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Abstract. An algorithm to ssimulate 3-D high compressible flows of viscous and non-viscous
fluids is presented in this work. The time integration procedure was obtained from an
expansion in Taylor series of the governing equations, while spatial discretization was
carried out using the Finite Element Method (FEM) based on the classical Bubnov-Galerkin
technique. In order to obtain considerable improvements in CPU time and memory, and to
take advantage from the fast vectorial processors existing in modern supercomputers, an
analytical evaluation of element matrices was adopted, deriving the corresponding
expressions from the eight-node isoparametric brick element. One practical example is also
presented in this paper in order to show the excellent computational performance and the
good agreements with results obtained previously by other authors.

Keywords: Computational fluid dynamics, Compressible flows, Finite element method,
Taylor-Galerkin.

1. INTRODUCTION

Computational Fluid Dynamics (CFD) has become a subject of increasing importance in
the last three decades due to factors such as the rapid rate of developments in computer
technology, improvements in the quality of numerical algorithms and the potential of this
field to deal with “real world” phenomena that cannot be reproduced so easily by physical
model tests.

Even though Finite Differences and Finite Volumes have been traditionally employed in
CFD and that the Boundary Element Method has also been played an important role in the last
twenty years, the Finite Element Method (FEM) has become an efficient alternative technique
to analyze Fluid Dynamics problems since Zienkiewicz and Cheung (1965) published their
first work in this area

The main objectives of this work are the development of an efficient finite element
formulation and application of a numerical agorithm to simulate three-dimensional high
compressible flows.

An one step Taylor-Galerkin scheme and the Finite Element Method were used for time
and spatial discretization. In order to get important savings in CPU time and computer
memory and to obtain considerable improvements in the code vectorization, an analytical



evaluation of the element matrices was performed. The corresponding expressions were
derived from the eight-node hexahedral isoparametric element. The Taylor-Galerkin scheme,
which may be interpreted as the finite element version of the Lax-Wendroff scheme used in
finite differences (Richtmayer and Morton, 1967), was previously used by Donea (1984),
Lohner et al. (1985), Morgan et. a. (1991) and Texeiraet. a. (1998), among others.

In order to stabilize numerically the solution in the presence of strong shocks, it is
necessary to add numerical damping to the flow solver. Two main possibilities may be
employed: the flux corrected transport method (FCT) as presented by Léhner (1988) and the
artificial viscosity model, as given by Argyris et. a. (1989). In this work the last alternative
was adopted because of its simplicity and efficiency in terms of CPU time.

2. THE GOVERNING EQUATIONS

In an Eulerian description the system of partial differential equations governing fluid
dynamics problems can be written as follows:
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where v, are the fluid velocity components, p is the density (specific mass), p is the
thermodynamic pressure, t; are the viscous components of the stress tensor, e and u are the

specific total energy and the specific internal energy respectively, K is the thermal
conductivity, 3, isthe Kronecker delta, Q isthe domain to be studied and, finally, x and t

are the spatial and temporal coordinates respectively. In those expressions isotropic heat
diffusion was assumed. For a Newtonian fluid the viscous stress components are given by:
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where p and A arethe shear and the volumetric viscosity respectively.
The equation of state can be written as:
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with y=c,/c,, where ¢, and c, are the specific heat coefficients at constant volume and

pressure, respectively. The internal energy and the temperature are related to the independent
field variables by the following expression

u=ch=e—}évivi (5)



where u and T are the specific internal energy and the temperature, respectively.
Dimensionless variables are used in this work, with
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where L isareference length, c . is the reference value of the sound speed and p,, isthe
reference value of specific mass(c,, and p,, arevauesof ¢ and p at the far field, where the

flow has not any perturbation).

Sutherland’s law is used in this work to establish the dependence of the shear viscosity,
volumetric viscosity and the conductivity coefficient with respect to the temperature. In
dimensionless form, this law may be expressed as
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where M, Re, and pPr,, are reference values of Mach, Reynolds and Prandtl numbers,

respectively. Values for s, and S can be found in White (1974). All variables considered in
the remaining of thiswork will be dimensionless but, to simplify notation, the bars used under
these variables, as indicated in Egs. (6) to (10), will be eliminated.

