UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

ANELISE OLIVEIRA DE ALMEIDA

ESTUDO COMPARATIVO DO CONSUMO DE ENERGIA ENTRE CONDICIONADORES DE AR COM VELOCIDADE FIXA E VARIÁVEL

ANELISE OLIVEIRA DE ALMEIDA

ESTUDO COMPARATIVO DO CONSUMO DE ENERGIA ENTRE CONDICIONADORES DE AR COM VELOCIDADE FIXA E VARIÁVEL

Projeto de Diplomação submetido ao Departamento de Engenharia Elétrica da Universidade Federal do Rio Grande do Sul, como requisito parcial para à obtenção do título de bacharel em Engenharia Elétrica.

Orientador: Prof. Luiz Tiarajú dos Reis Loureiro

Porto Alegre

ANELISE OLIVEIRA DE ALMEIDA

ESTUDO COMPARATIVO DO CONSUMO DE ENERGIA ENTRE CONDICIONADORES DE AR COM VELOCIDADE FIXA E VARIÁVEL

Projeto de Diplomação submetido ao Departamento de Engenharia Elétrica da Universidade Federal do Rio Grande do Sul, como requisito parcial para à obtenção do título de bacharel em Engenharia Elétrica.

Trabalho aprovado. Brasil, 03 de Julho de 2018.

Prof. Luiz Tiarajú dos Reis Loureiro Orientador

Prof. Igor Pasa Wiltusching
Convidado 1

Eng. Julio Cezar Kalata Convidado 2

Brasil

2018

AGRADECIMENTOS

Agradeço primeiramente a Deus, pela capacidade física e intelectual necessárias para a execução deste trabalho.

Ao Professor orientador Luiz Tiaraju dos Reis Loureiro, pela paciência, disponibilidade e a forma simples de partilhar conhecimentos transformando-os em valiosas contribuições ao trabalho e desenvolvimento pessoal.

Aos meus pais, Valmor e Rosane, pela confiança em minhas capacidades, pela oportunidade de estudar e pelos valores transmitidos, sem os quais, não seria capaz de até aqui chegar.

Aos amigos, que nos intervalos realizados entre um capítulo e outro, fizeram-se fonte de incentivo, coragem e alegrias para que pudesse seguir em frente.

Por fim, agradeço a todos que direta ou indiretamente contribuíram para que até aqui chegasse, concluindo assim mais uma etapa da minha vida.

"Agradeço todas as dificuldades que enfrentei; não fosse por elas, eu não teria saído do lugar. As facilidades nos impedem de caminhar..."

Francisco Cândido Xavier.

RESUMO

A evolução tecnológica crescente na sociedade atual proporciona ao homem conforto e bem-estar, mas causa efeitos indesejáveis ao ecossistema. O setor de eletricidade e aquecimento representam 25% das emissões dos gases do efeito estufa, logo a busca por equipamentos de alta qualidade torna-se alvo da indústria. Neste contexto, o investimento em tecnologia aplicada aos equipamentos condicionadores de ar é de extrema importância, visto que emitem ruído, gases de efeito estufa e consomem eletricidade.

Considerando-se desempenho e economia, pode-se afirmar que o compressor é a unidade principal de um sistema de refrigeração. Constitui-se no maior investimento aquisitivo e a que mais caracteriza o consumo de energia do aparelho.

Em sistemas HVAC do tipo Split System, os compressores podem operar sob velocidade fixa ou variável, classificando os condicionadores de ar como Convencionais ou Inverteres. Equipamentos operando sob a Tecnologia Inverter possuem um inversor de frequência, dispositivo capaz de transformar a tensão elétrica alternada de fixa para variável, ajustando-a juntamente com a frequência entregue pela rede, possibilitando o controle da potência consumida pelos equipamentos.

Analisando-se condicionadores de ar do tipo Inverter para climatizar uma sala comercial com 34,68m², obteve-se uma economia de energia em relação as amostras de equipamentos Convencionais analisados. Considerando-se um espaço amostral com 664 equipamentos com capacidade de refrigeração nominal entre 28000 Btu/h e 36000 Btu/h chegou-se a economia máxima mensal de 57,73%, o equivalente a uma redução máxima de 3060 W no consumo de potência elétrica.

O modelo Hi Wall apresentou-se como o mais flexível, tendo a maior quantidade de amostras e o menor consumo de potência, com 2240W. Por outro lado, o modelo Cassete apresentou a menor quantidade de amostras e o maior consumo, com 5530W.

Comparando-se equipamentos de velocidade fixa com equipamentos de velocidade variável com a mesma capacidade de refrigeração nominal obteve-se a economia máxima no consumo de energia elétrica mensal. Considerando-se a tarifa fornecida pela ANEEL em Maio de 2018 para o grupo residencial B1, obteve-se o valor de R\$ 62,98 e um tempo de retorno do investimento inicial de aproximadamente 35 meses.

PALAVRAS-CHAVE: Condicionadores de ar, consumo de energia, eficiência energética, estudo comparativo, velocidade variável.

ABSTRACT

The growing technological evolution in today's society provides man with comfort and well-being, but causes undesirable effects on the ecosystem. The electricity and heating sector accounts for 25% of greenhouse gas emissions, so the search for high-quality equipment becomes the industry's target. In this context, the investment in technology applied to air conditioners is extremely important, since they emit noise, greenhouse gases and consume electricity.

Considering performance and economy, it can be said that the compressor is the main unit of a refrigeration system. It is the largest acquisition investment and the one that most characterizes the energy consumption of the appliance.

In Split System HVAC systems, compressors can operate at fixed or variable speed, classifying air conditioners as Conventional or Inverters. Equipment operating under the Inverter Technology has a frequency inverter, a device capable of transforming the alternating electrical voltage from fixed to variable, adjusting it together with the frequency delivered by the network, allowing the control of the power consumed by the equipment.

Analyzing Inverter type air conditioners to air-conditioning a commercial room with 34.68m², energy savings were obtained compared to the samples of conventional equipment analyzed. Considering a sample space with 664 equipment with nominal cooling capacity between 28,000 Btu / h and 36,000 Btu / h, the maximum monthly saving was 57.73%, equivalent to a maximum reduction of 3060W in the consumption of electric power.

The Hi Wall model was the most flexible, having the largest number of samples and the lowest power consumption, with 2240W. On the other hand, the Cassette model presented the smallest number of samples and the highest consumption, with 5530W.

Comparing fixed speed equipment with variable speed equipment with the same nominal cooling capacity, the maximum savings in monthly electricity consumption were obtained. Considering the tariff provided by ANEEL in May 2018 for the residential group B1, the amount of R \$ 62.98 was obtained and a time of return of the initial investment of approximately 35 months.

KEYWORDS: Air conditioners, energy consumption, energy efficiency, comparative study, variable speed.

LISTA DE ILUSTRAÇÕES

Figura 1 – Sistema de refrigeração dividido em lado de baixa e alta pressão
Figura 2 – Diagrama de pressão versus entalpia especifica considerando um ciclo ideal 28
Figura 3 – Diagrama de pressão versus entalpia especifica comparando o ciclo ideal e o ciclo
real
Figura 4 - Comportamento da Temperatura do Ambiente Climatizado por um Equipamento
operando sob Velocidade Fixa
Figura 5 - Comportamento da Temperatura do Ambiente Climatizado por um Equipamento
operando sob Velocidade Variável
Figura 6 – O Selo PROCEL
Figura 7 – O Selo CONPET
Figura 8 – Planta baixa do ambiente a ser climatizado
Figura 9 – Distribuição das Amostras com Máxima e Mínima Potência Para os Tipos Frio e
Reverso Considerando as Tecnologias Convencional e Inverter Para o Modelo Hi Wall 61
Figura 10 – Distribuição das Amostras com Máxima e Mínima Potência Para os Tipos Frio e
Reverso Considerando as Tecnologias Convencional e Inverter Para o Modelo Piso Teto 64
Figura 11 – Distribuição das Amostras com Máxima e Mínima Potência Para os Tipos Frio e
Reverso Considerando as Tecnologias Convencional e Inverter Para o Modelo Cassete 67
Figura 12 - Comparativo Entre o Consumo das Tecnologias Convencional e Inverter
Considerando a Capacidade de Refrigeração Nominal (Btu/h) versus a Potência Elétrica
Máxima e Mínima Consumida (W) para os Equipamentos
Figura 13 - Comparativo Entre a Quantidade de Amostras e a Classe do Equipamento
Considerando a Tecnologia Convencional
Figura 14 - Comparativo Entre a Quantidade de Amostras e a Classe do Equipamento
Considerando a Tecnologia Inverter

LISTA DE QUADROS

Quadro 1 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Hi Wall
Quadro 2 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Piso Teto
Quadro 3 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Cassete
Quadro 4 – Fator U Para Cada Material Constituinte da Edificação
Quadro 5 – Carga de Calor Através das Paredes Constituinte da Edificação
Quadro 6 – Taxas típicas de dissipação de calor
Quadro 7 – Carga térmica total da edificação
Quadro 8 - Quantidade de Amostras Analisadas para cada Fabricante Considerando a
Capacidade de Refrigeração e o Tipo de Equipamento
Quadro 9 – Potência Elétrica Máxima e Mínima dos Equipamentos
Quadro 10 – Potência Elétrica Máxima e Mínima para os Modelos Hi Wall, Piso Teto e Cassete
69
Quadro 11 – Potência Elétrica Máxima e Mínima Considerando a Capacidade de Refrigeração
e a Tecnologia do Aparelho
Quadro 12 – Potência Elétrica Máxima e Mínima Considerando a Tecnologia do Aparelho
Quadro 13 - Especificações dos Equipamentos com Máxima e Mínima Potência Elétrica
Consumida para Análise do Consumo
Quadro 14 – Especificações dos Equipamentos com Máxima e Mínima Potência Elétrica
Consumida para Análise do Retorno Financeiro
Quadro 15 – Comparativo entre o consumo e os valores a serem pagos com aparelhos operando sob
a Tecnologia Inverter e tecnologia Convencional
Quadro 16 - Possíveis Cenários do Impacto Econômico Obtido com os Equipamentos Operando
sob a Tecnologia Inverter Versus a Tecnologia Convencional
Quadro 17 – Tempo de Retorno do Investimento Inicial Obtido com os Equipamentos Operando sob
a Tecnologia Inverter Versus a Tecnologia Convencional
Quadro 18 – Valores Obtidos Através dos Simuladores Comparados aos valores Reais 86

LISTA DE SIGLAS

ANEEL Agência Nacional de Energia Elétrica

BTU Unidade térmica britânica

CFC's Clorofluorcarbonos plenamente halogenados

COP Coeficiente de Performance

CEE Coeficiente de Eficiência Energética

CEEE Companhia Estadual de Energia Elétrica – Rio Grande do Sul

ENCE Etiqueta Nacional de Conservação de Energia

HVAC Heating, Ventilation and Air Conditioning (Aquecimento, Ventilação e Ar

Condicionado)

IBDD Instituto Brasileiro dos Direitos da Pessoa com Deficiência

IEE Instituto de Energia e Ambiente

INMETRO Instituto Nacional de Metrologia, Qualidade e Tecnologia

IPCC Painel Intergovernamental sobre Mudanças Climáticas

MCE'S Medidas de Conservação de Energia

NASA National Aeronautics and Space Administration

ODP Potencial de destruição do ozônio

TIR Taxa Interna de Retorno

USP Universidade de São Paulo

VPL Valor Presente Líquido

LISTA DE SÍMBOLOS

A	Área do local
b	Largura do local
1/C	Resistência térmica individual de um material homogêneo
E	Iluminamento exigido
f0	Coeficiente de convecção externa
f1	Coeficiente de convecção interna
FU	Fator de utilização
φ	Fluxo luminoso
h	Altura entre a luminária e o plano de trabalho
k	Fator do local
k1	Condutividade térmica do material 1
k2	Condutividade térmica do material 2
1	Comprimento do local
η	Fator de manutenção
Pc	Pressão de condensação
P_0	Pressão do evaporador
S	Entropia
$T_{\rm C}$	Temperatura de condensação
T_0	Temperatura do evaporador
U	Coeficiente total de transmissão de calor
X	Título
X	Espessura do material em polegadas
x/k	Resistência térmica individual de um material heterogêneo

SUMÁRIO

1 INTRODUÇÃO	. 19
1.1 OBJETIVOS	. 21
1.2 DELIMITAÇÃO DO ESTUDO	. 21
1.3 JUSTIFICATIVA	. 22
2 REVISÃO DE LITERATURA	. 23
2.1 O CICLO DE REFRIGERAÇÃO	. 23
2.2 O DIAGRAMA DE ENTALPIA DE PRESSÃO (PH)	. 27
2.3 CARGA TÉRMICA	. 31
2.4 O SISTEMA SPLIT	. 33
2.5 ECONOMIA	. 34
2.5.1 A PROTESTE	. 34
2.5.2 SELEÇÃO DOS FABRICANTES E SEUS DADOS	35
2.5.3 ETIQUETA NACIONAL DE CONSERVAÇÃO DE ENERGIA E O SELO PROC	CEL
	. 36
3 METODOLOGIA E RESULTADOS	. 41
3.1 AMBIENTE ESCOLHIDO	. 41
3.2 ANÁLISE DA CARGA TÉRMICA	
3.2.1 ILUMINAÇÃO	. 43
3.2.1.1 NBR 5410 – INSTALÕES ELÉTRICAS DE BAIXA TENSÃO	. 43
3.2.1.2 NBR 16401 – INSTALAÇÕES DE AR CONDICIONADO, SISTEMAS CENTRA	AIS
E UNITÁRIOS	. 44
3.2.1.3 NBR 5413 ILUMINÂNCIA DE INTERIORES	. 44
3.2.1.4 DEMANDA DE ILUMINAÇÃO DO AMBIENTE	. 46
3.2.2 PAREDES, JANELAS, PORTA, TETO E PISO	. 46
3.2.3 EQUIPAMENTOS DE ESCRITÓRIO E PESSOAS	. 49
3.2.4 CARGA TÉRMICA TOTAL	. 49
3.3 EQUIPAMENTO ESCOLHIDO	. 50
3.3.1 CAPACIDADE DE REFRIGERAÇÃO NOMINAL	. 51
3.3.2 CONSUMO	. 52
3.3.2.1 POTÊNCIA CONSUMIDA	. 54
3.3.2.1.1 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO,	, O
MODELO DO APARELHO E A TECNOLOGIA DE CADA FABRICANTE	. 54

3.3.2.1.1.1 HI WALL	57
3.3.2.1.1.2 PISO TETO	62
3.3.2.1.1.3 CASSETE	65
3.3.2.1.2 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇA	ÃO, O
MODELO DO APARELHO E A SUA TECNOLOGIA	68
3.3.2.1.3 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO	ЭЕА
TECNOLOGIA DO APARELHO	71
3.3.2.1.4 ANÁLISE APENAS A TECNOLOGIA DO APARELHO	72
3.3.2.1.5 ANÁLISE CONSIDERANDO APENAS A POTÊNCIA ELÉTRICACONSU	JMIDA
PELO APARELHO	73
3.3.2.2 POTÊNCIA CONSUMIDA – GRÁFICOS	73
3.3.2.3 ANÁLISE DO SELO PROCEL	76
3.3.2.4 ANÁLISE ECONÔMICA E RETORNO DE INVESTIMENTO INICIAL P.	ARA O
ESTUDO DE CASO	77
3.3.2.5 SIMULADORES	84
4 CONCLUSÃO	88
5 TRABALHOS FUTUROS	
REFERÊNCIAS	91
ANEXO A - TABELA DE CONDUTIVIDADE TÉRMICA DE MATERIAIS US	
EM PAREDES DE ARMAZENAGEM FRIA	100
ANEXO B – TABELA DE TOLERÂNCIA PARA A RADIAÇÃO SOLAR	101
ANEXO C – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PA	RA A
CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO HI WALL	102
ANEXO D – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PA	RA A
CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO PISO TETO	114
ANEXO E – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PA	RA A
CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO CASSETE	116
ANEXO F – POTÊNCIA ELÉTRICA MÁXIMA E MÍNIMA DAS POSS	SÍVEIS
ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE	117
ANEXO G – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PA	RA A
CLIMATIZAÇÃO DO AMBIENTE	121
ANEXO H – DISTRIBUIÇÃO AMOSTRAL DOS CONDICIONADORES DE AR	127

