

ENG 02298 TRABALHO DE DIPLOMAÇÃO

DESENVOLVIMENTO DE AÇO BAIXO CARBONO PRODUZIDO EM ACIARIA ELÉTRICA PARA A FABRICAÇÃO DO ARAME GALVANIZADO BWG 12

Sabrina Karnopp Forte Matrícula 00216640

Professor Orientador Dr. Hugo Marcelo Veit

Junho de 2018

Dedico este trabalho aos meus pais, Nilza e Carlos, e aos meus irmãos, Caroline, Camila e Diego.

AGRADECIMENTOS

À minha família, por apoiar minhas escolhas e incentivar o meu crescimento profissional, principalmente durante o período da graduação, tornando essa conquista possível. Além disso, por serem meus grandes exemplos de caráter, integridade e profissionais.

Aos amigos que, de alguma forma, ajudaram na conclusão desse trabalho e também àqueles que compartilharam momentos, experiências e conhecimento durante a graduação.

Ao colega de trabalho Jéferson Cassio D'Ávila da Silva por ter me oportunizado a realização desse trabalho e apoiado na condução do mesmo.

Aos colegas de trabalho Gustavo Pelisser, pelo apoio na condução desse trabalho e pelas trocas de conhecimento, e Alexsander Otoni Vilela, pelo auxílio e apoio nas análises metalográficas.

Ao Professor Dr. Hugo Marcelo Veit, pela orientação na execução desse trabalho.

À essa Universidade e, principalmente, aos Professores, pelo conhecimento, oportunidades e aprendizagens oferecidas.

Por fim, agradeço a todos que de alguma maneira contribuíram para a realização desse trabalho e também para o meu crescimento pessoal e profissional.

L	STA DE FIGURAS	6
LI	STA DE TABELAS	8
R	ESUMO	9
1	INTRODUÇÃO	10
2	OBJETIVOS	12
3	REVISÃO BIBLIOGRÁFICA	13
	3.1 ACO PARA A PRODUÇÃO DE ARAMES	13
	3.2 O PROCESSO SIDERÚRGICO	14
	3.3 CONSTITUINTES DO ACO	17
	3.3.1 Inclusões Não-metálicas	19
	3.4 MECANISMOS DE AUMENTO DE RESISTÊNCIA	21
	3.5 INFLUÊNCIA DA COMPOSIÇÃO QUÍMICA NAS PROPRIEDADES MECÂNICAS DO ACO	22
	3.5.1 Carbono	23
	3.5.2 Manganês	24
	3.5.3 Silício	25
	3.5.4 Enxofre	25
	3.5.5 NITROGÊNIO	25
	26 3.6.1 Matéria-prima para produção do aco) 26
	3.6.2 Desoxidação e Dessulfuração	.27
	3.6.3 O Processo Produtivo em Forno Elétrico de Fusão	.27
	3.7 Processo de Laminação	28
	3.8 Processo de Trefilação de Arames	30
	3.9 RECOZIMENTO SUBCRÍTICO	34
	3.10 GALVANIZAÇÃO POR IMERSÃO A QUENTE	38
4	PROCEDIMENTO EXPERIMENTAL	40
	4.1 ESCOLHA DO ARAME	40
	4.2 Produção do Arame Trefilado	41
	4.2.1 Definição da Composição Química	.41
	4.2.2 Produção do Aço 1005X	.41
	4.2.3 Laminação e Trefilação	.42
	4.3 LINHA DE GALVANIZAÇÃO	42
	4.4 ENSAIO DE TRAÇÃO	44
	4.5 ANÁLISE MICROESTRUTURAL	44
5	RESULTADOS E DISCUSSÃO	46
	5.1 ARAME GALVANIZADO BWG 12 PRODUZIDO COM ACO 1005F	46
	5.2 ARAME GALVANIZADO BWG 12 PRODUZIDO COM ACO 1005X	47
	5.3 RELAÇÃO ENTRE COMPOSIÇÃO QUÍMICA E LIMITE DE RESISTÊNCIA	48 48

