenvectors and mean shape. Although the appearance

is modeled using a patch model, that is posed as a classification problem. Patch model

can be considered as a patch expert trained to discriminate between positive and negative

patch samples. Both of these models are combined into one model while searching for

the object in the image using an optimization technique. Given a test image, the CLM

search process tries to find a shape that is similar to the mean shape, while the patch

model response is as high as possible by using the optimization process.

The aforementioned landmark localization methods tend to be accurate to estimate

the location of facial features but usually are not easily applicable in practice because the

optimization process is costly. However, the accuracy of these methods could be advan-

tageous if they are utilized less frequently in a resyncing mechanism. These landmark

localization methods can be used with online learning techniques to re-sync in case of

failure of these methods during the tracking process. This hybrid of the two different

classes of methods could provide better results in terms of execution time and accuracy

in comparison to their individual use. This motivated one of the operating modes of the

proposed tracking scheme in this work (details on this in Section 4.3). The second op-

erating mode of the proposed tracking scheme is also based on the incremental learning

procedure, although it utilizes multi-model dictionary learning as a sole appearance model

(details on this in Section 4.2).

Table 2.1 provides an overview of some important face tracking methods proposed

in the literature and the proposed method. The table contains a short overview of the

method mentioned in the first column, its advantages and disadvantages.

26

Table 2.1: Table of the evolution of the face tracking methods.

Method Overview Advantages Disadvantages

(COOTES et

al., 1995)

Active Shape Mod-

els (ASM) use texture

models in small re-

gions around the facial

landmark.

Use constraint on

global shape, makes it

more effective.

Slow optimization

and dependency on

training set.

(BLAKE;

ISARD, 1997)

Conditional density

propagation for vi-

sual tracking models

motion using Kalman

filtering and appear-

ance using PCA.

Introduced use of

Kalman filtering in

tracking.

Offline training, No

appearance model

update.

(MALCIU;

PRÊTEUX,

2000)

Matches 2D image

features taken from

video sequence and

trained 3D model to

locate the tracked

target.

Use of geometric fea-

tures in 3D model.

Difficult to analyze

3D features from 2D

images.

(COOTES et

al., 2001)

Active Appearance

Models (AAM) com-

bines shape model

with statistical model

of appearance.

Statistically analyze

the training data,

which makes it less

prone to tracking

errors. Also, lo-

cate important facial

features.

Slow optimization

process and depen-

dency on training

set.

(ROSS et al.,

2008)

Models motion using

Gaussian distribution

and estimates tracked

object using appear-

ance model based on

PCA.

Incremental learning

usage, works well for

rigid objects.

Error prone in non-

rigid objects, fast

movement of object.

(LUCEY et al.,

2009)

Constraint Local Mod-

els (CLM) combines

shape model and patch

model to locate facial

landmarks.

Comprehensive patch

model with local con-

straints makes it an ac-

curate facial landmark

detector.

Slow optimization

process makes its

use in real applica-

tions challenging.

Continued on next page

27

Table 2.1 – Continued from previous page

Method Overview Advantages Disadvantages

(ZHENG;

STURGESS;

TORR, 2013)

An approximation of

CLM called Approx-

imate Structured Out-

put Learning for CLM

to achieve high speed.

Real time tracking of

facial features capa-

ble of handling ap-

pearance change.

Fails in large face

appearance change

and face move-

ments.

(GIRSHICK et

al., 2014)

Trained a region based

CNN.

Works well for differ-

ent illumination condi-

tions with pose invari-

ance.

Feature learning

for each region for

CNN is slow. Large

amount of train-

ing data required

and dependency

on hardware for

training.

(SÁNCHEZ-

LOZANO et

al., 2016)

Incremental Cascaded

Continuous Regres-

sion (iCCR) method

to track face and facial

landmarks. Uses full

covariance matrix cap-

turing real statistics

of how faces vary

between consecutive

frames rather than

on the shape model

eigenvalues.

Updates the shape

model with the new

tracked shape of the

target face.

Training data need

to account for large

intra-class variation

for linear regresser.

MMDL-FTU

Operating mode

Incremental multi-

model dictionary

learning for face

tracking.

Multi-model dictio-

nary learning tends

to be robust. Adapts

to the face appear-

ance change and

background change

along time. Update

dictionaries only using

samples with small

error.

Error prediction is

done using the re-

construction error.

Continued on next page

28

Table 2.1 – Continued from previous page

Method Overview Advantages Disadvantages

AFTRM Oper-

ating mode

Incremental learning

of appearance with

resyncing mechanism

in case of tracking

error.

Incremental appear-

ance model update,

Independent error

prediction mechanism.

Error prediction and

resyncing scheme

makes it accurate.

Slow if frequent

resyncing of facial

features is required.

29

3 FUNDAMENTAL CONCEPTS ON FACE TRACKING

This chapter explains the fundamental concepts which are used in the proposed

face tracking approach.

3.1 Probability Distribution

A probability distribution function describes the probability of occurrence of pos-

sible values of a random variable. Many distribution functions are available in the lit-

erature, which can be utilized in the generation of random numbers following a specific

distribution, which includes Gaussian distribution, Rayleigh distribution, and Rice dis-

tribution. In the proposed face tracking method, Gaussian functions is utilized to draw

multiple affine parameters to generate multiple affine parameters. These affine parame-

ters are used to warp the candidate target face samples, which may contain the tracked

target face in the current frame.

Gaussian functions can be used to model many mathematical processes, which

makes them very useful in the fields of signal and image processing (GUO, 2011). Gaus-

sian functions are usually used to represent a probability density function (pdf) of a ran-

dom variable x that is distributed normally with expected value µ and standard deviation

σ as follows:

N (x) =
1

σ
√

2π
exp

1
2

(x−µ
σ

)2 . (3.1)

The model presented in Eq. 3.1 can be used to obtain values of a random variable. Fig-

ure 3.1 shows an example of the pdf of a Gaussian distribution with parameters, µ=0 and

σ = 1. In the Gaussian distribution, about 68% values of the random variable drawn

lies within the one standard deviation σ away from the mean µ; 95% within two standard

deviations (i.e., 2σ); and 99.7% within three standard deviations (i.e., 3σ).

3.2 Background on Incremental Learning

In recent years, the information flow has increased to enormous levels owing the

generation of textual, audio, and video data possessing important insights. The big tech

companies such as Google and Facebook own data centers capable of storing 10-15 ex-

abytes (1 exabyte=1 million terabytes) of data (LOSING; HAMMER; WERSING, 2018).

30

Figure 3.1: Pdf of a Gaussian distribution with µ=0 and σ = 1.

To mine the collected data for the relevant information and/or predict the future devel-

opments, machine learning methods are employed. However, classic machine learning

methods which need all the data to be accessed simultaneously are not capable of han-

dling a large amount of data in an environment changing scenario such as video process-

ing. Generally, these methods can not update the model during processing without the

need to build the model from scratch. This result in wastage of resources such as time,

memory and processing power.

To overcome these issues of batch processed machine learning techniques, the

machine learning paradigm was shifted to the online and incremental learning approaches.

Incremental learning can be defined as a learning scheme that generates a sequence of

models based on the streams of data. This allows the utilization of information as soon

as it is available and keeps the model up to date. This scheme also allows better storage

management as compared to the batch learning scheme. The main challenges of the

incremental learning are the following:

• The model should be updated gradually in such a way that it utilizes the previously

computed model effectively and efficiently.

• The previously acquired data should be preserved, with some forgetting factor, to

31

keep the model up-to-date.

• A limited training data can be maintained at a time so that that memory can be

utilized efficiently.

The incremental learning algorithm may be employed in an off-line or an online setting.

In an off-line setting, the labeled training data is available beforehand, and the model is

trained incrementally by providing this data in small chunks. Therefore, less processing

power and memory are required to update the model. It is worth mentioning that, the

model hi is solely dependent on the model hi−1 that is constructed previously and a limited

number of new labeled data samples. In online settings, the data that is utilized to update

the model is not stored (SAFFARI et al., 2009).

Furthermore, online incremental learning algorithms utilize the test data (which is

labeled by using the previous model hi−1) to update the model. Each intermediate model

is considered for performance evaluation, and each of the models only predicts a limited

number of the following test examples. To update the model to hi, the previous model

hi−1 and the new examples that are evaluated for performance are used to update the

model. This setting of incremental learning can be used for a potentially infinite amount

of data or where the training data is not available in advance. Furthermore, it can also be

useful in the continuously changing environment such as visual object tracking.

Online and incremental learning approaches apply data in streams for process-

ing and update models to incorporate the data that is available during program execu-

tion (LOSING; HAMMER; WERSING, 2018). Numerous techniques have been devel-

oped to implement the incremental settings for Big Data. However, most of these methods

adapt batch processing techniques to incremental settings (CAUWENBERGHS; POG-

GIO, 2001). Additionally, the incremental techniques have been developed for machine

learning and are applied to different learning tasks such as visual tracking (ROSS et al.,

2008), object matching and detection (TOIVANEN; LAMPINEN, 2011), face recogni-

tion (WENG; EVANS; HWANG, 2000), discriminative models for classification (SOH;

DEMIRIS, 2014), incremental object matching and detection with Bayesian methods and

particle filters (TOIVANEN; LAMPINEN, 2011) and so on. Although there are various

incremental learning approaches available which can update the model in changing en-

vironment during program execution, the selection of a specific incremental approach is

problem specific (CHEN; TSAI, 1998).

Incremental and online learning has attracted much attention recently in the con-

text of visual object tracking such as incremental learning using Principal Component

32

Analysis (PCA), which updates the appearance during tracking (ROSS et al., 2008),

Karhunen-Loeve (KL) transform as appearance model with dynamic update of image

database (LEVEY; LINDENBAUM, 2000) and so on. Online learning approaches suf-

fer from drifting in case the appearance of the tracked object is changed during track-

ing (SANTNER et al., 2010). To avoid this problem, Santner et al. (SANTNER et al.,

2010) proposed to use the whole spectrum of adaptability to represent the appearance

of the tracked target, i.e., a template model (Non-adaptive), online random forest (semi-

adaptive), and an optical flow based mean-shift tracker (highly adaptive). Similarly, Ap-

pearance Model Selection (AMS) that uses multiple duplicate models to avoid occlusion

and in case of large changes in appearance, it stops updating one of them (YUAN et al.,

2013).

In this work, the incremental learning is utilized for updating the PCA, which is

used as the representation model of the target object in one of the proposed object tracking

techniques. Moreover, this update of the eigenbasis is utilized in the incremental update

of the reconstruction and the classification dictionaries in the second proposed method.

The PCA and its incremental learning procedure are explained next.

3.2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique that

maximizes the variance of data in the projected space, which makes it suitable for high

dimensional data analysis. PCA uses an orthogonal transformation to convert data of

a possibly correlated set of variables to a set of uncorrelated variables called principal

components. For a set of d-dimensional data vectors Xn, where n ∈ {1, 2,N}, the q

principal axes Uj , j ∈ {1, 2,q}, are those orthogonal vectors for which the retained

variance is maximal.

• The first step is to compute the mean of the data matrix :

x =
1

N

n∑
i=1

xi. (3.2)

• After this, the mean of the data is subtracted from every data sample to make the

data zero mean (centered around zero), which is denoted by X = {x1, x2, ..., xn}

33

and each element is computed as shown below:

xi = xi − x, i = {1, 2, .., n}. (3.3)

• Next, the eigenvalues and eigenvectors of the matrix A = XTX are computed,

which is essentially a covariance matrix as X is zero centered. As A is a symmetric

matrix, it can be diagonalized:

A = ULUT , (3.4)

where U represents the eigenvectors matrix and L is a diagonal matrix representing

the eigenvalues.

It is worth mentioning that the higher eigenvalue means the eigenvector corresponding to

this eigenvalue has higher variation and vice versa. Each column of U is an eigenvector,

also called principal axis. The first principal axis is the combination of X variables that

have the highest variance, and the second principal axis has the second highest variance,

and so on. In other words, the principal axes account for the data variation. Moreover, the

projections XU of the data on the principal axes are called the principal components, also

known as scores. The jth column of XU represents the jth principal component, whereas

the ith data point is given by the ith row of XU in the new PCA space. As the most

common objective of the PCA is dimensionality reduction, therefore, the eigenvectors

that correspond to higher eigenvalues are usually kept for further processing, and those

that correspond to lower eigenvalues are discarded.

The eigenvectors and eigenvalues can also be computed using the Singular Value

Decomposition (SVD) directly from the centered matrix X .

X = UCV T , (3.5)

where C represents the singular values which are the square roots of the eigenvalues in

the covariance matrix, whereas U and V are the left and right orthonormal eigenvectors.

An important property of PCA is that, of all orthogonal projections, the first prin-

cipal component projection minimizes the reconstruction error. This property can be uti-

lized in finding that how well a new data sample fits into the model defined by a given

training set. However, the PCA model suffers from a problem in that it does not define a

proper probability model in the space of input data. Suppose we perform a PCA on a cer-

34

tain data to evaluate how well the new data fit in the model, the only criterion used is the

squared distance of the new data from their projections into the principal subspace. It is

possible that the data sample is very different from the training data but near the principal

subspace. For this reason, a distance measure that defines a proper covariance structure

in the data space is used in our method (ROWEIS, 1998). The likelihood of a sample that

is different from the training dataset will be much lower even if this data sample is near

the principal subspace.

3.2.2 Incremental Update of the Eigenbasis

The shape and appearance of a non-rigid target object may change substantially

along time. For this reason, a tracking method should update the appearance model of

the object to accommodate local and global changes occurring over time, making the

tracking process more robust. Furthermore, in video sequences, the appearance of the

target is required to be updated incrementally due to the unavailability of all the training

data at the start of the tracking process. This incremental learning of the model is useful

in the adaptation of the model to the recent changes in the appearance and shape of the

target, and also the changes in the environment (e.g., illumination changes, background

changes, etc.).

In the proposed method, the estimation of the tracked target is based on the incre-

mental PCA. To update the PCA incrementally, Levey et al. (LEVEY; LINDENBAUM,

2000) proposed an algorithm, called Sequential Karhunen–Loeve algorithm (SKL) to up-

date the eigenbases such that the speed and memory requirements are improved. This

allows the computation of the eigenbases incrementally, in case of a large amount of data

and also at times when all the training data is not available in advance. The SKL algorithm

provides an online learning scheme that embeds the data sequentially when it is available,

instead of waiting to receive the whole data to compute the eigenbases. Furthermore, stor-

age of old data is not required to update the eigenbases, since the method uses the new

set of recently received images and the old eigenbases that were built from the previously

available data. These features allow SKL application in large datasets feasible.

Ross et al. (ROSS et al., 2008) proposed an improvement in the Sequential Karhunen-

Loeve (SKL) algorithm (LEVEY; LINDENBAUM, 2000), and applied this modified scheme

to update the eigenbases used in PCA. In this thesis, the incremental update in the eigen-

bases is inspired by the incremental update of the PCA (ROSS et al., 2008) and is ex-

35

plained as follow. In (ROSS et al., 2008), each sample is represented by a column vector

in order to build and update the PCA, that describes global texture information. However,

in order to accommodate local changes, the proposed scheme constructs and updates the

eigenbases using the local patches of fixed size (v × v) obtained from target object sam-

ples of fixed size (u × u and u > v). As the mean µ(t) at time t of the features play an

important role in PCA, an efficient scheme obtains a weighted update of the mean µ(t) to

accommodate the new data recently acquired. Also, it may be noted that the mean µ(t)

plays a key role in the selection of the tracked target object among the candidate target

object samples in the proposed tracking scheme.

Suppose a data matrixA = {I(1), ..., I(n)} which is d×n dimensional, where each

column I(t) represents an observation composed of patches of the tracked target object

samples represented as a column vector of d dimensions and n is the number of samples

in A. The singular value decomposition (SVD) of A can be obtained as follows :

A = UCV T , (3.6)

where C is a diagonal matrix with the square roots of non-zero eigenvalues and U and

V are the set of left and right orthonormal eigenvectors. Each eigenvalue represents the

weight of its corresponding eigenvector. The eigenvector corresponding to the highest

eigenvalue represents the direction of the maximum variation in the data, the eigenvector

corresponding to the second highest eigenvalue represents the second maximum variation

direction, and so on. Suppose a new data B = {I(1), ..., I(m)} of dimensions d × m is

received over time, where m is the number of new samples received. The SVD of the

combination of [A B] is represented by:

[
A B

]
= U

′
C
′
V ’ T. (3.7)

The computation of the SVD from scratch every-time new data is received is time consum-

ing and impractical for applications like object tracking. This motivated the incremental

updates of the eigenbases. The concatenation ofA andB can be expressed in a partitioned

form that utilize the already computed SVD of A as below (ROSS et al., 2008):

[
A B

]
=
[
U B̃

]C UTB

0 B̃TB

V T 0

0 1

 (3.8)

36

where R =

C UTB

0 B̃TB

 is a square matrix of size q + m, q is the number of singular

values in C and B̃ is a component of B orthogonal to U . To compute B̃ and R, the QR

decomposition method is used that decomposes matrix into an orthogonal matrix and an

upper triangular matrix. Therefore, B̃ and R can be obtained by QR decomposition of

[UC B] as: [
UC B

]
QR
=
[
U B̃

]
R, (3.9)

The SVD of R can be computed in constant time regardless of the initial data size. The

SVD of R is then calculated as follow:

R = Ũ C̃Ṽ T , (3.10)

where C̃ is a diagonal matrix containing singular values and Ũ and Ṽ T represents left and

right eigenbases of R. Now, the SVD of [A B] can be expressed as:

[
A B

]
=
[
U B̃

] [
Ũ C̃Ṽ T

]V T 0

0 I

 , (3.11)

that can be organized as:

[
A B

]
=
([
U B̃

]
Ũ
)
C̃

Ṽ T

V T 0

0 I

 , (3.12)

where I is an identity matrix, U ′= [U B̃] Ũ and C
′ = C̃. Since in the current track-

ing method and the incremental PCA, only U
′ and C

′ will be utilized, thus V ′ is not

needed. The desired number of eigenbases associated with non-zero singular values can

be selected for further processing, while other eigenvectors and singular values that are in

excess can be discarded.

In applications based on a visual representation of objects, it is desirable to fo-

cus primarily on recent images due to various factors such as memory usage, processing

cost, visual appearance or shape changes of an object. For instance, a human face may

change its appearance due to occlusion, expression changes, pose changes, illumination

changes, etc. So it can be implied that the recent observations are more indicative of the

face appearance than the old ones. For this reason, assigning higher weights to the recent

observations is desirable in an online learning scheme. Furthermore, all the observations

37

cannot be retained since the data increases with time, and it can become so large that

relative contributions of recent blocks can be overwhelmed. This would make the learner

blind to recent changes to the point that adaptivity is affected severely. However, to mod-

erate the balance between the old and the new observations, a forgetting factor can be

incorporated when computing the eigenbases. One way to introduce a forgetting factor is

to multiply the singular values by the forgetting factor f (ROSS et al., 2008). The forget-

ting factor (f ∈ [0 1]) down-weights the contribution of the old data (e.g., f = 0.5, only

carry half of the old samples contribution and f = 1, keeps all the contribution from the

old data samples while updating the eigenbases).

3.2.3 Incremental Update of the Mean

The mean µ(t) of the observations at time t is important in computation of the

PCA as well as in the proposed technique to detect the tracked target object (i.e., face).