H1 - DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO HI WALL TIPO FRIO OPERANDO SOB TECNOLOGIA
CONVENCIONAL
H2 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO HI WALL TIPO REVERSO OPERANDO SOB TECNOLOGIA
CONVENCIONAL 128
H3 - DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO HI WALL TIPO FRIO OPERANDO SOB TECNOLOGIA
INVERTER129
H4 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO HI WALL TIPO REVERSO OPERANDO SOB TECNOLOGIA
INVERTER
H5 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO PISO TETO TIPO FRIO OPERANDO SOB TECNOLOGIA
CONVENCIONAL
H6 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO PISO TETO TIPO REVERSO OPERANDO SOB TECNOLOGIA
CONVENCIONAL
H7 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO PISO TETO TIPO FRIO OPERANDO SOB TECNOLOGIA
INVERTER
H8 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO CASSETE TIPO FRIO OPERANDO SOB TECNOLOGIA
CONVENCIONAL

H9 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO CASSETE TIPO REVERSO OPERANDO SOB TECNOLOGIA
CONVENCIONAL
H10 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE
REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA
(W) PARA O MODELO CASSETE TIPO FRIO OPERANDO SOB TECNOLOGIA
INVERTER
H11 – CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA
ELÉTRICA MÁXIMA E MÍNIMA CONSUMIDA (W) PARA OS EQUIPAMENTOS
OPERANDO SOB TECNOLOGIA CONVENCIONAL
H12 – CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA
ELÉTRICA MÁXIMA E MÍNIMA CONSUMIDA (W) PARA OS EQUIPAMENTOS
OPERANDO SOB TECNOLOGIA INVERTER
ANEXO I – TARIFAS DE ENERGIA ELÉTRICA (R\$/KWH) DAS PRINCIPAIS
CIDADES BRASILEIRAS 139
ANEXO J – FATOR DE UTILIZAÇÃO (FU) 140

1 INTRODUÇÃO

Meios de refrigeração fazem parte da história humana desde as antigas civilizações (a.C.), as quais utilizavam o gelo natural para a conservação de alimentos. Utilizar o gelo natural era uma tarefa difícil devido a sua perecividade, o que motivou o surgimento de estudos que permitissem melhor aproveitar as suas propriedades. Estes estudos forneceram a base para os sistemas atuais de compressão frigorífica, aumentando sua disseminação com o aparecimento da eletricidade no século XX.

Data de 1902 a primeira instalação para o condicionamento de ar, quando Willis Carrier, engenheiro de 25 anos, inventou um processo mecânico capaz de climatizar uma empresa de impressão nos EUA. Em 1952 através da Carrier iniciou-se a produção em série de equipamentos residenciais, mas o aparelho popularizou-se na década de 60, quando os custos para sua aquisição caíram. Em 1957 passou-se a utilizar o compressor rotativo, o qual diminuiu ruído e dimensões dos equipamentos.

A maior parte da produção de energia elétrica é dada através das usinas hidrelétricas, nas quais a disponibilidade depende de condições climáticas. Em períodos nos quais essa fonte de energia não é suficiente para atender a demanda, utiliza-se outros recursos tais como as usinas térmicas e nucleares para obtenção da energia necessária. Usinas térmicas e nucleares causam um impacto ambiental maior, visto que operam através da queima de combustíveis e geram lixo radioativo, exigindo assim, maiores cuidados para evitar-se danos a atmosfera.

O aquecimento global e o efeito estufa são motivos de preocupação da sociedade atual. Para amenizá-los, tem-se realizado diversos estudos e conferências ao redor do mundo reunindo representantes de diversos países. Sabe-se que os gases de efeito estufa (GEE) presentes em diversos equipamentos usuais intensificam esses fenômenos, isso faz com que a indústria se mantenha numa busca continua por soluções alternativas e menos danosas ao meio ambiente.

Neste contexto, o estudo de condicionadores de ar é um tema de grande relevância, visto que com o passar dos anos há cada vez mais um aumento entre os consumidores desse tipo de equipamento. Condicionadores de ar necessitam de fluido refrigerante para operarem, estes são também conhecidos como CFC's (clorofluorcarbonos), os quais fazem parte dos GEE. Cada aplicação possui suas próprias características, o que significa que o refrigerante ideal a uma aplicação, pode não ser o ideal para outra.

Os primeiros sistemas de refrigeração operavam com fluidos refrigerantes tóxicos, tais como a amônia, que na década de 70 cedeu espaço para o R-12 (Freon-12). A partir de 1987, através do Protocolo de Montreal, passou-se a ter consciência dos impactos ambientais na camada de ozônio.

O surgimento de novas tecnologias causou um aumento no consumo da energia elétrica. De acordo com o IPCC (Painel Intergovernamental sobre Mudanças Climáticas) de 2014, o setor econômico de eletricidade e aquecimento é responsável por 25% das emissões globais dos gases do efeito estufa. Logo, a produção de energia elétrica e a fabricação de equipamentos, são pontos importantes a serem analisados. O estudo de novas tecnologias que permitam que aparelhos operem com menor consumo de energia elétrica representa uma importante redução no impacto ambiental, visto que será necessária uma menor produção de energia elétrica para que estes operam adequadamente (IPCC, 2014).

Em Janeiro de 2018, a NASA (National Aeronautics and Space Administration) publicou um estudo onde afirma que os impactos ambientais na camada de ozônio causados pela emissão de CFC's levaram décadas para ter uma recuperação completa, visto que têm vida útil de 50 a 100 anos (NASA, 2018).

Pode-se dizer que a maneira mais eficaz de redução do consumo de energia é através de seu uso racional. As MCE'S, Medidas de Conservação de Energia, são ferramentas amplamente utilizadas para este fim, podendo apresentar-se como programas de alerta a população para que se evite o desperdício e estendendo-se a medidas mais sofisticadas, como o investimento em novas tecnologias por parte da indústria.

Através do diagnóstico energético realiza-se o estudo das perdas, dos custos e quais medidas corretivas podem ser adotadas, sempre visando a redução do consumo de energia e ponderando os custos.

Para obter-se o conforto térmico, não basta saber aplicar corretamente os conhecimentos de refrigeração e climatização visando apenas confeccionar-se um equipamento eficiente. É necessário que se conheça as características básicas, tal como a circulação do ar. Se ao instalar-se um condicionador de ar este for colocado em uma posição inadequada, a circulação do ar não será satisfatória. Sabendo-se que o ar frio tende a permanecer em camadas inferiores e o ar quente em superiores, a posição adequada seria a que permitisse que o ar frio fosse injetado no recinto em camadas superiores e o ar quente, em inferiores, considerando-se que se trata de um equipamento de ciclo reverso.

A escolha de um equipamento adequadamente dimensionado, além de representar economia ao consumidor em sua aquisição e economia de energia durante sua operação, garante uma

maior vida útil ao equipamento, visto que equipamentos subdimensionados exigem que o compressor esteja sempre ligado.

A capacidade de refrigeração nominal é dada em Btu/h, ou seja, esta grandeza está diretamente ligada ao tempo que o aparelho necessita para atingir a temperatura desejada. Assim, equipamentos subdimensionados demoram mais tempo para atingir a temperatura de interesse, enquanto equipamentos superdimensionados atingem essa temperatura mais rapidamente, porém ao custo de um consumo de energia mais elevado.

1.1 OBJETIVOS

Este trabalho tem como objetivo apresentar fatores relevantes ao consumo de energia elétrica através da análise de condicionadores de ar que atuam sob diferentes tecnologias. Serão analisadas amostras de condicionadores de ar, algumas nas quais o compressor opera sob velocidade fixa e outras nas quais o compressor opera sob velocidade variável.

Também será realizada uma análise econômica afim de demonstrar o impacto resultante no consumo de energia obtido ao se optar pela aquisição de um equipamento de tecnologia inverter versus um equipamento de tecnologia convencional.

1.2 DELIMITAÇÃO DO ESTUDO

A tecnologia disponível atualmente permite que equipamentos de refrigeração sejam concebidos sob as mais variadas topologias e utilizem maneiras diversas para variar a vazão do fluido refrigerante. Neste trabalho serão estudados dois condicionadores de ar do tipo Split, ambos com capacidade de refrigeração nominal mínima de 28000 (Btu/h), tensão de alimentação de 220V e frequência de rede de 60Hz. A escolha dos Splits foi feita de acordo com as características da edificação adotada para a análise, considerando sua carga térmica.

O equipamento que possui o compressor operando em velocidade variável, opera de acordo com a tecnologia "Inverter". Esta tecnologia consiste na variação da velocidade de operação de acordo com a demanda de carga térmica existente no ambiente a ser climatizado. Para tal, é variada a frequência de operação do equipamento.

A edificação escolhida trata-se de uma sala comercial com funcionamento diurno, onde são realizadas atividades moderadas em trabalho de escritório.

1.3 JUSTIFICATIVA

Os fabricantes de condicionadores de ar afirmam que equipamentos que fazem uso da tecnologia "Inverter" oferecem redução no consumo de energia elétrica, podendo chegar a valores de até 74 %. A realização deste trabalho visa demonstrar o quanto esta tecnologia pode oferecer uma maior eficiência energética, considerando o investimento inicial para obtenção do aparelho, a redução no consumo de energia que este irá oferecer a longo prazo e seu retorno financeiro.

2 REVISÃO DE LITERATURA

Climatização, refrigeração e ventilação são conceitos amplamente utilizados ao tratar-se de transferência de energia sob a forma de calor, com deslocamento do calor indesejado de um ambiente para outro onde não haja objeção, causando assim o abaixamento da temperatura local. Apesar de muito semelhantes, esses procedimentos apresentam suas próprias características (Pena, 2011; SPRINGER, 1989).

A ventilação introduz o ar do ambiente externo no local onde deseja-se abaixar a temperatura e pode também ser usada para remover odores. A climatização é utilizada quando deseja-se obter o conforto ambiental, mantendo a temperatura acima de 20°C. Trata-se o ar controlando a temperatura, a pressão e a umidade relativa, podendo-se ainda utilizá-la para a filtragem. Quando se quer temperaturas no entorno de 0°C, é utilizado o conceito de refrigeração (Pena, 2011).

Dizer que um sistema é HVAC significa que ele apresenta as funções de climatização, ventilação ou ambas atuando conjuntamente. As letras que formam a sigla HVAC representam, respectivamente, as funções de aquecimento (Heating), ventilação (Ventilation) e ar condicionado (Ar Conditioning).

2.1 O CICLO DE REFRIGERAÇÃO

Um equipamento com ciclo de refrigeração fechado operando por compressão apresenta como componentes principais o dispositivo medidor de líquido, o evaporador, o compressor e o condensador. O condensador pode ser refrigerado por ar ou água, sendo a versão a ar mais econômica e a que será analisada (SPRINGER, 1989).

Faz-se uso de fluido refrigerante, o qual pode liberar ou absorver calor latente de vaporização, produzindo assim a refrigeração. Quando sob baixa temperatura e pressão, o fluido absorve calor evaporando-se. Mas, sob alta temperatura e pressão, fornece calor condensando-se. Logo, durante o ciclo de refrigeração, o fluido é reutilizado diversas vezes, caracterizando assim um ciclo fechado (SPRINGER, 1988).

Um sistema de refrigeração define-se por possuir a parte de baixa e a de alta pressão. Na parte de alta pressão, também conhecida como linha de gás quente ou linha de descarga, os componentes operam com a pressão de condensação (alta pressão) ou acima. Na parte de baixa pressão ou linha de sucção operam com a pressão de evaporação (baixa pressão) ou abaixo (SPRINGER, 1989). A figura 1 ilustra tal divisão entre as partes.

Condensador

Parte de alta pressão

Compressor

Parte de baixa pressão

Evaporador

Figura 1 - Sistema de refrigeração dividido em parte de baixa e alta pressão.

Fonte: Adaptado de Springer Carrier, 1989.

O dispositivo medidor de líquido controla o fluxo de refrigerante líquido vindo do condensador para o evaporador. Esse controle, em geral, é realizado automaticamente. Equipamentos que apresentam pequenas variações de carga como é o caso dos condicionadores de ar do tipo Split, utilizam tubos capilares que são a opção mais simples e de baixo custo. Para evitar que o tubo seja obstruído por impurezas, um filtro o antecede (SPRINGER, 1989).

Segundo Elonka & Minich (1978), "válvula de expansão é um termo padronizado empregado na indústria para designar qualquer dispositivo que controle ou regule a vazão de entrada do refrigerante líquido no evaporador". Logo, o dispositivo medidor de líquido é comumente assim chamado, mesmo se tratando de tubos capilares, visto que este satisfaz a finalidade de uma válvula de expansão.

No evaporador ou serpentina a pressão é baixa, o que faz com que parte do líquido refrigerante vindo do condensador sob alta temperatura expanda-se em gás e absorva calor do liquido restante. O ambiente externo cede calor ao líquido refrigerante mediante a transferência de calor através paredes da serpentina. Com isso, o ambiente externo resfria-se e o líquido refrigerante torna-se um gás frio e com baixa pressão (SPRINGER, 1986).

O gás frio é recebido pelo compressor, onde é comprimido e adquire temperatura e pressão mais elevados que o ambiente externo. Tal característica impacta diretamente no comportamento do evaporador e do condensador, pois resulta na redução da pressão e temperatura do evaporador e na elevação das mesmas no condensador. Logo, o compressor é o componente responsável pela existência dos níveis de alta e de baixa pressão que permitem que o fluido refrigerante circule e o sistema opere conforme o esperado (SPRINGER, 1986).

Do compressor, esse gás quente segue para o condensador, que assim como o evaporador, possui aletas que servem para aumentar a área de transferência de calor. No condensador o ar passa pelas aletas e tubos da serpentina fazendo com que o gás quente condense em líquido quente cedendo calor ao ambiente externo. Este líquido segue para um reservatório e posteriormente para o dispositivo medidor de líquido, reiniciando o ciclo (SPRINGER, 1988).

O compressor necessita de óleo para lubrificação de suas peças e este óleo é arrastado juntamente com o refrigerante durante a compressão. Ele fica retido no reservatório e retorna ao compressor através da linha de equalização. Logo, o reservatório atua também como filtro retendo possíveis impurezas para que não cheguem ao dispositivo medidor. Em alguns modelos, o reservatório é parte integrante do condensador (SPRINGER, 1986).

Além de fatores mecânicos de projeto, a capacidade do compressor também é afetada por fatores de aplicação, tais como: rotação (RPM), pressões de sucção e descarga e pelo refrigerante escolhido. O compressor pode apresentar ruído excessivo durante seu funcionamento se houver acúmulo de líquido refrigerante ou óleo em seu interior. Por consequência tem-se também um aumento da potência consumida (SPRINGER, 1986).

Condicionadores de ar do tipo Split possuem compressor hermético, que se caracteriza pela impossibilidade de receber manutenção. Nesta topologia um invólucro de aço envolve o compressor e o motor (SPRINGER, 1986).

A maioria dos equipamentos opera com sistema de ciclo reverso, o qual pode ser utilizado para refrigerar ou fornecer calor para o ambiente. Neste sistema há adição de uma válvula reversora que possibilitam a reversão do ciclo, ou seja, invertem o fluxo do refrigerante.

A diferença fundamental neste caso é que o gás quente agora é condensado onde era o evaporador e é evaporado onde era o condensador.

A escolha de um líquido refrigerante adequado proporciona uma melhor eficiência para as trocas térmicas durante o ciclo de refrigeração. Isso deve-se ao fato de que cada refrigerante possui diferente ponto de vaporização. As pressões de trabalho também devem ser consideradas, visto que quanto maior ela for, mais robusto deverá ser o equipamento. O ideal é que o refrigerante possua baixa pressão de condensação e pressão de evaporação acima da atmosférica (SPRINGER, 1988).