SUMÁRIO

5.3.2 Aço 1005X	53
5.4 ANÁLISE MICROESTRUTURAL	
5.4.1 ANÁLISE DE INCLUSÕES	
5.4.1.1 Aço 1005F	
5.4.1.2 Aço 1005X	61
5.4.1.3 COMPARAÇÃO ENTRE AÇO 1005F E AÇO 1005X	62
5.4.2 EFEITO DO ENCRUAMENTO	63
5.4.2.1 Aço 1005F	64
5.4.2.2 Aço 1005X	65
5.4.2.3 Comparação entre Aço 1005F e Aço 1005X	
5.4.3 EFEITO DO RECOZIMENTO SUBCRÍTICO	67
5.4.3.1 Aço 1005F	67
5.4.3.2 Aço 1005X	70
5.4.3.3 Comparação entre Aço 1005F e Aço 1005X	75
6 CONCLUSÃO	77
7 SUGESTÃO PARA TRABALHOS FUTUROS	78
8 REFERÊNCIAS BIBLIOGRÁFICAS	79

LISTA DE FIGURAS

Figura 1. Fluxograma simplificado do processo siderúrgico	15
Figura 2. Chapas grossas, produto plano típico.	16
Figura 3. Perfil I laminado a quente	16
Figura 4. Fio-máquina obtido por laminação a quente.	16
Figura 5. Arame galvanizado obtido por trefilação	17
Figura 6. Efeito da plasticidade relativa da inclusão sobre sua deformação em relação ao aço	20
Figura 7. Classificação para avaliação micrográfica das inclusões dos aços adotada pela Associaç	zão
dos Siderúrgicos Suecos.	21
Figura 8. Influência do teor de carbono sobre as propriedades de aços-carbono esfriados lentamen	nte.
	24
Figura 9. Desenho esquemático da produção do aço em aciaria elétrica com lingotamento contínu	o .28
Figura 10. Ilustração do processo de laminação	29
Figura 11. Deformações acima e abaixo da zona crítica	30
Figura 12. Esquema de uma máquina de trefilar contendo duas fieiras	31
Figura 13. Representação das regiões da fieira: cone de entrada (a), cone de trabalho (b), cilindro	de
calibração (c) e cone de saída (d)	32
Figura 14. Fieiras utilizadas para produzir materiais com diferentes tipos de seções	32
Figura 15. Sequência de operações anteriores à trefilação.	33
Figura 16. Comparação do diagrama tensão-deformação para um aço encruado e outro recozido.	34
Figura 17. Efeito do recozimento pleno em diferentes estruturas	35
Figura 18. Efeito da temperatura do tratamento térmico de recozimento subcrítico sobre as alteraç	ões
estruturais de aço trabalhado a frio.	36
Figura 19. Diagrama de equilibrio Fe-C mostrando as faixas para recozimento subcritico.	37
Figura 20. Efeito do tempo e temperatura de recozimento sobre a dureza de um aço de baixo carb	ono
submetido a redução de 84%, por laminação a frio	38
Figura 21. Processo continuo em uma linha de galvanização por imersão a quente.	39
Figura 22. Fluxograma dos processos envolvidos na produção do arame galvanizado	40
Figura 23. Etapas do processo de lixamento.	45
Figura 24. Limite de resistencia de amostras do arame galvanizado BWG12 produzido com aço	47
1005F, no periodo de 01 de juino de 2017 a 30 de abril de 2018.	4/
Figura 25. Relação entre carbono e límite de resistência das amostras produzidas com aço 1005F	
rigura 26. Relação entre manganes e límite de resistência das amostras produzidas com aço 1003	эг. 50
Figura 27. Relação entre silício e limite de resistência das amostras produzidas com aco 1005F	50
Figura 28. Relação entre envolte e limite de resistência das amostras produzidas com aço 1005	51
Figura 20. Relação entre nitrogênio e limite de resistência das amostras produzidas com aço 1005.	
	". 52
Figura 30 Relação entre residuais e limite de resistência das amostras produzidas com aco 1005	<i>32</i> F 52
Figura 31. Relação entre carbono e limite de resistência das amostras produzidas com aço 1005X	้ ล
65 m/min	55
Figura 32. Relação entre manganês e limite de resistência das amostras produzidas com aco 100	5X a
65 m/min.	
Figura 33. Relação entre silício e limite de resistência das amostras produzidas com aco 1005X a	65
m/min	
Figura 34. Relação entre enxofre e limite de resistência das amostras produzidas com aco 1005X	а
65 m/min	56
Figura 35. Relação entre nitrogênio e limite de resistência das amostras produzidas com aco 1005	БХ а
65 m/min	57
Figura 36. Relação entre residuais e limite de resistência das amostras produzidas com aço 1005	Хa
65 m/min	57
Figura 37. Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aço 1005F,	
evidenciando a presença de inclusões. Aumento de 100x. Sem ataque.	59
Figura 38. Micrografia (MO) da amostra trefilada de seção transversal produzida com aço 1005F,	
evidenciando a presença de inclusões. Aumento de 100x. Sem ataque	59
Figura 39. Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aço 1005F,	
evidenciando a presença de inclusões alongadas em região específica. Aumento de 100x. Sem	
ataque	60