As the contribution of the old data is decreased in the eigenbases, therefore, it is required

to update the contribution of the old data when computing the mean µ(t) at time t. The

mean µ(t) at time t is calculated as shown below:

µ(t) =
f · n · µn +m · µm

m+ f · n
, (3.13)

where µn represents the mean of the data matrix A and is given by:

µ(n) =
1

n

n∑
i=1

xi, (3.14)

where, xi represents an observation (e.g., a tracked target face), and µm is the mean of

the newly added observations B, t = m + n, and f is the forgetting factor. A benefit of

having a forgetting factor is that the mean µ(t) at time t can still change in response to

new observation, even if the total number of observations are very large.

3.3 Background on Dictionary Learning for Sparse Representation

Dictionary learning has shown significant improvement in signal reconstruction,

instead of using off-the-shelf bases (MICHAL; MICHAEL; ALFRED, 2005). A disad-

vantage of representing the real-valued signals using Fourier or wavelet bases is that they

38

do not provide specialized representation for the particular dataset. The linear decompo-

sition of data using few atoms of a learned dictionary instead of pre-defined bases led the

state of the art in different areas of machine learning and image processing, such as im-

age reconstruction (ELAD; AHARON, 2006), image denoising (MICHAL; MICHAEL;

ALFRED, 2005), object recognition (FANELLO et al., 2013), texture analysis (PEYRÉ,

2009), which indicates that the sparse learned model can be useful in representation of

natural images. While learning a dictionary has shown significant improvement in the

state of the art in signal and image processing, the corresponding optimization problem is

a significant computational challenge as well as memory, especially for a large amount of

image data.

Despite the apparent advantages over fixed bases, there are some important issues

to address while representing the data using dictionaries:

• What dictionary should be used so that a cost-effective solution can be found for an

application at hand.

• A theoretical problem, if there exists a unique sparse representation? Also, it is

possible that there is no unique sparse representation for the data, so the closest

approximation is achieved using different techniques.

There are two stages in a dictionary learning algorithm that are repeated to achieve a

dictionary that is capable of representing the data sparsely. These stages are the follow-

ing: the first one is the sparse coding stage, which is finding a solution to the following

problem:

minα||X −Dα||22 + λ||α||0, (3.15)

where, α represents sparse code andD is a fixed dictionary, the sparse coding problem can

be solved using Eq. 3.15 as an approximation to L0 regularization problem as explained in

Section 3.3.1. The second problem is the dictionary update in which atoms are updated by

changing sequentially each column di in order to better represent the data items mapped

to the dictionary columns. This can be solved using the equation below:

minD||X −Dα||22, (3.16)

where the subscript 2 ||.||2 represents the default L2 (Euclidean) norm

||x||2 =
√

(x2
1 + x2

2 + ...+ x2
n). Consider x = {x1, x2, . . . , xn} is a vector with n ele-

ments, ||x||22 is this number power 2 (the number multilpied by itself). The Idea is that

39

the vector that minimizes the L2 norm (a number) is the same that minimizes this number

power 2 (i.e., ||x||22 = x2
1 +x2

2 + . . .+x2
n), and the last one is easier to evaluate. The atom

updating stage in Eq. 3.16 is the characteristic that distinguishes many different dictionary

learning methods. The dictionary D ∈ Rd×n, with n being the number of atoms and d

the length of each atom, is "undercomplete" if n < d, which means that there are less

number of atoms than the size of each atom, the dictionary is considered to be "complete"

if n = d, and "overcomplete" if the number of atoms are higher than the length of each

atom, i.e., n > d. The overcomplete dictionaries are the most common dictionaries for a

sparse dictionary learning problem, because either they start big or multiple dictionaries

are merged to make dictionaries. The objective of the dictionaries is to achieve the spars-

est solution for the signal, that allows reconstructing the signal with high resolution that

is not possible with the traditional non-adaptive approaches in linear time.

3.3.1 Sparse Representation

With a known dictionary D , the sparse representation of a signal x can be found

using:
α = min||α||00 ,

s.t. x = Dα.
(3.17)

It is possible that α is not unique, so the goal is to select the sparse representation that

minimizes the reconstruction error:

min||α||00 ,

s.t. ||Dα− x||22 ≤ ε2.
(3.18)

Solving the above equation is a NP-hard problem because of its time complexity. How-

ever, there are two most common approximations which are used. The first one, is to relax

the condition min||α||00, called Basis Pursuit (CHEN; DONOHO; SAUNDERS, 2001;

DONOHO; ELAD, 2003), and use continuous optimization techniques. Second approx-

imation builds a solution one element at a time in a greedy approach called Matching

Pursuit (MALLAT; ZHANG, 1993).

40

3.3.2 Basis Pursuit(BP)

Basis Pursuit (BP) decomposes a signal into an optimal decomposition of the dic-

tionary elements, such that the achieved decomposition has the smallest l1 norm among

all the decompositions. Instead of solving L0 norm in Eq. 3.15, the BP method solves

the L1 norm. There are several efficient ways to solve a quadratic problem. The equation

takes the form (DONOHO; ELAD, 2003):

min||α||1 ,

s.t. ||Dα− x||22 ≤ ε.
(3.19)

Due to the recent advances in linear programming methods (such as associated with

interior-point methods) and close formulation of BP to linear programming, it is possible

to solve BP in nearly linear time with certain dictionaries (CHEN; DONOHO; SAUN-

DERS, 2001).

3.3.3 Matching Pursuit (MP)

The Matching Pursuit is based on a greedy approach that starts from the initial

approximation and builds up a sequence of sparse approximations in steps by selecting

one atom at a time (MALLAT; ZHANG, 1993). This is achieved by minimizing the

reconstruction error while adding one atom at a time. The Matching Pursuit technique

chooses one atom at each step which reduces the reconstruction error, and its addition

may help achieve higher sparsity. The iterative procedure is explained as follows:

1. Find an atom that best matches the signal, i.e., the one with the smallest error and

keep it.

2. Given previously found atom, find the next best fit.

3. Keep on finding the next atom until the error ||Dα − x||22 is less than a certain

threshold or a maximum number of iterations is reached.

An enhancement in the matching pursuit method called Orthogonal Matching Pursuit

(OMP) re-evaluates the coefficients of the selected atoms by using the least square error

after each time a new atom is selected (RUBINSTEIN; ZIBULEVSKY; ELAD, 2008).

The algorithm changes the values of the coefficients of the atoms to reduce the error and

41

finds the best values for the selected atoms. In the MMDL based face tracking operating

mode of the proposed tracker, OMP is used for computing the sparse representation of the

data over the specified dictionary.

3.3.4 Dictionary Learning

For dictionary learning, it is assumed that the good-behaved images have a sparse

representation. One approach to choose D is from a known set of transforms such as

frequency dictionaries are based on Fourier or cosine transforms. Also, time-scale dictio-

naries have been explored such as wavelets, curvelets, contourlets, etc. Time-Frequency

dictionaries are also explored such as Gabor dictionary. To learn a dictionary, it is initial-

ized usually with a subset of data or cosine transform computed over the data which is to

be represented sparsely using a dictionary. To learn a dictionary, the Eq. 3.16 leads to the

following optimization problem:

minD

P∑
j=1

||Dαj − xj||22,

s.t. ∀j||α||0 ≤ L,

(3.20)

where P is the total number of images in the data for which sparse code α is computed

with L number of non-zero elements in α and ||.||0 represents L0 norm which counts the

number of non-zero elements in a matrix.

The dictionary D can be learned online or offline. The offline dictionaries are

learned from the training data that is already available before building a dictionary. These

dictionaries can handle a limited amount of data or otherwise require infinite memory.

To solve this problem, data is provided in batches to update the dictionary so that it can

handle the large size of data. Dictionary can also be learned online from the data available

along time. This way dictionary can handle a large amount of data and can adapt to the

changes in the appearance and shape of the object. For example, in video processing,

there is a lot of data that is received over time. Discarding this data without using is

analogous to a waste of information. Also, the dictionaries trained offline are not adaptive

to the changes in the environment. For these reasons, it is important to learn a dictionary

online and use valuable information which is received during runtime in the form of data.

Olshausen et al. (OLSHAUSEN; FIELD, 1996) first proposed to utilize dictio-

42

nary training methods with the motivation to capitalize the statistical regularities in the

natural images. The authors suggested that sparsity may provide efficient coding for a

natural scene. This method is subsequently extended by Lewicki et al. (LEWICKI; SE-

JNOWSKI, 2000). Kreutz et al. (KREUTZ-DELGADO et al., 2003) proposed an impor-

tant contribution to the training of sparse representation of dictionaries that focused on the

relationship among the sparse coding dictionary design and the vector quantization prob-

lem. Also, a generalization of the well known K-Means algorithm was proposed. The

K-SVD algorithm (MICHAL; MICHAEL; ALFRED, 2005) uses a different approach for

the generalization of the K-means algorithm and gathers a lot of attention in the dictio-

nary learning research. The K-SVD algorithm is a direct generalization of the K-means

algorithm (GERSHO; GRAY, 2012) and it can be easily used with any pursuit algorithm.

In this work, we propose an improvement in the K-SVD dictionary by introducing an

incremental update procedure, so that it can be utilized in large datasets and in applica-

tions such as object tracking where the test data is useful to adapt to the changes in the

appearance of the tracked target over time.

3.3.5 Incremental Dictionary Learning

The K-SVD has shown good performance on small datasets (MICHAL; MICHAEL;

ALFRED, 2005) due to its good model with clear mathematics and physics meanings.

However, it is impossible to employ this model for large datasets because of the memory

limit to store all the data at the same time as well as to perform SVD computation of very

large datasets. The incremental learning techniques can help in learning a dictionary for

large datasets (WANG et al., 2014) by introducing new atoms in the dictionary in order to

represent the new data available.

Considering a datasetXn = {x1, x2, ..., xn}, and the dictionaryDn = {d1, d2, ..., dn}

and sparse code αn, when a new set of data samples Xm = {xn+1, xn+2, ..., xn+m} are

received, they need to be represented sparsely, so the new sparse code αm+n needs to be

computed. As Dn already represents Xn sparsely as αn, it is interesting to test if Dn

is able to represent the new data Xm. In this case, only the coefficients αm need to be

computed, which belong to the sparse representation of Xm. However, this is not usually

the case; therefore the dictionary should also be updated. Therefore the new objective

43

function of the updated dictionary is given by:

minα||Xn+m −Dn+mαn+m||22 + λ||αn+m||0. (3.21)

It should be noted that, for consistency every time the dictionary is updated, the number of

new samples used to update the dictionary should be the same i.e.,Xm = {xn+1, xn+2, ..., xn+m},

where the number of new samples m is constant for each dictionary update. As there are

m new samples, the coefficients αm for Xm are {αn+1, αn+2, ..., αn+m}. Now, all the co-

efficients of Xm+n at time t are given by αn+m = {α1, α2, ..., αn, αn+1, αn+2, ..., αn+m}.

While solving the Eq. 3.21, the jth column of α is denoted by αjT as in the classical

K-SVD. For an arbitrary kth atom of the dictionary Dt at time t, the first term of the

objective function in Eq. 3.15 takes the form (WANG et al., 2014):

||Xn+m −Dtαn+m||22 = ||αn+1 −
k−1∑
j=n+1

djα
j
T −

n+m∑
j=k+1

djα
j
T − dkα

k
T ||, (3.22)

where, n + 1 ≤ k ≤ n + m, which means the atoms are added to only accommodate the

new data/images. The atoms updated in the dictionary are dn+1, ..., dt, where t ≤ n+m.

In Eq. 3.22, the current samples Xm and the old atoms are linked into one objective

function. The Eq. 3.22 can be re-written as below:

||Xn+m −Dn+mαn+m||22 = ||Ek
m − dkαkT ||, (3.23)

where, Ek
m = αn+1 −

∑k−1
j=n+1 djα

j
T −

∑n+m
j=k+1 djα

j
T is an error matrix which shows how

well the new dictionary without a specific atom dk represents the newly added data while

the information from the the old dictionary Dn is still associated.

The next issue is the initial value of the new atoms to be added. We propose to

update possibly all the atoms of the dictionary by initializing the update using the incre-

mental SVD (ROSS et al., 2008) unlike proposed in (WANG et al., 2014) that just updates

the new atoms in the dictionary. Hence, our approach modifies the dictionary update in

a way that it adapts to the current appearance of the tracked target object. Therefore, the

old atoms of the dictionary are also changed, and a forgetting factor is also applied to re-

duce the influence of the old samples. This initialization and estimation of the new atoms

values are explained next.

44

3.3.6 Estimating New Dictionary Atoms

It is possible to add new atoms to the current dictionary; however, it is an important

task to set the initial values of the new atoms. It is also important to check if it is possible

to represent the newly added data with the old dictionary Dn sparsely and efficiently. In

such a case, there is no need to update the dictionary. However, this is not usually the case,

as newly added images most of the time have slightly different information and require the

dictionary to be updated in a way that these new images can also be represented efficiently.

Selecting the initial value of the new atoms is very critical. In case of inappropriate values

of new atoms, the training process will be slow and inefficient. The most common method

is to use the set of images as an initial value, which is a slow and inefficient technique.

Other methods such as (WANG et al., 2014) perform the sparse coding for Xm using the

already existent dictionary Dn to represent the current samples and select the samples

whose coefficients are not sparse. This is done by using the following equation:

minXn||Xm −Dnαn||22 + λ||Xn||0. (3.24)

Now, among all the samples whose coefficients are not sparse enough, the samples with

maximum disagreement between the different atoms are selected as the initial values of

the new atoms. This is achieved using the entropy theory as below:

maxαiεαmH(αi), (3.25)

where, the entropy H(αi) gives the disagreement or lack of order as below:

H(αi) =
n∑
j=1

p(l = dj|αi)log(p(l = dj|αi)), (3.26)

where,

p(l = dj|αi) =
αi(j)∑n
b=1 αi(b)

. (3.27)

With this initial value, the new atoms are found by repeating SVD k times so that the

desirable sparsity is achieved using Eq. 3.15.

The initialization of new atoms is important to keep the dictionary up to date.

However, only adding the new atoms can lead to an infinite dictionary, which is not suit-

able for applications that use small memory and processing power such as target object

45

tracking. For problems such as tracking, this dictionary learning scheme cannot be applied

directly. Adding more atoms every time a new data is received can lead to an immensely

large dictionary which may affect the adaptivity of the dictionary severely. This could be

solved by limiting the maximum number of atoms in the dictionary at any point in time.

It is worth mentioning that the tracked target objects (e.g., non-rigid objects) change the

appearance and shape over time, so in order to track the target efficiently, the dictionary

should be able to adapt to the recent changes in the target object. This would allow the

dictionary to represent the target effectively. For this reason, the contribution of old data

must be minimized.

As the recent observations are more indicative of the current shape of the object,

more recent data should receive high weights. This can be done by assigning higher

weights to the newly added samples while updating the dictionary or embedding a forget-

ting factor. In the proposed system, a forgetting factor f ∈ [0, 1] is used in the update

of the dictionary to down-weight the contribution of the old samples. As the dictio-

nary is based on the SVD, the dictionary is updated using the incremental update in the

SVD (ROSS et al., 2008). This will be the initial value of the dictionary atoms, and the

dictionary is optimized until the desired sparsity is achieved.

3.4 Classification Methods and the Support Vector Machine (SVM)
Classifier

In machine learning, a classification method assigns a class to a new observation

among the set of predefined classes, based on the training set of observations. Several

methods have been explored for classification applied to images, which are reviewed by

Wang et al. in (WANG et al., 2017). The algorithm that categorizes the data into their

corresponding classes is called a classifier. The classifiers can be categorized into super-

vised and non-supervised. Usually, the term non-supervised classification is referred to

as clustering and group the observations by using some inherent similarity measure. Su-

pervised classifiers utilize the training dataset with the sample labels to identify the class

of the new observation.

Several classifiers have been proposed in the literature and are used to classify

different observations, such as k-nearest neighbor (k-NN) applied to face classification

from non-faces (JOSE; POORNIMA; KUMAR, 2012), Random Forest (SEE et al., 2017)

also used for face classification, Decision Tree (DT) utilized for automatic diagnostic of

46

ophthalmic images that is used in the treatment of the eyes (TAHIR et al., 2006), Boosted

Trees (BT) used in the detection of fetal anatomies from ultrasound images (CARNEIRO

et al., 2008), and SVMs utilized for automatic diagnosis of ophthalmic images (WANG et

al., 2017) methods. Among these classifiers, the SVM classifier has produced a desirable

performance in image processing applications (YANG et al., 2016; WANG et al., 2017).

The SVM classifier is a supervised classification technique that utilizes the training

data to build a linear model to categorize new data observations. SVMs can also perform

non-linear classification by implicitly mapping their inputs into a high dimensional space.

In the proposed tracking scheme, the SVM is utilized in the Constrained Local Model

(CLM) to create a patch classifier which works as a patch expert and classifies the pos-

itive and negative samples, which is a binary classification problem. To build a binary

classifier, a linear Support Vector Machine (SVM) is trained with positive and negative

samples. The goal of the SVM is to design a hyperplane that classifies all the training

vectors into two classes. The best choice is the hyperplane that leaves maximum margin

between the two classes.

Suppose there are k training vectors {v(1), v(2), . . . , v(k)}, and each training sample

v(c) = {v(c)
1 , v

(c)
2 , . . . , v

(c)
l } is a column vector of l dimensions. An input value for class

attribution of u(c) = [−1, 1] must be assigned for each training sample c = {1, 2, ...k}.

The SVM classifier output is written as a linear combination of input vector elements:

u(c) = ΩTv(c) + Θ, (3.28)

where ΩT = [Ω1,Ω2, . . . ,ΩZ] represents the weight of each element of the input data, and

Θ is a constant acting as a bias to prevent overfitting. The hyperplane is called SVM and

is created in a way that each training output u(c) is set to 1 if the training observation is a

positive sample, and -1 otherwise.

3.5 Constrained Local Models (CLM)

Constrained Local Models (CLM) tend to be the accurate facial feature detectors,

on the other hand, they are known to have a slow convergence process, making their

use in the face tracking quite challenging. Nevertheless, if CLM is used less often in

comparison to other components of the tracking process, the tracking system could be

viable for real-time operation. Since the proposed tracking method is applied to faces,

47

so the CLM is discussed here in the context of a face and facial landmark localization.

In practice, CLM consists of two stages (modules), which are CLM model building and

CLM search (LUCEY et al., 2009), as discussed next.

3.5.1 CLM Model Building

A CLM model is comprised of two models: (a) a shape model, that takes in shape

information, and (b) a patch model that considers the local patch information. Both mod-

els combine to a comprehensive model to represent the target object (i.e., a face). Images

of the cropped faces and a set of facial feature points are used as the training data to build

the CLM face model.

