
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

MARCOS HENRIQUE BACKES

A Graph-Cut-based Trimap Propagation
Method for Video Matting

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Manuel Menezes de Oliveira
Neto

Porto Alegre
December 2017

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Wladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Alpha matting is an important task in image processing. It allows a user to extract

foreground objects from natural images and compose them with different backgrounds,

achieving subpixel-level precision. Due to its ill-posed nature, alpha matting requires ad-

ditional inputs: for a single image, the user should specify the foreground, background,

and unknown regions of the image using a trimap. However, when performing alpha mat-

ting on a video sequence, providing a trimap for each individual frame becomes tedious

and time-consuming. We propose a novel method for propagating trimaps between frames

of a video sequence. While most previous techniques require a binary segmentation for

each frame to produce trimaps, our approach requires the user to define a trimap for only

a few keyframes. To obtain trimaps for the remaining frames, we use the alpha channel

(opacity map) computed for the previous frame to estimate the trimap for the next one,

using a graph-cut-based approach. Results show that our algorithm is able to significantly

reduce the amount of user effort for simple videos, while still resulting in considerable

savings when applied to videos containing little temporal coherence.

Keywords: Image processing. Video segmentation. Alpha matting. Video matting.

Graph-cuts.

Um Método de Propagação de Trimaps baseado em Graph-Cuts para Video

Matting

RESUMO

Alpha matting é uma tarefa importante na área de processamento de imagens. Permite ao

usuário extrair objetos de imagens naturais e compô-los com planos de fundo diferentes.

Por não ser um problema bem-posto, alpha matting requer informações adicionais: para

uma imagem, o usuário deve especificar o primeiro plano, o plano de fundo e a região

desconhecida da imagem usando um trimap. No entanto, ao realizar alpha matting em

uma sequência de vídeo, criar um trimap para cada quadro torna-se uma tarefa tediosa e

demorada. Nesse trabalho, é apresentada um novo método para propagar trimaps entre

quadros de uma sequência de vídeo. Enquanto a maioria das técnicas anteriores requer

uma segmentação binária para cada quadro para produzir trimaps, nossa técnica requer

um trimap para apenas alguns quadros. Para obter trimaps para os quadros restantes, nós

utilizamos o canal alfa (opacidade) computado do frame anterior para estimar o trimap

para o próximo, usando uma técnica baseada em graph-cuts. Os resultados mostram que

nosso algoritmo consegue reduzir significativamente a quantidade de esforço realizado

pelo usuário para vídeos simples, enquanto que, mesmo quando aplicado em vídeos com

pouca coerência temporal, resulta em uma economia considerável.

Palavras-chave: Processamento de vídeos. Segmentação de vídeos. Alpha matting. Vi-

deo matting. Graph cut.

LIST OF FIGURES

Figure 1.1 Example of alpha-matting: given an input image (a) and a trimap (b),
produce the alpha channel (c). Note that in (b) known foreground and known
background correspond, respectively, to white and black regions, while the
unknown region is grey. ...11

Figure 3.1 Example of a weighted directed graph G with five nodes and seven
edges (a). Optimal max-flow for G using s as source and t as sink (b), where
the values on the edges represent "flux/capacity". Optimal min-cut for G, di-
viding it into twos subsets S and T (c). Note that the cut (in red) passes right
through the saturated edges in (b). ...17

Figure 3.2 Example of image segmentation using graph-cuts: Input 3x3 monochro-
matic image (a); image representation as graph nodes (b); n_link edges (c), the
thicker the edge, the bigger the weight; t_link edges (d), assuming color white
as foreground; optimal min-cut as dashed red line (e); resulting binary seg-
mentation of the input image (f). ...20

Figure 4.1 Overview of the proposed method...22
Figure 4.2 Nearest Neighbor Field (NNF) problem: given two images A and B,

find for every patch in A the best matching patch in B. ..23
Figure 4.3 High matching cost due to disocclusion of background elements from

frame It (a) to frame It+1 (b), highlighted by the red square. Such situations of-
ten cause PatchMatch to incorrectly estimate some alpha values (c). Corrected
alpha values after treating high-cost matchings and isolated small components
as part of the background (d). ..25

Figure 4.4 Optimal segmentation lies inside trimap’s unknown region. Therefore,
the trimap can be obtained by expanding the foreground and background regions.27

Figure 4.5 Variation of graph-cut cost when signal is cut at different positions.............28
Figure 4.6 Cost function intuition ...29
Figure 4.7 Automatic trimap and alpha-channel computation. (a) Input image. (b)

Binary segmentation using graph-cut (Section 4.2). (c) Simple trimap obtained
by dilating (b) (10px width). (d) Unknown region obtained by intersecting
the expanded background/foreground from (b). (e) Actual trimap obtained
by dilating (d) (10px width). (f) Alpha matte for (a) obtained applying alpha
matting (GASTAL; OLIVEIRA, 2010) to the trimap in (c). (g) Alpha matte
obtained applying alpha matting (GASTAL; OLIVEIRA, 2010) to the trimap
(e). (h) Highlighted region from (f). (i) Highlighted region from (g). Note that
(h) misses some details of the hair, while (i) is more accurate.30

Figure 5.1 Example of error generated by Shared Matting due to a very complex
scene. A small error is generated in frame 0 and is increased when propagated
to frame 5. ..34

Figure 5.2 Example of error generated by PatchMatch on a video sequence with
fast motions and color ambiguity. Note that the fast moving motorcycle is
classified wrong due to fast motions and background occlusion.35

Figure A.1 amira video sequence ...41
Figure A.2 kim video sequence ...42
Figure A.3 Alex video sequence..43
Figure A.4 Dmitriy video sequence ..44

Figure A.5 Slava video sequence ..45
Figure A.6 snow video sequence...46
Figure A.7 Vitaliy video sequence ..47

LIST OF TABLES

Table 5.1 Comparison between number of key frames needed by Chuang et al. and
by our method. ...32

Table 5.2 Number of keyframes needed by our method to recover trimaps for the
entire video sequences from the Video Matting Benchmark (EROFEEV et al.,
2015). ..33

LIST OF ABBREVIATIONS AND ACRONYMS

Max-flow Maximum flow

Min-cut Minimum cut

MPC Modified PatchMatch Cost

NNF Nearest Neighbor Field

RGB Red, Green, Blue

CONTENTS

1 INTRODUTION..10
2 RELATED WORK ...13
2.1 Video Segmentation ..13
2.2 Video Matting..14
2.2.1 Trimap propagation..14
2.2.2 Temporally-coherent alpha-matting...15
3 GRAPH-CUT-BASED IMAGE SEGMENTATION..16
3.1 Graph ...16
3.2 Maximum-Flow Problem ...16
3.3 Minimum-Cut Problem ..17
3.4 Image Segmentation..18
4 GRAPH-CUT-BASED TRIMAP PROPAGATION FOR VIDEO MATTING21
4.1 Alpha Propagation ..21
4.2 Binary Segmentation ..24
4.3 Foreground and Background Expansions ..26
4.4 Alpha Matting ...29
4.5 Propagating between Multiple Keyframes ...31
5 RESULTS...32
5.1 Limitations and Future Work..33
6 CONCLUSION ...36
REFERENCES...37
APPENDIX A — RESULT FIGURES...40

10

1 INTRODUTION

Object detection, extraction, and compositing are important tasks in image and

video processing. They allow a user, for instance, to extract an object from an image

or from video sequence and composite it on different backgrounds. Since digital im-

ages/videos are discrete representations, some pixels at the borders between foreground

and background elements might combine colors from both. A naïve cutout and composit-

ing of an object into another picture/movie will often exhibit objectionable artifacts, as

some of its border pixels might carry color information from the original background. The

task of separating foreground and background colors from a image at a subpixel level or,

equivalently, computing an opacity map for foreground elements, is called alpha matting.