Figura 40. Micrografia (MO) da amostra trefilada de seção transversal produzida com aço 1005F,
evidenciando a aglomeração das inclusões em região específica. Aumento de 100x. Sem ataque 60
Figura 41. Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aco 1005X.
evidenciando a presença de inclusões. Aumento de 100x. Sem ataque.
Figura 42. Micrografia (MO) da amostra trefilada de seção transversal produzida com aco 1005X,
evidenciando a presença de inclusões. Aumento de 100x. Sem ataque.
Figura 43. Micrografias (MO) das amostras trefiladas de seção longitudinal produzidas com aco
1005F (a) e com aco 1005X (b). Aumento de 100x. Sem ataque
Figura 44. Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aco 1005F.
evidenciando os grãos alongados no sentido da deformação a frio (trefilação). Aumento de 200x.
Ataque: Nital 2%
Figura 45 Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aco 1005E
evidenciando os grãos alongados no sentido da deformação a frio (trefilação). Aumento de 500x.
Ataque: Nital 2%
Figura 46. Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aco 1005X.
evidenciando os grãos alongados no sentido da deformação a frio (trefilação). Aumento de 200x.
Atague: Nital 2%
Figura 47 Micrografia (MO) da amostra trefilada de seção longitudinal produzida com aco 1005X
evidenciando os grãos alongados no sentido da deformação a frio (trefilação). Aumento de 500x
Ataque: Nital 2%
Figura 48. Micrografias (MO) das amostras trefiladas de seção longitudinal produzidas com aco
1005E (a) e com aco 1005X (b) Aumento de 200x Ataque: Nital 2%
Figura 49 Micrografias (MO) das amostras trefiladas de seção transversal produzidas com aco 1005E
(a) e com aco 1005X (b). Aumento de 200x. Ataque: Nital 2%
Figura 50. Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005E
a 65 m/min. Aumento de 200x. Ataque: Nital 2%
Figura 51 Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005E
a 65 m/min. Aumento de 500x. Ataque: Nital 2%
Figura 52 Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005E a
65 m/min Aumento de 200x Ataque: Nital 2%
Figura 53. Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005E a
65 m/min Aumento de 500x Ataque: Nital 2%
Figura 54 Micrografias (MO) da amostra trefilada (a) e da amostra galvanizada a 65 m/min (b) de
seções longitudinais produzidas com aco 1005F. Aumento de 200x. Atague: Nital 2%
Figura 55. Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005X
a 65 m/min. Aumento de 200x. Ataque: Nital 2%
Figura 56. Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005X
a 65 m/min. Aumento de 500x. Ataque: Nital 2%
Figura 57 Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005X
a 65 m/min. Aumento de 200x. Ataque: Nital 2%
Figura 58 Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005X
a 65 m/min. Aumento de 500x. Ataque: Nital 2%
Figura 59 Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005X
a 50 m/min. Aumento de 200x. Ataque: Nital 2%
Figura 60, Micrografia (MO) da amostra galvanizada de seção longitudinal produzida com aco 1005X
a 50 m/min. Aumento de 500x. Ataque: Nital 2%
Figura 61. Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005X
a 50 m/min. Aumento de 200x. Ataque: Nital 2%
Figura 62 Micrografia (MO) da amostra galvanizada de seção transversal produzida com aco 1005X
a 50 m/min. Aumento de 500x. Ataque: Nital 2%
Figura 63 Micrografias (MO) da amostra trefilada (a) e da amostra galvanizada a 65 m/min (b) de
seções longitudinais produzidas com aco 1005X. Aumento de 200x. Ataque: Nital 2%
Figura 64. Micrografias (MO) das amostras galvanizadas de seção longitudinal produzidas com aco
1005X a 65 m/min (a) e a 50 m/min (b). Aumento de 500x. Ataque: Nital 2%
Figura 65. Micrografias (MO) das amostras galvanizadas a 65 m/min de seção longitudinal produzidas
com aco 1005F (a) e com aco 1005X (b). Aumento de 200x. Ataque: Nital 2%
Figura 66. Micrografias (MO) das amostras galvanizadas a 65 m/min de seção transversal produzidas
com aço 1005F (a) e com aço 1005X (b). Aumento de 200x. Ataque: Nital 2%
, , , , , , , , , , , , , , , , , , ,