Shape Model: In order to build the CLM shape model, all the shapes are aligned

with the first (initial) shape of the training set using procrustes analysis (KENDALL,

1989), which removes the adverse effects of shape variations in terms of scale, transla-

tion and rotation, leaving only the intrinsic face shape variations. On these aligned faces,

the PCA is performed to capture the face variations (eigenvectors) in the training data,

and to obtain an indication of the total face variation by the eigenvalue of each eigenvec-

tor. Suppose a training shape matrix M = [S1, S2, . . . , SN] of size e × N , where each

column is a face shape vector Sr = [x1, y1, x2, y2, . . . , xZ , yZ]> of size e = 2Z (in cur-

rent experiments, Z = 68) which contains the Z facial landmarks represented by their

coordinates (xi, yi) and N is the total number of training face shape vectors. In order

to compute the eigenvalues and eigenvectors, the mean S of these shape vectors is sub-

tracted from each column Sr of the training shape matrix M to center them around zero,

i.e., ∀S∈M Ŝr = Sr−S. These zero mean shape vectors are combined to form a single ma-

trix M̂ = [Ŝ1, Ŝ2, . . . , ŜN], and the covariance matrix Mc = M̂M̂T is utilized to compute

the eigenvectors P and eigenvalues λ. Therefore, each shape can be written as a linear

combination of the eigenvectors P and the mean shape (S) as:

S = S + PsH, (3.29)

where H = P T Ŝ is a column vector containing the coefficients of the corresponding

eigenvectors P for representing the shape in M .

Patch Model: In order to build a patch model for each feature point, a linear

Support Vector Machine (SVM) (CORTES; VAPNIK, 1995) is trained with positive and

48

negative samples as a patch classifier. The negative examples are randomly selected from

patches captured elsewhere in the training image (i.e., outside of the face). Positive ex-

amples are patches captured only from the face block around the particular landmark

for which SVM is being trained. Afterward, the linear SVM is trained to discriminate

between the positive and negative examples. This training process produces an equal

number of linear support vectors that are used to tell whether a patch corresponds to a

positive or a negative example class. It is worth mentioning that, for each feature point c,

a linear SVM is trained with positive and negative examples. In other words, if there are

a total of Z feature points, Z linear SVMs will be trained that can be considered as patch

experts for that particular feature point.

Suppose there are k training vectors v(1), v(2), . . . , v(k), and each training sample

v(c) = (v
(c)
1 , v

(c)
2 , . . . , v

(c)
l) is a column vector of l dimensions. An input value for class

attribution of u(c) = [−1, 1] must be assigned for each training sample c = {1, 2, . . . , k}.

SVM classifier output is written as a linear combination of input vector elements as:

u(c) = ΩTv(c) + Θ, (3.30)

where ΩT = [Ω1,Ω2, . . . ,ΩZ] represents the weight of each element of the input data,

and Θ is constant acting as a bias. In case of CLM, the set of training data is constituted

by patches extracted from the training images, so the training output u(c) is set to 1 if the

sample comes from positive feature points, and -1 otherwise.

3.5.2 CLM Search

The CLM search process combines the shape and patch models in such a way

to detect feature point locations of a face shape with high SVM response. Given a set

of initial feature points (landmarks), the CLM model is used to generate a set of gray

value texture patches. The face shape templates are applied to the search image, and the

response images are computed by the SVM based patch model, while at the same time

maintaining the shape constraints. Both of these goals are combined using the following

objective function:

f(St) =
Z∑
i=1

ıi(xi, yi)− β
o∑
j=1

−h2
j

λj
, (3.31)

49

where, ıi(xi, yi) is the patch of size
√
l×
√
l that is selected by the SVM based patch model

in the g × g neighborhood of the current location of the landmark i (g = 8 in our exper-

iments). The term
∑o

j=1

−h2j
λj

is the shape constraint, where hj ∈ H is the corresponding

eigenvector coefficient in the eigenvectors representation H , λj is its eigenvalue and o

is the number of eigenvectors, whereas the parameter β ∈ [0 1] is a bias determining the

compromise between shape fit and the SVM based patch model. The Eq. 3.31 is optimized

using quadratic programming to obtain the optimum landmarks locations (i.e., shape) us-

ing an error measure, or until the maximum number of iterations is reached (LUCEY et

al., 2009). In this work, the following error measure is used to describe the optimum

landmark locations:

εrec = Sr − PP TSr, (3.32)

where Sr represents the current shape and P is the eigenvectors matrix from the CLM

shape model.

3.6 Terminology

Table 3.1 provides the symbols used in this document with their meanings.

Table 3.1: Table of symbols

Symbol Meaning Symbol Meaning

A data matrix I Observation (target face)

d size of observation n number of

(e.g. 32 x 32=1024) observations in A

B Newly received m number of

data observations in B∑
eigenvalues of U and V left and right orthonormal

data matrix A eigenvectors of A∑′
eigenvalues of U

′ and V ′ left and right orthonormal

data matrix [A B] eigenvectors of [A B]

B̃ component of B UT Transpose of U

orthogonal to U

µ mean µn mean of data A

µm mean of data B f forgetting factor

Continued on next page

50

Table 3.1 – Continued from previous page

Symbol Meaning Symbol Meaning

Z number of feature S shape

points (Z=68)

S mean shape Ps eigenvectors

s= no of eigenvectors

s= used

H Coefficients corresponding k no of training

to eigenvectors vectors for SVM

v training sample

for SVM Z total number of landmarks

u label of training Ω weights of

sample for SVM sample of patch model

Θ bias for patch model

f(p) CLM search function c feature number

ıc response of patch model (xc, yc) location of landmark

bj weight of eigen vector j λ eigenvalues

β bias for choosing χ(t) affine parameters

relative weight of

patch and shape model

set of images probability of affine

I(t) at time t p(χ(t)|I(t)) parameters given

data I at time t

(xt, yt) translation parameters st scale

θ(t) rotation parameter α(t) aspect ratio

φ(t) skew direction t time

diagonal matrix

ψ(t) with variances of δ distance of sample

affine parameters from reference

distance from within the subspace

δt sample to subspace δw from projected sample to

the subspace center

p probability εI additive noise

Continued on next page

51

Table 3.1 – Continued from previous page

Symbol Meaning Symbol Meaning

N Gaussian distribution I(t) video frame

at time t

∆ Difference in the i landmark

tracked landmarks number

TP position of ΛG groundtruth position

landmark in (x, y) of landmark in

estimated by proposed (x, y)

ΓT Median of ∆ Ψ flag for Re-syncing

ε(t) Track error at t Z total no of landmarks

NBC no of black pixels NWC no of white pixels

in current frame in the current frame

NBR no of black pixels TP true positive

in reference frame

FP false positive TN true negative

FN false negative TPR true positive rate

TNR true negative rate CDR correct detection rate

r no of resyncs required κ bias for tracking error

52

4 PROPOSED METHODOLOGY

This chapter provides the details of the proposed adaptive face tracking scheme

and its operating modes. The face tracking scheme consists of two steps: the first step

is modeling the motion and sampling the candidate face samples, and the second step is

the selection of the tracked target face by using the observation model that models the

appearance of the tracked target face. The appearance model of the proposed method is

based on an incremental learning scheme. Furthermore, it estimates the tracking error

during tracking, and a resyncing procedure is proposed to correct the tracking process if

the proposed tracking predictor estimates high error. Figure 4.1 shows the block diagram

of the proposed tracking method and is explained below:

• Block 1: In the first frame, the initial target face, the affine parameters (χ(t)), while

the facial landmarks are provided by a face landmark localization method (LUCEY

et al., 2009);

• Block 2: In the subsequent frames, a finite number (η) of affine parameters are

drawn around the affine parameters of the initial/tracked target face using a Gaus-

sian distribution (see Eq. 4.2);

• Block 3: To locate the tracked target face in the frame at time t, the candidate target

face samples (u × u) are warped according to the computed affine parameters to

be compared with the tracked target face (see the example in Fig. 4.6 at the left of

Block 3: in red, the tracked target face from the previous frame; in green, candidate

target face samples). See details in Section 4.1;

• Block 4-6: Among the candidate target face samples, the tracked target face is se-

lected using one of the operating mode, i.e., Multi-Model Dictionary Learning for

Face Tracking with dictionaries Update (MMDL-FTU) or An Adaptive Face Track-

ing Scheme using Resyncing Mechanism with Weighted CLM search (AFTRM-

W);

• Block 7: The facial landmarks of the tracked target face are localized;

• Block 8: Yawning is detected;

• Block 9: Finally, if there are more frames to process the affine parameters of the

current tracked target face are used in the next frames, and the process re-starts from

Block 2.

53

Figure 4.1: Block diagram of the proposed face tracking method.

Start

1) Initialize the
face, landmarks and

affine parameters

2) Draw affine
parameters around the
initial/tracked target

face affine parameters

3) Warping the
candidate target faces
(samples) based on

the affine parameters

4)
Operating

mode?

6) Select the tracked
target face among the
candidate target faces
using the AFTRM-W

5) Select the tracked
target face among the
candidate target faces

using the MMDL-FTU

7) Locate fa-
cial landmarks.

8) Yawning detection.

9) Next
Frame?

Stop

Yes

No

– Candidate target faces.
– Tracked target face.

Motion Model

AFTRM-WMMDL-FTU

Both the operating modes of the tracking scheme shares the same motion model which is

explained in Section 4.1, and differs by how the representation of the tracked target face

is modeled, which are explained in Sections 4.2 and 4.3.

4.1 Motion Model and Sampling

Visual tracking can be designed using a Markov model with hidden state vari-

ables (ROSS et al., 2008). In the current experiments, the tracker is applied to track the

face in a video sequence. For tracking the face, state of the tracked target face is de-

54

scribed by a variable χ(t) that contain the affine parameters which describes the location

of the object at time t. Furthermore, the affine parameters of the tracked target face are

used to estimate the face landmarks, detect yawning and calculate the tracking error (see

Eq. 4.19). For a set of tracked target face samples at time t, I(t)={I(1),I(2)..., I(T) }, the

face tracker estimates the hidden state variable χ(t) using:

p(χ(t)|I(t)) ∝ p(I(t)|χ(t))×∫
p(χ(t)|χ(t− 1))p(χ(t− 1)|I(t− 1))dχ(t− 1).

(4.1)

The candidate target face samples that may contain the tracked target face are sampled

following the motion model between two states p(χ(t) | χ(t − 1)), assuming a Gaus-

sian distribution around the tracked target face location in the previous frame. At time

t, the state of the target face in a video sequence is described by the affine parameters

χ(t)=(x(t), y(t), s(t), θ(t), β(t), φ(t)), where x(t) and y(t) represent the translation of

the tracked target object (i.e., face) with respect to the origin of the image, s(t) = M/u

is the scale of the tracked target face w.r.t the size of the image (M × N) which con-

tains the tracked target face (u × u), whereas θ(t), α(t) and φ(t) are the rotation angle

w.r.t the horizontal axis, the aspect ratio, and the skew direction, respectively. It is worth

mentioning that, the aspect ratio α(t) is used along with the scale s(t) to maintain the

scale of the tracked target object in xy-coordinate system in the image space similar to

the approach used by Ross et al (ROSS et al., 2008). The dynamics of each parameter in

χ(t) is modeled independently by a Gaussian distribution centered at χ(t− 1), and going

from χ(t− 1) to χ(t) is given by (for details on Gaussian distribution, see Section. 3.1):

p(χ(t)|χ(t− 1)) = N (χ(t);χ(t− 1), ψ(t)), (4.2)

where ψ(t) is a diagonal matrix with each element representing the variance of its cor-

responding affine parameters element, and N represents a Gaussian distribution. These

affine parameters are used to warp the candidate target face samples that may contain a

face in the current frame. These candidate target face samples are tested for quality using

the appearance model, and one of them is selected as the tracked target face in the current

frame at time t using the techniques explained in Sections 4.2 and 4.3.

Figures 4.2, 4.3 and 4.4 show an example of the working of the motion model of

the tracking process, i.e., how the affine parameters are distributed to generate the candi-

date target face samples in the current frame. The affine parameters χ(t) are represented

55

by a point in affine parameter space, as shown in Figures 4.3. The affine parameter space

is a six dimensional space, and only three dimensions are shown in Figure 4.3. The red

point in the Figure 4.3 represent the affine parameters of the tracked target face in the

previous frame. Numerous affine parameters are computed using the Gaussian distribu-

tion centered around the affine parameters of the tracked target face in the previous frame

using Eq. 4.2, and these affine parameters are shown as blue points in Figure 4.3. Further-

more, these affine parameters are used to warp the candidate target face samples which

may contain the tracked target face in the current frame, which are shown in green color

faces in Figure 4.3.

This phenomenon in the image space going from the previous frame to the current

frame is shown in Figure 4.2, where red bounding box shows the tracked target face in

the previous frame, and green bounding boxes show candidate target face samples in the

current frame. Furthermore, the working of the motion model from the previous frame to

the current frame is demonstrated in Figure 4.4. Figure 4.4 (a) shows the tracked target

face in the previous frame and Figure 4.4 (b) shows the corresponding candidate target

face samples using these affine parameters in the current frame. Figure 4.5 shows an

image with the bounding box of the tracked target face from the previous frame (red color

bounding box) and the candidate target face samples of the current frame (green color

bounding boxes). Among these candidate target face samples, the tracked target face is

computed using one of the operating modes which are MMDL-FT operating mode and

AFTRM operating mode. The operating mode is the algorithm that selects the tracked

target face among the candidate target face samples.

56

Figure 4.2: Motion model example (p(χ(t)|χ(t − 1))) in image space; Affine parameter
space, each point in affine parameter space is warped into a bounding box in the image
space.

57

Figure 4.3: Motion model example (p(χ(t)|χ(t− 1))); Tracked target face bounding box
(in red color) and candidate target face bounding boxes (in green color).

Figure 4.4: Motion model example going from the previous frame to the current frame
(p(χ(t)|χ(t− 1))).

(a) Tracked target face bounding box; (b) Candidate target face samples bounding boxes.

p(χ(t)|χ(t− 1))

58

Figure 4.5: Tracked target face sample (red bounding box) and candidate target face sam-
ples (green bounding boxes).

4.2 Proposed Methodology for Multi-Model Dictionary Learning for
Face Tracking (MMDL-FT) and MMDL-FT with Update Test (MMDL-FTU)

This section explains MMDL-FTU operating mode of the proposed face tracking

method. There are two techniques used for the training data collection to build and update

the dictionaries incrementally. In the MMDL-Face Tracker (MMDL-FT), the dictionaries

are updated using the tracked target face samples collected without checking their quality,

as proposed by Ross et al (ROSS et al., 2008). In the MMDL-Face Tracker with Up-

date Test (MMDL-FTU), only those tracked target face samples are collected which has

reconstruction error smaller than a specific threshold ε.

4.2.1 MMDL-FTU Operating Mode

Dictionary learning has been explored in object tracking, but the proposed dictio-

nary learning methods usually are based on static dictionaries that are not updated during

59

object tracking (LIU; LI; FANG, 2015). Most of the methods that use dictionaries for ob-

ject tracking are focused on the representation of the target (CHENG et al., 2014), or on

the discrimination between the target and the background (XIE et al., 2014). In this work,

a new approach called Multi-Model Dictionary Learning (MMDL) is proposed for face

tracking that builds in parallel two dictionaries based on the k-SVD (i.e., a classification

dictionary and a reconstruction dictionary), and combines them into a single multi-model

dictionary.

The reconstruction dictionary (Dp) is used to estimate the appearance difference

between the reconstructed sample and the candidate target face sample, whereas the clas-

sification dictionary (Dc) is utilized to discriminate the candidate target face from the

background. These two dictionaries are combined into a single multi-model, which tends

to improve the tracking robustness. Therefore, the proposed MMDL scheme can recon-

struct the face in addition to discriminating the face from the background. The proposed

method learns the face appearance using dictionary atoms constructed from patches, that

are taken from positive and negative samples of the training data. Furthermore, a smart

approach is proposed to update incrementally and efficiently the dictionaries, making the

application of our method to realistic tracking scenarios feasible. Furthermore, the pro-

posed method collects training samples to update the two dictionaries during face tracking

using a proposed scheme (see details in Section 4.2.6). The quality of the samples (i.e.,

reconstruction error) is assessed before utilizing them to update the dictionaries, which

is an aspect that other methods that implement incremental learning seem to miss (ROSS

et al., 2008). Both the dictionaries are initialized using Singular Value Decomposition

(SVD), which is more efficient than initializing the process by combining some random

training samples as proposed elsewhere (ELAD; AHARON, 2006). As both dictionar-

ies are learned incrementally, the number of atoms can increase until a limit is reached.

Additionally, the weights of the atoms are updated adaptively.

The proposed approach is illustrated in the block diagram shown in Fig. 4.6, which

is explained below:

• Block 1: Initializes the face tracking process for the first frame, the initial target

face, the affine parameters (χ(t)), while the face landmarks are provided by a face

landmark localization method (LUCEY et al., 2009). The tracked target face is

assumed to be contained in a window of fixed size (u × u). This window and its

contents are warped according to the affine parameters to obtain the candidate target

face samples. These samples are used in a template matching process to detect the

60

tracked target face in the frame at time t + δt. The initial target face serves as

the mean face (µ(t)) until two dictionaries are created which are reconstruction

and classification dictionaries. The two dictionaries are build and updated after

a number (τ) of new tracked target face samples have been gathered during face

tracking;

• Block 2: In the subsequent frames, a finite number (η) of affine parameters are

drawn around the affine parameters of the initial/tracked target face using a Gaus-

sian distribution (see Eq. 4.2);

• Block 3: To locate the tracked target face in the frame at time t, the candidate target

face samples (u × u) are warped according to the computed affine parameters to

be compared with the tracked target face (see the example in Fig. 4.6 at the left of

Block 3: in red, the tracked target face from the previous frame; in green, candidate

target face samples). See details in Section 4.1;

• Block 4: Next, a test is performed to check if the dictionaries already exist, or

if enough tracked target face samples (τ) have been collected to create the two

dictionaries;

• Block 5: When τ tracked target face samples are available, the samples are decom-

posed into fixed size patches (v × v, and v ≤ u), and the dictionaries are created

using these patches;

• Block 6: Afterwards, the probability of each candidate target face sample being the

tracked target face is computed using the learned dictionaries (see Eq. 4.18);

• Block 7: On the contrary, if the condition in Block 4 is not satisfied, the probability

of the candidate target faces being the tracked target face is calculated using the

distance from the mean face µ(t) (see Eq. 4.14);

• Blocks 8-9: Next, the candidate target face with the highest probability is selected

to be the current tracked target face, and is used as training data to update the two

dictionaries depending on its quality (i.e., reconstruction error);

• Blocks 10-11: The two dictionaries are created, or updated depending on the num-

ber of tracked target face samples accumulated (see details in Section 4.2.5 and 4.2.6).

The training samples are gathered during the face tracking process based on their

reconstruction errors (see Section 4.2.4);

61

• Block 12: Finally, if there are more frames of the video to process, the affine param-

eters of the current tracked target face are used in the next frames, and the process

re-starts from Block 2.

As this operating mode of the tracker is based on the dictionary learning, the dictio-

nary learning is detailed in Sections 4.2.2 and 4.2.3. The face appearance is represented

based on the multi-model dictionary learning as explained in Sections 4.2.4. Finally, Sec-

tion 4.2.7 details how to locate the tracked target face in consecutive frames by using a

comprehensive appearance model based on multi-model dictionary learning.