Os equipamentos atuais utilizam, em geral, o R-134A ou o R410-A como fluido refrigerante. O R-134A apresenta características similares ao R-12, porém elimina o impacto ambiental que este causava na camada de ozônio. De acordo com Martinelli Júnior, o R-134A possui potencial de destruição do ozônio (ODP) igual a zero devido ao seu menor tempo de vida na atmosfera, apresentando 90% de redução no potencial de efeito estufa se comparado ao R-12. Assim como o R134-A, o R410-A possui ODP nulo, mas seu potencial de aquecimento global é mais alto do que o R134-A devido a presença de cloro em sua composição. Considerando-se o fator financeiro, tem-se como o gás de mais barata aquisição o R-22, seguido pelo R-134-A e sendo o R410-A o mais caro destes (COBEQIC, 2015).

Pode-se saber se o equipamento de refrigeração está funcionando adequadamente através da relação entre pressão e temperatura do líquido refrigerante utilizado. Utilizando-se um manômetro obtém-se medidas de valores típicos e analisa-se seu comportamento (Dossat, 1980; SPRINGER, 1988).

Sistemas de refrigeração não retiram calor a uma taxa constante, o que pode causar acúmulo de refrigerante no condensador. A presença do reservatório permite maiores variações da carga, armazenando o refrigerante excedente a cada instante. A taxa de transferência de calor tem relação com a pressão existente no condensador e no evaporador, locais onde o refrigerante encontra-se em situação de saturação (SPRINGER, 1988).

No ciclo de refrigeração existem dispositivos de controle que asseguram seu correto funcionamento. O controle primário realiza a parada e a partida do ciclo e o controle secundário é responsável por protegê-lo e regulá-lo. O termostato e o pressostato são os controladores primários mais comuns, agindo mediante as necessidades de temperatura e pressão. Controladores secundários de proteção atuam somente na incidência de falhas, assegurando que os componentes da máquina se mantenham intactos (SPRINGER, 1989).

Compressores apresentam como fonte de acionamento mais comum um motor elétrico. A escolha adequada do compressor é de extrema importância ao projeto, sendo na climatização os de tipo alternativos e rotativos os mais amplamente utilizados. Compressores alternativos geram maior ruído e consumo de energia devido ao movimento de seus pistões. Tais características, fazem com que os compressores rotativos sejam consumidos em larga escala, pois são mais econômicos e silenciosos. Utiliza-se ambas as topologias de compressores nos modelos janela e Split (WEB ARCONDICIONADO, 2018).

Entre os modelos disponíveis para compressores rotativos, pode-se optar pelo rotativo simples ou pelo rotativo Inverter. Na prática, o inverter do condicionador de ar é um inversor de frequência (também chamado de conversor de frequência) cujo papel é o de realizar o controle da velocidade de rotação do compressor rotativo, ajustando-a conforme as variações térmicas do ambiente (WEB ARCONDICIONADO, 2018, WIKIPÉDIA, 2018).

2.2 O DIAGRAMA DE ENTALPIA DE PRESSÃO (ph)

Para analisar a evolução do fluido refrigerante ao longo do ciclo de refrigeração fechado, faz-se necessário compreender o que acontece com a sua entalpia e a sua entropia durante os processos termodinâmicos do sistema. Sabendo-se que a entalpia é o calor total do refrigerante e a entropia é o índice para as perdas do sistema, utiliza-se como ferramenta o Diagrama de Mollier (Pena, 2011; Martinelli Júnior, 2003).

Neste diagrama são representadas a pressão versus a entalpia específica, sendo então uma importante ferramenta para ilustrar o Ciclo Frigorífico. A figura 2 apresenta o ciclo ideal, desconsiderando as perdas do sistema.

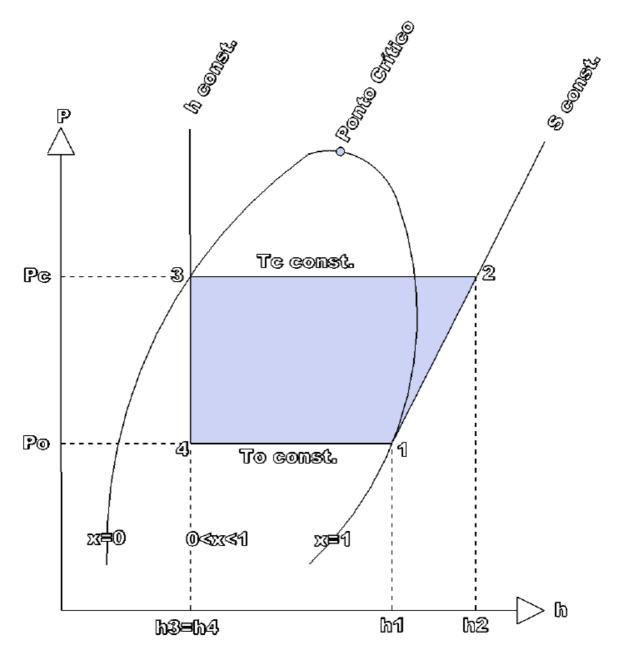


Figura 2 – Diagrama de pressão versus entalpia especifica considerando um ciclo ideal.

Fonte: Adaptado de Martinelli Junior, Luiz Carlos. 2003.

Durante o ciclo frigorífico, o fluido refrigerante muda continuamente seu estado, assim faz-se necessária a compreensão do conceito de título (X). Entende-se por título de uma substância a relação da massa de vapor pela massa total na temperatura de saturação (temperatura na qual a substância se vaporiza), podendo seu valor variar entre 0 e 1. Quando X=1 o fluido é um vapor saturado (região de vapor superaquecido) e quando X=0 é um líquido

saturado (região de líquido sub-resfriado), em valores intermediários existe uma mistura de líquido e vapor (região de vapor úmido) (Martinelli Júnior, 2003).

As variáveis h da figura 2 representam a entalpia do fluido refrigerante em diferentes pontos do ciclo de refrigeração. Tem-se h1 na saída do evaporador e na entrada do compressor, h2 na saída do compressor e na entrada do condensador, h3 na saída do condensador e na entrada do dispositivo medidor de líquido e h4 na saída do dispositivo medidor de líquido e na entrada do evaporador (Martinelli Júnior, 2003).

Os trechos delimitados pelos números 1 a 4 da figura 2 representam os processos termodinâmicos do ciclo de refrigeração. O processo 1-2 acontece no compressor, 2-3 no condensador e 4-1 no evaporador (Martinelli Júnior, 2003). Segundo Dossat (2004), não se pode traçar um trajeto real para o processo 3-4, pode-se apenas afirmar que este processo se inicia no ponto 3 e se finaliza no ponto 4. Os trechos 2-3 e 4-1 são processos isobáricos, ou seja, processos onde a pressão se mantem constante.

No processo 1-2 o refrigerante entra no compressor com pressão P_0 do evaporador (pressão de sucção) para ser comprimido até a pressão P_C de condensação com temperatura $T_2 > T_C$ (temperatura de condensação). Trata-se de um processo reversível, de entropia S ($S_1 = S_2$) constante e que apresenta como produto final o fluido refrigerante no estado de vapor superaquecido (Martinelli Júnior, 2003).

No processo 2-3 o fluido refrigerante entra no condensador com temperatura T_2 para ser resfriado. Cede calor sensível ao ambiente externo até atingir T_C , quando passa então a ceder calor latente até atingir P_C . Apresenta como produto final o fluido refrigerante no estado de líquido saturado (Martinelli Júnior, 2003).

No processo 3-4 o refrigerante entra no dispositivo medidor de líquido com pressão P_C para ser expandido até atingir a pressão P₀. Trata-se de um processo irreversível, de entalpia constante e entropia S3<S4. Apresenta como produto final o fluido refrigerante como uma mistura de líquido e vapor (Martinelli Júnior, 2003).

No processo 4-1 o refrigerante entra no evaporador com pressão e temperatura P_0 e T_0 do evaporador para absorver calor do ambiente externo. Apresenta como produto final o fluido refrigerante no estado de vapor saturado (Martinelli Júnior, 2003).

Ao analisar-se o ciclo de refrigeração real, nota-se que este apresenta algumas diferenças se comparado ao ciclo ideal. Essas diferenças devem-se as perdas presentes no sistema. A figura 3 apresenta o ciclo ideal e o ciclo real de refrigeração, destacando o efeito das perdas no sistema.

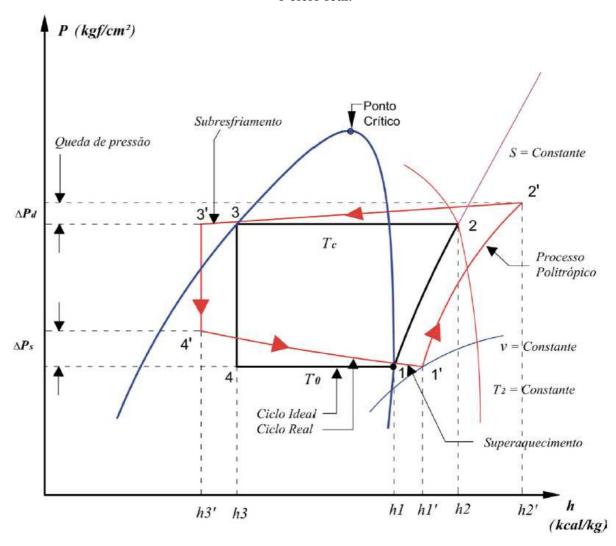


Figura 3 – Diagrama de pressão versus entalpia especifica comparando o ciclo ideal e o ciclo real.

Fonte: Pena, Sergio Meirelles. 2011.

Segundo Dossat (2004), o refrigerante para vencer os atritos interno (dentro do fluido) e externo (superficial) sofre quedas de pressão. De acordo com Martinelli Júnior (2003), as perdas ΔP_d e ΔP_s representadas na figura 3, são originadas devido à queda de pressão nas linhas de descarga, líquido e sucção, bem como no condensador e no evaporador. Observa-se também a incidência de subresfriamento na saída do condensador e superaquecimento durante a sucção (para evitar-se a entrada de líquido no compressor).

No ciclo ideal, o processo de compressão no compressor é realizado de maneira isentrópica (a entropia do sistema permanece constante), mas no ciclo real tal processo se dá de maneira politrópica, ou seja, $S_1 \neq S_2$. Tal situação pode tornar-se um problema em relação aos óleos lubrificantes usados no compressor devido à elevação na temperatura T_2 de descarga do

compressor, fazendo-se necessário um resfriamento forçado do cabeçote do compressor (Martinelli Júnior, 2003).

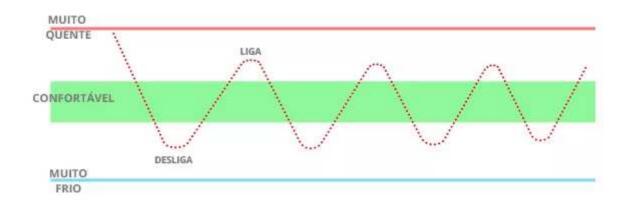
2.3 CARGA TÉRMICA

O desafio da indústria de refrigeração é oferecer ao mercado equipamentos com baixo consumo de energia e que proporcionem condições de conforto térmico ao usuário final. O estudo da carga térmica é a ferramenta utilizada para selecionar qual o equipamento ideal para cada cenário em questão.

Através do Ciclo Frigorifico Ideal representado na figura 2, pode-se obter o Coeficiente de Eficácia, também conhecido por Coeficiente de Desempenho ou ainda Coeficiente de Performance (COP). Ele indica o rendimento da máquina pela relação entre a energia útil e a energia gasta.

A energia gasta é o trabalho realizado pelo compressor e a energia útil é o efeito frigorífico que o refrigerante provoca, sua capacidade de remover o calor do sistema. A equação 1 apresenta essa relação.

$$COP = \frac{h1 - h4}{h2 - h1} \tag{1}$$


As diferenças entre h1 - h4 e h2 - h1 são, respectivamente, a energia útil e a energia gasta pelo sistema. Condicionadores de ar que com elevado valor de COP são considerados equipamentos de alta eficiência.

Através do COP, o INMETRO classifica os condicionadores de ar em classes que variam entre A a D conferindo-lhes o selo PROCEL, onde a classe A denota equipamentos mais eficientes.

Em condicionadores de ar operando sob velocidade variável observa-se que a temperatura ambiente se mantém mais constante do que seria observado utilizando-se um equipamento de velocidade fixa. A figura 4 apresenta o comportamento observado utilizando-

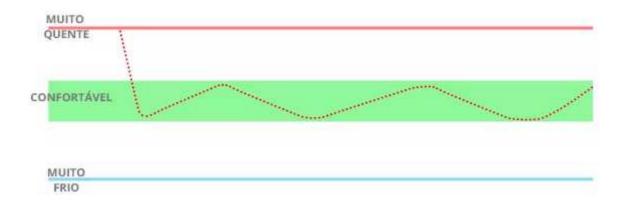

se um equipamento operando sob velocidade fixa e a figura 5 um equipamento operando sob a velocidade variável.

Figura 4 – Comportamento da Temperatura do Ambiente Climatizado por um Equipamento operando sob Velocidade Fixa.

Fonte: Frigelar, 2018.

Figura 5 – Comportamento da Temperatura do Ambiente Climatizado por um Equipamento operando sob Velocidade Variável.

Fonte: Frigelar, 2018.

2.4 O SISTEMA SPLIT

A palavra Split ao ser aplicada para condicionadores de ar, denota que o aparelho possui seu sistema dividido em duas unidades, as quais são interligadas por tubulações de cobre por onde circula o gás refrigerante e ligações elétricas. A unidade evaporadora fica instalada no ambiente interno e a unidade condensadora no ambiente externo. O escoamento de água originado durante o ciclo de refrigeração é realizado por um dreno ligado à unidade evaporadora (WEB ARCONDICIONADO, 2018).

O mercado oferece diversos modelos de condicionadores do tipo Split System, tais como: Hi-Wall, piso-teto, Cassete, Quatro Lados, Canto-Teto, Window Split e Multisplit.

Os modelos canto-teto e Window Split são indicados para pequenos ambientes, visto que apresentam potências que variam, respectivamente, entre 9000 e 12000 BTU/h e entre 7000 e 12000 BTU/h. O modelo Window Split é geralmente utilizado quando deseja-se aproveitar o espaço anteriormente ocupado por um condicionador do tipo janela, visto que possui sua unidade condensadora em igual tamanho (WEB ARCONDICIONADO, 2018).

Os modelos Quatro Lados e Piso Teto podem ser instalados em diversas posições do cômodo, sendo o Quatro Lados instalado geralmente no centro, laterais ou nos cantos e o piso teto no piso (console), parede ou teto. São indicados para ambientes de porte médio pois apresentam potências entre 24000 e 60000 BTU/h na versão quatro lados e entre 18000 e 80000 BTU/h na versão piso teto. O modelo piso teto é pouco utilizado no Brasil, visto que possui apenas um fabricante (Gree), fazendo-o ceder espaço para o modelo cassete (WEB ARCONDICIONADO, 2018).

O modelo cassete pode ser instalado no teto ou no forro e possui até quatro saídas de ar em seu difusor. É indicado para ambientes de médio porte, visto que apresenta potências entre 12000 e 60000 BTU/h (WEB ARCONDICIONADO, 2018).

O modelo Multisplit caracteriza-se por possuir uma unidade condensadora e duas ou mais evaporadoras. É indicado para ambientes de médio porte ou ainda quando deseja-se climatizar diversos ambientes, apresentando potências entre 18000 e 50000 BTU/h (WEB ARCONDICIONADO, 2018).

O modelo Hi-Wall é o mais popular entre os diversos tipos de Split. É indicado para ambientes de pequeno e médio porte, visto que apresenta potência entre 7000 e 30000 BTU/h. É comum utilizá-lo em aplicações onde seja demandada uma maior capacidade de refrigeração,

situação na qual utiliza-se mais de um aparelho operando simultaneamente no ambiente. (WEB ARCONDICIONADO, 2018).

Ao consultar o site do INMETRO (Instituto Nacional de Metrologia, Qualidade e Tecnologia), não foram encontradas as tabelas de consumo/eficiência energética para os modelos quatro lados, canto-teto, Window Split e Multisplit. Assim, torna-se difícil fazer afirmações quanto a sua eficiência energética, restando ao consumidor confiar nas especificações declaradas pelos fabricantes.