When this process is applied to a video sequence, we will refer to it as video matting.

Given an input image I , the goal of alpha matting is to estimate a foreground color

Fp, a background color Bp, and an opacity value αp for each pixel p in I . This process

corresponds to reversing the compositing equation

Ip = αpFp + (1− αp)Bp, (1.1)

where Ip is the color of pixel p. The equation uses each opacity value αp as an inter-

polation factor between Fp and Bp. Once all relevant Fp and αp have been determined,

one can use this information to composite the extracted elements seamlessly with another

background.

Alpha matting is an ill-posed problem. Given anRGB image I , one must compute

seven parameters for each pixel p (R, G, and B values for both Fp and Bp, plus αp).

Hence, it is usually required that the user provides some additional input by informing

some image/frame regions that are known to belong to the background, as well as some

regions that are known to belong to the foreground. This is often done using a trimap or a

few scribbles. A trimap segments the image in three distinct classes of pixels: foreground,

background, and unknown (Figure 1.1). Thus, an alpha-matting technique only needs to

compute the result for the pixels in the unknown region. This simplifies the problem, since

the technique can analyze both known regions to estimate the opacity of each pixel based

on color similarity (affinity) in the neighborhood. Ideally, the unknown regions should be

as small as possible, containing only pixels mixing foreground and background elements.

Creating a trimap may be a tedious task. For this reason, some applications are

able to generate a trimap given only a few user scribbles (GASTAL; OLIVEIRA, 2010).

11

Figure 1.1: Example of alpha-matting: given an input image (a) and a trimap (b), pro-
duce the alpha channel (c). Note that in (b) known foreground and known background
correspond, respectively, to white and black regions, while the unknown region is grey.

(a) Input image (b) Input Trimap (c) Output alpha channel

However, applying alpha matting to a video sequence would require too much effort if

a trimap needs to created for each individual frame. To minimize this effort, some ap-

plications try to propagate trimaps between frames, requiring the user to provide trimaps

for only a few key frames (CHUANG et al., 2002; JOHNSON; RAJAN; CHOLAKKAL,

2015).

While applying alpha matting to a single image is a difficult task, automatically

applying it to a video is even more challenging. Like alpha matting, video matting is

usually performed as two-step process. The first one consists of generating a trimap

for every frame, while the second applies alpha-matting to each individual frame. The

techniques should be able to handle problems like (WANG; COHEN et al., 2008):

• Large data size: algorithms should perform efficiently, since videos have a large

number of pixels. Interactivity is very important since on high interactive systems,

the user can quickly correct mistakes made by the program;

• Temporal coherence: it is necessary that the trimaps and the computed opacity

maps be temporally coherent, as incoherence and jittering may result in poor quality

videos;

• Fast motions: for videos containing fast object and/or camera motions it is often

hard to maintain temporal coherence.

We propose a more user-friendly method for video matting based on trimap prop-

agation between frames. Our approach is based on the Graph Cut algorithm (BOYKOV;

VEKSLER; ZABIH, 2001), and uses the alpha matte (opacity map) computed for the pre-

12

vious video frame to estimate a trimap for the next one. The transfer of an alpha matte

from a frame to the next is performed using a modified version of the PatchMatch algo-

rithm (BARNES et al., 2009). While previous techniques perform trimap generation and

alpha matting separately, we believe our integrated approach is able to better track fore-

ground objects. Our experiments show that our method is able to produce high-quality

results on simple video sequences, requiring very little user interaction. On scenes with

fast motions, foreground/background ambiguity and occlusions, trimaps for additional

key frames might be required.

The remaining of this document is organized as follows. Chapter 2 discusses

some related work on video segmentation and video matting. Chapter 3 provides a brief

review of the use of the graph-cut algorithm for image segmentation. Chapter 4 presents

the details of our graph-cut-base trimap propagation method for video matting, while

Chapter 5 discusses some results obtained with our technique. Chapter 6 closes this thesis

with some conclusions and directions for future exploration.

13

2 RELATED WORK

Video segmentation and matting is an important problem in computer vision with

many applications such as video editing and compositing. It is, therefore, used in TV and

movie production to create a variety of scenes and effects. High-quality methods are usu-

ally obtained using chroma keying (AKSOY et al., 2016), which simplifies the problem

significatively. However, when processing natural background videos, a high understand-

ing of the scene is required, since defining which object must be classified as foreground

depends on the user’s goal. Hence, this task is usually interactive, where the user in-

forms which objects must be segmented by completely labeling some keyframes or by

drawing some scribbles. This task is called semi-supervised segmentation and, although

successful approaches have been proposed for single image segmentation over the last

decades (MORTENSEN; BARRETT, 1995; BOYKOV; FUNKA-LEA, 2006; GRADY,

2006), natural-video segmentation is still considered a challenge due to difficulties such as

background/foreground color ambiguity, motion blur, illumination changes, fast motions,

object deformation, occlusions, and camera motion.

2.1 Video Segmentation

Many video segmentation techniques proposed over the last years are based on

graph cuts (WANG et al., 2005; LI; SUN; SHUM, 2005; GRUNDMANN et al., 2010;

MAERKI et al., 2016). The main idea is to generate a graph for the whole video se-

quence where pixels from one frame are also connected to pixels in adjacent frames. One

of the main problems of this approach is that, for long video sequences, the cost of rep-

resenting the whole graph tends to be prohibitive. In order to reduce such cost, some

techniques reduce the graph complexity by assigning nodes to frame regions or superpix-

els (WANG et al., 2005; LI; SUN; SHUM, 2005; GRUNDMANN et al., 2010). Recently,

the work by Maerki et al. (MAERKI et al., 2016) has shown great results and efficiency

by representing the video volume using the bilateral-grid data structure (CHEN; PARIS;

DURAND, 2007).

Another possible approach to the problem is to transfer the segmentation mask

between adjacent frames (BAI et al., 2009; ZHONG et al., 2012; FAN et al., 2015).

The great advantage, in terms of time efficiency, is that there is no need to process the

video as a whole; on the other hand, the algorithm might not be able to treat foreground

14

occlusions for example. On Video SnapCut (BAI et al., 2009), correlations between pixels

in neighboring frames are estimated using optical flow (LUCAS; KANADE et al., 1981).

After that, pixels are classified according to local classifiers based on color similarity and

position around the border between foreground and background, which is propagated via

optical flow.

The work presented by Fan et al. (FAN et al., 2015) is able to transfer the mask

between temporally distant frames, resulting in an interactive and easy-to-use tool. To do

so, it estimates pixel correlations using PatchMatch (BARNES et al., 2009), which has

been demonstrated to produce more accurate results than optical flow for this task. After

that, a final correction is applied to the current frame using an extension of the level-set

technique known as Geodesic Active Contour (CASELLES; KIMMEL; SAPIRO, 1997).

2.2 Video Matting

Video-matting methods usually can be split into two main stages. The first one is

trimap propagation, where the objective is, given trimaps for keyframes, to estimate the

foreground, background and unknown regions for the remaining frames. After obtaining

a trimap for each frame, the final stage is to create a temporally-coherent matting.

2.2.1 Trimap propagation

Although many techniques are able to produce high-quality trimaps with little or

no user interaction, they require additional information about the scene, such as pixel

depth (WANG et al., 2007), multiple cameras with different focal planes (MCGUIRE et

al., 2005), or camera arrays (JOSHI; MATUSIK; AVIDAN, 2006).