4.2.2 Dictionary Learning

Given a set of data items X = {x1, x2, ..., xn} ∈ Re×n, and its sparse code α

on a dictionary D ∈ Re×k with k atoms/columns, there are two stages in the dictionary

learning algorithm. The sparse coding stage, that is given for a fixed dictionary D using

L0 regularization as follows:

arg min
α
||X −Dα||22 + λ||α||0, (4.3)

where λ is an adjustment parameter controlling the sparsity. Afterwards, the dictionary

and its atoms are updated to represent the data sparsely. The dictionary atoms are obtained

as follows:

arg min
D

||X −Dα||22. (4.4)

The atoms updating stage in Eq. 4.4 is a characteristic that distinguishes different dictio-

nary learning methods.

4.2.3 Incremental Dictionary Update

The discussion below applies to both the dictionaries. Consider a dataset Xn =

{x1, x2, ..., xn} that can be represented using a dictionary D with a sparse code αn. When

new data Xm = {xn+1, xn+2, ..., xn+m} is added to Xn, the dictionary D is updated gen-

erating D′ . As D already describes Xn sparsely in terms of αn, it is useful to test if the

dictionary D represents the new data sparsely as well, and in this case the dictionary up-

date is not necessary. Otherwise, the dictionary D must be updated and the coefficients

62

Figure 4.6: Block diagram of the proposed MMDL based face tracking method.

Start

1) Initialize the
face, landmarks and

affine parameters

2) Draw affine
parameters around the
initial/tracked target

face affine parameters

3) Warping affine
parameters to obtain
the candidate target

faces (samples)

4)
Dictionary

exist?

7) Select the tracked
target face among

the candidate target
faces based on the

mean condition

5) Decompose each
candidate target face
into several patches

8) Good
sample?

6) Select the tracked
target face among

the candidate target
faces based on the

dictionary conditions

10) Update
Dictionary?

9) Use the selected
tracked target face for
updating the dictionary

11) Update
the Dictionary

12) Next
Frame?

Stop

NoYes

NoYes

No

Yes

Yes

No

Motion Model

MMDL-FTU

αm+n need to be calculated. Since the dictionary is applied in an object tracking appli-

cation, it should be updated to adapt to the current appearance of the tracked target (e.g

face). Furthermore, the dictionary is obtained using the K-SVD (MICHAL; MICHAEL;

ALFRED, 2005), which tries to represent the data as sparsely as possible. For this reason

in order to update the dictionary, the first step is to apply the incremental SVD (ROSS

et al., 2008) to embed new data (for details on incremental update of SVD, see Sec-

tion. 3.2.2). While updating the dictionary using the SVD, old atoms are down-weighted

with a forgetting factor so the dictionary have an updated appearance of the tracked target.

63

To make the dictionary adaptive to new changes in the appearance of the tracked object

(e.g. face), the objective function in Eq. 4.4 is modified as follows (WANG et al., 2014):

arg min
α
||Xn+m −D

′
αn+m||22 + λ||αn+m||0, (4.5)

where the parameter λ is used for regularization. Eq. 4.5 is minimized until the maximum

required sparsity is achieved.

4.2.4 Multi-Model Dictionary Learning

The proposed Multi-Model Dictionary Learning (MMDL) scheme, combines a

reconstruction dictionary (Dp) that represent strictly the appearance of the target, and a

classification dictionary (Dc) that discriminates the tracked target from the background.

The dictionary Dc is primarily helpful in target tracking in changing background condi-

tions. The dictionary update uses positive and negative samples obtained during target

tracking to learn the dictionary incrementally, making it adaptable to contextual changes.

The positive samples are the tracked target faces, and also scaled, rotated versions of these

faces from previous frames. The negative samples correspond to the background and are

taken from the previous frame with an overlap ratio ov (ov=0.05 in our experiments) with

the tracked target face. Each positive/negative sample is decomposed into v × v sized

patches, which are combined to make a patch matrix used to learn the dictionaries.

4.2.5 Reconstruction Dictionary

Firstly, the reconstruction dictionary (Dp) is learned using patches of only positive

samples as described in Section 4.2.2. Dp estimates the appearance difference between

the reconstructed sample Dpαj and the candidate target face sample Ic. Hence, the recon-

struction error of the candidate target face Ic and the reconstructed sample Dpαj using the

dictionary Dp is given by:

εr = ||Ic −Dpαj||22, (4.6)

where, Ic is the patch matrix of the candidate target face samples, and αj are theDp sparse

coefficients.

64

4.2.6 Classification Dictionary

Secondly, the classification dictionary (Dc) is built by Unsupervised Information-

Theoretic Dictionary Learning (UITDL) proposed by Flores et al (FLORES; SCHAR-

CANSKI, 2016). However, the proposed MMDL method is based on K-SVD dictionary,

while Non-Negative Matrix Factorization (NMF) is used in the case of UITDL. Given a

dictionary (D
(0)
c) obtained by K-SVD (see Section 4.2.2), and the initial sparse represen-

tation α of the patch matrix Y (with positive and negative samples), and the maximum

number of atoms to be selected, MMDL tries to learn a dictionary Dc by maximizing the

following criteria:

f(.) = σ1MI(Dc;D
(0)
c −Dc) + σ2MI(Y ;Dc), (4.7)

where, the parameters 0 ≤ σ1 ≤ 1, 0 ≤ σ2 ≤ 1, and σ1 + σ1 = 1. These parameters

σ1 and σ2 are used to balance the dictionary representation and compactness; MI(A;B)

represents the mutual information between two matrices A and B as below:

MI(A;B) =
∑
Ai,j

∑
Bi,j

p(Ai,j, Bi,j)× log
p(Ai,j, Bi,j)

p(Ai,j), p(Bi,j)
. (4.8)

To find an atom di that maximizes Eq. 4.7 is equivalent to optimize (FLORES; SCHAR-

CANSKI, 2016):

arg max
di∈D

(0)
c −Dc

{
[
∑

](i,i) − σTDi
∑−1

D σDi

[
∑

D](i,i) − σTD̄i
∑−1

D̄ σD̄i
}, (4.9)

where, D̄c = D0
c − (D ∪ di),

∑
D is the covariance matrix of Dc = [σD1c, σD2c, ..., σDnc]

and
∑

D̄c denotes the covariance matrix of D̄. For classification, each candidate target

face is represented in terms of the compact and representative dictionary Dc. The classi-

fication error is essentially a regression loss given by:

εc = ||Hi −Wαi||2, (4.10)

where Hi ∈ [0 1] is the label indicator, and W ∈ Rb×k is the linear classification parame-

ters learned with a labeled dictionary computed using:

W = (α× αT)
−1 × α×H ′, (4.11)

65

where H is the label vector of the training data represented in Dc by the sparse matrix α.

These two dictionariesDp andDc (reconstruction and classification) are combined

in a single model, to create a multi-model dictionary which tend to improve the tracking

robustness, as shown in Eq. 4.18. Both the dictionaries are updated separately using the

technique mentioned in Section 4.2.3, after τ new tracked target face samples have been

gathered. The collection of the samples is based on the proposed MMDL Face Tracker

with Update test (MMDL-FTU), which collects only the samples with a reconstruction

error smaller than ε (ε=0.05 in our experiments).

In face tracking, the mean face plays an important role, and must adapt to the

current appearance of the tracked target face. Therefore, more weight is given to more

recent observations, by employing a forgetting factor, and the mean face µ(t) at time t is

updated as follows:

µ(t) =
f · n · µn +m · µm

m+ f · n
, (4.12)

where µ is the updated mean, µn represents the mean of the older data (Xn), µm is the

mean of the newly added observations (Xm) and t = m + n, whereas f is the forget-

ting factor. An important advantage of the forgetting factor is that the mean face can still

change in response to the new observations, irrespective of the total number of observa-

tions.

4.2.7 Appearance Model and Tracked Target Face Selection using MMDL

The candidate target faces are sampled using the motion model explained in Sec-

tion 4.1. The probability p(I(t) | χ(t)) of each warped candidate target face be the tracked

target face is estimated using the probabilistic interpretation of MMDL (see Eq. 4.18).

The probability of the candidate target face being the tracked target face is based on the

joint probability of reconstruction and classification errors. For the reconstruction dictio-

nary Dp, given a candidate target face I(t) predicted by χ(t), it is assumed that I(t) is

represented in terms of the dictionary (Dp). The probability of a candidate target face

being well represented by Dp is inversely proportional to the distances dt and dw of the

candidate target face to the reference (mean face µ(t)) represented by Dp. The term dt is

the distance of the candidate target face toDp and dw is the distance of the candidate target

face to the reference face (µ(t)) represented by Dp. The probability pdt of the candidate

66

target face being the tracked target face based on the current dictionary Dp is:

pd(I(t)|χ(t)) = N (I(t);µ(t), D†p + εI) = exp(−dt), (4.13)

which is the negative exponential value of dt, where, dt = ||(I(t) − µ(t)) − D†p(I(t) −

µ(t))||2, D†p = (DT
pDp)

−1DT
p is the pseudo-inverse matrix of Dp, and Dp is the re-

constructive dictionary, which is constructed with positive samples only (FLORES; SCHAR-

CANSKI, 2016). It is worth mentioning that when a dictionary is not available, D†p is set

to 0 in Eq. 4.13, and only the distance from the mean face µ(t) is used to find the tracked

target face as:

pd(I(t)|χ(t)) = exp(−||(I(t)− µ(t))||2). (4.14)

Furthermore, the probability pwt(I(t)|χ(t)) of the candidate target face being the tracked

target face represented by the dictionary Dp can be modeled by the Mahalanobis distance

from µ(t) represented by Dp:

pw(I(t)|χ(t)) = N (I(t);µ(t), DpΣ
−2DT

p)

= exp(−dw),
(4.15)

where, dw = −||(I(t)−µ(t))TDpΣ
−2DT

p (I(t)−µ(t))||2, Σ is a diagonal matrix containing

the coefficients of the dictionary Dp atoms. The probability of the candidate target face

being the tracked target face is given by (similar to µ(t) represented by Dp):

pr(I(t)|χ(t)) = pd(I(t)|χ(t))pw(I(t)|χ(t)) (4.16)

Furthermore, the likelihood of the candidate target face being well represented in terms of

the classification dictionaryDc is given by the expected value of the negative classification

error, in other words, the candidate target face with the small classification error receives

higher value, and vice versa:

pc(I(t)|χ(t)) = exp(−εc). (4.17)

where, εc = ||Yi −Wαi||2 is given by Eq. 4.10. To obtain the combined probability of

the candidate target face to be the tracked target face, the reconstruction and classification

67

probabilities are combined as follows :

p(I(t)|X(t)) = Ωpr(I(t)|χ(t)) + (1− Ω)pc(I(t)|χ(t). (4.18)

where, Ω is a weight associated to the classification and reconstruction dictionaries, and

indicates the trade-off between reconstruction and classification dictionaries probability

of the candidate to be the tracked target face.

4.2.8 Facial Landmarks Localization

The candidate face sample that has higher combined probability is selected to be

the tracked target face, and the associated affine parameters χ(t) are used to estimate

landmarks on the tracked target face:

ΛT (t) = χ(t)× [Λ(1);~1], (4.19)

where, Λ(1) are the landmark locations in the initial target face and ~1 is an unitary vector

of length Z (total number of landmarks). This tracked target face is used to update the

two dictionaries depending on the reconstruction error obtained with Eq. 4.6.

4.2.9 Pseudo Code

The pseudo code of the proposed procedure is shown in Algorithm 1. The algo-

rithm receives the current frame I(t), the landmark locations ΛT (t − 1) and the affine

parameters χ(t − 1) of the tracked target face in the previous frame, the current dictio-

naries Dp and Dn, the sparse code αp and αc, the mean µo, a flag variable that counts

number of face samples to update the dictionary, and a variable Υ that checks if there are

more frames available to process. The algorithm returns the facial landmarks in the cur-

rent frame ΛT (t), the affine parameters χ(t) in the current frame, the updated dictionary

D, the updated mean µ(t), the tracked target frame in the current frame at time t and the

sparse code α.

The face tracking process is initialized in the first frame with the initial target

face, the affine parameters (χ(t)), while the face landmarks are provided by a face land-

mark localization method (LUCEY et al., 2009). The tracked target face is assumed to

68

Algorithm 1 Dictionary Update and Face Tracking.

1: procedure DUT(I(t), ΛT (t− 1), χ(t− 1), Dp,Dc, αp,αc µo, flag,Υ)

. I(t) is current frame, ΛT (t− 1), χ(t− 1) are landmarks and affine parameters of
previous frame respectively, Υ is 1 if there is at least one more frame to process,
otherwise Υ is 0, αp is sparse code of data over Dp and αc is the sparse code over
Dc, µo is older mean.

2: while (Υ ≡ 1) do
3: Draw affine parameters against χ(t− 1) using Eq.4.2.
4: Warp candidate target face samples from I(t) using these affine parameters.
5: Find the probability of each candidate target face sample being the target face

using Eq. 4.18.
6: Select the tracked candidate target face (I(t)) using Eq. 4.18.
7: Estimate the landmarks of the tracked target face using Eq. 4.19.
8: calculate reconstruction error using Eq. 4.6.
9: if (εr ≤ 0.05) then

10: flag ← flag + 1. . Use this tracked target face sample for training.
11: if (flag ≥ τ) then
12: flag ← 0.
13: Update the dictionaries Dp and Dc using Eq. 4.5.
14: Update the mean µ(t) using Eq. 4.12.
15: return ΛT (t), χ(t),D, µ(t), I(t), α.

be contained in a window of fixed size (u × u). If there are frames to process, the affine

parameters are drawn around the affine parameters in the previous frame using a Gaussian

distribution. These affine parameters computed previously are used to warp the candidate

target face samples that may contain the tracked target face in the current frame. Next, the

probabilities of these candidate target face samples to be the tracked target face are calcu-

lated. The candidate target face with the highest probability to be the tracked target face

is selected. The affine parameters associated with this candidate target face are utilized to

estimate the facial landmarks in the current frame.

In the next stage, the reconstruction error of the tracked target face is computed,

and a quality test is performed before utilizing this target face to update the dictionaries.

Furthermore, the dictionaries are updated after a specific number of target face samples

have been accumulated. Also, the mean µ(t) is updated. Finally, if there are more frames

to process, the affine parameters of the current tracked target face are used in the next

frames.

69

4.3 Proposed Methodology for an Adaptive Face Tracker with Resync-
ing Mechanism (AFTRM) and AFTRM Weighted (AFTRM-W)

This section provide details of the AFTRM-W operating mode of the proposed

face tracking method. This operating mode evaluates the quality of the face tracking pro-

cess using an error prediction scheme and the tracking process is corrected using a resync-

ing scheme. This operating mode has two variations, which are based on the resyncing

mechanism it uses. The AFTRM variant of this operating mode uses Constrained Local

Models (CLM) as a resyncing mechanism, whereas, AFTRM-W utilizes Weighted CLM

(W-CLM) to resync important features.

4.3.1 AFTRM-W Operating Mode

Visual tracking is relevant in various areas such as car tracking (LIU; LI; FANG,

2015), face detection (CHRYSOS et al., 2014), and drivers monitoring (OMIDYEGANEH

et al., 2016). Object tracking may become quite challenging when there are changes in

appearance or shape of the tracked target object, or when the tracking conditions change

(e.g., scene illumination changes). Therefore, most methods available in the literature

tend to perform well over short time spans and under controlled conditions. However,

often when the object tracking method misses the tracked target object, the tracking error

tends to increase which results in missing the tracked target indefinitely. Often, visual

object tracking methods do not take into account visual appearance changes (TERISSI;

GÓMEZ, 2007), and for this reason, they may interrupt tracking the target object after a

period of time when the tracking conditions change (e.g., the scene illumination changes).

Some authors proposed approaches that use the data generated during the tracking

process to accommodate possible appearance changes of the tracked target object, such

as online learning (BABENKO; YANG; BELONGIE, 2009), incremental PCA (ROSS et

al., 2008), and online feature learning techniques combined with dictionaries (LIU; LI;

FANG, 2015). Often online visual tracking methods tend to miss the tracked target object

in complex scenarios, such as when the head pose changes while tracking faces, or in

cluttered backgrounds and/or in object occlusions (COOTES et al., 2001). The reasons

for this behavior include the inability to access the tracking error and to update the object

appearance at runtime. Danelljan et al (DANELLJAN et al., 2015) proposed Spatially

Regularized Discriminative Correlation Filters (SRDCF) to track objects visually, im-

70

proving the Discriminative Correlation Filters (DCF). The SRDCF use negative samples

in a way to not corrupt positive samples while improving the SRDCF tracking perfor-

mance. The SRDCF method penalizes off center patches to allow filters to concentrate

on the center of the training patches, this penalization and switching between spatial and

Fourier domains makes SRDCF too complex for online tracking. More recently, Sanchez

et al. (SÁNCHEZ-LOZANO et al., 2016) proposed an Incremental Cascaded Continuous

Regression (iCCR) method to track faces. The iCCR method is a new formulation for

Cascaded Continuous Regression (CCR), which updates the model at each frame and can

be utilized in incremental learning.

On the other hand, geometric shape and appearance models such as Active Ap-

pearance Models (AAM) (COOTES et al., 2001), Active Shape Models (ASM) (COOTES

et al., 1995) and Constrained Local Models (CLM) (LUCEY et al., 2009) can capture

robust features even in cluttered or fast-changing scenarios, and improve the tracking

process. These methods often are based on local shape matching, which requires opti-

mization to minimize the difference between a tracked target object and the learned target

model appearance (i.e., to maximize the match). Unfortunately, most shape and appear-

ance model based methods are not easily applicable to real-time tracking due to their

complexity. Nevertheless, combining online learning with shape and appearance mod-

els can increase the online learning efficiency. Particularly, if the shape and appearance

model is utilized to correct the tracking process so that it reduces the tracking failures.

The proposed approach improves on a well-known object tracking method based

on the incremental PCA (ROSS et al., 2008). The proposed scheme learns from the

data generated during object tracking and corrects the tracking mistakes with a resyncing

mechanism. Also, a dynamic tracking error predictor is proposed to estimate how accu-

rately the target object is being tracked. Furthermore, the tracking error predictor adapts

itself in time and tends to be consistent in long video sequences (see Section. 4.3.6). Con-

sequently, if the estimated tracking error is increasing, the tracking process is corrected by

a resyncing mechanism based on CLM. In addition, it is also proposed an improvement of

CLM named Weighted CLM (W-CLM) that utilizes the training data to assign a weight

to each landmark (feature point) based on its consistency in time (see Section. 4.3.3).

One of the possible applications of the proposed tracking method is the face and facial

landmarks tracking, where CLM or W-CLM can be used to re-adjust the facial features

locations (landmarks) when there is a potential tracking failure.

The proposed Adaptive Face Tracker with Resyncing Mechanism (AFTRM) op-

71

timizes the CLM search process without using the landmarks weights. Whereas, the

also proposed method named Adaptive Face Tracker with Resyncing Mechanism with

Weights (AFTRM-W) apply a landmark weight (calculated during the W-CLM training

phase) to improve the landmark search process. Face tracking based on facial features

can provide a cost-effective solution to a number of measurement applications, such as

yawning detection, expression analysis, fatigue detection, and vigilance (SHIRMOHAM-

MADI; FERRERO, 2014). In this work, the tracked facial landmarks are evaluated in

face tracking and an application (i.e., yawning detection) in a driving scenario.

Fig. 4.7 shows the block diagram of the proposed object tracking method applied

to face tracking, and the blocks functions are explained below :

• Block 1: In the first frame, the initial target face, its affine parameters and the

landmarks are localized using W-CLM (for details on W-CLM, see Section 4.3.3).