2.5 ECONOMIA

2.5.1 A PROTESTE

A PROTESTE, Associação Brasileira de Defesa do Consumidor, apresenta-se como "uma entidade civil sem fins lucrativos, apartidária, independente de governos e empresas, que atua na defesa e no fortalecimento dos direitos dos consumidores brasileiros, fundada em 16 de julho de 2001". Tem como proposta auxiliar o consumidor a "fazer valer seu poder de compra e a conhecer seus direitos", bem como "aperfeiçoar a legislação de consumo" e ainda "intervém, sempre que necessário, nos conflitos de associados com fornecedores e encaminha às empresas e às autoridades reivindicações e propostas pertinentes para melhorar produtos e serviços" (PROTESTE, 2018).

Ao pesquisar-se em seu site informações sobre ares condicionados, estão disponíveis dados referentes a sete fabricantes, são eles: LG, Electrolux, Elgin, Consul, Philco, Midea e Samsung. Estes fabricantes foram classificados quanto a sua qualidade mediante alguns testes, os quais foram realizados da seguinte maneira:

- Manual de instruções: apresentação e clareza de informações;
- Facilidade de uso: clareza das funções do controle remoto, qualidade dos botões, iluminação do visor, relógio e medida da temperatura;
- Direção do fluxo do ar: calculou-se o ângulo de movimentação das paletas verticais e horizontais;

- Desempenho: consumo em stand-by, possíveis diferenças entre a temperatura selecionada e a do ambiente, overshoot de resfriamento, tempo para a refrigeração (para o ambiente atingir 90% da temperatura desejada) e ruído do evaporador a uma distância de 30 cm;
- Estabilidade da temperatura: verificados durante cinco ciclos de liga/desliga do compressor;

Para os testes, foram utilizadas 19 amostras, sendo 10 com capacidade de 12000 Btu/h e 9 de 9000 Btu/h. Destas amostras, 14 operam com tecnologia convencional e 5 com a Tecnologia Inverter. Como resultado desta análise, obteve-se que os três melhores produtos foram os que operam sob a Tecnologia Inverter. As 19 amostras tratam-se de condicionadores de ar do tipo Split Hi-Wall.

2.5.2 SELEÇÃO DOS FABRICANTES E SEUS DADOS

Considerando os fabricantes citados pela PROTESTE e os dados divulgados por estes fabricantes ao compararem seus produtos, que fazem uso da tecnologia "Inverter", aos demais produtos comumente oferecidos no mercado, é possível observar que com a tecnologia "Inverter" obtém-se relevante economia de energia. Segundo as informações constantes no site dos fabricantes, tem-se:

- Samsung: afirma que a tecnologia "Inverter" presente em seus produtos pode oferecer uma economia de energia de até 60% quando comparado aos equipamentos convencionais (SAMSUNG, 2017).
- LG: afirma que seus condicionadores de ar Smart Inverter permitem ao cliente economizar até 60% ao compara-lo com os modelos presentes no mercado sem esta tecnologia (LG, 2017).
- Midea: promete uma redução do consumo de energia de até 60% quando o equipamento opera em modo normal. Além disso, oferece a função "Eco Noite", que coloca o aparelho em modo ECO por 8 horas, sendo a primeira hora para garantir o conforto térmico rapidamente e as sete horas seguintes, através de um ajuste fino em sua frequência com base nas temperaturas externa e interna ao ambiente, mantém-se o

conforto e, consequentemente, obtém-se uma economia de até 74% (Midea, 2017; ABRAVA, 2018).

Obs: as marcas Midea, Springer e Carrier fazem parte de um mesmo grupo, então por motivo de simplificação será denominado Midea, visto que dependendo da fonte analisada, esta nomenclatura pode variar.

- Electrolux: oferece 40% em economia de energia ao comparar seus produtos com a tecnologia "Inverter" aos produtos sem esta tecnologia (Electrolux, 2018).
- Elgin: promete 40% em economia de energia ao comparar seus condicionadores de ar "Inverter" aos produtos convencionais (Elgin, 2018).
- Consul: o fabricante afirma que seus produtos "Inverter" apresentam até 40% em economia de energia ao compara-los aos produtos convencionais (Consul, 2018).
- Philco: o fabricante não apresenta dados referentes a economia oferecida por seus produtos em sua página (Philco, 2018).

Assim, de acordo com os fabricantes, é possível obter uma economia de energia de até 74% de energia optando-se por adquirir um produto com a tecnologia "Inverter".

2.5.3 ETIQUETA NACIONAL DE CONSERVAÇÃO DE ENERGIA E O SELO PROCEL

O INMETRO, a partir da ENCE (Etiqueta Nacional de Conservação de Energia), considerando também o Selo PROCEL de Economia de Energia, fornece tabelas que apresentam a eficiência energética para condicionadores de ar do tipo Split de diversos fabricantes. Estas tabelas incluem equipamentos de variadas capacidades de refrigeração, alguns operando sob rotação fixa e outros sob rotação variável.

Ao consultar-se o site do INMETRO, encontrou-se disponíveis as tabelas de consumo/eficiência energética para os modelos Hi-Wall, Piso Teto e Cassete. Para o modelo Hi Wall tem-se 1242 equipamentos, sendo 897 de rotação fixa e 345 de rotação variável. Para o modelo piso teto tem-se 395 equipamentos, sendo 371 de rotação fixa e 24 de rotação variável. Para o modelo cassete, tem-se 211 equipamentos, sendo 62 de rotação fixa e 32 de rotação variável.

Os quadros 1, 2 e 3 apresentam as capacidades de refrigeração analisadas para cada uma das marcas citadas nos itens 2.4.1 e 2.4.2. No quadro 1 estão os dados referentes ao modelo Hi Wall, no quadro 2 os dados referentes ao modelo piso teto e no quadro 3 os dados referentes ao modelo cassete.

Quadro 1 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Hi Wall.

Fabricante						Capacida	de de Refi	rigeração	Nominal	(Btu/h)				
	7000	7500	8500	9000	11500	12000	16000	17000	18000	22000	23000	24000	28000	30000
	1				TE	CNOLO	GIA CON	VENCIO	NAL		ı			
Consul	X			X		X			X	X				
Electrolux	X			X		X			X			X		X
Elgin	X			X		X			X			X		X
LG		X		X		X		X	X		X	X		
Midea	X	X		X		X			X	X			X	X
Philco				X		X			X			X		
Samsung				X		X			X			X		
	1					TECNO	LOGIA I	VERTE	R		ı			
Consul				X		X			X	X				
Electrolux	X			X		X			X	X				
Elgin				X		X			X			X		
LG			X	X	X	X		X	X	X		X		
Midea				X		X	X	X	X	X		X		
Philco				X		X			X	X				
Samsung				X		X			X			X		

Fonte: Adaptado de ENCE, 2017.

Quadro 2 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Piso Teto.

Fabricante					Capaci	dade de R	efrigeraç	ão Nomin	al (Btu/h)				
	17000	18000	23000	24000	30000	35000	36000	38000	46000	48000	54000	58000	60000
	ı				TECNOL	OGIA CO	ONVENC	IONAL		l l			ı
Elgin		X		X	X		X			X			X
LG		X	X				X				X		
Midea		X		X	X	X	X			X		X	
Samsung								X				X	
	•				TECN	OLOGIA	INVER	ΓER					•
LG	X			X		X	X		X		X	X	
Midea							X				X		
Samsung						X			X		X		

Fonte: Adaptado de ENCE, 2017.

Quadro 3 – Capacidade de Refrigeração Nominal Para Condicionadores de Ar Split Cassete.

Fabricante								Capac	idade de R	efrigeração	Nominal ((Btu/h)							
	11000	17000	18000	21000	24000	25000	28000	30000	33000	35000	36000	42000	45000	46000	48000	51000	52000	54000	60000
	11000	17000	18000	21000	24000	23000	28000	30000	33000	33000	30000	42000	43000	40000	48000	31000	32000	34000	00000
			•			•	•	T	ECNOLOG	IA CONV	ENCIONA	AL				•			
Electrolux											X				X				
Elgin			X		X			X			X				X				X
LG			X		X		X		X				X	X	X	X	X		
Midea			X		X						X			X					
	TECNOLOGIA INVERTER																		
LG	X	X		X	X	X				X		X		X				X	

Fonte: Adaptado de ENCE, 2017.

Além da potência elétrica consumida pelo equipamento, as tabelas fornecidas pelo INMETRO apresentam o valor do COP ou CEE, Coeficiente de Eficiência Energética (W/W). De acordo com este valor, os condicionadores de ar são separados em classes, onde valores maiores que 3,23 classificam-se como de classe A, entre 3,02 e 3,23 como classe B, entre 2,81 e 3,02 como classe C e entre 2,60 e 2,81 como classe D.

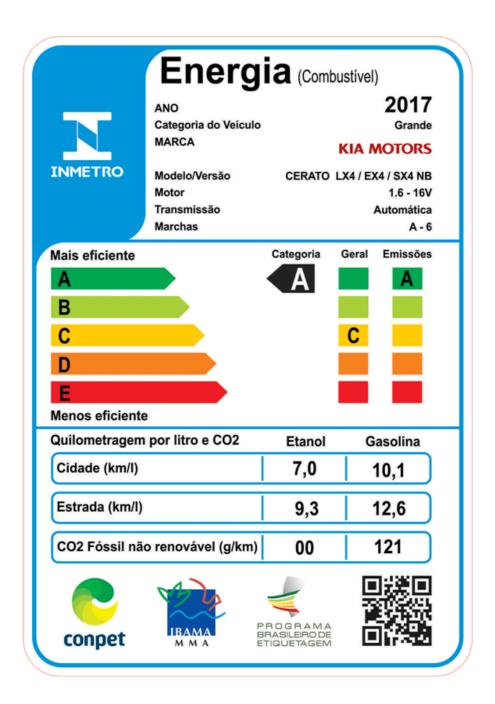

O INMETRO, através do Programa Nacional da Racionalização do Uso dos Derivados do Petróleo e do Gás Natural, confere aos veículos automotores o Selo CONPET de Eficiência Energética. Este selo é semelhante ao selo PROCEL, fornecendo ao consumidor a classificação quanto ao consumo energético do veículo e tabelas com esses valores em quilometragem/litro. As figuras 6 e 7 ilustram, respectivamente, os Selos PROCEL e CONPET, os quais apresentam a classe do equipamento e informações adicionais sobre o produto adquirido pelo consumidor.

Figura 6 – O Selo PROCEL.

Fonte: Adaptado de Mundo da Elétrica, 2018.

Figura 7 – O Selo CONPET.

Fonte: KIA MOTORS, 2018.

3 METODOLOGIA E RESULTADOS

Através do diagnóstico energético faz-se o levantamento da energia que está sendo dissipada pelo ambiente analisado. Para a análise das pessoas e equipamentos de trabalho, considera-se as taxas típicas de calor liberado de acordo com a NBR 16401-1, de 2008. Para a análise da iluminação necessária ao ambiente considerar-se-á o maior valor fornecido pelas normas analisadas, visto que estas fornecem o valor mínimo a ser adotado. Serão consideradas as normas NBR 5410 (2008), a NBR 16401-1 (2008) e a NBR 8995-1 (2013).

Sabendo-se as taxas de dissipação de calor do ambiente, pode-se escolher qual a potência de refrigeração do equipamento ideal para realizar a aplicação.

3.1 AMBIENTE ESCOLHIDO

O ambiente escolhido para análise trata-se um uma sala comercial cuja área é de 34,68 m². Sua utilização será diurna, entre os horários de 09:00 e 16:00, de Segunda-Feira a Sexta-Feira, totalizando 140 horas mensais e 1680 horas anuais.

Esta sala será ocupada por sete pessoas que realizaram atividades moderadas, comuns a um ambiente de escritório. No local utilizam-se equipamentos elétricos tais como computadores e impressoras e a iluminação do local é feita por lâmpadas fluorescentes. A figura 8 apresenta a planta baixa do ambiente que será climatizado, a qual foi desenvolvida no aplicativo *Google SketchUp*.

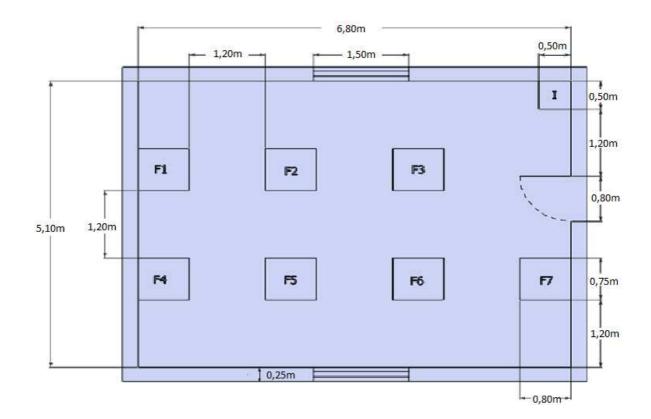


Figura 8 – Planta baixa do ambiente a ser climatizado.

Na figura 7 cada F representa uma mesa que será ocupada por um dos sete funcionários e o I representa a mesa auxiliar onde ficara localizada uma impressora de uso comum. A sala possui duas janelas de 1,5m x 1,5m e uma porta de 2,10m x 0,8m. As paredes possuem 0,25 m de espessura, sendo constituídas por tijolos de 0,20 m e revestidas por 0,025 m de reboco (argamassa originada a partir de gesso, água e cal). O teto e o piso da edificação são constituídos do mesmo material das paredes. A porta é constituída de madeira com espessura de 0,025 m e as duas janelas são de vidro com espessura de 0,003 m. Adotou-se para a edificação um pé direito de 3m.

Por tratar-se de um ambiente de escritório, as mesas foram dimensionadas de acordo com a NBR 13966, de 1997. Esta norma adota as dimensões de 0,80m de largura por 0,75m de profundidade para mesas onde serão utilizados computadores e de 0,50m de largura e de profundidade para mesas auxiliares. Foi adotada a altura de ambas as mesas como 0,75m.

Neste ambiente considerou-se a possibilidade de existirem trabalhadores cadeirantes e, com isso adotou-se as medidas adequadas conforme o IBDD, Instituto Brasileiro dos Direitos da

Pessoa com Deficiência. Segundo o IBDD, para realizar uma manobra de 90° um cadeirante necessita de um espaço de 1,20m x 1,20m e, para as portas deve-se ter um vão livre de 0,80m.

3.2 ANÁLISE DA CARGA TÉRMICA

3.2.1 ILUMINAÇÃO

Para realizar-se o cálculo da demanda de iluminação do ambiente, deve-se considerar as normas NBR 5410 (2008), a NBR 16401-1 (2008) e a NBR 8995-1 (2013). O valor adotado para a taxa típica de dissipação de calor por iluminação será o maior previsto por uma dessas normas, visto que ambas preveem os valores mínimos que devem ser adotados.

3.2.1.1 NBR 5410 - INSTALAÇÕES ELÉTRICAS DE BAIXA TENSÃO

A NBR 5410 (2008, p. 183) afirma que "em cômodo ou dependências com área superior a 6 m², deve ser prevista uma carga mínima de 100 VA para os primeiros 6 m², acrescida de 60 VA para cada aumento de 4 m² inteiros". Logo, para o ambiente em análise tem-se uma potência de iluminação mínima de 520 VA. Para garantir-se uma melhor distribuição, serão utilizados 6 pontos de iluminação, cada um com 100 VA, somando então uma potência de iluminação de 600 VA. Considerando-se o uso de lâmpadas fluorescentes e um fator de potência 0,92 devido ao critério exigido para que lhe seja atribuído o Selo PROCEL tem-se uma potência ativa de 552 W.

3.2.1.2 NBR 16401 - INSTALAÇÕES DE AR-CONDICIONADO – SISTEMAS CENTRAIS E UNITÁRIOS

A NBR 16401-1, de 2008, recomenda o uso de lâmpadas fluorescentes em ambientes de escritórios, as quais dissipam potência de 16W/m². De acordo com esta norma, o ambiente apresentará uma potência ativa de 554,88 W (34,68 m² x 16W/m²).