Early works on natural video matting (WANG et al., 2005; LI; SUN; SHUM,

2005; BAI et al., 2009) rely on first generating a binary segmentation for each frame and

then obtaining trimaps by dilating and eroding the segmented frame. The uniform width

of the resulting trimap causes the unknown regions to often be too thin (resulting in loss

of information), or too thick (which may introduce errors during the matting stage).

Chuang et al. (CHUANG et al., 2002) proposed a technique to propagate trimaps

across video frames. It uses optical flow to estimate pixel movement between consecutive

frames. A trimap is generated for each frame interpolating trimaps between key frames

15

using forward and backward optical flow. However, optical flow is known to be erroneous

in regions with low contrast and object boundaries, and is also susceptible to errors when

objects become occluded.

The method proposed by Bai et al. (BAI; WANG; SIMONS, 2011) is able to ad-

just the width of the trimap contour according to how fuzzy the border is, but requires an

accurate segmentation for each frame. It also requires the colors of the object and back-

ground to be sufficiently distinct. Johnson et al. (JOHNSON; RAJAN; CHOLAKKAL,

2015) improved this method’s coherence by tracking the object’s shape across the frames.

2.2.2 Temporally-coherent alpha-matting

Although many alpha-matting techniques are able to produce high-quality results

when applied to images (LEVIN; LISCHINSKI; WEISS, 2008; GASTAL; OLIVEIRA,

2010; XU et al., 2017), applying them to videos usually results in jittering because they do

not preserve temporal coherence. Bai et al. (BAI; WANG; SIMONS, 2011) tries to solve

this problem by smoothing transitions between obtained mattes. To do so, one represents

the matting of a frame using level sets. Temporal coherence is achieved interpolating

level sets between frames. Although the method successfully reduces jittering, it may

excessively blur small structures.

The work by Sindeev et al. (SINDEEV; KONUSHIN; ROTHER, 2012) estimates

optical flow based on the alpha-channel value (Alpha Flow). Alpha matte for video is

then obtained using Closed Form matting (LEVIN; LISCHINSKI; WEISS, 2008), where

the neighborhood of a pixel contains not only intraframe pixels but also interframe pixels

estimated with Alpha Flow. The work shows that improved results can be obtained when

the alpha channel is propagated instead of a binary segmentation.

16

3 GRAPH-CUT-BASED IMAGE SEGMENTATION

Image segmentation is a classic problem and perhaps one of the most important

applications of image processing. Different from alpha matting, the goal is to generate a

binary segmentation (foreground or background). Many applications depend on this task,

including analysis of medical images, face recognition, surveillance and machine-vision.

One of the algorithms which has shown great results over the last decades is based on

graph cuts (BOYKOV; VEKSLER; ZABIH, 2001) and will be presented in this section.

3.1 Graph

A graph is a data structure which defines a set of elements and the relation-

ships (connections) among them. A directed graph can be defined as an ordered pair

G = (V,E), where V is a set of nodes or vertices, and E is a set of edges or arcs (COR-

MEN, 2009). Each edge (u, v) ∈ E represents a directed link (ordered pair) between

nodes u and v, with u, v ∈ V .

A weighted directed graph is a graph which has a weight assigned to each of its

edges. Therefore, it may be defined as an ordered tupleG = (V,E,w), where w : E 7→ R

is a function which maps an edge to a real value. Figure 3.1a shows an example of a

weighted directed graph.

3.2 Maximum-Flow Problem

The Maximum Flow problem (also called max-flow) consists of finding the maxi-

mum amount of flow that can be sent from a source node s ∈ V to a sink node t ∈ V in

a weighted directed graph G, while respecting the maximum capacity (or weight) of each

edge in G. Figure 3.1b illustrates the max-flow problem.

Formally, the single-source single-sink Max-flow may be defined as a linear pro-

gram for a graph G = (V,E,w) and its source and sink nodes s and t as

maximize J(f) =
∑

e∈δ+(s) fe

subject to
∑

e∈δ+(v) fe =
∑

e∈δ−(v) fe, ∀v ∈ V

0 ≤ fe ≤ we, ∀e ∈ E

(3.1)

17

where fe denotes the amount of flux passing through edge e, δ+(v) and δ−(v) denote,

respectively, the set of outcoming and incoming edges of node v.

Max-flow is an extensively studied problem. Several approaches have been pro-

posed over the last 60 years presenting different strategies and time complexities, includ-

ing Ford-Fulkerson (O(V C), where C is an upper bound for the maximum flow in the

graph) (FORD; FULKERSON, 1956), Edmonds-Karp (O(V E2)) (EDMONDS; KARP,

1972), Push-Relabel (O(V 2E)) (GOLDBERG; TARJAN, 1988) and, most recently, Orlin

et al. (O(V E)) (ORLIN, 2013).

Figure 3.1: Example of a weighted directed graph G with five nodes and seven edges (a).
Optimal max-flow for G using s as source and t as sink (b), where the values on the edges
represent "flux/capacity". Optimal min-cut for G, dividing it into twos subsets S and T
(c). Note that the cut (in red) passes right through the saturated edges in (b).

(a) Graph (b) Max-flow (c) Min-cut

Source: The Authors

3.3 Minimum-Cut Problem

The minumum-cut problem (also called min-cut) consists of finding, for a graph

G = (V,E,w) with a source node s and a sink node t, a partition S ∪ T = V where

s ∈ S, t ∈ T and S ∩ T = ∅ such that the sum of the capacities of edges between S and

T is minimal. Figure 3.1c illustrates the min-cut problem.

Min-cut may be defined as the linear program

minimize J(S, T) =
∑

e∈E wede

subject to ds,t = 1,

S ∩ T = ∅,

(3.2)

where we is the weight associated to edge e = (u, v), and function du,v evaluates to 0 if

18

u, v ∈ S or u, v ∈ T ; otherwise, it evaluates to 1.

As proven in the max-flow min-cut theorem (CORMEN, 2009), if G = (V,E,w)

is a graph with sink s and source t then the value of the max-flow equals the value of the

min-cut in G. Furthermore, the min-cut optimal solution can be obtained by partitioning

G through the edges saturated by max-flow.

3.4 Image Segmentation

The first work based on graph energy minimization (max-flow/min-cut) in im-

age processing was presented by Greig et al. (GREIG; PORTEOUS; SEHEULT, 1989).

Originally, the method was applied to image restoration, but since then many adaptations

have proposed for different applications (BOYKOV; KOLMOGOROV, 2004), includ-

ing stereo correspondence (ROY; COX, 1998), shape reconstruction (SNOW; VIOLA;

ZABIH, 2000), and image segmentation (BOYKOV; FUNKA-LEA, 2006).

Consider an image I and the problem of classifying each pixel p ∈ I as foreground

F or background B. A feasible solution may be represented as a partition F ∪ B = I

such that F ∩B = ∅. Usually, the goal of graph-based image processing algorithms is to

minimize a defined energy function. For binary image segmentation, this function can be

represented as (BOYKOV; KOLMOGOROV, 2004)

J(F ,B) = λ
∑
p∈I

Dp +
∑

(p,q)∈F×B|p∈N(q)

Vp,q, (3.3)

where Dp is called the data term, Vp,q the smoothness term, N(q) is the set of neighboring

pixels of q, and λ is a constant that defines the relative importance of the data term versus

the smoothness term.

The data term Dp represents the penalty of assigning a pixel p to foreground or

background. It may be defined as

Dp =

PF(p), if p ∈ B;

PB(p), if p ∈ F ,
(3.4)

where PF(p) represents the likelihood of p belonging to the foreground, and is typically

defined based on its color/intensity or proximity to other foreground pixels. It can also be

interpreted as the probability of p belonging to F , for PF(p) + PB(p) = 1. The case of

19

PB(p) is analogous.