• Block 2: In order to track the target face in the subsequent frames, a finite number

of affine parameters are drawn around the affine parameters of the initial/tracked

target face in the previous frames (see details in Section 4.3.5).

• Block 3: Next, the affine parameters previously computed are used to warp the

current frame candidate target face samples of size u× u.

• Block 4: A test is performed to check if the eigenbases exist. The bases are build

after a specific number (τ) of new target face samples have been gathered.

• Block 5: If the condition in block 4 is satisfied, the candidate target face samples

are decomposed into patches (v×v and v ≤ u), as the bases are build using patches

(see Section 4.3.2).

• Block 6: The tracked target face is found among the candidate target face samples

by maximizing a likelihood fuction (see details in Section 4.3.5 and Eq. 4.28).

• Block 7: If the condition in block 4 is not satisfied, the tracked target face is esti-

mated by the mean condition (see Eq. 4.26).

• Block 8: The proposed error predictor checks if resyncing of the features is required

to correct the tracking process (see details in Section 4.3.6).

• Blocks 9-10: If resyncing of the features is not necessary, the bases are updated

if sufficient new tracked target face samples τ have been accumulated to build or

update the bases (see details in Section 4.3.2).

72

• Blocks 12-13: In case the tracking error is higher than a certain threshold, the W-

CLM is used to re-locate the facial landmarks and correct the tracking process (see

details in Section 4.3.3).

• Block 15: The tracked target face and its affine parameters are used as seeds to

continue tracking in the next frame if there are more frames to process.

The proposed tracking algorithm can track non-rigid objects and detect early po-

tential deviations from the target object. The incremental update of the tracking method

is inspired by the incremental PCA approach (ROSS et al., 2008), however, the proposed

method uses local texture information (patches of size v × v) to build the basis rather

than global texture (the tracked target object as a whole). A brief explanation of the ef-

ficient eigenbasis update used in this work is presented in section 4.3.2, followed by an

explanation of the weighted CLM scheme and how it is used as a resyncing mechanism

in section 4.3.3. The proposed tracking method is applied to the face and facial landmark

tracking which is described in section 4.3.5. The account of the tracking error predictor

and when to re-sync is given in section 4.3.6. The error predictor is ultimately used to cor-

rect the target tracking if the error is beyond a specific threshold. This threshold is selected

dynamically, so it adjusts along the time to make the error predictor more consistent.

4.3.2 Incremental Update of Eigenbasis and Mean

The appearance of a non-rigid target object may change substantially along time

due to intrinsic and extrinsic factors. For this reason, a tracking method should update the

appearance model being used to accommodate local and global changes occurring over

time, making the tracking process more robust. Ross et al. (ROSS et al., 2008) improved

the Sequential Karhunen-Loeve (SKL) algorithm proposed by Levey et al. (LEVEY;

LINDENBAUM, 2000), and applied this modified scheme to update the eigenbasis used

in PCA. Each sample is represented by a column vector in order to construct and update

PCA, that describes global texture information. However, in order to accommodate local

changes, the proposed scheme construct and update basis using local patches of size v×v

obtained from target object samples of size u × u where u > v. The SVD of the two set

of observations A and B is represented by:

[
A B

]
= U

′
Σ
′
V ’ T, (4.20)

73

Figure 4.7: Block diagram of the proposed AFTRM-W face tracking method

Start

1) First Frame:
Initialize the
face and the

affine parameters

2) Draw affine
parameter particles

around affine
parameters of

initial target face

3) Warping affine
parameter particles
to candidate target

face samples

4) Exist
basis?

7) Minimize mean
condition on all

the candidate
target face samples

5) Decompose
candidate target

face samples
into patches

6) Minimize
Basis conditions

8) Error
Predicted?

12) Re-sync
using W-CLM9)

Update
Basis?

10) Update
the basis

13) calculate affine
parameters from the
landmark features

11) Find corre-
sponding affine
parameters of
tracked target
face sample

14) Next
Frame?

Stop

Noyes

No
Yes

No

Yes

No

Yes

Motion Model

AFTRM-W

and this can be calculated by using the already computed SVD of A = UΣV T and the

new set of observations B as:

[
A B

]
=
([
U B̃

]
Ũ
)

Σ̃

Ṽ T

V T 0

0 I

 , (4.21)

74

where I is an identity matrix, U ′= [U B̃] Ũ and Σ
′ = Σ̃. Also, B̃ is the component of B

orthogonal to U , and R =

C UTB

0 B̃TB

 is a square matrix of size q + m, and the SVD

of R is given by ŨΣ̃Ṽ T . The details on the incremental update of the PCA are given in

Section 3.2.2.

Furthermore, the contribution of the old data is decreased by embedding a forget-

ting factor f . The application of forgetting factor makes the eigenbasis up to date to the

current appearance of the tracked target object (face). Similarly, due to the utilization of

the mean µ(t) in the detection of the tracked target face, the mean is also updated with

a forgetting factor f for the same reason as the eigenbases. For details on the mean up-

date, the reader is referred to Section 3.2.3. The equation of the mean µ(t) at time t is

calculated as shown below:

µ(t) =
f · n · µn +m · µm

m+ f · n
, (4.22)

where µn is the mean of the data matrix A and µm is the mean of the newly received data

B, t = m + n, and f represents the forgetting factor. A benefit of having a forgetting

factor is that the mean µ(t) at time t can still change in response to new observation, even

if the total number of observations is very large.

4.3.3 Weighted Constrained Local Models (W-CLM) as Re-syncing Feature
Detectors

Constrained Local Models (CLM) tend to be accurate facial feature detectors, on

the other hand, they are known to have a slow convergence process, making their use in

the face tracking quite challenging. Nevertheless, if CLM is used less often in comparison

to other components of the tracking process, the tracking system could be viable for real-

time operation. In this work, the proposed tracking scheme has been developed in the

context of face tracking, and W-CLM is discussed within this context in the following

two ways. Firstly, CLM/W-CLM is used to locate the face and the facial landmarks

locations in the first frame of a video sequence. Secondly, CLM/W-CLM is used to resync

the face model when the proposed tracking failure predictor suggests significant tracking

inaccuracies. Consequently, the proposed method is self-driven and self-corrected in real-

time.

75

The CLM utilizes the landmarks in the training data to build the CLM model,

which makes it dependent on the landmark locations (to build the shape model) and the

texture information around the landmark (to build the patch model). Due to the occlu-

sion and/or invisibility of some landmarks in some training data, the CLM model can be

affected. This is a very common scenario in non-rigid objects such as human faces (BE-

HAINE; SCHARCANSKI, 2012). The proposed method handles this problem by assign-

ing weights to each landmark based on its consistency.

The proposed method called W-CLM utilizes CLM training data to evaluate the

landmarks consistency by assigning higher weights to more consistent landmarks during

the CLM search process. Multivariate Mutual Information (MMI) measures the mutual

dependence between two or more random variables (CRUYS, 2011), and is utilized here

to evaluate the consistency of each facial landmark. Firstly, MMI is computed indepen-

dently for the feature vector of each facial landmark observed in a temporal window.

Each feature vector contains the texture information in a window of size
√
l×
√
l around

a facial landmark location in a given video frame. MMI evaluates the differences of the

co-occurrence probabilities of n random variables describing the local texture, and can be

used to indicate how consistent is the texture information around any particular landmark

in the training images, which is used as a weight ŵi ∈ [0, 1] of a facial landmark:

ŵi(x1, x2, , .., xN) = log
p(x1, x2, .., xN)∏n

i=1 p(xi)
, (4.23)

where, xi is a column vector of size l, containing texture information around a particular

landmark i = 1, 2,, Z in a video frame at time t. The weights ŵi of the landmarks are

combined in a diagonal matrix to be used in the W-CLM search process.

In practice, CLM consists of two stages (modules), which are CLM model build-

ing and CLM search (LUCEY et al., 2009), which has been explained in Section 3.5.

The proposed method builds the CLM model as it is explained in Section 3.5.1, and the

weighted CLM search is discussed next.

4.3.4 CLM Weighted Search

The W-CLM search process combines the shape and patch models similarly to the

CLM search explained in Section 3.5.2 to detect the facial landmarks of a face. Given a set

of initial facial landmarks, the cropped patch around the current position of each landmark

76

is processed by the SVM based patch model, while preserving the shape constraints. Both

these goals are combined using the following objective function with the corresponding

weights of the landmarks and the Eq. 3.31 can be re-written as:

f(St) =
Z∑
i=1

ŵiıi(xi, yi)− β
o∑
j=1

−h2
j

λj
, (4.24)

where ıi(xi, yi) is the SVM response of cth feature template (i.e., cropped patch from the

current position of landmark point) at the position (xi, yi) of landmark i and ŵc represents

the weight of the landmark i. The weight ŵi describes how much effect this particular

landmark will have in the fitting process. The term
∑o

j=1

−h2j
λj

is the shape constraint,

where hj ∈ H is the corresponding eigenvector coefficient in the eigenvectors represen-

tation H , λj is its eigenvalue and o is the number of eigenvectors, a the and arameter

β ∈ [0 1] is a bias determining the compromise between shape fit and the SVM based

patch model. If the term β is set to a high value, the shape difference is penalized heav-

ily, which essentially tries to find a shape that is close to mean shape, which possibly

sacrifices (or even, completely ignoring) the SVM shape model response.

On the other side, a very low value of β tries to find the landmark locations with

high response, which possibly ignores the shape constraint. For this reason, it is sensible

to compute the value of β from the training data. The W-CLM search process starts with

initializing the facial landmarks, which can be the mean shape. For each facial landmark,

a patch is cropped from its current position, and the patch model is used to find the output

at each landmark. The term
∑Z

i=1 ŵiıi(xi, yi) in Eq. 4.24 is optimized using quadratic

programming and can be readily solved using the Matlab quadprog function.

The best facial landmarks positions are found by combining these quadratic func-

tions with their corresponding weights ŵi similar to Eq. 3.31 while maintaining the shape

constraint β
∑s

j=1

−h2j
λj

from CLM shape model or until the maximum number of itera-

tions have been reached. An important key factor in the CLM search is the initialization.

A good initialization of landmarks can lead to quick optimization. In case of a new

sequence initialization is made on the mean shape of the shape model, however, if the

previous frame’s facial landmarks are available, utilizing them can improve the time of

the optimization process.

77

4.3.5 Appearance Model and Tracked Target Face Selection

The candidate target faces are sampled using the motion model explained in Sec-

tion 4.1. Now given the state of every candidate target face sample, the quality of the

sample can be evaluated using the appearance model. The proposed methodology models

the appearance of the tracked target face using a probabilistic PCA. A candidate target

object (i.e., face) sample I(t) that is predicted by χ(t) is assumed to be generated from

the subspace of the target object spanned by the eigenbases U and centered at the mean

µ(t). The probability p of a candidate target object (i.e., face) sample being generated

from this subspace is inversely proportional to the distance δ of the sample from the refer-

ence point (i.e., mean (µ(t))) of the subspace. This distance is comprised of the distance

to the subspace (δt) and within the subspace distance (δw) of the projected sample to the

subspace center (µ(t)). The probability (pδt) of a candidate target object sample being the

tracked target object is given by the negative exponential value of the distance (δt):

pδt(I(t)|χ(t)) = N (I(t);UUT + εI)

= exp(−δt),
(4.25)

where, δt = ||(I(t) − µ) − UUT (I(t) − µ)||2, εI is the additive noise in the observation

process with I being an identity matrix and ε→ 0. It is worth-mentioning that if the basis

are not available, the term U is set to 0, which changes the equation to:

pδw(I(t)|χ(t)) = exp(−||(I(t)− µ)||), (4.26)

is described as mean condition. This equation computes the distance of the candidate

target object with the mean µ(t), calculated using Eq. 4.22, at time t. Now within the

subspace, the probability (pδw) of the projected candidate target object sample being the

tracked target object can be given in terms of the negative exponential value of Maha-

lanobis distance δw of the candidate target object (face) sample from the projected mean

(µ(t)) at time t as follows:

pδw(I(t)|χ(t)) = N (I(t);µ, UΣ−2UT)

exp(−δw),
(4.27)

78

where, δw = ||(I(t) − µ(t))TUΣ−2UT (I(t) − µ(t))||2,
∑

is the singular value matrix.

Finally, the likelihood of a candidate target object sample being the tracked target object

sample is given by the combined probability of within space distance pδw and its distance

from the subspace pδt:

p(I(t)|χ(t)) = pδt(I(t)|χ(t))pδw(I(t)|χ(t))

= N (I(t);UUT + εI)N (I(t);µ, UΣ−2UT).
(4.28)

The candidate target object sample that has the highest probability of being the tracked

target object is selected. As the proposed method is applied to face tracking, the affine

parameters χ(t) that are associated with this candidate target object sample are used to

estimate the facial landmarks as shown below:

ΛT (t) = χ(t)× [Λ(1);~1] (4.29)

where Λ(1) are the landmark locations in the initial target face and ~1 is a unitary vector

of length Z (total number of landmarks). In the start, eigenbasis U are initialized to be

empty, and the first face serves as mean (µ) until the eigenbases are created, as eigenbases

are built after specific number τ of tracked target face samples have been accumulated.

Then, a finite number of affine parameter particles are drawn according to the motion

and sampling model mentioned in Section 4.1. These affine parameter particles are used

to warp the candidate target object samples that may contain face in the video frame at

time t. For each candidate target face sample, the likelihood of being the tracked target

face is calculated using the observation model explained in Section 4.1. The candidate

sample with the highest probability of being the tracked target object is selected, and

its associated affine parameters are used to estimate the facial landmark features. When

the specific number of tracked target face samples (τ) has been accumulated which are

counted using the flag variable, incremental update is performed on the eigenbasis and

the mean µ(t), with a forgetting factor. In the proposed method the update is performed

each fifth frame (τ = 5).

The pseudo code of the procedure is given in Algorithm 2. The algorithm receives

the following parameters as input: the current frame I(t), the facial landmarks ΛT (t− 1)

and χ(t − 1) in the previous frame, the eigenbases U and the corresponding eigenvalues

Σ, the mean µn, the tracked target face from the previous frame I(t− 1), a static variable

flag that counts the number of tracked target face samples gathered to update the bases

79

and a variable Υ that checks if there are more frames to process. Further, at each frame the

tracking algorithm returns the facial landmarks ΛT (t) in the frame, the affine parameters

χ(t) related to the tracked target face, the updated eigenvalues Σ
′ and eigenvectors U ′ ,

the updated mean µ(t) and the tracked target face I(t) in the current frame at time t.

In order to track the target face in the subsequent frames, a finite number of affine

parameters are drawn around the affine parameters of the initial/tracked target face in the

previous frames. These affine parameters are used to warp the current frame candidate

face samples. The probability of each candidate target face sample to be the tracked

target face sample is computed, and the one with the highest probability is selected to be

the tracked target face. The affine parameters associated with the tracked target face is

used to estimate the facial landmarks in the current frame. If enough tracked target face

samples have been accumulated, the eigenbases and the mean are updated.

Algorithm 2 Incremental Learning for Face Tracking Algorithm (ILFT).

1: procedure ILFT(I(t),ΛT (t− 1), χ(t− 1),Σ, U, µo, I(t− 1), f lag,Υ)
2: . I(t) is the current frame, I(t− 1), ΛT (t− 1),χ(t− 1), are the tracked target face

sample, facial landmarks and the affine parameters of the previous frame and Υ is 1,
if there is at least one more frame to process, otherwise Υ is 0.

3: while (Υ = 1) do
4: flag ← flag + 1
5: Draw a finite number of affine parameter particles around χ(t − 1) using

Eq. 4.2.
6: Warp the candidate target face samples from I(t) using these affine parameter

particles.
7: Compute the probability of each candidate target face sample being the

tracked target face sample using Eq. 4.28.
8: Select the candidate target face sample with highest probability as the tracked

target face sample I(t).
9: Estimate the facial landmarks using 4.29.

10: if (flag ≥ τ) then
11: flag ← 0
12: Calculate Σ

′ and U ′ in Eq. 4.20.
13: Update the mean (µ(t)) using Eq. 4.22.
14: return ΛT (t), χ(t),Σ′ , U ′ ,µ, I(t).

4.3.6 Tracking Error Predictor and Resyncing Mechanism

Visual tracking is prone to failure if the object changes, does a quick motion or

changes appearance, and so on. Therefore, often tracking methods fail, and the tracking

80

error keeps on increasing, and the tracking fails indefinitely. Most of these methods fail

to provide a self assessment of tracking (TERISSI; GÓMEZ, 2007; BABENKO; YANG;

BELONGIE, 2009; ROSS et al., 2008; VIOLA; JONES, 2001; YUAN et al., 2013). The

proposed method is based on an error predictor which tries to estimate the tracking error

at runtime. Measures like the change in the eigenbases and differences in the tracking

landmarks on the face in consecutive frames are tested. It was found in the experiments

that a relevant measure to predict the tracking error is the difference in the tracking land-

marks (feature points) represented by the Track Points Difference (∆(t)) at time t. This

is verified using the correlation (ρ) with the tracking error (ε), and ∆(t) at time t is given

by:

∆(t) =
1

Z

Z∑
i=1

||Λ(i)
T (t)− Λ

(i)
T (t− 1)||2, (4.30)

where Λ
(i)
T (t) is the location (x, y) of the landmark i at time t estimated by the proposed

method. To further improve the tracking error prediction, the median and moving median

filters can be applied to the ∆(t) noisy estimates (see details in Chapter. 5).

The next stage of the process is to predict the tracking error itself. This is done by

checking if the value of ∆(t) in Eq. 4.30 is higher than a certain threshold. A constant

threshold value is not suitable for real applications because ∆(t) may vary from one per-

son to another because of face size, closeness to the camera and/or a number of landmarks

used. This requires a dynamic threshold which can auto-adjust to different environments.

For this reason, the median value (ΓT = Median(∆(T))) is used as the threshold instead:

Ψ(t) =

1, if ∆(t) ≥ ΓT ,

0, otherwise,
(4.31)

where ∆(T) = {∆(1), ...,∆(t)}, and Ψ(t) is used to indicate if resyncing is required. It

can be seen in the Chapter 5, that the proposed error predictor is highly correlated with the

tracking error. Some landmarks on the tracked object can serve for checking the tracking

error, while tracking continues. When the tracking predictor indicates a higher tracking

error, the resyncing of the features using W-CLM is called to correct the tracking process

by re-adjusting the tracked landmarks.

The pseudo code of the proposed tracking algorithm with resyncing mechanism is

provided in Algorithm 3. For the first frame, the face and facial features are initialized

81

Algorithm 3 Adaptive Face Tracker with Resyncing Mechanism (AFTRM).

procedure AFTRM(I(t),ΛT (t− 1)), I(t− 1) . I(t) is the current frame, I(t− 1)
is the tracked target face sample and ΛT (t− 1) represents the facial landmarks of the
previous frame.

2: flag ← 1
while Υ = 1 do

4: Track I(t) and estimate ΛT (t) using Algorithm 2.
Calculate ∆(t) using Eq. 4.30.

6: Calculate Ψ using Eq. 4.31.
if Ψ = 1 then

8: Update I(t) and ΛT (t) using W-CLM . see Section. 4.3.3.
Re-Initialize subspace U and mean µ(t).