3.2.1.3 NBR ISO 8995-1 - ILUMINÂNCIA DE INTERIORES

O fator de utilização pode ser definido como o fator que determina a potência média que será consumida por um dado equipamento (Fourier Engenharia, 2018). Para obtê-lo, deve-se considerar as reflexões médias das superfícies internas da edificação (parede, piso e teto). De acordo com Cotrim (2009), os valores típicos para a reflexão e os seus índices correspondentes podem ser calculados tal que:

- 1 Superfície escura: 10% de reflexão;
- 3 Superfície média 30% de reflexão;
- 5 Superfície clara 50% de reflexão;
- 7 Superfície branca 70% de reflexão;

Considerando os índices acima aplicados, respectivamente, ao teto, paredes e piso, tem-se a refletância do ambiente. Sendo a edificação constituída por paredes e teto de cores claras e por piso de cor escura, tem-se o valor de 551 para a refletância da edificação analisada.

O fator do local (k) é a relação entre as dimensões do local (Lapsi UFRGS, 2012) e pode ser calculado de acordo com a equação 2 (Cotrim, 2009).

$$k = \frac{l \times b}{h \times (l+b)} \tag{2}$$

Onde l é o comprimento do local, b é a largura do local e h a altura entre a luminária e o plano de trabalho.

Aplicando-se as dimensões do ambiente e considerando h como a diferença entre o pé direito e a altura da mesa de trabalho dos funcionários, tem-se o valor de k=1,29.

Os fabricantes disponibilizam em seus catálogos tabelas com o valor para o fator de utilização (FU) correspondente a refletância do ambiente. Consultando-se o catálogo da Philips, cuja tabela para a refletância correspondente a lâmpadas fluorescentes TMS c/ RN 500-1 TLD 20W encontra-se no anexo J, encontra-se o valor de FU=0,55 equivalente ao valor da reflexão e ao fator do local.

A NBR 8995-1, de 2013, define os valores de iluminância médias mínimas considerando tipo de ambiente e a tarefa ou atividade a ser exercida nele. Considerando-se o ambiente um de escritório com estações de projeto assistido por computador tem-se um valor médio de 500 lux. Com a equação 3 obtém-se o fluxo luminoso (Cotrim, 2009).

$$\varphi = \frac{A \times E}{\eta \times FU} \tag{3}$$

Onde φ é o fluxo luminoso, A é a área da edificação, E o iluminamento exigido pela norma NBR ISSO 8995-1 e η é o fator de manutenção.

Considerando-se um fator de manutenção para ambientes limpos (0,8), a área do ambiente, a iluminância fornecida pela norma e o valor calculado para o fator de manutenção obtém-se o fluxo luminoso φ = 39409,09 lúmens.

Consultando-se o ENCE, Regulamento Específico para uso da Etiqueta Nacional de Conservação de Energia (p. 18), este dispõe de uma tabela com o fluxo luminoso padronizado para lâmpadas incandescentes. Considerando-se lâmpadas de 100 W / 220V, tem-se, de acordo com esta tabela, uma necessidade que utilizar-se 30 unidades para atingir o fluxo luminoso desejado.

De acordo com o IEE - USP, Instituto de Energia e Ambiente, uma lâmpada fluorescente compacta de 20W pode substituir uma lâmpada incandescente de 100W, economizando energia elétrica com o mesmo iluminamento. Assim, considerando-se o uso de lâmpadas fluorescentes, ter-se-ia uma demanda de potência de 600W.

3.2.1.4 DEMANDA DE ILUMINAÇÃO DO AMBIENTE

O valor adotado para a taxa típica de dissipação de calor por iluminação será o fornecido pela NBR 8995-1 (2013), que foi o maior obtido pelas normas consideradas nos itens 3.2.1.1 a 3.2.1.3.

3.2.2 PAREDES, JANELAS, PORTA, TETO E PISO

Segundo Dossat (2004), para obter-se a carga de calor através das paredes constituintes da edificação, primeiramente deve-se considerar a tabela apresentada no anexo A, a qual contém os valores para a condutividade térmica de materiais usados em paredes de armazenagem fria. Com estes valores, calcula-se o fator U, ou seja, o coeficiente total de transmissão de calor em Btu por hora por pé quadrado por grau Fahrenheit para cada parede, janela, porta, teto e piso da edificação.

Aplicando-se os valores tabelados para a condutividade térmica destes materiais a equação 4, obtém-se o fator U.

$$\frac{1}{U} = \frac{1}{f1} + \frac{1}{k1} + \frac{x}{k2} + \frac{1}{f0} \tag{4}$$

Onde f1 é o coeficiente de convecção interna, f0 é o coeficiente de convecção externa, x é a espessura dada em polegadas para o material, k1 e k2 condutividades térmicas dos materiais. Obs: em caso de materiais homogêneos utiliza-se 1/C para representar a resistência térmica individual de um material, mas se o material for heterogêneo, utiliza-se x/k.

Para realizar-se os cálculos, faz-se necessário fazer-se algumas considerações:

- No ambiente externo existe um vento com velocidade de 7,5 m/h;
- No ambiente interno o ar está parado;
- As paredes são constituídas por tijolos comuns;
- A porta é constituída de madeira de lei;
- As janelas são constituídas por vidraça simples.

O quadro 4 apresenta os valores utilizados para os cálculos e seus resultados, onde considerou-se 3,4121 e 0,1761 os fatores de conversão de W para Btu/h e de W/ (m². °C) para Btu/ (pé². °F), respectivamente.

Quadro 4 - Fator U Para Componentes da Edificação.

	Janela	Porta	Parede / Teto / Piso
f0 (m/h)	4	4	4
f1 (m/h)	1,65	1,65	1,65
k1 ((Btu)(pol)/(h)(pé²)(°F))	-	-	5
k2 ((Btu)(pol)/(h)(pé²)(°F))	-	-	5
$C ((Btu)(pol)/(h)(p\acute{e}^2)(°F))$	1,13	1,10	-
x (pol)	-	-	0,98
U ((Btu)/(h)(pé²)(°F))	0,574	0,566	0,789
U(Btu)/(h.m².°C)	11,1217	10,9967	15,2876

Fonte: Adaptado de Dossat, 2004.

Com o fator U, é possível então calcular-se a carga de calor através das paredes utilizando-se a equação 5:

$$Q = A \times U \times D \tag{5}$$

Onde Q é a quantidade de calor transferida em Btu por hora, A é a área da superfície externa da parede em pés quadrados e D o diferencial de temperatura através da parede em graus Fahrenheit.

O ambiente escolhido para análise tem sua utilização entre os horários de 09:00 e 16:00, logo deve-se considerar a incidência solar nas paredes da edificação. A tabela apresentada no anexo B contém os valores que devem ser acrescidos a diferença de temperatura normal para cálculos de dispersão de calor para compensação do efeito do sol.

Para os cálculos considerou-se que:

- As paredes da edificação são claras, de pintura branca.
- A temperatura no interior da edificação em 23°C (75,2 °F), pois está é a temperatura considerada como a temperatura de conforto térmico no verão (ASBRAV, 2018).
- A temperatura externa à edificação em 30°C (86 °F).

O quadro 5 apresenta os valores utilizados para os cálculos e seus resultados:

Quadro 5 - Carga de Calor Através das Paredes Constituinte da Edificação.

	Janela (Norte)	Janela (Sul)	Porta (Leste)	Teto	Piso	Parede (Norte)	Parede (Oeste)	Parede (Sul)	Parede (Leste)
$U\;((Btu)/(h)(p\acute{e}^2)(^\circ F))$	0,574	0,574	0,566	0,789	0,789	0,789	0,789	0,789	0,789
Área (m²)	2,25	2,25	1,68	40,88	40,88	21,9-2,25=	16,80	19,65	16,8-1,68=15,12
						19,65			
A, Área (pés²)	24,21	24,21	18,08	440,03	440,03	211,51	180,83	211,51	162,75
Temperatura de projeto interior	75,2	75,2	75,2	75,2	75,2	75,2	75,2	75,2	75,2
(°F)									
Temperatura de projeto ao ar	86	86	86	86	86	86	86	86	86
livre (°F)									
Temperatura de projeto da	86-75,2	10,8	10,8	10,8	10,8	10,8	10,8	10,8	10,8
parede normal (°F)	= 10,8								
Fator de Correção (Anexo B)	0	2	4	9	0	0	4	2	4
D, Temperatura de projeto	10,8	12,8	14,8	19,8	10,8	10,8	14,8	12,8	14,8
da parede (°F)									
Q, Carga de calor (Btu/h)	150,08	177,87	151,45	6874,24	3749,58	1802,32	2111,59	2136,08	1900,46
Carga de calor total (Btu/h)		1	1	ı	ı	l		L	I
						19053,67			

Fonte: Adaptado de Dossat, 2004.

Embora Dossat não recomende o uso do fator de correção (Anexo B) em projetos de condicionamento de ar, neste trabalho optou-se por utilizá-lo visto que a edificação tem ocupação diurna e considerável incidência solar. Desprezar esse valor causaria grande diferença nos cálculos, principalmente em estações climáticas de alta temperatura.

3.2.3 EQUIPAMENTOS DE ESCRITÓRIO E PESSOAS

Para o levantamento da energia total dissipada serão considerados os valores típicos para as taxas de dissipação de calor apresentados na NBR 16401, de 2008. O quadro 6 apresenta esses valores:

Quadro 6 – Taxas típicas de dissipação de calor

	Unitário	Total
Pessoa em atividade moderada em	130 W	910 W
trabalhos de escritório		
Impressora	160 W	160 W
Computadores	65 W	455 W
Monitores	70 W	490 W
Total		2015 W

Fonte: Adaptado da NBR 16401-1 (2008, anexo C).

Os adotar-se os valores apresentados no quadro 3, fez-se algumas considerações:

- A impressora trata-se de um modelo de escritório, pequena e que imprime uma página por minuto.
- Para os computadores considerou-se o fator de segurança e monitores médios, de 16 a 18 polegadas.
- Os valores de dissipação de calor liberado por pessoas consideram um ajuste baseado numa porcentagem normal de homens, mulheres e crianças, onde postulou-se que o calor liberado por uma mulher adulta e por uma criança correspondem, respectivamente, a aproximadamente 85% e 75% do calor liberado por um homem adulto.

3.2.4 CARGA TÉRMICA TOTAL

Considerando-se a soma das cargas térmicas totais obtidas em 3.2.1 a 3.2.3 pode-se então escolher a potência de refrigeração do aparelho adequado. Porém, para somar-se estes

valores é necessário que todos estejam com as mesmas unidades. Assim, considerando-se o somatório das potências por iluminação, equipamentos de escritório e pessoas tem-se 2615 W.

Sabendo-se que 1 BTU equivale a 1055,05 J (Joule) e que em 1 hora tem-se 3600 s (segundos), pode-se relacionar adequadamente as grandezas de acordo com a equação 6:

$$P(W) = \frac{E \times 1055,05}{3600} [W]$$
 (6)

Onde *P* (*W*) é a potência dada em watts, E (BTU) é a energia dada em BTU, 1055,05 é o fator de conversão da energia em BTU para Joule e 3600 é o fator de conversão para hora.

Assim, com a equação 4, obtém-se a carga térmica equivalente aos 2615W com o valor de 8922,80 Btu/h. O quadro 7 apresenta a soma dos valores encontrados para o ambiente em análise:

Quadro 7 – Carga térmica total da edificação

	Carga Térmica (Btu/h)
Iluminação, equipamentos de escritório e pessoas	8922,80
Paredes, janelas, porta, teto e piso	19053,67
Total	27976,47

Fonte: Adaptado da NBR 16401-1 (2008, anexo C) e Dossat, 2004.

3.3 EQUIPAMENTO ESCOLHIDO

Conforme o item 3.2.4, a análise da carga térmica da edificação escolhida demanda que para que seja feita sua refrigeração adequada sejam retirados 27976,47 Btu/h de energia sob a forma de calor.

Nos itens 2.4.1 e 2.4.2, observou-se que entre os equipamentos analisados pela PROTESTE, ao considerar-se os fabricantes citados e realizar-se uma pesquisa sobre o que cada um deles tem a oferecer ao mercado com sua Tecnologia Inverter, constatou-se que o fabricante que afirma que pode oferecer uma maior economia de energia foi a Midea. Este fabricante declara oferecer economias de energia de até 74 %, porém não declara em qual capacidade de refrigeração tal característica é observada.

Afim de obter-se dados mais consistentes, serão considerados para a análise os dados apresentados pelo INMETRO a partir da ENCE, considerando também o Selo PROCEL de Economia de Energia.

3.3.1 CAPACIDADE DE REFRIGERAÇÃO NOMINAL

Os dados dos fabricantes de interesse foram organizados nos quadros 1, 2 e 3 do item 2.4.3. Baseado nestes quadros e na carga térmica total da edificação, pode-se escolher o equipamento adequado a esta aplicação.

O equipamento escolhido deve sempre apresentar uma potência de refrigeração acima da potência dissipada pelo ambiente sob a forma de calor. Porém, esse valor acima não deve ser muito elevado, pois representaria um superdimensionamento.

Por superdimensionamento entende-se a adoção do equipamento com capacidade de refrigeração acima da qual o ambiente em análise necessita. Tal escolha tem como consequência um maior consumo de energia, além de representar maiores gastos em sua aquisição (WEB ARCONDICIONADO, 2018).

Deve-se ter cuidado também com o subdimensionamento, ou seja, adotar-se um aparelho com capacidade de refrigeração abaixo da demandada pelo ambiente. Tal escolha exige que o equipamento opere sempre em sua capacidade máxima, além de causar um desgaste prematuro dos componentes internos do aparelho. Se a carga térmica do ambiente for excessivamente maior que a capacidade nominal de refrigeração do aparelho, este nunca será capaz de proporcionar o conforto térmico desejado (WEB ARCONDICIONADO, 2018).

Considerando-se apenas a capacidade de refrigeração nominal dos equipamentos, de forma a obter-se um correto dimensionamento, tem-se, ao analisar os quadros 1, 2 e 3 diversas possibilidades a serem adotadas afim de climatizar o ambiente em análise.

De acordo com os quadros 1, 2 e 3, pode-se observar a existência de equipamentos cuja capacidade de refrigeração nominal variam entre 7000 e 30000 Btu/h para o modelo Hi Wall, entre 17000 e 60000 Btu/h para o modelo piso teto e entre 11000 e 60000 Btu/h para o modelo cassete. Deste modo, serão analisadas configurações adequadas de modo a obter capacidades de refrigeração nominal entre 28000 e 36000 Btu/h para a climatização do ambiente em análise.

3.3.2 CONSUMO

Deve-se ponderar ainda que, ao optar-se por um equipamento com maior capacidade de refrigeração, opta-se, em geral, também pelo equipamento com maior consumo. Nos anexos C, D e E encontram-se, respectivamente, todos os equipamentos com as potências apresentadas pelo INMETRO, a partir da ENCE, para os modelos Hi Wall, Piso Teto e Cassete das possíveis escolhas para a climatização do ambiente em análise. Considerou-se apenas os equipamentos monofásicos e com alimentação 220V. Os equipamentos com data de concessão cancelada também foram desconsiderados.

Consultando-se os anexos C, D e E observa-se a existência de um grande número de amostras. O quadro 8 apresenta a quantidade de amostras analisadas para cada fabricante considerando a capacidade de refrigeração e o tipo de equipamento (F denota que as amostras tratam-se de equipamentos do tipo frio e R de tipo reverso).

Quadro 8 - Quantidade de Amostras Analisadas para cada Fabricante Considerando a Capacidade de Refrigeração e o Tipo de Equipamento.