In order to get a well-posed problem, boundary and initial conditions must be added to
Eq. (1). Forced boundary conditions (or Dirichlet boundary conditions) are given by

v, =V, on T, (11)
p=p onr, (12)
u=u onr, (13)

where v, , p and u are prescribed values of velocity components, specific mass and specific
internal energy, at the parts of the boundary surface denoted by r,, r, and r,, respectively.
Natural boundary conditions (or Newmann boundary conditions) are given by

— 5. +7. )n. =f onr 14)
( p 1] ”) ] I (

a

and

Kk IT n =q on r (15)
0X;



where n; are de cosines of the angles formed by the normal vector to the surface r, or r, and
the global reference axes x,. In Egs (14) and (15) £, are the components of the surface load
actingon r, and q isthe norma heat flux acting as distributed sources on . Effects of
radiation and convection at the surface boundaries have not been considered.

For non-viscous fluids the term oG, /ax, in EQ. (1) is omitted. In this case, only the

component of the velocity in the normal direction is prescribed on the solid boundary surfaces
and only normal components of boundary surface |oads are considered.

3. FINITE ELEMENT FORMULATION OF THE TAYLOR-GALERKIN SCHEME

Expanding the vector U in Taylor series and evaluating the first and second derivatives of
U at n+1/2thefollowing expression is obtained
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where | is an iteration counter and i,j,k=1,2,3. Then, applying the classical Bubnov-Galerkin
technique to Eq. (16) in the context of the Finite Element Method, the following matrix
eguations are obtained:

Continuity equation:
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withi,j,k=1,2,3, and
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In this expressions Q. and . are element volume and boundary surface respectively,
[0]=[®, ®, .. ®] isthe vector containing the shape functions for each node, [o'] is the

vector containing the shape functions evaluated on the contour surface and [M,] is the

lumped mass matrix.
After assembling the Egs. (17), (18) and (19) and applying the corresponding boundary
conditions, the nodal values of p, pv, and pe can be computed at each time level using an

(30)



iterative scheme. Nodal values of the thermodynamic pressure are caculated with the
equation of state, i.e. Eq.(4). Finaly, nodal values of velocity components, specific total
energy, specific internal energy and temperature may aso be computed. For non-viscous
fluids, matrices [D];, [E]; and [K] and vectors {f,} and {¢ are omitted.

The Courant stability condition for each element in dimensionless form is given by
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where NEM is the total number of elements in the finite element mesh, L. is a characteristic
dimension of the element, c is the sound speed, M is the local Mach number and B is a safety
coefficient (in this work was adopted p=0.2 or g=0.3). Equations (17), (18) and (19) were
applied with an uniform value of At on the whole finite element mesh, adopting the smallest
value between all At. obtained applying Eq. (31) to al mesh elements.

In order to capture strong discontinuities and eliminate high frequency oscillations near
shock waves, an artificial viscosity is used. The smoothed solution is obtained from the non-
smoothed solution applying the following expression:
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where the artificial dumping vector is given by
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In Eq. (33) C. =At/At. isthelocal Courant number, C,, isan artificial dumping coefficient
given by the user (in thiswork values between 0.4<C,, <0.8 were adopted for viscous fluids),
S IS apressure sensor at element level obtained as an average of nodal values s, . Values of
S, are components of the following assembled global vector
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where the bars indicate the absolute value of the values inside matrices and, finaly, [M] isthe
consistent mass matrix at element level, given by

[m] =J’[¢]T[di do (35)

In order to obtain all matrices and vectorsindicated in Egs. (20) to (30) and in Eq. (35) is
necessary to calculate al the integer expressions involved. An analytical integration of those
integer expressions was used in this work. To avoid the appearance of spurious modes the “h-
stabilization method” was employed (Christon, 1997). Thus, an efficient FORTRAN code
was developed and vectorized to run in a CRAY T94 of “Centro Nacional de
Supercomputacdo na Regido Sul” of “Universidade Federal do Rio Grande do Sul” in Brazil.