10: Calculate affine χ(t) parameters of ΛT (t).
return ΛT (t), χ(t), I(t).

using the W-CLM. From the second frame, it calls Algorithm 2 to track the face and the

facial features until it fails. When the prediction of tracking failure is made, W-CLM

is used to re-sync, which re-locates important features of the moving target (e.g., facial

landmark features). These features are then used for further processing such as finding

new affine parameters χ(t) and the tracked target face bounding box I(t) in the current

frame. Moreover, a new subspace is created starting from this frame, and the old data is

discarded because it is least relevant and can be removed safely.

82

5 EXPERIMENTAL RESULTS

This chapter presents the experimental results of the proposed tracking methods.

The proposed methods are evaluated on the qualitative and the quantitative basis in com-

parison with the state of the art tracking methods. Due to the different parameter settings

of the proposed tracking methods, and the qualitative outputs, the qualitative experimen-

tal results of the MMDL-FT and MMDL-FTU are presented in the Section 5.2.1, and

AFTRM and AFTRM-W are presented in Section 5.2.2. Next, the quantitative results

are presented and discussed in Section 5.3. Next, the yawning detection is used as a case

study for the evaluation of the proposed methods in real facial analysis problem, discussed

in the Section 5.4.

5.1 Experimental Settings

The proposed tracking algorithms were implemented in Matlab 2015a on an IBM

PC compatible with 3.40GHz i7-6700 CPU with 16GB internal memory. For experi-

mental evaluation, the YawDD dataset (ABTAHI et al., 2014), is used which is freely

available for educational purposes. The dataset contains videos of drivers performing

various facial expressions, which includes neutral, talking/singing, and yawning. The

database is created to be used to design and test the algorithms for yawning detection.

The total of 119 participants from different age groups with the minimum age of sixteen

years are involved. The videos from 29 participants are recorded using camera installed

on the dash, and for other 90 participants, the camera is installed under the front mirror.

These participants posses various skin, hair, and eye color, and belonging to Caucasian,

African, Middle-eastern, and Asian ethnicities. The facial characteristics include prescrip-

tion glasses, sunglasses, women using a scarf or not using a scarf, men with mustache or

beard on the face and men without having a mustache or beard. The camera is installed

on the dash or under the front mirror of the car recording videos of the male and female

drivers in outdoor conditions. The videos are taken in real and varying illumination con-

ditions. The Canon A720Is digital camera with the resolution set at 640x480 pixels and

24-bit true color (RGB) was used to record videos at 30 frames per second. This recording

setting of the video collection results in a video that has similar characteristics to the video

produced by real driver monitoring systems (ABTAHI et al., 2014). Figure 5.1 provides

some examples of the diversity in the dataset.

83

Figure 5.1: Some example frames from the dataset with drivers performing different ac-
tions.

(a) (b)

(c) (d)

(e) (f)

Apart from the dataset and machine configuration, each operating mode has its

optimal settings, which are presented in their corresponding sections 5.2.1 and 5.2.2 re-

spectively.

84

Table 5.1: Key characteristics of the selected videos from the dataset for detailed evalua-
tion.

Video Sequence Video Name No of Frames Challenging Factors

1 7-MaleGlasses.avi 2398 Fast movement

2 5-FemaleNoGlasses.avi 2149 Appearance change

3 6-MaleGlasses.avi 1633 Glasses and bad illuminations

4 4-FemaleNoGlasses.avi 1496 Occlusion and appearance change

5 3-FemaleGlasses.avi 3057 Similar background and glasses

6 9-MaleNoGlasses.avi 2020 bad illumination and face size

5.1.1 Quantitative Evaluation Strategy

The proposed face tracking algorithms are quantitatively evaluated using Center

Location Error (CLE), that measures the distance between center locations of the tracked

target face with the manually labeled center location of the target face that is used as

the groundtruth. Furthermore, for detailed evaluation, six videos have been chosen which

contain background and varied illumination. Additionally, person-specific characteristics,

such as face changes, head motion, and glasses are also included. Furthermore, the total

number of frames, names in the dataset and some particular characteristics of the specific

video are provided in Table 5.1. These six videos have been annotated manually, which

includes the target face and landmarks (Z = 68) on the face, nose and the eyes. The

proposed face tracking methods are tested to verify if they can track the facial landmarks

consistently on these videos. Hence, the error was measured by the root mean squared

error (RMSE) between the estimated landmark locations (ΛT) and the manually-labeled

groundtruth (ΛG) locations of the landmarks as follows:

ε(t) =
1

Z

Z∑
i=1

||Λ(i)
G (t)− Λ

(i)
T (t)||2, (5.1)

where ε(t) represents the tracking error of the current frame at time t, whereas i is the ith

landmark and Λ
(i)
G , and Λ

(i)
T represent the ground truth and estimated location in (x, y) of

the ith landmark.

85

5.1.2 Choice of Batch Size

In the object tracking methods that learn the appearance of the tracked target object

incrementally, the batch size plays an important role. Batch size describes that after how

many frames the appearance model is updated. Different batch sizes have been tested to

optimize the performance as shown in Table 5.2. The second and third row represents the

average RMSE (εM) in a completed video sequence using the method mentioned in the

first column, and the last row represents the number of times the methods consult the CLM

for correction. In the case of AFTRM and AFTRM-W, the test to predict error is made

after a specific number of frames (i.e., batch size τ), for the method to be consistent. For

this reason, it is expected that fewer tests are made to predict error with higher batch size,

leads to less resync using CLM. Similarly, Table 5.3 provides the number of frames per

second for the proposed method of its operating modes. It can be seen that the number

of frames increases from left to the right, which indicates bigger the batch size, more

number of frames are processed per second. This is due to the update of the dictionaries

and resyncing scheme, which is time-consuming. However, on the other side, a smaller

batch size has a smaller error. Therefore, a trade-off between the batch size and the

acceptance of error is necessary.

The same phenomenon of batch size τ with the εM and number of resyncs r is

shown in the Figure 5.2 (a, b, c, d, e, f) and Figure 5.3 for different batch sizes (1 ≤ τ ≤

16). Figure 5.2 (a − f) shows examples of individual videos, whereas Figure 5.3 shows

the plot of six videos together. The size of the triangle indicates the batch size, which

means after how many frames the resync of the features is performed (larger the size of

the triangle, bigger batch size). It can be seen that larger batch size (big triangles) requires

less number of resync, but it confers higher error and vice versa. It can also be noted that

small triangles tend to lie on the upper left (upper for a large number of resyncs and left

confers to smaller error) of the plot, which shows that more resyncs are required, and the

error is low.

The experiments shown in Figure 5.2, Table 5.2, and Figure 5.3 indicate that fre-

quent updates (small batch size) on the basis of the proposed method has less tracking

error than for large batch size. The reason for this behavior is that it updates the most re-

cent appearance of the face and also the resync (if required) of the features are performed

after a specific number of frames. The optimal trade-off is the batch size that minimizes

86

both the number of resyncs (r) and the tracking error ε, which is defined as:

arg min ∀nτ=1 c(rτ , ετ),

s.t. c(rτ , ετ) = (1− κ)rτ + κετ ,
(5.2)

where c indicates a cost function, n is the total number of batch sizes (n=16 in the current

experiments), and κ is a bias between the tracking error ε and number of resyncs r (κ=0.5

in the current experiments).

Table 5.2: Average RMSE εM and number of times resync is activated for different batch
sizes τ .

Method
Batch Size (τ)

1 2 3 4 5 6 7 8 9 10

MMDL-FT 10.39 7.72 9.81 14.43 14.25 13.79 16.76 40.34 27.53 21.67

MMDL-FTU 5.46 6.27 6.31 8.29 7.03 6.43 21.78 36.48 29.04 30.44

AFTRM 5.65 7.03 6.89 6.92 7.03 7.27 7.23 7.32 7.62 7.77

AFTRM-W 3.02 3.58 3.19 3.48 3.65 3.98 4.33 4.06 4.56 5.88

No of resync 1002 474 279 231 194 171 161 146 117 108

5.2 Experimental Qualitative Results

This section presents the qualitative results of the proposed face tracking method

in its two operating modes, i.e., MMDL-FTU operating mode and AFTRM-W operating

mode. Each operating mode has its specific parameter settings and the qualitative outputs.

For this reason, the qualitative experimental results of the MMDL-FTU operating mode

Table 5.3: Average frames per second (fps) and number of times resync is activated for
different batch sizes τ .

Method
Batch Size (τ)

1 2 3 4 5 6 7 8 9 10

MMDL-FT 3.38 3.48 4.50 4.48 5.50 5.51 6.52 6.35 7.31 8.33

MMDL-FTU 3.67 3.69 4.88 4.80 4.67 4.93 5.32 5.26 6.62 7.57

ILFT 15.27 17.12 16.68 17.91 18.33 16.11 16.37 18.79 18.80 18.89

AFTRM 0.09 0.21 0.25 0.31 0.29 0.38 0.53 0.62 0.79 0.98

AFTRM-W 0.07 0.23 0.20 0.23 0.33 0.45 0.56 0.54 0.83 1.10

No of resync 1002 474 279 231 194 171 161 146 117 108

87

Figure 5.2: Batch size effect on error (ε) and number of resyncs (r).
(a) video i; (b) video ii;

(c) video iii; (d) video iv;

(e) video v; (f) video vi.

88

Figure 5.3: Batch size effect on error (ε) and number of resyncs (r) in multiple videos
(normalized to [0,1]).

Figure 5.4: An example plot of cost function c(rτ , ετ) and batch size τ (τ = [1 16]).

89

are presented in the Section 5.2.1, and the qualitative experimental results of AFTRM-W

operating mode are presented in Section 5.2.2.

5.2.1 Qualitative Evaluation of the MMDL-FT and MMDL-FTU Face Tracking
Method

In order to evaluate the MMDL-FT and MMDL-FTU, the following specific pa-

rameter settings in addition to the settings mentioned before are used in order to track the

target face. To increase computational efficiency, the initial/tracked target face is resized

to 32× 32, (u = 32) for learning the dictionaries. As explained earlier, two dictionaries -

a reconstruction dictionary and a classification dictionary- are created. To keep both the

dictionaries representing the current tracked face appearance at time t, the dictionaries up-

date is performed after each set of three frames (τ = 3) with a forgetting factor f (f=0.95).

Various values of Ω (the weight associated with the classification and reconstruction dic-

tionaries), in the range [0 1] have been tested, and Ω = 0.8 was used in the experiments.

The proposed method runs six frames per second with a patch size of 8× 8, (v = 8) and

the configuration above. Besides, 400 affine parameters sample values are drawn to obtain

and test the candidate target face samples (Eq. 4.2). The YawDD dataset (ABTAHI et al.,

2014) was used in the experiments, which includes videos of drivers with various facial

expressions and head poses in varied illumination conditions in real driving scenarios,

such as neutral expression, talking, laughing, singing, yawning, and so on. The camera is

installed on the dash or under the front mirror.

For the qualitative evaluation of the proposed MMDL-FTU, the video frames are

presented in the form of images. Each resulting image contains a video frame with the

tracked target face enclosed in a bounding box and the tracked facial landmarks plotted

on the tracked target face in red color, whereas, the facial landmarks plotted on the face in

yellow color are the manually labeled landmarks that are used as the ground-truth facial

landmarks.

Figure 5.5 shows some examples from the experimental results obtained using the

MMDL-FT operating mode of the proposed method. It can be seen that the proposed

method performs well in different scenarios, including the tilted face (see Figure 5.5a),

face distant from the camera due to the height and sitting position of the driver (see Fig-

ure 5.5b), partial occlusion of the face (see Figure 5.5c), change in the face size compared

to the other drivers (see Figure 5.5d), visual angle (see Figure 5.5e) and illumination

90

changes (see Figure 5.5f. The results in the Figure 5.5 suggests that MMDL based face

tracked is able to track the target face and facial landmarks in the challenging conditions.

The same affine parameters are used for warping the bounding box and the facial

landmarks of the tracked target face. However, sometimes the bounding box has a tilt

giving an illusion that it is not correctly detected, which is actually due to the affine

parameters angle to capture the face. This is due to the rotation angle θ(t) and skew

direction φ(t) parameters, and this helps in finding the correct locations of the landmarks

(see Figure 5.4e). In the MMDL-Face Tracker (MMDL-FT), the dictionaries are updated

using the tracked target face samples collected without checking their quality, as proposed

by Ross et al (ROSS et al., 2008).

Figure 5.6 provide RMSE plots of the proposed MMDL-FT, MMDL-FTU meth-

ods and the comparative methods that include Incremental Learning for Robust Visual

Tracking (ILRVT) (ROSS et al., 2008) and Approximate Structured Output Learning

for Constrained Local Models (CLM) (ZHENG; STURGESS; TORR, 2013). Also, Fig-

ure 5.7 shows the plot of the average RMSE of a complete tested video. It is noted that

the mean tracking error increases over time in most of the videos as shown in Figure 5.7.

The increase of the mean tracking error in the long videos is associated with the change

in the tracking conditions during tracking. This issue is addressed by using a resyncing

scheme in Section 4.3.

The experimental results shown in Figure 5.5, Figure 5.6,Figure 5.7 indicate that

the proposed MMDL-FT and MMDL-FTU methods tend to perform better than the com-

parative methods, and MMDL-FTU shows slightly better performance. It can be seen

that the MMDL based face tracker performs better than the comparative methods. As the

dictionaries are updated frequently, so it is capable of performing better in challenging

conditions. When the appearance of the tracked target face changes along time, the dic-

tionaries are adapted to the current appearance of the target face by adding new samples

to update the dictionary and also by down-weighting the contribution of the old training

samples. This makes the tracker capable of representing the tracked target face better in

different tracking conditions. Another important aspect of MMDL based tracker is using

two dictionaries, i.e., reconstruction and classification dictionaries which makes it robust

to the changes in illumination and background of the scene. The appearance change is

handled by the reconstruction dictionary, and the background changes are captured by the

classification dictionary that discriminates the target face from the background irrespec-

tive of the background change along time. The combination of two dictionaries to track

91

Figure 5.5: Results of the proposed MMDL-FTU method for different face condition
evaluated in the tests, red = tracked landmarks, yellow = ground-truth landmarks.

(a) Tilted face; (b) Distance to the camera

(c) Partial occlusion; (d) Face size change;

(e) Visual angle; (f) Illumination change.

the target face improves the robustness and increases confidence score. This suggests that

the utilization of the test samples to update the dictionary improve the face tracking re-

sults, and also improvement can be made in the quality assessment of the sample. Hence

use only the samples which are sufficiently accurate. The experimental results obtained

for face tracking suggest the potential of dictionary learning for a non-rigid object (e.g.,

92

Figure 5.6: RMSE across frames of 68 landmarks of the complete tested videos.
(a) video i; (b) video ii;

(c) video iii; (d) video iv;

(e) video v; (f) video vi.

face) tracking algorithms, and provide insights for further improvements.

93

Figure 5.7: Mean Error across frames of all landmarks of the complete tested videos.
(a) video i; (b) video ii;

(c) video iii; (d) video iv;

(e) video v; (f) video vi.

94

5.2.2 Qualitative Evaluation of the AFTRM and AFTRM-W Face Tracking
Methods

For the experimental evaluation of the AFTRM and AFTRM-W, the following set-

ting of the parameters is used. To build and update the eigenbases, the candidate/tracked

target object sample (e.g., face) is resized to u × u (u=32) for computational efficiency.

In this work, the bases are built using the local patches of size v× v (v=8), the number of

eigenvectors is set to γ (γ=16), and the eigenbases are updated every five frames (τ = 5).

In order to down-weight the contributions of the old samples, the forgetting factor (f) is

set to 0.95.

In the proposed AFTRM and AFTRM-W methods, the batch size τ is set to 5, for

efficient execution of the tracking algorithm and also performs adequately accurate. For

the qualitative evaluation of the proposed tracking scheme, each image is displayed with

three layers, that are separately explained in Figure 5.8. The first layer (Figure 5.8a) is

a video frame that contains the tracked target face enclosed in a bounding box and the

tracked landmarks (features) are plotted on the tracked target face in red color, whereas,

the landmarks plotted on the face in yellow color are the ground-truth landmarks; the

second layer (Figure 5.8b) is comprised of four sub-image blocks, the first block shows

the mean face (µ(t)), the second is the tracked face with groundtruth landmarks laid on

it, followed by the reconstruction error and the last block shows a reconstructed face with

error removed; finally, the third layer (Figure 5.8c) shows some important eigenvectors,

most important is shown first and so on.

Some visual results showing a failure of the proposed tracking method without

the error predictor and resync procedure are shown in Figure 5.9 and Figure 5.10. It

should be noted that the figures only show results in which the proposed method without

resync fails. It shows only the challenging scenarios for ILFT method (AFTRM operating

mode without error prediction and resyncing mechanism) in which this method fails. Fig-

ure 5.9a, shows the initialization of the tracking process. The eigenbases are not shown as

there are not enough number (τ) of the tracked target face samples to build the basis yet.

In Figure 5.9b, as the the occlusion of the face happens, the tracker is not able to capture

well the occluded face, in consequence, the tracker is not able to detect the face and facial

landmarks correctly. The deformation in the face also affects the tracking procedure as

can be seen in Figure 5.9c. As the human face is a highly deformable object and when

the deformation is not captured correctly, it is difficult to perform a facial analysis. The

95

Figure 5.8: Example figure showing face bounding box, facial landmarks, mean face,
tracked target face, reconstruction error, reconstructed face and most important eigen-
bases.

(a) Face bounding box and estimated land-
marks (In red color), Groundtruth land-
marks (in yellow color);

(b) From left to right: mean face, tracked
target face, reconstruction error, recon-
structed face;

(c) Most important eigenbases.

face movement, appearance or shape changes, illumination changes along time affects the

tracker, and hence it may result in complete wrong detection. The behavior just explained

results in failure such as can seen in Figure 5.9d. The face size varies from person to

person and also the distance from the camera can make the face size look different due

to the back and forth movement of a person. This also affects the tracker, as can be seen

in Figure 5.9e-a small sized face and Figure 5.9f -large face size and also contains tilt.

Similarly, Figure 5.10 gives some more examples that may cause the failure of the tracker

to detect the face correctly such as distance of the face from the camera (Figure 5.10a),

the combination of tilt and face deformation (Figure 5.10b), face angle to the camera (Fig-

ure 5.10c), combination of the face angle with another face behind the tracked target face

(Figure 5.10d), combination of face movement and deformation (Figure 5.10e), etc.

Figure 5.9 and Figure 5.10 indicates that in challenging conditions, the error is

increased. Furthermore, once the tracking error is introduced, it keeps on increasing.

96

Figure 5.9: Results of the Incremental Learning for Face Tracking Algorithm without
Resync (ILFT).
(a) face movement; (b) partial occlusion; (c) face deformation;

(d) face movement; (e) face size; (f) tilted face.

The reason for this behavior is that the tracker is blind to the tracking error and does not

contain any information about the tracking error. Also, as the method utilizes the test data

to update the basis in order to adapt with the environment changes, this may affect the

tracking quality if the samples used for training does not contain accurate information. In

this method, the tracked target samples that are used as training data are not assessed for

the quality, and the possibility of utilizing error-prone data to update the basis is always

there. In result, the eigenbases are built on slightly wrong tracked target face samples, as

97

Figure 5.10: Results of the Incremental Learning for Face Tracking Algorithm without
Resync (ILFT).