The smoothness term Vp,q represents the penalty of assigning neighbouring pixels

p and q different labels. In this sense, it should produce a big penalty if p and q have

similar color intensities and a small penalty otherwise. It is typically defined as

Vp,q =
e−
‖Ip−Iq‖2

2σ2

dpq
, (3.5)

where Ip and Iq are the colors/intensities of neighbor pixels p and q, σ is the standard

deviation of a Gaussian function, and dpq is the distance between p and q in pixel space.

Note that Vp,q evaluates to a high number when |Ip − Iq| < σ, resulting in a high penalty

when separating similar pixels. In our method, we used σ = 1, since, empirically, it

generates good results for the tested video sequences.

The optimal solution for the cost function in Equation 3.3 can be obtained via max-

flow/min-cut algorithms. Figure 3.2 depicts the whole segmentation process. First, we

must create a weighted graph G = (V,E,w). Each pixel in I corresponds to a node in V

(Fig. 3.2a). There are two additional terminal nodes: F and B, representing, respectively,

foreground and background.

The set of edges E consists of two types: n_link (neighborhood links) and t_link

(terminal links). Each pair of neighboring pixels (p, q) has an n_link edge with weight

defined by Vp,q (Fig. 3.2c). Also, each pixel p is connected to both terminal nodes F and

B via t_links defined by PF(p) and PB(p), respectively (Fig. 3.2d).

The optimal min-cut solution results in a partition F ∪ B (Fig. 3.2e) which yields

the optimal segmentation for image I . Boykov et al. (BOYKOV; VEKSLER; ZABIH,

2001) present an efficient max-flow/min-cut implementation for graphs based on images.

20

Figure 3.2: Example of image segmentation using graph-cuts: Input 3x3 monochromatic
image (a); image representation as graph nodes (b); n_link edges (c), the thicker the edge,
the bigger the weight; t_link edges (d), assuming color white as foreground; optimal min-
cut as dashed red line (e); resulting binary segmentation of the input image (f).

Source: The Authors

21

4 GRAPH-CUT-BASED TRIMAP PROPAGATION FOR VIDEO MATTING

The proposed method for semi-supervised trimap generation for video sequences

is presented in this chapter. It assumes that the user provides a video with a trimap and

alpha matte for the first frame of the video sequence, although some methods can be

used to generate the initial trimap and alpha matte from a set of scribbles (GASTAL;

OLIVEIRA, 2010). Figure 4.1 summarizes our method. For each frame, given a trimap

and alpha matte for frame It, the trimap is propagated to frame It+1 according to the

following steps:

1. Alpha Propagation – the alpha channel of frame It is maped to frame It+1 using

PatchMatch (BARNES et al., 2009), taking into account camera and object motion.

The result is an estimation of alpha for each pixel in frame It+1 (Figure 4.1d).

2. Binary Segmentation – using the estimated alpha for each pixel as the value of the

t-link edges, frame It+1 is segmented using graph-cut binary segmentation (Fig-

ure 4.1e).

3. Foreground/Background Expansion – the trimap for frame It+1 is generated by ex-

panding both the foreground (Figure 4.1f) and background regions (Figure 4.1g).

The trimap’s unknown region results from the intersection of the expanded regions

(Figure 4.1h). Different from simple trimap propagation methods, the width of the

unknown region is not uniform. It varies for each pixel according to its estimated

alpha value and neighborhood color similarity, as explained in Section 4.3.

4. Alpha Matting – finally, given the computed trimap, alpha matting is performed

using Shared Matting (GASTAL; OLIVEIRA, 2010) (Figure 4.1i). Note that any

alpha matting solution (e.g., (LEVIN; LISCHINSKI; WEISS, 2008)) could be used

at this stage.

The details of these steps are presented in the following sections.

4.1 Alpha Propagation

To generate a trimap for frame It+1 from frame It, first we obtain a good estimate

of the alpha value for each pixel in It+1. To do so, we compute the pixel displacements

between frames It and It+1. However, we use Patchmatch (BARNES et al., 2009), which

has been demonstrated to achieve more accurate results than optical flow (FAN et al.,

22

Figure 4.1: Overview of the proposed method.

(a) Input frame It (b) Alpha channel αt

(c) Input frame It+1 (d) Alpha Propagation

(e) Binary Segmentation (f) Foreground Expansion

(g) Background Expansion (h) Trimap t+1

(i) Alpha matting t+1

Source: The Authors

23

Figure 4.2: Nearest Neighbor Field (NNF) problem: given two images A and B, find for
every patch in A the best matching patch in B.

Source: Barnes et al. (2009)

2015). Patchmatch computes the nearest neighbor field (NNF) between two images. Thus,

given two images A and B, the goal is to find for each patch PA of size M in A the patch

PB (of same size) in B which is the most similar to PA. Figure 4.2 illustrates the idea.

Patchmatch is able to obtain a good approximation for the solution using an efficient

randomized method.

The foreground and background regions in a video sequence tend to displace in

different ways (FAN et al., 2015). Usually, the background moves according to the motion

of the camera with respect to the scene, while the foreground object moves in a different

direction. Thus, similar to (FAN et al., 2015), we estimate two NNFs from frame It+1 to

It: one for the foreground and other for the background.

To obtain more meaningful NNFs, we independently align the background and the

foreground of frames It and It+1. To do so, we first perform feature matching between

both frames using SURF (BAY et al., 2008), taking into account only features in the

background (foreground) of It. The pixels of frame It are then translated by the (rounded)

mean displacement between the matched features to generate an image Ibt (Ift), which tries

to align its background (foreground) to the one of frame It+1.

Given Ibt and Ift , we compute two NNFs using a modified version of PatchMatch:

one from It+1 to Ibt and another from It+1 to Ift . To exploit the benefits of the translated

images to compute more meaningful NNFs, we modified the original PatchMatch algo-

24

rithm to restrict its search to a local neighborhood around the coordinates of the source

pixel position. Thus, since the images have been pre-aligned, we initialize each patch

with a zero offset, as opposed to using a random offset as done in the original version of

the algorithm. Also, we limit the search to a squared window whose side corresponds to

one third of the frame’s diagonal. Finally, we modified the PatchMatch cost function to

include an Euclidian distance term between the centers of the patches. Such a term favors

local matches.

Given both NNFs, the final NNF from It+1 to It is obtained by selecting for each

pixel the match with smaller modified PatchMatch cost (MPC)

MPC = D(Pt+1(p), Pt(p
′)) + ||p− p′||, (4.1)

where D(Pt+1(p), Pt(p
′)) is the original PatchMatch cost function computed as the sum

of absolute differences of the colors/intensities of the corresponding pixels in the patches

centered at pixel p in frame It+1 and at pixel p′ in frame It. ||p − p′|| is the Euclidean

distance between the centers of the corresponding patches. Finally, the alpha channel

value estimated for each pixel p in frame t+1 is the alpha value from pixel p′ in frame t.

Equation 4.1 needs to be evaluated for each pixel in frame It+1. High matching

costs are associated with sudden changes in the neighborhood of pixel p from one frame

to another, such as the appearance of previously occluded objects, as shown in Figure 4.3.

While one could ask the user to classify these new elements, since most often they result

from disocclusions, whenever the cost of a pixel is higher than a defined threshold, it is

reasonable to classify it as a background pixel. Furthermore, if one assumes the existence

of a single foreground object, the foreground region should be connected and small iso-

lated components that might have been possibly incorrectly considered as foreground can

be confidently classified as background.