Fabricante									Capac	idade de Refrig	eração Nomin	al (Btu/h)									Total de
rabilicante	7000	7500	8500	9000	11000	11500	12000	16000	17000	18000	21000	22000	23000	24000	25000	28000	30000	33000	35000	36000	amostras
							•	Н	WALL - TEO	CNOLOGIA CO	ONVENCION	AL		•				•			
Consul	5F / 4R			6F / 6R			6F / 6R			6F / 6R		6F / 6R									29F / 28R
Electrolux	3F / 3R			4F / 4R			3F / 3R			2F / 2R				2F / 2R			2F / 2R				16F / 16R
Elgin	5F / 1R			19F / 10R			15F / 10R			7F / 6R				6F / 6R			3F / 5R				55F / 38R
LG		1F / 3R		2F / 5R			1F / 5R		0F / 1R	1F / 5R			1F / 1R	0F / 4R							6F / 23R
Midea	7F / 7R	7F / 8R		21F / 17R			18F / 17R			15F / 13R		8F / 7R		4F / 4R		2F / 2R	9F / 6R				91F / 81R
Philco				2F / 1R			3F / 3R			2F / 2R				2F / 2R							9F / 8R
Samsung				6F / 0R			3F / 2R			2F / 3R				2F/3R							13F / 8R
			1	I.		1	1	1	HI WALL -	TECNOLOGIA	A INVERTER	ı		1				1			
Consul				2F / 2R			2F / 2R			2F / 2R		2F / 2R									8F / 8R
Electrolux	1F / 1R			1F / 1R			1F / 1R			1F / 1R		1F / 1R									5F / 5R
Elgin				2F / 2R			2F / 2R			1F / 1R				0F / 2R							5F / 7R
LG			1F / 2R	4F / 3R		1F / 1R	4F / 5R		1F / 1R	4F / 4R		6F / 5R		0F / 1R							21F / 22R
Midea				8F / 10R			8F / 10R	0F / 1R	2F / 1R	7F / 7R		5F / 7R		1F / 1R							31F / 37R
Samsung				4F / 4R			3F / 2R			1F / 1R				1F / 1R							9F / 8R
							1	PIS	O TETO – TE	CNOLOGIA C	CONVENCION	IAL		· L				1			
Electrolux																				1F / 0R	1F / 0R
Elgin										5F / 3R							7F / 3R			6F / 3R	18F / 9R
LG										1F / 0R										1F / 0R	2F / 0R
Midea										1F / 1R							1F / 1R		1F / 0R	2F / 2R	5F / 4R
						l	· I	l	PISO TETO -	TECNOLOGI	A INVERTER			· L				· I	· L		
LG									1F / 0R										1F / 0R	1F / 0R	3F / 0R
Midea																				1F / 0R	1F / 0R
Samsung																			1F / 0R		1F / 0R
					1	ı	1	C	ASSETE – TEO	CNOLOGIA C	ONVENCION	AL		1	1			1	1		
Electrolux																				2F / 0R	2F / 0R
Elgin										1F / 1R							2F / 2R			3F / 3R	6F / 6R
LG										1F / 1R						0F / 1R		1F / 1R			2F / 3R
Midea										2F / 2R										1F / 1R	3F / 3R
	1	1	1	1	1	l .	1	l .	CASSETE –	TECNOLOGIA	A INVERTER	ı	1	1	1	1	1	1	1	1	
LG					1F / 0R				2F / 0R		1F / 0R			1F / 0R	1F / 0R				2F / 0R		8F / 0R
LG					1F/0R					TECNOLOGIA				1F / 0R	11	F / 0R	F/OR	F/OR	F/OR	F/0R 2F/0R	F/0R 2F/0R

Fonte: Adaptado de ANCE, 2017.

Como o objetivo é realizar a análise do consumo dos equipamentos operando sob velocidade fixa e sob velocidade variável, serão consideradas as potências máximas e mínimas encontradas para cada fabricante, tendo-se em vista o tipo de equipamento em questão (frio ou reverso). O anexo F apresenta esses dados, os quais foram extraídos dos anexos C, D e E. Utilizando-se os dados apresentados no anexo F, montou-se as configurações apresentadas no anexo G.

3.3.2.1 POTÊNCIA CONSUMIDA

Observando-se os dados apresentados no quadro 8 e no anexo G pode-se realizar a análise para a potência consumida pelos equipamentos. Essa análise se dará em etapas, afim de que sejam identificados pontos relevantes ao estudo.

3.3.2.1.1 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO, O MODELO DO APARELHO E A TECNOLOGIA DE CADA FABRICANTE

Em uma primeira análise considerou-se, individualmente, as características de cada fabricante. Os dados obtidos encontram-se no quadro 9.

Quadro 9 – Potência Elétrica Máxima e Mínima dos Equipamentos

(continua)

Capacidade						POTÊNCI	A ELÉTRIC	CA CONSU	MIDA (W)				
de	Fabricante		HI W	'ALL			PISO	ТЕТО			CAS	SETE	
Refrigeração	Tabricance	Tipo	Frio	Tipo R	Reverso	Tipo	Frio	Tipo R	leverso	Tipo	Frio	Tipo R	leverso
Nominal (Btu/h)		Mínima	Máxima	Mínima	Máxima	Mínima	Máxima	Mínima	Máxima	Mínima	Máxima	Mínima	Máxima
					TECNOL	OGIA CON	VENCION	AL					
28000	Consul	2532	2552	2532	2552								
28000	Electrolux	2532	2556	2532	2556								
28000	Elgin	2740	2920	2740									
28000	LG											3145	
28000	Midea	2532	3143	2532	3143								

												(conti	nuação)
29000	Consul	2622	2646	2622	2646								
29000	LG			2725									
29000	Midea	2623	2978	2623	3159								
29500	Midea	2654	2967	2664	3121								
30000	Consul	2713	2740	2713	2740								
30000	Electrolux	2712	3128	2712	3128								
30000	Elgin	2574	3280	2604	3250	2668	2970	2668	3060	2715	2895	2715	2900
30000	LG	2700	2735	2640	2910								
30000	Midea	2656	3250	2694	3266	3080		3100					
30000	Philco	2840	3132	2593	2724								
30000	Samsung	2699	2814	2815									
31000	Consul	2803	2830	2803	2830								
31000	Electrolux	2805	3143	2805	3143								
	Elgin	2725	3330	2718	2765								
31000	Midea	2751	3305	2765	3438								
31000	LG	2900	3303	3050	3436								
31500			2020		2020								
32000	Consul	2894	2920	2894	2920								
32000	Electrolux	2896	3031	2896	3031			ļ					
32000	Elgin	2924	3440	2934	2970			ļ				1	
32000	Midea	2894	3474	2894	3474								
32500	LG			3005	3028								
32500	Midea	2862	3294	3232	3386								
33000	Consul	2984	3013	2984	3013								
33000	Electrolux	2987	3326	2987	3326								
33000	Elgin	2817	3590	2815	3395								
33000	LG	2984		2830	3220					3700		3650	
33000	Midea	2932	3584	2946	3703								
33000	Philco	2840	3132	2840	2852								
33000	Samsung	2962	3130	3135									
34000	Consul	3074	3104	3074	3104								
34000	LG			3280									
35000	Midea	3890											
36000	Consul	3255	3288	3255	3288								
36000	Electrolux	3258	3600	3258	3600	3745				3740		3754	
36000	Elgin	3060	3960	3073	3780	3255	3740	3143	3740	3249	3730	3162	3740
36000	LG	3255	3300	3255	3500	3700	3900			3720			
36000	Midea	3177	4032	3198	4032	3737	3980	3707	3980	3900	4040	3720	5300
36000	Philco	3087	3390	3087	3390								
36000	Samsung	3225	3480	3225	3480								
30000	8					IOLOGIA I	NVERTER	1					
28000	Electrolux	2532		2532	1201		LICILIA						
28000	LG									2426			
28000	Midea			2580									
28500	LG	2578		2240	2578			<u> </u>					
29000	Electrolux	2622		2622									
29000	LG	2568		2548				-				-	
29500	LG	2590		2640									
30000	Consul	2698	2713	2698	2713			-				+	
	Electrolux	2711	2712	2711	2712			-					
30000	Elgin	2565	2712	2650	2698			 				1	
30000	LG	2580	2715	2510	2715							1	
30000	Midea	2499	2740	2446	2740								
30000													
30000	Samsung	2650	2950	2950	2963								
30500	LG	3759		2590	2960								

										(con	clusão)
31000	Consul	2790	2803	2790	2803						
31000	Electrolux	2802	2803	2802	2803						
31000	LG	2765	2825	2790	3005						
31000	Midea	2649	2805	2712	2806						
32000	Electrolux	2892	2893	2892	2893						
32000	Elgin										
32000	LG							2896			
32000	Midea			3300							
32500	LG			2790							
33000	Consul	2970	2984	2970	2984						
33000	Electrolux	2983		2983							
33000	Elgin	2760	2987	2900	2982						
33000	LG	2835	2985	2820	2990			2988			
33000	Midea	2736	3014	2618	3160						
33000	Samsung	2720	3190	2963	3317						
33500	LG	3030		3030							
34000	Consul	3060	3074	3060	3074						
34000	Electrolux	3074		3074							
34000	LG	3020	3095	2400	3275	3290					
34000	Midea	3056		3020	3175						
34500	LG	3082	3120	2600	3125						
35000	LG	3088	3110	2800	3170	3380		2926	3380		
35000	Midea	3056		3035							
35000	Samsung					3191					
35500	LG	3094	3100	3000	3230						
36000	Consul	3236	3256	3236	3256						
36000	Electrolux	3252	3255	3252	3255						
36000	Elgin	2955	3260	3150	3253						
36000	LG	3090	3260	3000	3260	3480		3256			
36000	Midea	2886	3288	2790	3288	3226					
36000	Samsung	2720	3708	3030	3708						

Fonte: Adaptado de ANCE, 2017.

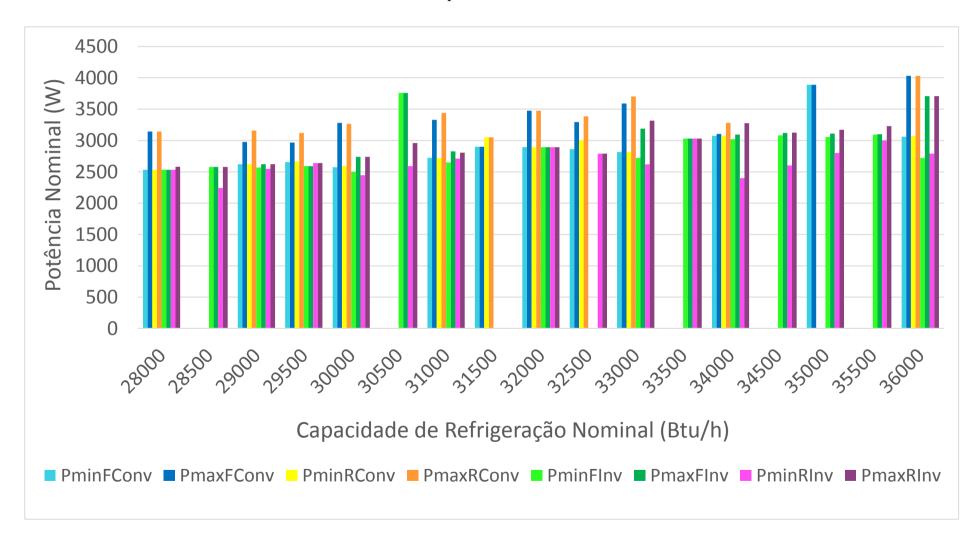
De acordo com o quadro 8, foram obtidas 664 amostras, sendo 587 do modelo Hi Wall, 44 do modelo Piso Teto e 33 do modelo Cassete. Das 664 amostras, observa-se que 485 (258 do tipo frio e 227 do tipo reverso) operam sob a tecnologia convencional e 179 (92 do tipo frio e 87 do tipo reverso) sob a tecnologia inverter.

Com as 664 amostras, montou-se as configurações apresentadas no anexo G, obtendo-se 202 cenários. Destes cenários, 172 são formados pelo modelo Hi Wall (90 operando sob tecnologia convencional e 82 sob a tecnologia inverter), 15 pelo modelo piso teto (10 operando sob tecnologia convencional e 5 sob a tecnologia inverter) e 15 pelo modelo cassete (9 operando sob tecnologia convencional e 6 sob a tecnologia inverter).

3.3.2.1.1.1 HI WALL

Observando-se os quadros 8 e 9 bem como o anexo G, pode-se concluir, para o modelo Hi Wall:

- O fabricante que oferece mais opções ao usuário é a Midea, com 172 amostras para a tecnologia convencional e 68 para a tecnologia inverter.
- O fabricante que oferece menos opções ao usuário é a Philco, com 17 amostras para a tecnologia convencional e nenhuma para a tecnologia inverter.
- Para a tecnologia inverter tem-se 166 opções de aparelhos, enquanto para a tecnologia convencional tem-se 421 opções.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com menor consumo de potência elétrica para a tecnologia convencional:
 - 28000 Btu/h: Consul, Electrolux e Midea com 2532W no tipo frio e no tipo reverso.
 - 28500 Btu/h, 30500 Btu/h, 33500 Btu/h, 34500 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 29000 Btu/h: Consul com 2622W tanto no tipo frio como no tipo reverso.
 - 29500 Btu/h: apenas o fabricante Midea oferece opção, com 2654W no tipo frio e
 2664 no tipo reverso.
 - 30000 Btu/h: Elgin com 2574W no tipo frio e Philco com 2593W no tipo reverso.
 - 31000 Btu/h: Elgin com 2725W no tipo frio e 2718W no tipo reverso.
 - 31500 Btu/h: apenas o fabricante LG oferece opção, com 2900W no tipo frio e 3050 no tipo reverso.
 - 32000 Btu/h: Consul e Midea com 2894W no tipo frio e no tipo reverso.
 - 32500 Btu/h: Midea com 2862W no tipo frio e LG com 3005W no tipo reverso.
 - 33000 Btu/h: Elgin com 2817W no tipo frio e 2815W no tipo reverso.
 - 34000 Btu/h: Consul com 3074W no tipo frio e no tipo reverso.
 - 35000 Btu/h: apenas o fabricante Midea oferece opção, com 3890W no tipo frio, mas nenhuma opção no tipo reverso.
 - 36000 Btu/h: Elgin com 3060W no tipo frio e 3073W no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com maior consumo de potência elétrica para a tecnologia convencional:


- 28500 Btu/h, 30500 Btu/h, 33500 Btu/h, 34500 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
- 28000 Btu/h: Midea com 3143W no tipo frio e no tipo reverso.
- 29000 Btu/h: Midea com 2978W no tipo frio e 3159W no tipo reverso.
- 29500 Btu/h: apenas o fabricante Midea oferece opção, com 2967W no tipo frio e
 3121 no tipo reverso.
- 30000 Btu/h: Elgin com 3280W no tipo frio e Midea com 3266W no tipo reverso.
- 31000 Btu/h: Elgin com 3330W no tipo frio e Midea com 3438W no tipo reverso.
- 31500 Btu/h: apenas o fabricante LG oferece opção, com 2900W no tipo frio e 3050 no tipo reverso.
- 32000 Btu/h: Midea com 3474W no tipo frio e no tipo reverso.
- 32500 Btu/h: Midea com 3294W no tipo frio e 3386W no tipo reverso.
- 33000 Btu/h: Elgin com 3590W no tipo frio e Midea com 3703W no tipo reverso.
- 34000 Btu/h: Consul com 3104W no tipo frio e LG com 3280 no tipo reverso.
- 35000 Btu/h: apenas o fabricante Midea oferece opção, com 3890W no tipo frio, mas nenhuma opção no tipo reverso.
- 36000 Btu/h: Midea com 4032W no tipo frio e no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com menor consumo de potência elétrica para a tecnologia inverter:
 - 28000 Btu/h: Electrolux com 2532W no tipo frio e no tipo reverso.
 - 28500 Btu/h: apenas o fabricante LG oferece opção, com 2578W no tipo frio e
 2240W no tipo reverso.
 - 29000 Btu/h: LG com 2568W no tipo frio e 2548W no tipo reverso.
 - 29500 Btu/h: apenas o fabricante LG oferece opção, com 2590W no tipo frio e
 2640W no tipo reverso.
 - 30000 Btu/h: Midea com 2499W no tipo frio e 2446W no tipo reverso.
 - 30500 Btu/h: apenas o fabricante LG oferece opção, com 3759W no tipo frio e 2590W no tipo reverso.
 - 31000 Btu/h: Midea com 2649W no tipo frio e 2712W no tipo reverso.
 - 31500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 32000 Btu/h: Electrolux com 2892W no tipo frio e no tipo reverso.
 - 32500 Btu/h: apenas o fabricante LG oferece opção, com 2790W no tipo reverso e nenhuma opção no tipo frio.