LISTA DE TABELAS

Tabela 1. Classificação de arames	13
Tabela 2. Classificação dos produtos siderúrgicos.	15
Tabela 3. Propriedades mecânicas dos microconstituintes dos aços.	18
Tabela 4. Composições químicas das amostras produzidas com aço 1005F, obtidas por	
Espectrometria de Emissão Óptica	46
Tabela 5. Composições químicas das amostras produzidas com aço 1005X, obtidas por	
Espectrometria de Emissão Óptica	48
Tabela 6. Limite de resistência das amostras produzidas com aço 1005F, galvanizadas a uma	
velocidade de 65 m/min	49
Tabela 7. Limite de resistência das amostras produzidas com aço 1005X, galvanizadas a 65 m/r	nin. 53
Tabela 8. Limite de resistência das amostras produzidas com aço 1005X, galvanizadas a 65, 55	e 50
m/min	53

RESUMO

A redução de custos nos processos siderúrgicos se faz necessária para que as empresas se mantenham competitivas e tenham maior lucratividade. Devido a isso, esse trabalho teve como motivação reduzir custos com a matéria-prima utilizada na produção do arame galvanizado BWG 12. Com esse intuito, desenvolveu-se um aço com baixo teor de carbono produzido em aciaria elétrica de uma usina semi-integrada, a fim de substituir o aço utilizado atualmente, produzido em usina integrada. Para tanto, foram realizados diferentes testes de composição química produzindo o aço a partir de sucata metálica em forno elétrico a arco (FEA). Os tarugos produzidos no lingotamento contínuo foram laminados a quente obtendose o fio-máguina. Esse foi trefilado, produzindo os arames que posteriormente foram recozidos e galvanizados. Além da composição química, variou-se a velocidade de galvanização a fim de avaliar a influência do tempo de recozimento no limite de resistência do material. As amostras produzidas foram ensaiadas mecanicamente realizando-se ensaio de tração e tiveram suas microestruturas analisadasutilizando microscopia óptica. De acordo com os resultados obtidos, o aço em desenvolvimento atende às propriedades mecânicas exigidas reduzindo-se a velocidade de galvanização de 65 m/min (padrão) para 50 m/min. Não foi possível relacionar a influência dos elementos presentes na composição química isolados com o limite de resistência do arame galvanizado. O recozimento subcrítico realizado foi satisfatório para recristalizar os grãos de ferrita e eliminar o efeito do encrumento do processo de trefilação.

Palavras-chave: arame de aço, redução de custo, aciaria elétrica, limite de resistência.