(a) face distant from camera; (b) tilt and deformation; (c) angled face;

(d) angled face with another face behind; (e) face movement and deformation; (f) face movement.

the error was introduced but not known to the tracker. However, not updating the basis

is a waste of the useful data that is available during tracking and also the tracker does

not make any improvement in learning the environment. Nonetheless, these issues can be

addressed, if the tracker has the knowledge of the tracking error.

In this method, an error predictor is proposed that can be used to indicate when

the error is high, and a resyncing of the important features (in current experiments, facial

landmarks) can be performed in order to correct the tracking procedure (explained in

98

Figure 5.11: Plot of ∆(t) and ε(t).
(a) Correlation= 0.2166; (b) Correlation= 0.5457; (c) Correlation= 0.1347.

Section 4.3.6). Fig. 5.11, shows an example of the prospective error predictor, which is

the root mean square (RMS) distance of the Z landmarks in the consecutive frames and

the RMS error ε(t) of the tracked landmarks. The plots in Fig. 5.11(a,b and c) suggest

some correlation (ρ) between the tracking error (ε(t)) and the tracked points difference

(∆(t)). However, the data is noisy, and the correlation is low. The median filter is usually

used to remove noise and spikes in the data. Due to the spiky nature of ∆(t) and the

tracking error ε(t), an one dimensional median filter of fifth order ∆(t)={∆(t)−τ , ∆(t)−

τ + 1,...., ∆(t)}) is applied over a sliding window of τ frames to smooth consistently

∆(t), increasing the correlation between ε(t) and ∆(t), as shown in Fig. 5.12(a,b and

c). It can be seen that the filtered ∆(t) and ε(t) have higher correlation because the data

is smoothed and has fewer spikes. To further improve the tracking error prediction, a

median filter of fifth order is applied over a sliding window of τ previous values of ∆(t)

i.e., (∆̂(t)={∆(t)−τ , ∆(t)−τ+1,...., ∆(t)}). The correlation between the ∆̂(t) and ε̂(t)

is improved, which can be seen in Fig. 5.13(a, b and c). This behavior of ∆̂(t) and ˆε(t)

suggests that the tracking process can be improved automatically. Using the proposed

error predictor, the tracking quality can be analyzed, and the resyncing of the tracking

point locations can use W-CLM when necessary.

Some results of the proposed tracking algorithm AFTRM-W are shown in Fig-

ure 5.14 and Figure 5.15, that utilizes the proposed predictor to estimate the error and

resync the important features using W-CLM when the error is estimated to be high. It can

be seen that the tracking works correctly in the long sequences even if there is a move-

ment in the face (Figure 5.14(a and d)), when the face is partially occluded (Figure 5.14(b)

face deformation (Figure 5.14(c)), change in face size (Figure 5.14(e − f)), tilted face

(Figure 5.14(f)), distant face from the camera (Figure 5.15(a)) or combination of these

factors such as: tilt and deformation (Figure 5.15(b)), angled face with another face in

99

Figure 5.12: Plot of ∆(t) and ε(t).
(a) Correlation=0.4644; (b) Correlation= 0.7889; (c) Correlation= 0.3148.

the frame (Figure 5.15(d)) or angled face with face deformation (Figure 5.15(e)). Fig-

ure 5.14(b) and Figure 5.14(c) show examples of recent resyncing using CLM, therefore

the old eigenbases are disregarded. When the resyncing is performed, the old data and the

eigenbases are disregarded because they are not able to represent the current appearance

of the tracked target face as indicated by the proposed error predictor. Furthermore, the

proposed method is capable of handling sufficient front, side and vertical movement in

the face.

Figure 5.13: Plot of ∆̂(t) and ε̂(t) .
(a) Correlation=0.91037; (b) Correlation= 0.7592; (c) Correlation=0.7673.

5.3 Quantitative Evaluation and Discussion of the Proposed MMDL-
FT, MMDL-FTU, AFTRM and AFTRM-W Face Tracking Methods

The proposed tracking methods are compared with the state of the art method us-

ing the root mean squared error (RMSE) of the estimated landmark locations with the

manually-labeled landmarks locations used as the groundtruth. The quantitative compar-

ison of the proposed MMDL-FT, MMDL-FTU, AFTRM and AFTRM-W (AFTRM with

100

Figure 5.14: Results of the proposed Adaptive Face Tracker with Resyncing Mechanism
(AFTRM-W).
(a) face movement; (b) partial occlusion; (c) face deformation;

(d) face movement; (e) face size; (f) tilted face.

the weighted CLM), with the Incremental Learning for Robust Visual Tracking (ILRVT)

(ROSS et al., 2008), incremental learning tracking based on Independent Component

Analysis (ILICA), Incremental Cascaded Continuous Regression (iCCR) (SÁNCHEZ-

LOZANO et al., 2016) and Approximate structured output learning for CLM (ZHENG;

STURGESS; TORR, 2013).

The results in terms of RMSE of the 68 facial landmarks tracked using the pro-

posed MMDL-FT, MMDL-FTU, AFTRM and AFTRM-W methods with respect to the

101

Figure 5.15: Results of the proposed Adaptive Face Tracker with Resyncing Mechanism
(AFTRM-W).

(a) distant face; (b) tilt and deformation; (c) angled face;

(d) angled face with another face behind; (e) face movement and deformation; (f) face movement.

ground-truth facial landmarks are compared with the comparative methods are shown in

Table 5.4. Each column indicates average tracking error (εM) for the whole video se-

quence, using the method specified in the first row. The last row illustrates the average

tracking error of all the tested videos. It should be noted that for incremental learning

approaches, the parameters of the comparative methods (if required) are set to the default

values as proposed in the particular method. The bold value indicates the best result and

the second best results are in italic font. Similarly, Table 5.5 compares the CLE of the pro-

102

posed MMDL-FTU with the state-of-the-art methods based on all the videos of YawDD

dataset with the camera installed on dash.

It can be seen from the Table 5.4 and Table 5.5 that proposed MMDL-FT, MMDL-

FTU, AFTRM and AFTRM-W outperform the other methods, whereas, AFTRM-W has

much-improved performance than AFTRM. This is due to the weighting mechanism, as

consistent landmarks receive higher weight and thus improves the quality of the resyncing

mechanism using W-CLM search process. The methods proposed by zheng et al. (ZHENG;

STURGESS; TORR, 2013) and sanchez et al. (SÁNCHEZ-LOZANO et al., 2016) have

close results to the proposed MMDL-FT, MMDL-FTU, AFTRM method for some videos,

whereas, AFTRM-W has performed better than all the other methods on five videos out of

six videos and had much smaller tracking error. The ILRVT method (ROSS et al., 2008)

performed well for some videos but fails for others. MMDL-FT and MMDL-FTU per-

form better than the comparative methods other than the proposed AFTRM and AFTRM-

W methods. The high tracking error presented by these methods is because once the error

is introduced in these approaches, it keeps on increasing and ultimately the tracking fails.

The proposed methods AFTRM and AFTRM-W have less tracking error and does not fail

to track the face indefinitely in any of the tested video sequences because of its tracking

error predictor and resyncing mechanism. For this reason, the proposed tracking methods

can be used for consistent tracking of the face and the facial feature in long videos, which

can be used to detect expression, fatigue, and learn the cognitive behavior of human using

facial features. Also, the face tracking methods perform better on female videos, because

of the smooth texture compared to male videos, that may have different styles of beard,

mustache, etc.

Table 5.4: Average RMSE comparison of MMDL-FT, MMDL-FTU, AFTRM and
AFTRM-W with comparative methods (the best results are in bold).

Video 1 2 3 4 5 6 Average

(TERISSI; GÓMEZ, 2007) 38.43 26.93 50.38 66.44 66.12 16.75 34.24

(ROSS et al., 2008) 21.43 10.56 183.72 30.12 6.23 12.17 44.04

(ZHENG; STURGESS; TORR, 2013) 33.93 11.46 12.41 17.05 12.26 14.02 16.86

(SÁNCHEZ-LOZANO et al., 2016) 16.42 11.48 10.33 22.07 14.49 9.84 14.10

MMDL-FT 10.12 7.19 7.63 22.02 8.06 30.75 14.29

MMDL-FTU 9.73 6.50 7.76 16.62 7.76 19.37 11.29

AFTRM 15.01 9.22 13.78 15.31 5.91 7.53 11.12

AFTRM-W 6.54 3.56 10.65 5.27 4.85 3.62 5.65

103

Table 5.5: Center Location Error (CLE) comparison of MMDL-FT, MMDL-FTU, AF-
TRM and AFTRM-W with comparative methods (the best results are in bold).

Video Male videos Female videos Average

(TERISSI; GÓMEZ, 2007) 25.92 18.37 22.15

(ROSS et al., 2008) 14.74 11.33 13.03

(ZHENG; STURGESS; TORR, 2013) 13.02 10.14 11.58

(SÁNCHEZ-LOZANO et al., 2016) 14.11 10.17 12.14

MMDL-FT 10.61 8.70 9.65

MMDL-FTU 10.36 8.68 9.52

AFTRM 8.81 7.54 8.18

AFTRM-W 5.31 4.24 4.78

5.4 Evaluation of the Proposed Face Tracking Method in Yawning De-
tection

In the experiments, yawning detection is used as a case study to evaluate the cor-

rectness and effectiveness of the proposed tracking method in a real facial analysis prob-

lem, where the local face appearance is changing. The proposed method takes inspiration

from Omidyeganeh et al. (OMIDYEGANEH et al., 2016) method of yawning detection.

The method in (OMIDYEGANEH et al., 2016) is based on the backprojection theory and

detects yawning based on the pixels counts in the binary mouth blocks of the current and

reference frames. To convert into a binary image, the pixel values greater than a certain

threshold Γ0 receive a value of 1 (referred as a white pixel), and 0 (referred as a black

pixel) otherwise.

The proposed method improves the method in Omidyeganeh et al. (OMIDYE-

GANEH et al., 2016) in two ways. Firstly, the proposed method uses only the pixels

which are in the lips to measure the mouth openness in a binary image (see Fig. 5.16,

only the pixels inside the white region are used), as compared to (OMIDYEGANEH et

al., 2016) which uses a rectangular mouth block and includes some pixels outside the lips

to detect yawning.

Secondly, Yawning is detected in each video frame if the following three condi-

tions are satisfied:

1. the ratio of the number of black pixels in the current frame (NBC) and the number

104

Figure 5.16: Illustration of a closed mouth (a,b,c,d,e) and yawning sequence (f,g,h,i,j).
(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

of black pixels the reference frame (NBR) is greater than Γ1:

NBC

NBR
> Γ1, (5.3)

2. the ratio of the number of black and the number of white pixels (NWC) in the

current frame is greater than Γ2:

NBC

NWC
> Γ2, (5.4)

3. the ratio of a vertical distance between the midpoints (V D) and the distance be-

tween the corner points (HD) of the mouth is greater than Γ3:

V D

HD
> Γ3, (5.5)

whereNBC andNBR is the total number of black pixels in the current and the reference

frames mouth respectively, whereas, NWC is the number of white pixels in the current

frames mouth, HD is the horizontal distance between mouth corners and V D is the ver-

tical distance between the center points of lips. The first frame is used as a reference in

the proposed scheme and is assumed to contain a closed mouth. Some examples of the

yawning and non-yawning sequences are given in Figure 5.16, where Figure 5.16 (a− e)

shows a non-yawning mouth blocks and Figure 5.16 (f − j) shows some yawning mouth

blocks.

The proposed yawning detection is evaluated in terms of;

1. the True Positive Rate (TPR) which is the rate of True Positives (TP) detected as

105

yawning, and is given by:

TPR =
TP

TP + FN
; (5.6)

2. the True Negative Rate (TNR) which is the rate of True Negatives (TN) correctly

detected as non-yawning, and is given by:

TNR =
FP

FP + TN
; (5.7)

3. the False Positive Rate (FPR) is the rate of yawning falsely detected as non-

yawning:

FPR =
FP

TP + FN
; (5.8)

4. the False Negative Rate (FNR) is the rate of non-yawning falsely detected as

yawning:

FNR =
FN

FP + TN
; (5.9)

5. and the Correct Detection Rate (CDR) is defined as:

CDR =
TPR + TNR

TPR + TNR + FPR + FNR
. (5.10)

Table 5.6, exhibits a comparison on the YawDD dataset (ABTAHI et al., 2014) of the

proposed method using data provided by AFTRM and AFTRM-W, with state of the art

methods in yawning detection, including Chiang et al (CHIANG et al., 2003), Bouvier et

al. (BOUVIER et al., 2008) and Omidyeganeh et al. (OMIDYEGANEH et al., 2016). It

can be seen that the proposed method tends to outperform the comparative methods. It

should be further noted that the proposed method has a higher TPR, which indicates the

effectiveness of the proposed method. The threshold values for Γ1,Γ2 and Γ3 are set to 1,

0.5 and 2.5, respectively.

106

Table 5.6: Yawning Detection Results (the best result are in bold).

Method TPR TNR FPR FNR CDR

(CHIANG et al., 2003) 0.3990 0.4562 0.6010 0.5438 0.4276

(BOUVIER et al., 2008) 0.6764 0.5437 0.3236 0.4563 0.6101

(OMIDYEGANEH et al., 2016) 0.6578 0.7733 0.3419 0.2266 0.7155

MMDL-FT 0.7342 0.6435 0.2658 0.3565 0.6888

MMDL-FTU 0.7913 0.7432 0.2087 0.2568 0.7672

AFTRM 0.8120 0.7222 0.1879 0.2777 0.76703

AFTRM-W 0.9307 0.7551 0.0693 0.2449 0.8429

107

6 CONCLUDING REMARKS

This thesis proposes an adaptive face and facial landmark tracking scheme. The

proposed face tracker contains two operating modes which selects the tracked target face

among the candidate target face samples given by the motion model. Both the operating

modes are based on feature learning techniques that utilize the useful data accumulated

during the face tracking and implements an incremental learning framework to adapt to

the current appearance of the tracked target face over time. To accumulate the training

data, the quality of the test sample is checked before its utilization in the incremental and

online training scheme. Also, a novel error prediction scheme is proposed that is capable

of estimating the tracking error during the execution of the tracking algorithm.

The appearance model of the tracked target face is updated after a specific number

of frames (batch size τ). The experimental results indicate that frequent updates (small

batch size) on the appearance model of the proposed method has less tracking error than

for large batch size. The reason for this behavior is that the proposed method updates the

appearance of the tracked target face and also the resync (if required) of the features are

performed after a specific number of frames τ . However, frequent updates in the appear-

ance model or resyncing of features using CLM makes the method slower, and process

less number of frames per second. To solve this problem, an optimal trade-off is estimated

using a cost function to minimize the tracking error and number of updates/resyncs.

The first operating mode, namely MMDL-FTU, proposes a multi-model dictionary

learning for face tracking, and the second operating mode, namely AFTRM-W, proposes

a face tracking algorithm by combining an online learning technique with a model-based

technique as a resyncing mechanism to improve the performance of the tracking when the

tracking error is estimated to be high. Both the operating modes share the same motion

model that models the motion and estimates the candidate target face samples, among

which the tracked target face is selected based on the appearance model.

The proposed MMDL-FTU operating mode of the proposed method is a new

scheme for tracking a target face, which is adaptive to the face appearance changes (e.g.,

changes in facial expressions and pose). MMDL-FTU operating mode relies on online

learning of a multi-model dictionary, that helps to detect the target face against a complex

background. Furthermore, the proposed method takes advantage of data collected during

face tracking to learn the multi-model dictionary incrementally (i.e., to adaptively learn

a dictionary for face detection/reconstruction and another dictionary for face/background

108

discrimination), updating the dictionary when the face appearance changes.

The AFTRM-W operating mode of the proposed method improves on a well

known visual tracking approach based on incremental PCA using a re-syncing mecha-

nism and is applied to face tracking. A novel error predictor is proposed that estimates

the tracking error while face tracking. The high correlation of the proposed error predic-

tor with the actual tracking error indicates its effectiveness. At times when the estimated

tracking error is increasing, the performance is improved by using a resyncing mecha-

nism that re-locates important features of the moving target (e.g., facial features in face

tracking). This tracking scheme can be applied to non-rigid objects. In this work, it is

applied to track faces; therefore, CLM/W-CLM is used as the resyncing procedure when

divergence occurs.

Also, an improvement in the CLM is proposed, namely W-CLM. The W-CLM

method utilizes the training data to assign weights to each landmark. The weights are

computed using MMI that measures the consistency of the texture information around

each landmark in the training set. These weights are used in the W-CLM search process

to improve the localization of the landmarks.

Additionally, the tracked face is used to detect the facial landmarks which ulti-

mately can be used for further facial analysis applications. These facial landmarks are

used to detect yawning as a test case to validate the effectiveness of the proposed face

tracker. It is also proposed an improvement in the yawning detection method, which

utilizes the facial landmarks to estimate the features for yawning detection.

The proposed face tracker is evaluated using CLE of the tracked target face and

RMSE of the facial landmarks with the comparative methods which are representative

of the state of the art. The experimental results suggest that both the operating modes

(MMDL-FTU and AFTRM) of the proposed face tracker can provide a competitive face

tracking results in comparison to methods that are representative of the state-of-the-art.

Also, the proposed improvement in yawning detection tends to increase the TPR and CDR

of the yawning detection, which is evident from the experimental results.

In the future, we would like to extend the proposed method to another non-rigid

object tracking. Similarly, the motion model can also be improved by drawing particles

in the direction of movement of the object and modeling object specific characteristics

while estimating the candidate samples instead of using a Gaussian distribution. The

third possible improvement can be made in the representation of the object in a feature

space that can provide more knowledge about local appearance changes.

109

6.1 Publications

• Mona Omidyeganeh, Shervin Shirmohammadi, Shabnam Abtahi, Aasim Khurshid,

and Muhammad Farhan, Jacob Scharcanski, Behnoosh Hariri, Daniel Laroche, Luc

Martel, "Yawning detection using embedded smart cameras". IEEE Transactions

on Instrumentation and Measurement, IEEE, v. 65, n. 3, p. 570–582, 2016.

• A. Khurshid and J. Scharcanski, "Incremental multi-model dictionary learning for

face tracking," 2018 IEEE International Instrumentation and Measurement Tech-

nology Conference (I2MTC), Houston, TX, USA, 2018, pp. 1-6. (KHURSHID;

SCHARCANSKI, 2018).

6.2 Submitted Article

• Aasim khurshid, Jacob Scharcaski, "A New Adaptive Object Tracker with Applica-

tions", submission: Transaction on Instrumentation and Measurement.

Submission date: 27-09-2018.

110

REFERENCES

ABTAHI, S. et al. Yawdd: a yawning detection dataset. In: ACM. Proceedings of the
5th ACM Multimedia Systems Conference. [S.l.], 2014. p. 24–28.

BABENKO, B.; YANG, M.-H.; BELONGIE, S. Visual tracking with online multiple
instance learning. In: IEEE. Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. [S.l.], 2009. p. 983–990.

BEHAINE, C.; SCHARCANSKI, J. Enhancing the performance of active shape
models in face recognition applications. IEEE Transactions on Instrumentation and
Measurement, IEEE, v. 61, n. 8, p. 2330–2333, 2012.

BLACK, M. J.; JEPSON, A. D. Eigentracking: Robust matching and tracking of
articulated objects using a view-based representation. International Journal of
Computer Vision, Springer, v. 26, n. 1, p. 63–84, 1998.