4.2 Binary Segmentation

After obtaining an estimate for the alpha channel of each pixel in frame t+1, we

can perform a binary segmentation. To do so, we create a graph for It+1 as showed in

Section 3.4 using, for each pixel p, αp as the weight of edge (p, F) and (1 − αp) as

the weight of (p,B). Segmented image Lt+1 is computed using graph cut (BOYKOV;

VEKSLER; ZABIH, 2001).

25

Figure 4.3: High matching cost due to disocclusion of background elements from frame
It (a) to frame It+1 (b), highlighted by the red square. Such situations often cause Patch-
Match to incorrectly estimate some alpha values (c). Corrected alpha values after treating
high-cost matchings and isolated small components as part of the background (d).

(a) Input frame It (b) Input frame It+1

(c) Incorrectly estimated alpha values. (d) Corrected alpha.

Source: The Authors

26

4.3 Foreground and Background Expansions

Here we explain how to generate a trimap from the binary segmentation, in such a

way that the width of the unknown region varies according to the fuzziness of the border.

The Graph Cut algorithm produces binary segmentations. In order to obtain a trimap from

such a segmentation, we expand both the foreground and the background regions by in-

corporating fuzzy pixels from the complementary regions. The intersection between those

expanded areas defines the trimap unknown region. Figure 4.4 illustrates the concept.

Recall the graph-cut cost function from Section 3.4:

J(F ,B) = λ
∑
p∈I

Dp +
∑

(p,q)∈F×B|p∈N(q)

Vp,q (4.2)

As an example, let I be a 1-dimensional image, as shown in Figure 4.5a, whose optimal

segmentation is a cut at position b. Let the target trimap region be the region between a

and c. A plot of the cost of the cut versus its position is shown in Figure 4.5b. The cost

in minimum at position b and increases towards both a and c. Therefore, the intuition

behind our method is to obtain a trimap by, starting from a graph-cut optimal solution,

incrementally advancing the foreground (background) frontier by incorporating pixels

with similar colors or low probability of belonging to the foreground (background) in a

controlled way, until a certain cost is reached.

We define the cost of changing the label of a pixel p from background to fore-

ground as

CF(p) = λ ∗ (PB(p)− PF(p)) +
∑

q∈NB(p)

Vp,q −
∑

q∈NF (p)

Vp,q, (4.3)

where NF(p) and NB(p) are the sets of neighbor pixels of p labeled as foreground and

background, respectively. This function determines how much the cost of the cut increases

when a pixel is switched from background to foreground. An intuition about this cost

function is presented in Figure 4.6. Suppose we want to know how much the cost varies

when switching the highlighted pixel p (green) to the foreground in Figure 4.6a. The

neighborhood of p is represented by the graph shown in Figure 4.6b. Note that currently

J(F ,B) = PF(p) + Vp,s, since the cost of the cut is the sum of the weights of the edges it

passes through. Once we move p to the foreground (Figure 4.6c), the cut no longer passes

through edges (p, F) and (p, s). Hence, to compute CF(p) we must subtract the weight

27

Figure 4.4: Optimal segmentation lies inside trimap’s unknown region. Therefore, the
trimap can be obtained by expanding the foreground and background regions.

(a) Input image I

(b) Optimal segmentation (red line) in high-
lighted region of (a)

(c) Expanded foreground (green line)

(d) Expanded background (yellow line). (e) Trimap’s unknown region obtained with the
intersection of expanded regions.

Source: The Authors

28

Figure 4.5: Variation of graph-cut cost when signal is cut at different positions.

(a) Input 1-d signal seg-
mented in different positions (b) Cut cost graph

Source: The Authors

of those edges. Finally, we must sum PB(p) and the weight of the edges between p and its

neighbors in the background, which results in Equation 4.3. Note that this cost is lower

for pixels which have a low probability of belonging to the background or are similar to

their neighbouring pixels in the foreground.

Similarly, the cost of changing a pixel from foreground to background is defined

as

CB(p) = λ ∗ (PF(p)− PB(p)) +
∑

q∈NF (p)

Vp,q −
∑

q∈NB(p)

Vp,q. (4.4)

To expand the foreground region, we consider only pixels located on the border be-

tween foreground and background. At each iteration, we calculate CF(p) for every pixel

p labeled as background which are located on the border with the foreground. We then

select the pixel with the lowest cost and add it to the foreground. We continue expanding

the frontier until the cost of assigning a pixel is higher than a threshold δ < λ. Note that if

we implement this method using a strategy similar to Prim’s algorithm (CORMEN, 2009)

(using a priority queue), the time complexity is O(N log(N)), where N is the number of

pixels in the video frame. In practice, however, the average complexity is lower, since the

number of visited pixels is proportional to the size of the unknown region of the trimap,

which is usually much smaller than the size of the frame.

The background expansion is obtained similarly. As mentioned before, once we

have the expanded foreground and background, the unknown region of the trimap is ob-

29

Figure 4.6: Cost function intuition

(a) Segmented image

(b) Neighborhood of background pixel p (c) p changed to foreground

Source: The Authors

tained as the intersection of these expanded regions. Finally, it is usually a good idea

to slightly dilate the obtained unknown region to make sure it covers the whole object.

Figure 4.7 illustrates the various stages of our trimap generation and alpha channel esti-

mation.

4.4 Alpha Matting

Once the trimap is generated, we can finally compute the alpha matte for frame

It+1 (Figure 4.7 (f)). We use Shared Matting (GASTAL; OLIVEIRA, 2010), since it

is very fast and produces good results. Note, however, that our method can be used

30

Figure 4.7: Automatic trimap and alpha-channel computation. (a) Input image. (b) Bi-
nary segmentation using graph-cut (Section 4.2). (c) Simple trimap obtained by dilat-
ing (b) (10px width). (d) Unknown region obtained by intersecting the expanded back-
ground/foreground from (b). (e) Actual trimap obtained by dilating (d) (10px width). (f)
Alpha matte for (a) obtained applying alpha matting (GASTAL; OLIVEIRA, 2010) to the
trimap in (c). (g) Alpha matte obtained applying alpha matting (GASTAL; OLIVEIRA,
2010) to the trimap (e). (h) Highlighted region from (f). (i) Highlighted region from (g).
Note that (h) misses some details of the hair, while (i) is more accurate.

(a) (b)

(c)

(d) (e)

(f) (g)

(h) (i)

Source: The Authors

31

with any alpha-matting strategy. It is important to mention that the more accurate the

matting technique, the better is the trimap propagation, as errors in the matting stage

might propagate to subsequent frames.

4.5 Propagating between Multiple Keyframes

So far, we have explained how to propagate trimaps forward, given that the user

has provided an accurate trimap for the first frame. However, for situations involving fast

object or camera motions the user might need to provide trimaps for multiple keyframes.

In such situations, forward propagation only may result in temporal discontinuities in the

trimap sequence. Therefore, we must interpolate the trimaps between keyframes to make

sure that all transitions are as smooth as possible.

To propagate a trimap between keyframes t and t+k we first propagate the trimaps

forward, while also keeping track on the amount of error propagated in each frame, that

is the accumulated PatchMatch cost. As described in Section 4.1, we use PatchMatch to

compute correlations between pixels in frames t and t+1, and, then, we use it to map

the alpha channel of frame t to frame t+1. We also use the correlations obtained by

PatchMatch to calculate an accumulated error estimate. Whenever a pixel p in It+1 is

matched with a pixel q in It, the accumulated error for pixel p is equal to the modified

PatchMatch cost plus the accumulated error for q.