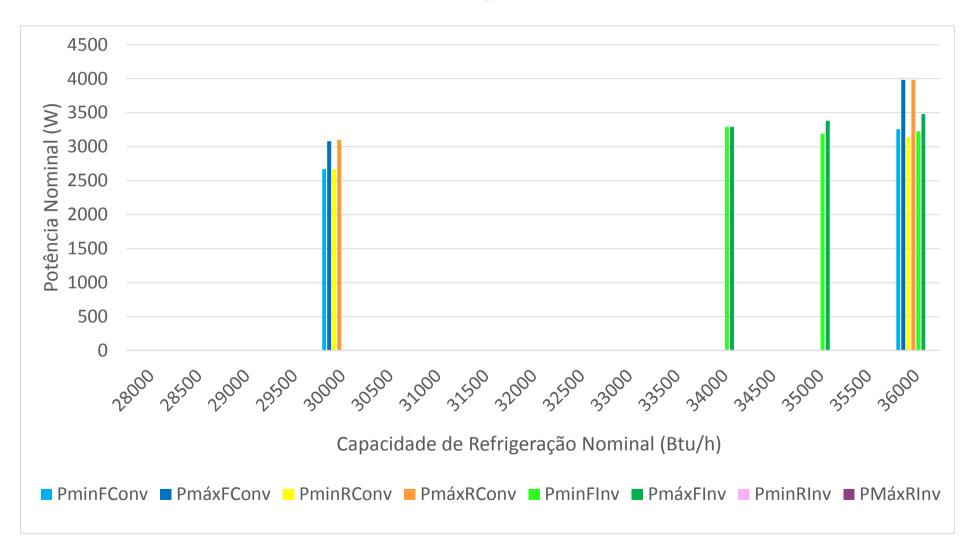
- 33000 Btu/h: Samsung com 2720W no tipo frio e Midea com 2618W no tipo reverso.
- 33500 Btu/h: apenas o fabricante LG oferece opção, com 3030W no tipo frio e no tipo reverso.
- 34000 Btu/h: LG com 3020W no tipo frio e 2400W no tipo reverso.
- 34500 Btu/h: apenas o fabricante LG oferece opção, com 3082W no tipo frio e 2600W no tipo reverso.
- 35000 Btu/h: Midea com 3056W no tipo frio e LG com 2800W no tipo reverso.
- 35500 Btu/h: apenas o fabricante LG oferece opção, com 3094W no tipo frio e 3000W no tipo reverso.
- 36000 Btu/h: Samsung com 2720W no tipo frio e Midea com 2790W no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com maior consumo de potência elétrica para a tecnologia inverter:
 - 28000 Btu/h: Electrolux com 2532W no tipo frio e Midea com 2580W no tipo reverso.
 - 28500 Btu/h: apenas o fabricante LG oferece opção, com 2578W no tipo frio e no tipo reverso.
 - 29000 Btu/h: Electrolux com 2622W no tipo frio e no tipo reverso.
 - 29500 Btu/h: apenas o fabricante LG oferece opção, com 2590W no tipo frio e
 2640W no tipo reverso.
 - 30000 Btu/h: Midea com 2740W no tipo frio e no tipo reverso.
 - 30500 Btu/h: apenas o fabricante LG oferece opção, com 3759W no tipo frio e 2960W no tipo reverso.
 - 31000 Btu/h: LG com 2825W no tipo frio e Midea com 2806W no tipo reverso.
 - 31500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 32000 Btu/h: Electrolux com 2893W no tipo frio e no tipo reverso.
 - 32500 Btu/h: apenas o fabricante LG oferece opção, com 2790W no tipo reverso e nenhuma opção no tipo frio.
 - 33000 Btu/h: Samsung com 3190W no tipo frio e 3317W no tipo reverso.
 - 33500 Btu/h: apenas o fabricante LG oferece opção, com 3030W no tipo frio e no tipo reverso.
 - 34000 Btu/h: LG com 3095W no tipo frio e 3275W no tipo reverso.

- 34500 Btu/h: apenas o fabricante LG oferece opção, com 3120W no tipo frio e 3125W no tipo reverso.
- 35000 Btu/h: LG com 3110W no tipo frio e 3170W no tipo reverso.
- 35500 Btu/h: apenas o fabricante LG oferece opção, com 3100W no tipo frio e 3230W no tipo reverso.
- 36000 Btu/h: Samsung com 3708W no tipo frio e no tipo reverso.

A figura 9 apresenta a distribuição das amostras que apresentaram as máximas e mínimas potências nominais dos equipamentos modelo hi wall para o tipo frio e para o tipo reverso de acordo com sua capacidade de refrigeração nominal.

Figura 9 – Distribuição das Amostras com Máxima e Mínima Potência para os Tipos Frio e Reverso Considerando as Tecnologias Convencional e Inverter para o Modelo Hi Wall.

3.3.2.1.1.2 PISO TETO


Observando-se os quadros 8 e 9 bem como o anexo G, pode-se concluir, para o modelo piso teto:

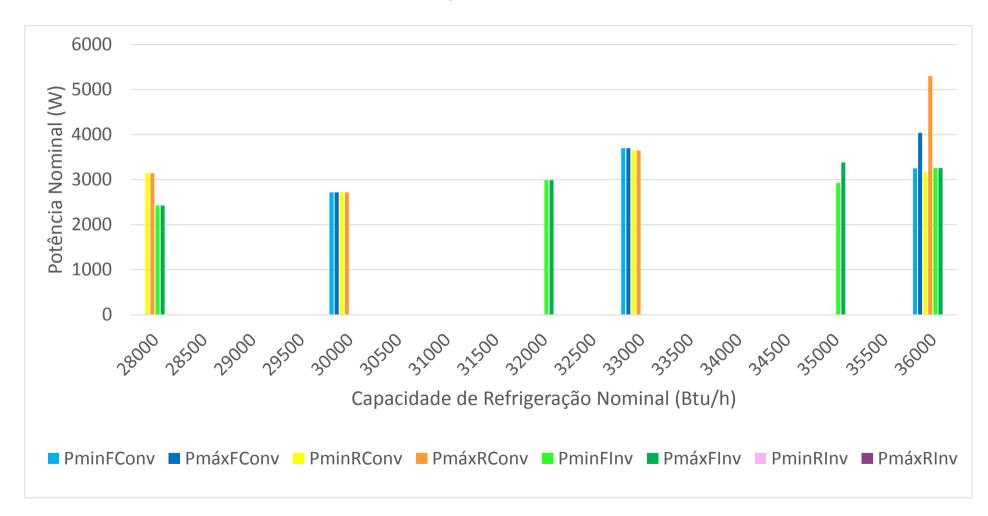
- O fabricante que oferece mais opções ao usuário para a tecnologia convencional é a Elgin com 27 amostras e para a tecnologia inverter é a LG com 3 amostras.
- Os fabricantes Consul, Philco e Samsung não oferecem opções para a tecnologia convencional.
- Os fabricantes Consul, Electrolux, Elgin e Philco e não oferecem opções para a tecnologia inverter.
- Para a tecnologia inverter tem-se 5 opções de aparelhos, enquanto para a tecnologia convencional tem-se 39 opções.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com menor consumo de potência elétrica para a tecnologia convencional:
 - 28000 Btu/h, 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33000 Btu/h, 33500 Btu/h, 34000 Btu/h, 34000 Btu/h, 34500 Btu/h, 35000 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 30000 Btu/h: Elgin com 2668W no tipo frio e no tipo reverso.
 - 36000 Btu/h: Elgin com 3255W no tipo frio e 3143W no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com maior consumo de potência elétrica para a tecnologia convencional:
 - 28000 Btu/h, 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33000 Btu/h, 33500 Btu/h, 34000 Btu/h, 34500 Btu/h, 35000 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 30000 Btu/h: Midea com 3080W no tipo frio e 3100W no tipo reverso.
 - 36000 Btu/h: Midea com 3980W no tipo frio e no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com menor consumo de potência elétrica para a tecnologia inverter:

- 28000 Btu/h, 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30000 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33000 Btu/h, 33500 Btu/h, 34500 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
- 34000 Btu/h: apenas o fabricante LG oferece opção, com 3290W no tipo frio e nenhum no tipo reverso.
- 35000 Btu/h: Samsung com 3191W no tipo frio e nenhum no tipo reverso.
- 36000 Btu/h: Midea com 3226W no tipo frio e nenhum no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com maior consumo de potência elétrica para a tecnologia inverter:
 - 28000 Btu/h, 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33000 Btu/h, 33500 Btu/h, 34500 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 34000 Btu/h: apenas o fabricante LG oferece opção, com 3290W no tipo frio e nenhum no tipo reverso.
 - 35000 Btu/h: LG com 3380W no tipo frio e nenhum no tipo reverso.
 - 36000 Btu/h: LG com 3480W no tipo frio e nenhum no tipo reverso.

A figura 10 apresenta a distribuição das amostras que apresentaram as máximas e mínimas potências nominais dos equipamentos modelo piso teto para o tipo frio e para o tipo reverso de acordo com sua capacidade de refrigeração nominal.

Figura 10 – Distribuição das Amostras com Máxima e Mínima Potência para os Tipos Frio e Reverso Considerando as Tecnologias Convencional e Inverter para o Modelo Piso Teto.

3.3.2.1.1.3 CASSETE


Observando-se os quadros 8 e 9 bem como o anexo G, pode-se concluir, para o modelo cassete:

- O fabricante que oferece mais opções ao usuário para a tecnologia convencional é a
 Elgin com 12 amostras e para a tecnologia inverter é a LG com 8 amostras.
- Os fabricantes Consul, Philco e Samsung não oferecem opções para a tecnologia convencional.
- O único fabricante que oferece opções para a tecnologia inverter é a LG.
- Para a tecnologia inverter tem-se 8 opções de aparelhos, enquanto para a tecnologia convencional tem-se 25 opções.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com menor consumo de potência elétrica para a tecnologia convencional:
 - 28000 Btu/h: apenas o fabricante LG oferece opção, com 3145W no tipo reverso, mas nenhuma opção no tipo frio.
 - 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33500 Btu/h, 34000 Btu/h, 34500 Btu/h, 35000 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 30000 Btu/h: apenas o fabricante Elgin oferece opção, com 2715W no tipo frio e no tipo reverso.
 - 33000 Btu/h: apenas o fabricante LG oferece opção, com 3700W no tipo frio e 3650 no tipo reverso.
 - 36000 Btu/h: Elgin com 3249W no tipo frio e 3162W no tipo reverso.
- Considerando-se a capacidade de refrigeração de cada aparelho, seu tipo e o fabricante obtém-se, com maior consumo de potência elétrica para a tecnologia convencional:
 - 28000 Btu/h: apenas o fabricante LG oferece opção, com 3145W no tipo reverso, mas nenhuma opção no tipo frio.
 - 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32000 Btu/h, 32500 Btu/h, 33500 Btu/h, 34000 Btu/h, 34500 Btu/h, 35000 Btu/h e 35500 Btu/h: nenhum fabricante oferece opções para nenhuma das tecnologias.
 - 30000 Btu/h: apenas o fabricante Elgin oferece opção, com 2715W no tipo frio e no tipo reverso.

- 33000 Btu/h: apenas o fabricante LG oferece opção, com 3700W no tipo frio e 3650 no tipo reverso.
- 36000 Btu/h: Midea com 4040W no tipo frio e 5300W no tipo reverso.
- Para o modelo cassete operando sob a tecnologia inverter, apenas o fabricante LG oferece opções, sendo todas do tipo frio.
- Considerando-se a capacidade de refrigeração de cada aparelho obtém-se, com menor consumo de potência elétrica:
 - 28000 Btu/h: 2426W.
 - **32000** Btu/h: 2988W.
 - 35000 Btu/h: 2926W.
 - 36000 Btu/h: 3256W.
 - 28500 Btu/h, 29000 Btu/h, 29500 Btu/h, 30000 Btu/h, 30500 Btu/h, 31000 Btu/h, 31500 Btu/h, 32500 Btu/h, 33000 Btu/h, 33500 Btu/h, 34000 Btu/h, 34500 Btu/h, e 35500 Btu/h: o fabricante não oferece opções.
- Considerando-se a capacidade de refrigeração de cada aparelho obtém-se, com maior consumo de potência elétrica:
 - 28000 Btu/h: 2426W.
 - 32000 Btu/h: 2988W.
 - 35000 Btu/h: 3380W.
 - 36000 Btu/h: 3256W.

A figura 11 apresenta a distribuição das amostras que apresentaram as máximas e mínimas potências nominais dos equipamentos modelo cassete para o tipo frio e para o tipo reverso de acordo com sua capacidade de refrigeração nominal.

Figura 11 – Distribuição das Amostras com Máxima e Mínima Potência para os Tipos Frio e Reverso Considerando as Tecnologias Convencional e Inverter para o Modelo Cassete.

3.3.2.1.2 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO, O MODELO DO APARELHO E A SUA TECNOLOGIA

Em uma segunda análise, agrupou-se os dados obtidos no quadro 9, afim de que neste momento analise-se as características de cada modelo, desprezando-se seu fabricante e o tipo do aparelho. O quadro 10 exibe estes dados.

Quadro 10 – Potência Elétrica Máxima e Mínima para os Modelos Hi Wall, Piso Teto e Cassete.

Carraidada Dafricarea		Pot	ência Elétric	a Consumida	ı (W)	
Capacidade de Refrigeração Nominal (Btu/h)	HI V	VALL	PISO	TETO	CAS	SETE
Nominai (Bu/ii)	Mínima	Máxima	Mínima	Máxima	Mínima	Máxima
	TECNOLO	GIA CONVE	NCIONAL	1	<u> </u>	
28000	2532	3143			3145	
29000	2622	3159				
29500	2654	3121				
30000	2574	3280	2668	3100	2715	2900
31000	2718	3438				
31500	2900	3050				
32000	2894	3474				
32500	2862	3386				
33000	2815	3590			3650	3700
34000	3074	3280				
35000	3890					
36000	3060	4032	3143	3980	3162	5300
	TECNO	LOGIA INV	ERTER		l l	
28000	2532	2580			2426	
28500	2240	2578				
29000	2548	2622				
29500	2590	2640				
30000	2446	2950				
30500	2590	3759				
31000	2649	3005				
32000	2892	3300			2896	
32500	2790					
33000	2618	3317			2988	
33500	3030					
34000	2400	3275	3290			
34500	2600	3125				
35000	2800	3170	3191	3380	2926	3380
35500	3000	3230				
36000	2720	3708	3226	3480	3256	

Fonte: Adaptado de ANCE, 2017.

Observando-se o quadro 10, pode-se concluir, para a tecnologia convencional:

- Os menores consumos de potência encontrados foram de 2532W para o modelo Hi Wall,
 2668W para o modelo piso teto e 2715W para o modelo Cassete. Tais valores foram observados para a capacidade de refrigeração nominal de 28000 Btu/h para o modelo Hi Wall e de 30000 Btu/h para os modelos Piso Teto e Cassete.
- Os maiores consumos de potência encontrados foram de 4032W para o modelo Hi Wall, 3980W para o modelo Piso Teto e 5300W para o modelo Cassete. Tais valores foram observados para a capacidade de refrigeração nominal de 36000 Btu/h para os três modelos.
- O modelo com maior consumo de potência elétrica é o cassete e o modelo com menor consumo é o Hi Wall.

Observando-se o quadro 10, pode-se concluir, para a tecnologia inverter:

- Os menores consumos de potência encontrados foram de 2240W para o modelo Hi Wall, 3191W para o modelo Piso Teto e 2426W para o modelo Cassete. Tais valores foram observados para a capacidade de refrigeração nominal de 28500 Btu/h para o modelo Hi Wall, 35000 Btu/h para o modelo piso teto e de 28000 Btu/h para o modelo Cassete.
- Os maiores consumos de potência encontrados foram de 3708W para o modelo Hi Wall, 3480W para o modelo piso teto e 3380W para o modelo cassete. Tais valores foram observados para a capacidade de refrigeração nominal de 36000 Btu/h para os modelos Hi Wall e piso teto e de 35000 Btu/h para o modelo Cassete.
- O modelo Hi Wall apresentou o maior e o menor consumo de potência elétrica.