BLAKE, A.; ISARD, M. The condensation algorithm-conditional density propagation
and applications to visual tracking. In: Advances in Neural Information Processing
Systems. [S.l.: s.n.], 1997. p. 361–367.

BOUVIER, C. et al. Open or closed mouth state detection: static supervised classification
based on log-polar signature. In: SPRINGER. International Conference on Advanced
Concepts for Intelligent Vision Systems. [S.l.], 2008. p. 1093–1102.

BRADSKI, G. R. Real time face and object tracking as a component of a perceptual user
interface. In: IEEE. Applications of Computer Vision, 1998. WACV’98. Proceedings.,
Fourth IEEE Workshop on. [S.l.], 1998. p. 214–219.

CARNEIRO, G. et al. Detection and measurement of fetal anatomies from ultrasound
images using a constrained probabilistic boosting tree. IEEE Transactions on Medical
Imaging, v. 27, n. 9, p. 1342–1355, Sept 2008. ISSN 0278-0062.

CASCIA, M. L.; SCLAROFF, S. Fast, reliable head tracking under varying illumination.
In: IEEE. Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on. [S.l.], 1999. v. 1, p. 604–610.

CASCIA, M. L.; SCLAROFF, S.; ATHITSOS, V. Fast, reliable head tracking under
varying illumination: An approach based on registration of texture-mapped 3d models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 22, n. 4,
p. 322–336, 2000.

CAUWENBERGHS, G.; POGGIO, T. Incremental and decremental support vector
machine learning. In: Advances in neural information processing systems. [S.l.: s.n.],
2001. p. 409–415.

CHEN, G.-Y.; TSAI, W.-H. An incremental-learning-by-navigation approach to
vision-based autonomous land vehicle guidance in indoor environments using vertical
line information and multiweighted generalized hough transform technique. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), IEEE, v. 28,
n. 5, p. 740–748, 1998.

111

CHEN, S.; DONOHO, D.; SAUNDERS, M. Atomic decomposition by basis pursuit:
SIA M Review, 43, no. 1, 129–159. 2001.

CHENG, X. et al. Visual tracking via sparse representation and online dictionary
learning. In: SPRINGER. International Workshop on Activity Monitoring by
Multiple Distributed Sensing. [S.l.], 2014. p. 87–103.

CHENG, Y. Mean shift, mode seeking, and clustering. IEEE transactions on pattern
analysis and machine intelligence, IEEE, v. 17, n. 8, p. 790–799, 1995.

CHIANG, C.-C. et al. A novel method for detecting lips, eyes and faces in real time.
Real-time Imaging, Elsevier, v. 9, n. 4, p. 277–287, 2003.

CHOI, I. H.; KIM, Y. G. Deep manifold embedding active shape model for pose invarient
face tracking. In: 2018 IEEE International Conference on Big Data and Smart
Computing (BigComp). [S.l.: s.n.], 2018. p. 578–581.

CHRYSOS, G. G. et al. A comprehensive performance evaluation of deformable face
tracking “in-the-wild”. International Journal of Computer Vision, Springer, p. 1–35,
2014.

COLLINS, R. T.; LIU, Y.; LEORDEANU, M. Online selection of discriminative tracking
features. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE,
v. 27, n. 10, p. 1631–1643, 2005.

COOTES, T. F. et al. Active appearance models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, v. 23, n. 6, p. 681–685, 2001.

COOTES, T. F. et al. Active shape models-their training and application. Computer
Vision and Image Understanding, Elsevier, v. 61, n. 1, p. 38–59, 1995.

COOTES, T. F.; TAYLOR, C. J. et al. Statistical models of appearance for computer
vision. [S.l.]: Technical report, University of Manchester, 2004.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, Springer,
v. 20, n. 3, p. 273–297, 1995.

CRISTINACCE, D.; COOTES, T. F. Feature detection and tracking with constrained
local models. In: BMVC. [S.l.: s.n.], 2006. v. 1, n. 2, p. 929–938.

CRUYS, T. Van de. Two multivariate generalizations of pointwise mutual information.
In: Proceedings of the Workshop on Distributional Semantics and Compositionality.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. (DiSCo ’11),
p. 16–20. ISBN 9781937284022.

DANELLJAN, M. et al. Learning spatially regularized correlation filters for visual
tracking. In: 2015 IEEE International Conference on Computer Vision (ICCV). [S.l.:
s.n.], 2015. p. 4310–4318.

DONOHO, D. L.; ELAD, M. Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization. Proceedings of the National Academy of Sciences,
National Acad Sciences, v. 100, n. 5, p. 2197–2202, 2003.

112

ELAD, M.; AHARON, M. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image processing, IEEE, v. 15, n. 12,
p. 3736–3745, 2006.

ESSA, I. et al. Modeling, tracking and interactive animation of faces and heads//using
input from video. In: IEEE. Computer Animation’96. Proceedings. [S.l.], 1996. p.
68–79.

ESSA, I. A.; PENTLAND, A. A vision system for observing and extracting facial action
parameters. In: CVPR. [S.l.: s.n.], 1994. p. 76–83.

ESSA, I. A.; PENTLAND, A. P. Coding, analysis, interpretation, and recognition of
facial expressions. IEEE transactions on pattern analysis and machine intelligence,
IEEE, v. 19, n. 7, p. 757–763, 1997.

FANELLO, S. R. et al. Multi-class image classification-sparsity does it better. In:
VISAPP (1). [S.l.: s.n.], 2013. p. 800–807.

FLORES, E.; SCHARCANSKI, J. Segmentation of melanocytic skin lesions using
feature learning and dictionaries. Expert Systems with Applications, Elsevier, v. 56, p.
300–309, 2016.

GERSHO, A.; GRAY, R. M. Vector quantization and signal compression. [S.l.]:
Springer Science & Business Media, 2012.

GIRSHICK, R. et al. Rich feature hierarchies for accurate object detection and semantic
segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition. Washington, DC, USA: IEEE Computer Society, 2014. (CVPR
’14), p. 580–587. ISBN 978-1-4799-5118-5.

GUO, H. A simple algorithm for fitting a gaussian function [dsp tips and tricks]. IEEE
Signal Processing Magazine, v. 28, n. 5, p. 134–137, Sept 2011. ISSN 1053-5888.

JOSE, J. P.; POORNIMA, P.; KUMAR, K. M. A novel method for color face
recognition using knn classifier. In: 2012 International Conference on Computing,
Communication and Applications. [S.l.: s.n.], 2012. p. 1–3. ISSN 2325-6001.

JUNG, C.; SCHARCANSKI, J. Wavelet transform approach to adaptive image denoising
and enhancement. Journal of Electronic Imaging, v. 13, n. 2, p. 278–285, 2004.

KENDALL, D. G. A survey of the statistical theory of shape. Statistical Science,
JSTOR, p. 87–99, 1989.

KHURSHID, A.; SCHARCANSKI, J. Incremental multi-model dictionary learning
for face tracking. In: 2018 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC). [S.l.: s.n.], 2018. p. 1–6.

KOELSTRA, S.; PANTIC, M.; PATRAS, I. A dynamic texture-based approach to
recognition of facial actions and their temporal models. IEEE transactions on pattern
analysis and machine intelligence, IEEE, v. 32, n. 11, p. 1940–1954, 2010.

KREUTZ-DELGADO, K. et al. Dictionary learning algorithms for sparse representation.
Neural computation, MIT Press, v. 15, n. 2, p. 349–396, 2003.

113

KWON, H. J. et al. Multiple face tracking method in the wild using color histogram
features. In: 2017 IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT). [S.l.: s.n.], 2017. p. 051–055.

LANITIS, A.; TAYLOR, C. J.; COOTES, T. F. A unified approach to coding and
interpreting face images. In: IEEE. Computer Vision, 1995. Proceedings., Fifth
International Conference on. [S.l.], 1995. p. 368–373.

LEVEY, A.; LINDENBAUM, M. Sequential karhunen-loeve basis extraction and its
application to images. IEEE Transactions on Image processing, IEEE, v. 9, n. 8, p.
1371–1374, 2000.

LEWICKI, M. S.; SEJNOWSKI, T. J. Learning overcomplete representations. Neural
computation, MIT Press, v. 12, n. 2, p. 337–365, 2000.

LIU, H.; LI, S.; FANG, L. Robust object tracking based on principal component
analysis and local sparse representation. IEEE Transactions on Instrumentation and
Measurement, IEEE, v. 64, n. 11, p. 2863–2875, 2015.

LOSING, V.; HAMMER, B.; WERSING, H. Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing, Elsevier, v. 275, p.
1261–1274, 2018.

LUCEY, S. et al. Efficient constrained local model fitting for non-rigid face alignment.
Image and Vision Computing, Elsevier, v. 27, n. 12, p. 1804–1813, 2009.

MALCIU, M.; PRÊTEUX, F. A robust model-based approach for 3d head tracking
in video sequences. In: IEEE. Automatic Face and Gesture Recognition, 2000.
Proceedings. Fourth IEEE International Conference on. [S.l.], 2000. p. 169–174.

MALLAT, S. G.; ZHANG, Z. Matching pursuits with time-frequency dictionaries. IEEE
Transactions on signal processing, IEEE, v. 41, n. 12, p. 3397–3415, 1993.

MICHAL, A.; MICHAEL, E.; ALFRED, B. K-svd: Design of dictionaries for sparse
representation. SPARS, v. 5, p. 9–12, 2005.

OLSHAUSEN, B. A.; FIELD, D. J. Natural image statistics and efficient coding.
Network: computation in neural systems, Taylor & Francis, v. 7, n. 2, p. 333–339,
1996.

OMIDYEGANEH, M. et al. Yawning detection using embedded smart cameras. IEEE
Transactions on Instrumentation and Measurement, IEEE, v. 65, n. 3, p. 570–582,
2016.

PEYRÉ, G. Sparse modeling of textures. Journal of Mathematical Imaging and
Vision, Springer, v. 34, n. 1, p. 17–31, 2009.

RANGANATHA, S.; GOWRAMMA, Y. P. An integrated robust approach for fast face
tracking in noisy real-world videos with visual constraints. In: 2017 International
Conference on Intelligent Computing and Control (I2C2). [S.l.: s.n.], 2017. p. 1–5.

REN, Z. et al. A face tracking framework based on convolutional neural networks and
kalman filter. In: 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS). [S.l.: s.n.], 2017. p. 410–413.

114

ROSS, D. A. et al. Incremental learning for robust visual tracking. International Journal
of Computer Vision, Springer, v. 77, n. 1-3, p. 125–141, 2008.

ROWEIS, S. Em algorithms for pca and spca. In: in Advances in Neural Information
Processing Systems. [S.l.]: MIT Press, 1998. p. 626–632.

RUBINSTEIN, R.; ZIBULEVSKY, M.; ELAD, M. Efficient implementation of the k-svd
algorithm using batch orthogonal matching pursuit. Cs Technion, v. 40, n. 8, p. 1–15,
2008.

RUECKERT, D. et al. Nonrigid registration using free-form deformations: application
to breast mr images. IEEE transactions on medical imaging, IEEE, v. 18, n. 8, p.
712–721, 1999.

SAFFARI, A. et al. On-line random forests. In: 2009 IEEE 12th International
Conference on Computer Vision Workshops, ICCV Workshops. [S.l.: s.n.], 2009. p.
1393–1400.

SALHI, A. et al. Face detection and tracking system with block-matching, meanshift
and camshift algorithms and kalman filter. In: 2017 18th International Conference on
Sciences and Techniques of Automatic Control and Computer Engineering (STA).
[S.l.: s.n.], 2017. p. 139–145.

SÁNCHEZ-LOZANO, E. et al. Cascaded continuous regression for real-time incremental
face tracking. In: SPRINGER. European Conference on Computer Vision. [S.l.],
2016. p. 645–661.

SANTNER, J. et al. Prost: Parallel robust online simple tracking. In: IEEE. Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. [S.l.], 2010. p.
723–730.

SARAGIH, J. M.; LUCEY, S.; COHN, J. F. Face alignment through subspace constrained
mean-shifts. In: 2009 IEEE 12th International Conference on Computer Vision. [S.l.:
s.n.], 2009. p. 1034–1041. ISSN 1550-5499.

SEE, Y. C. et al. Investigation of face recognition using gabor filter with random forest
as learning framework. In: TENCON 2017 - 2017 IEEE Region 10 Conference. [S.l.:
s.n.], 2017. p. 1153–1158.

SHIRMOHAMMADI, S.; FERRERO, A. Camera as the instrument: the rising trend of
vision based measurement. IEEE Instrumentation & Measurement Magazine, IEEE,
v. 17, n. 3, p. 41–47, 2014.

SNAPE, P. et al. Face flow. In: Proceedings of the IEEE International Conference on
Computer Vision. [S.l.: s.n.], 2015. p. 2993–3001.

SOH, H.; DEMIRIS, Y. Incrementally learning objects by touch: Online discriminative
and generative models for tactile-based recognition. IEEE transactions on haptics,
IEEE, v. 7, n. 4, p. 512–525, 2014.

SOLDERA, J.; DODSON, K.; SCHARCANSKI, J. Face recognition based on geodesic
distance approximations between multivariate normal distributions. In: 2017 IEEE
International Conference on Imaging Systems and Techniques (IST). [S.l.: s.n.],
2017. p. 1–6.

115

SOLDERA, J. et al. Facial biometrics and applications. IEEE Instrumentation
Measurement Magazine, v. 20, n. 2, p. 4–30, April 2017. ISSN 1094-6969.

TAHIR, N. M. et al. Feature selection for classification using decision tree. In: 2006 4th
Student Conference on Research and Development. [S.l.: s.n.], 2006. p. 99–102.

TERISSI, D.; GÓMEZ, J. C. Facial motion tracking and animation: An ica-based
approach. In: Proceedings of 15th European Signal Processing Conference, Poznan,
Poland, September. [S.l.: s.n.], 2007. p. 3–7.

TOIVANEN, M.; LAMPINEN, J. Incremental object matching and detection with
bayesian methods and particle filters. IET computer vision, IET, v. 5, n. 4, p. 201–210,
2011.

VATER, S.; IVANCEVIC, R.; LEóN, F. P. Integration of precise iris localization
into active appearance models for automatic initialization and robust deformable face
tracking. In: 2017 IEEE International Conference on Image Processing (ICIP). [S.l.:
s.n.], 2017. p. 2617–2621.

VIOLA, P.; JONES, M. Rapid object detection using a boosted cascade of simple
features. In: IEEE. Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on. [S.l.], 2001. v. 1, p.
I–511.

WANG, L. et al. Ik-svd: dictionary learning for spatial big data via incremental atom
update. Computing in Science & Engineering, IEEE, v. 16, n. 4, p. 41–52, 2014.

WANG, L. et al. Comparative analysis of image classification methods for automatic
diagnosis of ophthalmic images. v. 7, p. 41545, 01 2017.

WANG, Y.; LUCEY, S.; COHN, J. F. Enforcing convexity for improved alignment with
constrained local models. In: 2008 IEEE Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2008. p. 1–8. ISSN 1063-6919.

WENG, J.; EVANS, C. H.; HWANG, W.-S. An incremental learning method for face
recognition under continuous video stream. In: IEEE. Automatic Face and Gesture
Recognition, 2000. Proceedings. Fourth IEEE International Conference on. [S.l.],
2000. p. 251–256.

XIE, Y. et al. Discriminative object tracking via sparse representation and online
dictionary learning. IEEE Transactions on Cybernetics, IEEE, v. 44, n. 4, p. 539–553,
2014.

YANG, F. et al. Dynamic texture recognition by aggregating spatial and temporal features
via ensemble svms. Neurocomputing, v. 173, p. 1310 – 1321, 2016. ISSN 0925-2312.

YILMAZ, A.; JAVED, O.; SHAH, M. Object tracking: A survey. ACM computing
surveys (CSUR), ACM, v. 38, n. 4, p. 13, 2006.

YUAN, Y. et al. Visual object tracking based on appearance model selection. In: IEEE.
Multimedia and Expo Workshops (ICMEW), 2013 IEEE International Conference
on. [S.l.], 2013. p. 1–4.

116

ZHENG, S.; STURGESS, P.; TORR, P. Approximate structured output learning for
constrained local models with application to real-time facial feature detection and
tracking on low-power devices. In: IEEE. Automatic Face and Gesture Recognition
(FG), 2013 10th IEEE International Conference and Workshops on. [S.l.], 2013.
p. 1–8.

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Characteristic Evaluation of the Tracking Methods
	1.3 Thesis Organization

	2 Literature Review
	3 Fundamental Concepts On Face Tracking
	3.1 Probability Distribution
	3.2 Background on Incremental Learning
	3.2.1 Principal Component Analysis
	3.2.2 Incremental Update of the Eigenbasis
	3.2.3 Incremental Update of the Mean

	3.3 Background on Dictionary Learning for Sparse Representation
	3.3.1 Sparse Representation
	3.3.2 Basis Pursuit(BP)
	3.3.3 Matching Pursuit (MP)
	3.3.4 Dictionary Learning
	3.3.5 Incremental Dictionary Learning
	3.3.6 Estimating New Dictionary Atoms

	3.4 Classification Methods and the Support Vector Machine (SVM) Classifier
	3.5 Constrained Local Models (CLM)
	3.5.1 CLM Model Building
	3.5.2 CLM Search

	3.6 Terminology

	4 Proposed Methodology
	4.1 Motion Model and Sampling
	4.2 Proposed Methodology for Multi-Model Dictionary Learning for Face Tracking (MMDL-FT) and MMDL-FT with Update Test (MMDL-FTU)
	4.2.1 MMDL-FTU Operating Mode
	4.2.2 Dictionary Learning
	4.2.3 Incremental Dictionary Update
	4.2.4 Multi-Model Dictionary Learning
	4.2.5 Reconstruction Dictionary
	4.2.6 Classification Dictionary
	4.2.7 Appearance Model and Tracked Target Face Selection using MMDL
	4.2.8 Facial Landmarks Localization
	4.2.9 Pseudo Code

	4.3 Proposed Methodology for an Adaptive Face Tracker with Resyncing Mechanism (AFTRM) and AFTRM Weighted (AFTRM-W)
	4.3.1 AFTRM-W Operating Mode
	4.3.2 Incremental Update of Eigenbasis and Mean
	4.3.3 Weighted Constrained Local Models (W-CLM) as Re-syncing Feature Detectors
	4.3.4 CLM Weighted Search
	4.3.5 Appearance Model and Tracked Target Face Selection
	4.3.6 Tracking Error Predictor and Resyncing Mechanism

	5 Experimental Results
	5.1 Experimental Settings
	5.1.1 Quantitative Evaluation Strategy
	5.1.2 Choice of Batch Size

	5.2 Experimental Qualitative Results
	5.2.1 Qualitative Evaluation of the MMDL-FT and MMDL-FTU Face Tracking Method
	5.2.2 Qualitative Evaluation of the AFTRM and AFTRM-W Face Tracking Methods

	5.3 Quantitative Evaluation and Discussion of the Proposed MMDL-FT, MMDL-FTU, AFTRM and AFTRM-W Face Tracking Methods
	5.4 Evaluation of the Proposed Face Tracking Method in Yawning Detection

	6 Concluding Remarks
	6.1 Publications
	6.2 Submitted Article

	References