Once we have propagated the trimaps forward, we perform a second pass propa-

gating trimaps backwards starting at frame t+k, while also keeping track of the cummu-

lative error. On this pass, whenever we warp the alpha channel, we select, for each pixel,

between the forward and backward propagation, the propagation with the smallest error.

32

5 RESULTS

Our method was implemented in Matlab with C++ bindings for the most time-

intensive routines. Segmentation, PatchMatch, and alpha-matting are performed using

the authors’ source code (BOYKOV; VEKSLER; ZABIH, 2001; BARNES et al., 2009;

GASTAL; OLIVEIRA, 2010). The tests were performed on a Intel i7-4970k quad-core

processor (4.0Ghz) with 8Gb RAM on Ubuntu 16.04 operating system. On average, for

1080p videos, our approach takes about fifteen seconds to transfer a trimap between two

frames, using the multithreaded version of PatchMatch. The current version of the code

has not been optimized and the only stages that cannot be paralelized are the segmentation

and the foreground/background expansion. Thus, we would expect a significant speedup

from an optimized GPU implementation.

For the results shown in this chapter, we perceived that the best set of parameters

for our method is λ = 100, δ = 0.9λ and σ = 1, since these, in general, generated the

best results. Therefore, we set these parameters as default for our method.

We compared our approach with the work by Chuang et al. (CHUANG et al.,

2002). We generated trimaps for the video sequences provided by the author and com-

pared the number of keyframes necessary to generate an accurate trimap for the entire

sequence. Since the keyframes of the previous work were not available, we drew trimaps

as necessary. Table 5.1 shows the comparison. See Apendix A for visualization of results.

Table 5.1: Comparison between number of key frames needed by Chuang et al. and by
our method.

Video #Frames (CHUANG et al., 2002) Ours
amira 91 10 6
kim 101 11 6

A comparison with Bai et al. (BAI; WANG; SIMONS, 2011) and Jonson et al.

(JOHNSON; RAJAN; CHOLAKKAL, 2015) would be ideal. However, since neither

the source code nor the video benchmark used by the authors is publicly available, this

comparison was not possible.

Finally, we run tests using the Video Matting Benchmark (EROFEEV et al., 2015).

This benchmark consists on a series of challenging video sequences, with complex scenes

containing difficult problems related to video matting such as fast motions, color ambi-

guity, and foreground with a large number of transparent pixels. The benchmark provides

a trimap for each frame of the video sequences. We selected the mininal amount of uni-

formly distributed trimaps as key frames that our method requires to produce trimaps for

33

the sequence. Table 5.2 shows the number of keyframes needed to generate a trimap for

each frame. Video frames are shown in Appendix A.

Table 5.2: Number of keyframes needed by our method to recover trimaps for the entire
video sequences from the Video Matting Benchmark (EROFEEV et al., 2015).

Video #Frames #Key frames
Alex 150 16
concert 200 2
Dmitriy 150 31
Slava 150 31
snow 160 17
Vitaliy 149 16

We conclude that for simple scenes, such as videos from (CHUANG et al., 2002)

our method is able to accurately generate good trimaps with little user interaction. How-

ever, as the scene complexity increases (i. e., fast motions, background and foreground

color ambiguity) such as found in the Dmitriy sequence, one trimap may be required every

five frames and, still, there might be some errors in the extracted matte.

The results we have presented were obtained using trimaps every k key frames,

since the trimaps were provided by the benchmark. Alternatively, we foresee an interac-

tive application where the user initially provides two trimaps (for the first and last frames).

After our technique computes the alpha mattes for the intermediate frames, the user can

use scribbles to interactively correct errors. Such corrections would then be automatically

incorporated and propagated to other frames, minimizing the need for user intervention.

5.1 Limitations and Future Work

Although our method is able to significantly reduce the amount of user input re-

quired for simple scenes, several challenges still need to be overcome. First, our algorithm

is highly dependent on the quality of the alpha matte provided by the alpha matting al-

gorithm. Thus, inaccuracies in the computed matte (e.g., a high alpha for a background

pixel) might be propagated to the subsequent frames, degrading the quality of the results

over time (Figure 5.1). This is the reason why we were unable to generate trimaps for

some of the video sequences in the Video Matting Benchmark. A possible solution could

be trying to automatically detect and correct these problems or using another matting

technique.

Although PatchMatch (BARNES et al., 2009) tends to produce better results than

34

Figure 5.1: Example of error generated by Shared Matting due to a very complex scene.
A small error is generated in frame 0 and is increased when propagated to frame 5.

(a) Artem frame 0 (b) Artem frame 5

(c) Alpha matte of highlighted region in (a) (d) Alpha matte of highlighted region in (b)

Source: The Authors

35

Figure 5.2: Example of error generated by PatchMatch on a video sequence with fast
motions and color ambiguity. Note that the fast moving motorcycle is classified wrong
due to fast motions and background occlusion.

(a) Dmitriy frame 139 (b) Dmitriy frame 140 (c) Dmitriy frame 141

(d) Alpha matte of high-
lighted region in (a)

(e) Alpha matte of high-
lighted region in (b)

(f) Alpha matte of high-
lighted region in (c)

Source: The Authors

optical flow methods, our technique still requires a considerable amount of user input to

perform well on scenes with fast motions and ambiguity between background and fore-

ground colors (Figure 5.2). An accurate method for movement estimation could reduce

the number of keyframes required for complex scenes. Furthermore, on many video se-

quences of the Video Matting Benchmark, only part of the foreground object is shown

in the beginning and, as the video continues, more of the object is revealed. In some of

these situations, our method may fail to correctly classify parts of these initially occluded

objects.

Shared Matting was designed for alpha matting of images. As such, it does not

consider temporal coherence when computing the matte, which may result in jittering.

Applying a temporally-coherent matting algorithm on the obtained trimaps should im-

prove the results.

Finally, as already mentioned, our implementation has not been optimized. Cur-

rently, it was not practical to create an interactive editing application due to the relatively

long execution time for each frame. A faster implementation would result in more re-

sponsiveness, enabling the user to quickly correct any misclassification produced by our

method.

36

6 CONCLUSION

We presented a novel method for trimap propagation in video sequences. The

user only needs to specify trimaps for a few keyframes to obtain trimaps for the entire

sequence. Different from other approaches which first segment the video and then gen-

erate a trimap, our method generates trimaps based on the alpha matte obtained for the

previous frame. If the matte is correct, it should provide more relevant information for

pixel classification than a binary segmentation.

We use an adaptation of the modified PatchMatch algorithm (BARNES et al.,

2009) proposed by Fan et al. (FAN et al., 2015) to propagate the alpha matte of a given

video frame to the next one. Given the propagated alpha channel, we obtain a binary seg-

mentation for the current video frame using graph cut (BOYKOV; VEKSLER; ZABIH,

2001). We then proposed a method for expanding the unknown region of the trimap

based on the dynamic update of the graph-cut segmentation cost function. This expansion

gives priority to fuzzy pixels, resulting in an adaptively-defined trimap. Together with the

method for video matting, these extensions to PatchMatch and graph cuts are the main

contributions of our work.

Our results show that our method is able to handle simple scenes requiring little

user interaction. We have compared our method to the technique proposed by (CHUANG

et al., 2002) and obtained similar results using approximately 60% of the number of

keyframes used in their work. For complex scenes, our method may require a keyframe

about every five frames. Improvements could be achieved by using more accurate meth-

ods for estimating and propagating the alpha matte. Also, the use of a temporally-coherent

alpha-matting technique should reduce the occurrence of jittering.