4. NUMERICAL EXAMPLE: “COLD” HYPERSONIC VISCOUS FLOW AROUND
A DOUBLE ELLIPSOID

This example consists in a “cold hypersonic flow” of a viscous fluid over a double
ellipsoid completed by a cylindrical extension as indicated in Fig. 1, where “cold hypersonic
flow” means that the flow is hypersonic due its high velocity but no chemical reactions and
molecular interactions are considered. This geometrical configuration is similar to a space
shuttle and was also studied by Argyris et. a. (1989) within the Research and Developed
Program for the Aerodynamics and Aerothermics of the European Space Project “Hermes'.
Due to flow symmetry with respect to the plane (x,,x,) only a half of complete domain has
been considered.

VISCOUS

Re,« = 6700

M. =8.15
Pr=0.72
y=14
S =0.9058

S —1.583

Figure 1 —“Cold" hypersonic flow around a double ellipsoid (a=0°)

The finite element mesh, containing 42746 elements and 46299 nodes, is shown in Figs. 2
and 3.
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Figure 2 — Finite element mesh Figure 3 — Finite element mesh on the solid

The solid boundary is formed by two ellipsoids with two cylindrical extensions with



dimensionless length equal to 1.0. These ellipsoids are defined by the following equations
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with a=15, b=0.625, ¢=0.375, | =0.875, m=0.4375, n=0.625. The external boundary, limiting
the finite element domain, is characterized by an €llipsoid defined by the following equation

10 +120 + X3 E =1 3
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with p=20, q=1.0, r=18.
The following prescribed inflow boundary conditions have been adopted

v, =815 ; Vv, =V, =00, u, =17857 , p, =10 (38)

whereas on the solid boundaries the non-dip condition was applied, i.e. v, =v,=v,=0.0. The
following initial conditions were considered in the whole domain

v’=815; v, ’=v’=00, u’=17857, =350, p°=10 and p°=0.71428 (39

Using the safety factor g=0.3, the effective dimensionless time step employed in this
example was At =10". The tolerance adopted in the iterative process was TOL =10~ and the
temporal tolerance was TOL, =10°. The artificial dumping coefficient used here was
C,, =08.

Values of Mach number are presented in Fig. 4 whereas vectors representing the shear

stress components on the solid boundary, used to compute the skin friction components, are
showninFig. 5

MACH

.31
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Figure 4 — Mach number distribution Figure 5 — Shear stresses (skin friction)

This example alows testing the program with a high compressible flow without
considering the typical molecular interactions and chemica reactions that appear in
hypersonic flows. Thus, it serves as a test example, selected in order to elucidate the



requirements posed on the finite element mesh, the performance of the present scheme and the
efficiency of the codes and the entire model.

As a matter of fact it can be observed in Fig. 4 that the shock front is reproduced
adequately by the present model. The viscous boundary layer in the vicinity of the body
appears reasonably well defined as aresult of the selected fine discretization in that region.

These results are very close to those obtained by Argyris et. a. (1989). A good
performance was also obtained with regard to code vectorization (647 Mflops in a
supercomputer CRAY T94).

Finally Fig. 6 shows the numerical behavior of the solution. Here may be observed that
the density residuum decreases continuously as the number of time steps increases.
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Figure 6 — Numerica behavior

5. CONCLUSIONS

A numerical algorithm to simulate high compressible flows was presented in this work
using an iterative one-step Taylor-Galerkin scheme and the finite element method for space
discretization. Evaluating the determinant and the inverse of the Jacobian matrix at the
element centroid and solving the corresponding integrals, derived from the eight-node
hexahedral isoparametric element, analytical expressions were obtained for the element
matrices. Although this process requires to avoid strong mesh distortions and to use more
elements that the classical procedure with full numerical integration, it becomes a very
efficient technique for large-scale computations, especially when explicit algorithms are
employed.

An example for “cold” hypersonic flow of a viscous fluid was presented and good
agreements were obtained with regard to results presented in the correspondent reference.
Excellent computational performance in terms of CPU time, memory savings and code
vectorization were a so obtained.
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