1 INTRODUÇÃO

O atual cenário dos processos siderúrgicos exige que as empresas desse ramo sejam competitivas, sendo a redução de custos com matéria-prima, equipamentos e eliminação de perdas ou retrabalhos, fatores essenciais para tal posicionamento.

As indústrias siderúrgicas, desde o início da década de 90, têm buscado alternativas para reduzir custos em geral. Para tanto, faz-se necessário uma reestruturação de seus processos e modelos de operação (1, 2).

Para reestruturar os processos utilizados na obtenção de determinada matéria-prima, principalmente com o intuito de reduzir custos, é necessário conhecer a aplicação do material a ser produzido para que se tenha uma composição química compatível com as necessidades. Dessa forma é possível garantir que o material desempenhará corretamente as funções desejadas, não havendo falhas durante sua utilização (3).

A produção de arames galvanizados exige especificações de propriedades mecânicas que, atualmente, são conseguidas apenas utilizando-se aços produzidos em usinas integradas, que têm como base para a sua produção a utilização de minério de ferro como matéria-prima. Aliando-se a esse fator as condições de processo em que se tem em usinas integradas, é possível garantir a produção do aço com baixo teor de carbono e de residuais, fazendo com que as propriedades mecânicas desejadas sejam obtidas (1).

Porém, grande parte das usinas integradas brasileiras estão situadas no estado de Minas Gerais, o que aumenta o custo de matéria-prima para usinas situadas nos demais estados e que dependem da utilização desse material para a fabricação dos seus produtos.

As usinas semi-integradas, conhecidas também como *mini-mills*, operam com aciarias elétricas e utilizam sucata como principal matéria-prima, contribuindo com a sustentabilidade ambiental, pois minimiza o gasto energético e aumenta a disponibilidade dos recursos naturais (1, 2). Além disso, as aciarias com fornos elétricos a arco têm aprimorado suas tecnologias para minimizar inclusões, homogeneizar o aço e descarburá-lo até teores de ppm, produzindo um aço com qualidades competitivas e de alto nível de limpeza (1).

Com o intuito de atender às exigências de mercado em relação ao aumento de produtividade e redução de custos, percebeu-se a necessidade de reduzir os custos de emprego de uma usina semi-integrada, associados à matériaprima utilizada na produção de arames galvanizados vinda de usinas integradas. Dessa forma, além de reduzir os custos de emprego, é possível ter ganhos relacionados ao aumento de produtividade da aciaria elétrica envolvida nesse trabalho. Atualmente, a produção do arame galvanizado BWG 12 na usina semi-integrada que foi o foco desse estudo, ocorre a partir da laminação a quente dos tarugos do aço denominado 1005F, que são transferidos de uma usina integrada localizada em Minas Gerais. Para a realização desse estudo, todas as etapas foram realizadas na usina semi-integrada, desde a produção do aço (solidificados no lingotamento contínuo na forma de tarugos) até a galvanização do arame BWG 12.

Assim, os demais processos envolvidos na produção do arame galvanizado em estudo, como laminação, trefilação, recozimento e galvanização, não possuem ganhos relacionados ao aumento de produtividade, visto que a matéria-prima vinda de usina integrada é recebida na forma de tarugos, mantendose inalterados os processos após a obtenção do aço no lingotamento contínuo.

Para tanto, esse estudo desenvolveu um aço denominado 1005X produzido a partir de sucata metálica em aciaria elétrica a fim de substituir o aço 1005F utilizado para a produção do arame galvanizado BWG 12 que é obtido em usina integrada, obtendo-se propriedades mecânicas que atendam às especificações do produto definidas internamente, à Norma ABNT NBR 6331:2010 (14) e que sejam semelhantes às propriedades já obtidas atualmente.

Nos próximos capítulos deste trabalho estão descritos o processo de obtenção do aço em aciaria elétrica e os subsequentes processos utilizados para a produção dos arames galvanizados, além dos fatores que influenciam o limite de resistência dos arames de aço, como composição química, conformação mecânica e tratamentos térmicos. Além disso, estão descritas a discussão e as considerações finais que contribuem e esclarecem o trabalho realizado nessa pesquisa.