37

REFERENCES

AKSOY, Y. et al. Interactive high-quality green-screen keying via color unmixing. ACM
Transactions on Graphics (TOG), ACM, v. 35, n. 5, p. 152, 2016.

BAI, X.; WANG, J.; SIMONS, D. Towards temporally-coherent video matting. In:
SPRINGER. MIRAGE. [S.l.], 2011. v. 11, p. 63–74.

BAI, X. et al. Video snapcut: robust video object cutout using localized classifiers. In:
ACM. ACM Transactions on Graphics (ToG). [S.l.], 2009. v. 28, n. 3, p. 70.

BARNES, C. et al. PatchMatch: A randomized correspondence algorithm for structural
image editing. ACM Transactions on Graphics (Proc. SIGGRAPH), v. 28, n. 3, ago.
2009.

BAY, H. et al. Speeded-up robust features (surf). Computer vision and image
understanding, Elsevier, v. 110, n. 3, p. 346–359, 2008.

BOYKOV, Y.; FUNKA-LEA, G. Graph cuts and efficient nd image segmentation.
International journal of computer vision, Springer, v. 70, n. 2, p. 109–131, 2006.

BOYKOV, Y.; KOLMOGOROV, V. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE transactions on pattern analysis
and machine intelligence, IEEE, v. 26, n. 9, p. 1124–1137, 2004.

BOYKOV, Y.; VEKSLER, O.; ZABIH, R. Fast approximate energy minimization via
graph cuts. IEEE Transactions on pattern analysis and machine intelligence, IEEE,
v. 23, n. 11, p. 1222–1239, 2001.

CASELLES, V.; KIMMEL, R.; SAPIRO, G. Geodesic active contours. International
journal of computer vision, Springer, v. 22, n. 1, p. 61–79, 1997.

CHEN, J.; PARIS, S.; DURAND, F. Real-time edge-aware image processing with the
bilateral grid. ACM Transactions on Graphics (TOG), ACM, v. 26, n. 3, p. 103, 2007.

CHUANG, Y.-Y. et al. Video matting of complex scenes. ACM Transactions on
Graphics, v. 21, n. 3, p. 243–248, July 2002. Sepcial Issue of the SIGGRAPH 2002
Proceedings.

CORMEN, T. H. Introduction to algorithms. [S.l.: s.n.], 2009.

EDMONDS, J.; KARP, R. M. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM (JACM), ACM, v. 19, n. 2, p. 248–264,
1972.

EROFEEV, M. et al. Perceptually motivated benchmark for video matting. In: BMVC.
[S.l.: s.n.], 2015. p. 99–1.

FAN, Q. et al. Jumpcut: non-successive mask transfer and interpolation for video cutout.
ACM Trans. Graph., v. 34, n. 6, p. 195–1, 2015.

FORD, L. R.; FULKERSON, D. R. Maximal flow through a network. Canadian journal
of Mathematics, v. 8, n. 3, p. 399–404, 1956.

38

GASTAL, E. S.; OLIVEIRA, M. M. Shared sampling for real-time alpha matting. In:
WILEY ONLINE LIBRARY. Computer Graphics Forum. [S.l.], 2010. v. 29, n. 2, p.
575–584.

GOLDBERG, A. V.; TARJAN, R. E. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), ACM, v. 35, n. 4, p. 921–940, 1988.

GRADY, L. Random walks for image segmentation. IEEE transactions on pattern
analysis and machine intelligence, IEEE, v. 28, n. 11, p. 1768–1783, 2006.

GREIG, D. M.; PORTEOUS, B. T.; SEHEULT, A. H. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society. Series B
(Methodological), JSTOR, p. 271–279, 1989.

GRUNDMANN, M. et al. Efficient hierarchical graph-based video segmentation. In:
IEEE. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on. [S.l.], 2010. p. 2141–2148.

JOHNSON, J.; RAJAN, D.; CHOLAKKAL, H. Temporal trimap propagation using
motion-assisted shape blending. In: IEEE. Visual Communications and Image
Processing (VCIP), 2015. [S.l.], 2015. p. 1–4.

JOSHI, N.; MATUSIK, W.; AVIDAN, S. Natural video matting using camera arrays. In:
ACM. ACM Transactions on Graphics (TOG). [S.l.], 2006. v. 25, n. 3, p. 779–786.

LEVIN, A.; LISCHINSKI, D.; WEISS, Y. A closed-form solution to natural image
matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE,
v. 30, n. 2, p. 228–242, 2008.

LI, Y.; SUN, J.; SHUM, H.-Y. Video object cut and paste. In: ACM. ACM Transactions
on Graphics (ToG). [S.l.], 2005. v. 24, n. 3, p. 595–600.

LUCAS, B. D.; KANADE, T. et al. An iterative image registration technique with an
application to stereo vision. Vancouver, BC, Canada, 1981.

MAERKI, N. et al. Bilateral space video segmentation. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2016.

MCGUIRE, M. et al. Defocus video matting. In: ACM. ACM Transactions on
Graphics (ToG). [S.l.], 2005. v. 24, n. 3, p. 567–576.

MORTENSEN, E. N.; BARRETT, W. A. Intelligent scissors for image composition.
In: ACM. Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. [S.l.], 1995. p. 191–198.

ORLIN, J. B. Max flows in o (nm) time, or better. In: ACM. Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. [S.l.], 2013. p. 765–774.

ROY, S.; COX, I. J. A maximum-flow formulation of the n-camera stereo correspondence
problem. In: IEEE. Computer Vision, 1998. Sixth International Conference on. [S.l.],
1998. p. 492–499.

SINDEEV, M.; KONUSHIN, A.; ROTHER, C. Alpha-flow for video matting. In:
SPRINGER. Asian Conference on Computer Vision. [S.l.], 2012. p. 438–452.

39

SNOW, D.; VIOLA, P.; ZABIH, R. Exact voxel occupancy with graph cuts. In: IEEE.
Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference
on. [S.l.], 2000. v. 1, p. 345–352.

WANG, J. et al. Interactive video cutout. In: ACM. ACM Transactions on Graphics
(ToG). [S.l.], 2005. v. 24, n. 3, p. 585–594.

WANG, J.; COHEN, M. F. et al. Image and video matting: a survey. Foundations
and Trends R© in Computer Graphics and Vision, Now Publishers, Inc., v. 3, n. 2, p.
97–175, 2008.

WANG, O. et al. Automatic natural video matting with depth. In: IEEE. Computer
Graphics and Applications, 2007. PG’07. 15th Pacific Conference On. [S.l.], 2007. p.
469–472.

XU, N. et al. Deep image matting. arXiv preprint arXiv:1703.03872, 2017.

ZHONG, F. et al. Discontinuity-aware video object cutout. ACM Transactions on
Graphics (TOG), ACM, v. 31, n. 6, p. 175, 2012.

40

APPENDIX A — RESULT FIGURES

This appendix presents results obtained for tested video sequences. Figures A.1

and A.2 show videos from (CHUANG et al., 2002) and Figures A.3-A.7 (EROFEEV et

al., 2015). For each video we show input frames, input trimaps (first and last), output

trimaps and the resulting alpha channel for some frames. The full video sequences are

available online for download1. We strongly recommend the reader to watch the videos

for a better view of the results.

1<https://inf.ufrgs.br/~mhbackes/video-matting/results.zip>

https://inf.ufrgs.br/~mhbackes/video-matting/results.zip

41
Fi

gu
re

A
.1

:a
m

ir
a

vi
de

o
se

qu
en

ce

(a
)a

m
ir

a
fr

am
e

0
-s

ou
rc

e
(b

)a
m

ir
a

fr
am

e
35

-s
ou

rc
e

(c
)a

m
ir

a
fr

am
e

65
-s

ou
rc

e
(d

)a
m

ir
a

fr
am

e
90

-s
ou

rc
e

(e
)a

m
ir

a
fr

am
e

0
-i

np
ut

tr
im

ap
(f

)a
m

ir
a

fr
am

e
35

-r
es

ul
tt

ri
m

ap
(g

)a
m

ir
a

fr
am

e
65

-r
es

ul
tt

ri
m

ap
(h

)a
m

ir
a

fr
am

e
90

-i
np

ut
tr

im
ap

(i
)a

m
ir

a
fr

am
e

0
-r

es
ul

ta
lp

ha
(j

)a
m

ir
a

fr
am

e
35

-r
es

ul
ta

lp
ha

(k
)a

m
ir

a
fr

am
e

65
-r

es
ul

ta
lp

ha
(l

)a
m

ir
a

fr
am

e
90

-r
es

ul
ta

lp
ha

So
ur

ce
:T

he
A

ut
ho

rs

42
Figure

A
.2:kim

video
sequence

(a)kim
fram

e
20

-source
(b)kim

fram
e

60
-source

(c)kim
fram

e
100

-source
(d)kim

fram
e

130
-source

(e)kim
fram

e
20

-inputtrim
ap

(f)kim
fram

e
60

-resulttrim
ap

(g)kim
fram

e
100

-resulttrim
ap

(h)kim
fram

e
130

-inputtrim
ap

(i)kim
fram

e
20

-resultalpha
(j)kim

fram
e

60
-resultalpha

(k)kim
fram

e
100

-resultalpha
(l)kim

fram
e

130
-resultalpha

Source:T
he

A
uthors

43

Fi
gu

re
A

.3
:A

le
x

vi
de

o
se

qu
en

ce

(a
)A

le
x

fr
am

e
0

-s
ou

rc
e

(b
)A

le
x

fr
am

e
45

-s
ou

rc
e

(c
)A

le
x

fr
am

e
10

5
-s

ou
rc

e
(d

)A
le

x
fr

am
e

14
9

-s
ou

rc
e

(e
)A

le
x

fr
am

e
0

-i
np

ut
tr

im
ap

(f
)A

le
x

fr
am

e
45

-r
es

ul
tt

ri
m

ap
(g

)A
le

x
fr

am
e

10
5

-r
es

ul
tt

ri
m

ap
(h

)A
le

x
fr

am
e

14
9

-i
np

ut
tr

im
ap

(i
)A

le
x

fr
am

e
0

-r
es

ul
ta

lp
ha

(j
)A

le
x

fr
am

e
45

-r
es

ul
ta

lp
ha

(k
)A

le
x

fr
am

e
10

5
-r

es
ul

ta
lp

ha
(l

)A
le

x
fr

am
e

14
9

-r
es

ul
ta

lp
ha

So
ur

ce
:T

he
A

ut
ho

rs

44

Figure
A

.4:D
m

itriy
video

sequence

(a)D
m

itriy
fram

e
0

-source
(b)D

m
itriy

fram
e

48
-source

(c)D
m

itriy
fram

e
103

-source
(d)D

m
itriy

fram
e

149
-source

(e)D
m

itriy
fram

e
0

-inputtrim
ap

(f)D
m

itriy
fram

e
48

-resulttrim
ap

(g)D
m

itriy
fram

e
103

-resulttrim
ap

(h)D
m

itriy
fram

e
149

-inputtrim
ap

(i)D
m

itriy
fram

e
0

-resultalpha
(j)D

m
itriy

fram
e

48
-resultalpha

(k)D
m

itriy
fram

e
103

-resultalpha
(l)D

m
itriy

fram
e

149
-resultalpha

Source:T
he

A
uthors

45

Fi
gu

re
A

.5
:S

la
va

vi
de

o
se

qu
en

ce

(a
)S

la
va

fr
am

e
0

-s
ou

rc
e

(b
)S

la
va

fr
am

e
48

-s
ou

rc
e

(c
)S

la
va

fr
am

e
10

3
-s

ou
rc

e
(d

)S
la

va
fr

am
e

14
9

-s
ou

rc
e

(e
)S

la
va

fr
am

e
0

-i
np

ut
tr

im
ap

(f
)S

la
va

fr
am

e
48

-r
es

ul
tt

ri
m

ap
(g

)S
la

va
fr

am
e

10
3

-r
es

ul
tt

ri
m

ap
(h

)S
la

va
fr

am
e

14
9

-i
np

ut
tr

im
ap

(i
)S

la
va

fr
am

e
0

-r
es

ul
ta

lp
ha

(j
)S

la
va

fr
am

e
48

-r
es

ul
ta

lp
ha

(k
)S

la
va

fr
am

e
10

3
-r

es
ul

ta
lp

ha
(l

)S
la

va
fr

am
e

14
9

-r
es

ul
ta

lp
ha

So
ur

ce
:T

he
A

ut
ho

rs

46

Figure
A

.6:snow
video

sequence

(a)snow
fram

e
0

-source
(b)snow

fram
e

48
-source

(c)snow
fram

e
103

-source
(d)snow

fram
e

159
-source

(e)snow
fram

e
0

-inputtrim
ap

(f)snow
fram

e
48

-resulttrim
ap

(g)snow
fram

e
103

-resulttrim
ap

(h)snow
fram

e
159

-inputtrim
ap

(i)snow
fram

e
0

-resultalpha
(j)snow

fram
e

48
-resultalpha

(k)snow
fram

e
103

-resultalpha
(l)snow

fram
e

159
-resultalpha

Source:T
he

A
uthors

47

Fi
gu

re
A

.7
:V

ita
liy

vi
de

o
se

qu
en

ce

(a
)V

ita
liy

fr
am

e
0

-s
ou

rc
e

(b
)V

ita
liy

fr
am

e
48

-s
ou

rc
e

(c
)V

ita
liy

fr
am

e
10

3
-s

ou
rc

e
(d

)V
ita

liy
fr

am
e

14
8

-s
ou

rc
e

(e
)V

ita
liy

fr
am

e
0

-i
np

ut
tr

im
ap

(f
)V

ita
liy

fr
am

e
48

-r
es

ul
tt

ri
m

ap
(g

)V
ita

liy
fr

am
e

10
3

-r
es

ul
tt

ri
m

ap
(h

)V
ita

liy
fr

am
e

14
8

-i
np

ut
tr

im
ap

(i
)V

ita
liy

fr
am

e
0

-r
es

ul
ta

lp
ha

(j
)V

ita
liy

fr
am

e
48

-r
es

ul
ta

lp
ha

(k
)V

ita
liy

fr
am

e
10

3
-r

es
ul

ta
lp

ha
(l

)V
ita

liy
fr

am
e

14
8

-r
es

ul
ta

lp
ha

So
ur

ce
:T

he
A

ut
ho

rs

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introdution
	2 Related work
	2.1 Video Segmentation
	2.2 Video Matting
	2.2.1 Trimap propagation
	2.2.2 Temporally-coherent alpha-matting

	3 Graph-Cut-based Image Segmentation
	3.1 Graph
	3.2 Maximum-Flow Problem
	3.3 Minimum-Cut Problem
	3.4 Image Segmentation

	4 Graph-Cut-Based Trimap Propagation for Video Matting
	4.1 Alpha Propagation
	4.2 Binary Segmentation
	4.3 Foreground and Background Expansions
	4.4 Alpha Matting
	4.5 Propagating between Multiple Keyframes

	5 Results
	5.1 Limitations and Future Work

	6 Conclusion
	References
	Appendix A — Result figures