3.3.2.1.3 ANÁLISE CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO E A TECNOLOGIA DO APARELHO

Em uma terceira análise, foram consideradas a capacidade de refrigeração e a tecnologia do aparelho, desprezando-se seu fabricante, tipo do aparelho e modelo. O quadro 11 exibe estes dados, onde a coluna diferença apresenta a diferença entre a máxima e a mínima potência elétrica consumida pelo equipamento para cada capacidade de refrigeração nominal analisada.

Quadro 11 – Potência Elétrica Máxima e Mínima Considerando a Capacidade de Refrigeração e a Tecnologia do Aparelho.

Capacidade de	Potência Elétrica Consumida (W)					
Refrigeração Nominal	TECNOLOGIA			TECNOLOGIA INVERTER		
(Btu/h)	CONVENCIONAL					
	Mínima	Máxima	Diferença	Mínima	Máxima	Diferença
28000	2532	3145	613	2426	2580	154
28500				2240	2578	338
29000	2622	3159	537	2548	2622	74
29500	2654	3121	467	2590	2640	50
30000	2574	3280	748	2446	3119	673
30500				2590	3759	1169
31000	2718	3438	720	2649	3005	356
31500	2900	3050	150			
32000	2894	3474	580	2892	3300	408
32500	2862	3386	524	2790		
33000	2815	3700	885	2618	3317	699
33500				3030		
34000	3074	3280	206	2400	3290	890
34500				2600	3125	525
35000	3890			2800	3380	580
35500				3000	3230	230
36000	3060	5300	2240	2720	3708	988

Fonte: Adaptado de ANCE, 2017.

Observando-se o quadro 11 pode-se concluir que, desprezando-se o modelo do aparelho:

Observa-se uma maior diferença entre as potências máxima e mínima de 2240W
 para a tecnologia convencional e de 1169W para a tecnologia inverter. Tais valores

foram observados em 36000 Btu/h para a tecnologia convencional e em 30500 Btu/h para a tecnologia inverter.

- Observa-se uma menor diferença entre as potências máxima e mínima de 150W para a tecnologia convencional e de 50W para a tecnologia inverter. Tais valores foram observados em 31500 Btu/h para a tecnologia convencional e em 29500 Btu/h para a tecnologia inverter.
- O maior consumo de potência para a tecnologia convencional foi obtido aos 36000
 Btu/h e para a tecnologia inverter aos 30500 Btu/h.
- O menor consumo de potência para a tecnologia convencional foi obtido aos 28000
 Btu/h e para a tecnologia inverter aos 28500 Btu/h.

3.3.2.1.4 ANÁLISE CONSIDERANDO APENAS A TECNOLOGIA DO APARELHO

Em uma quarta análise, considerou-se apenas a tecnologia do aparelho, desprezando-se seu fabricante, tipo do aparelho, modelo e capacidade de refrigeração. O quadro 12 exibe estes dados.

Quadro 12 – Potência Elétrica Máxima e Mínima Considerando a Tecnologia do Aparelho.

Tecnologia	Potência elétrica consumida (W)				
Techologia	Mínima	Máxima	Diferença		
Convencional	2532	5300	2768		
Inverter	2240	3759	1519		

Fonte: Adaptado de ANCE, 2017.

Observando-se o quadro 12, pode-se concluir que:

 A tecnologia que ofereceu menor consumo de potência elétrica foi a inverter, com um equipamento de menor consumo valendo 2240 W.

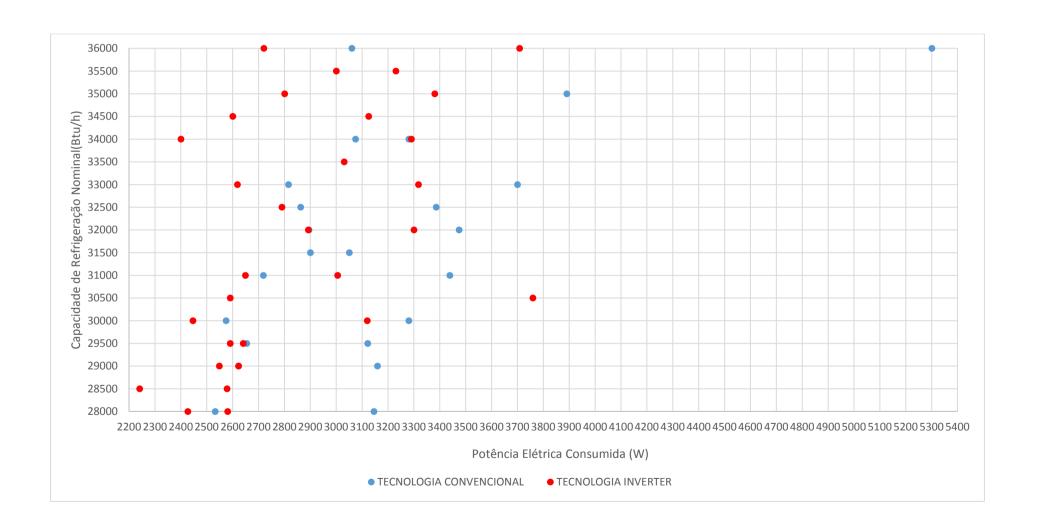
- Considerando-se as menores potências elétricas consumidas para cada tecnologia, observa-se que ao optar-se pelo equipamento operando sob a tecnologia inverter tem-se uma economia de 292W.
- Considerando-se as maiores potências elétricas consumidas para cada tecnologia, observa-se que ao optar-se pelo equipamento operando sob a tecnologia inverter tem-se uma economia de 1541W.
- Comparando-se o pior caso para a tecnologia convencional ao melhor caso para a tecnologia inverter, tem-se a máxima economia de potência para os equipamentos analisados, chegando-se ao valor de 3060W.
- Comparando-se o pior caso para a tecnologia inverter ao melhor caso para a tecnologia convencional, tem-se uma despesa máxima para a potência para os equipamentos analisados, chegando-se ao valor de 1227W.

3.3.2.1.5 ANÁLISE CONSIDERANDO APENAS A POTÊNCIA ELÉTRICA CONSUMIDA PELO APARELHO

Em uma quinta análise, considerou-se apenas a potência elétrica consumida pelo aparelho, desprezando-se seu fabricante, tipo do aparelho, modelo, capacidade de refrigeração e tecnologia. Tal análise torna-se interessante, pois o que realmente interessa é a economia de energia que se pode obter com um condicionador de ar. Assim, tem-se que, dos 202 cenários analisados, obteve-se como a potência elétrica mínima consumida no espaço amostral o valor de 2240 W e para a máxima 5300 W.

3.3.2.2 POTÊNCIA CONSUMIDA – GRÁFICOS

Por ter-se um número elevado de amostras, torna-se mais fácil visualizar as diferenças entre os equipamentos plotando-se gráficos da potência elétrica versus a capacidade de refrigeração nominal de cada arranjo analisado. No anexo H estão apresentados tais resultados,


onde os gráficos de H1 a H10 foram plotados a partir dos dados apresentados no anexo G e H11 e H12 de acordo com os dados do quadro apresentados no quadro 11.

Em H1 e H2 tem-se os gráficos obtidos para o modelo Hi Wall operando sob tecnologia convencional considerando os tipos frio e reverso, respectivamente. Em H3 e H4 tem-se os gráficos obtidos para o modelo Hi Wall operando sob tecnologia inverter considerando os tipos frio e reverso, respectivamente. Em H5 e H6 tem-se os gráficos obtidos para o modelo piso teto operando sob tecnologia convencional considerando os tipos frio e reverso, respectivamente. H7 apresenta o gráfico obtido para o modelo piso teto operando sob tecnologia inverter considerando o tipo frio, para o tipo reverso o INMETRO não apresentou amostras em suas tabelas. Em H8 e H9 tem-se os gráficos obtidos para o modelo cassete operando sob tecnologia convencional considerando os tipos frio e reverso, respectivamente. H10 apresenta o gráfico obtido para o modelo cassete operando sob tecnologia inverter considerando o tipo frio, para o tipo reverso o INMETRO não apresentou amostras em suas tabelas.

Em H11 e H12 tem-se os gráficos para a capacidade de refrigeração nominal versus a potência elétrica máxima e mínima. Em H11 observa-se o comportamento dos equipamentos operando sob a tecnologia convencional e em H12 o comportamento dos equipamentos operando sob a tecnologia inverter. Em tais gráficos é possível comparar o comportamento dos modelos afim de verificar sua eficiência para cada uma das tecnologias em questão.

Na figura 12 plotou-se o gráfico para a capacidade de refrigeração nominal versus a potência elétrica máxima e mínima de acordo com os dados apresentados no quadro 12. Neste gráfico pode-se comparar o comportamento dos equipamentos operando sob a tecnologia convencional e sob a tecnologia inverter, desconsiderando seu modelo. Verifica-se o comportamento considerando a capacidade de refrigeração nominal versus a potência elétrica máxima e mínima. Observa-se que as amostras dos equipamentos operando sob a tecnologia inverter concentraram-se em maior quantidade para os menores valores de potência consumida, sendo o menor valor apresentado no gráfico, o de um equipamento inverter. Porém, considerando-se os equipamentos operando sob tecnologia convencional, observa-se que com estes obteve-se os maiores valores de potência consumida, sendo o maior dos valores apresentados o de um equipamento convencional.

Figura 12 – Comparativo Entre o Consumo das Tecnologias Convencional e Inverter Considerando a Capacidade de Refrigeração Nominal (Btu/h) versus a Potência Elétrica Máxima e Mínima Consumida (W) para os Equipamentos.

3.3.2.3 ANÁLISE DO SELO PROCEL

Em Junho de 2018, o jornal da USP divulgou um estudo onde verificou-se que os níveis de eficiência energética no Brasil são mais baixos que outros países, tal como a Europa onde a classe A equivale a um COP ou CEE mínimo de 6W/W, enquanto no Brasil o valor mínimo atribuído a esta classe é 3,23 W/W. Afirmou-se que países cuja eficiência é elevada, exportamnos peças de menor qualidade, originando assim produtos com maior consumo (Jornal da USP, 2018).

Segundo tal estudo, a portaria discutida em Dezembro de 2017 para entrar em vigor entre 2018 e 2019, afirma que com ela há uma redução de R\$ 74 milhões mensais pagos pelo consumidor. Nesta portaria, propõe-se a extinção da classe D (2,6 – 2,81 W/W) em 18 meses e da classe C (2,81 – 3,02 W/W) em 24 meses (Jornal da USP, 2018).

As figuras 13 e 14 apresentam a distribuição de amostras analisadas de acordo com o Selo PROCEL de Economia de Energia. A figura 13 refere-se aos equipamentos operando sob a tecnologia convencional e a figura 14 refere-se aos equipamentos operando sob a tecnologia inverter.

Figura 13 – Comparativo Entre a Quantidade de Amostras e a Classe do Equipamento Considerando a Tecnologia Convencional.

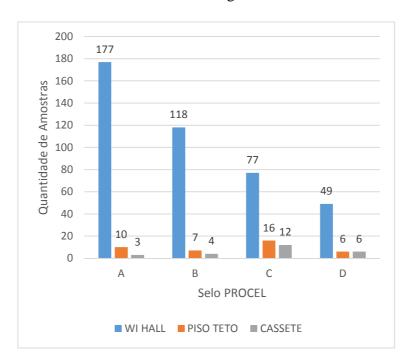
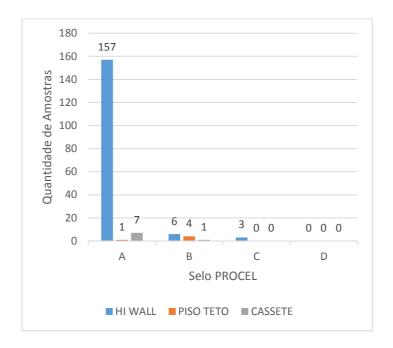



Figura 14 – Comparativo Entre a Quantidade de Amostras e a Classe do Equipamento Considerando a Tecnologia Inverter.

Nas figuras 13 e 14, pode-se observar que as amostras dos equipamentos operando sob a tecnologia convencional distribuem-se mais uniformemente entre as classes A e D do que as amostras dos equipamentos operando sob tecnologia inverter. Para o inverter, observa-se que a maioria dos equipamentos foi atribuída classe A, denotando assim equipamentos de alta performance.

3.3.2.4 ANÁLISE ECONÔMICA E RETORNO DE INVESTIMENTO INICIAL PARA O ESTUDO DE CASO

No item 3.3.2.1.4, observou-se uma redução máxima no consumo de potência elétrica de 3060 W ao comparar-se equipamentos operando sob a tecnologia convencional aos operando sob a tecnologia inverter. Os arranjos de máxima e mínima potência apresentados no quadro 13 contém as especificações extraídas das tabelas do INMETRO e do anexo G.

Quadro 13 – Especificações dos Equipamentos com Máxima e Mínima Potência Elétrica Consumida (W) para Análise do Consumo

Especificações	Arranjo com Máxima Potência (W)	Arranjo com Mínima Potência (W)
Arranjo	2 x 18000 Btu/h = 36000 Btu/h	2 x 8500Btu/h + 11500 Btu/h = 28500 Btu/h
Fabricante	Midea	LG
Modelo	Cassete	Hi Wall
Tipo	Reverso	Reverso
Tecnologia	Convencional	Inverter
Potencia Elétrica Unitária	2650W + 2650W	1040W+ 2 x 600W
Potência Elétrica Total	5300 W	2240 W
Faixa de Classificação	D	A
(Selo PROCEL)		
	Interna: 38CCD036515MC	Interna 8500 Btu/h:
		ASNW092B4A0
		ASNW092BRW0
		ASNW092BRZ0
		Interna 11500 Btu/h:
Modelo das Unidade		USNW122HSG3
	Externa: 40KWCB36C5	Externa 8500 Btu/h:
		ASUW092B4A0
		ASUW092BRW0
		ASUW092BRZ0
		Externa 11500 Btu/h: USUW122HSG3

Fonte: Adaptado de ANCE, 2017.

O ambiente analisado trata-se de uma sala comercial que será ocupada por 7 horas ao dia, totalizando 35 horas por semana e 140 horas mensais. Pode-se calcular o consumo de acordo com a equação 7:

$$C = \frac{P x h}{1000} \tag{7}$$

Onde C é o consumo do equipamento [KWh/mês], P é a potência do equipamento [W] e h é o tempo de funcionamento do equipamento por mês [horas].

Aplicando-se a equação 7 aos equipamentos, obtém-se um consumo de 742 KWh/mês utilizando-se o equipamento Cassete e 313,6 KWh/mês com o equipamento Hi Wall. Através da equação 8 pode-se calcular o percentual de economia de energia:

$$\%e = \left[\frac{Cmax - Cmin}{Cmax}\right] x 100 \tag{8}$$

Onde %e é o percentual de economia de energia obtido por mês, Cmax é o consumo máximo [KWh/mês] e Cmin é o consumo mínimo [KWh/mês].

Aplicando-se a equação 6 aos equipamentos, obtém-se uma economia de energia de 57,73% de energia.

Para obter-se o retorno do investimento inicial ao optar-se pela aquisição de um equipamento operando sob velocidade variável ao invés de um equipamento operando sob velocidade fixa, serão comparados dois equipamentos de mesma capacidade de refrigeração nominal e modelo. Por ter-se a maior quantidade de amostras para o modelo Hi Wall e esta ser a topologia que se apresentou com maior economia de energia no tipo reverso considerar-se-á, então, duas amostras neste tipo e modelo para análise.

Afim de realizar-se o mínimo investimento com a aquisição dos equipamentos, serão analisadas amostras cuja capacidade de refrigeração nominal será de 30000 Btu/h, visto que neste valor apresentam-se grande quantidade de amostras para ambas as tecnologias conforme observa-se nos gráficos do anexo H (H9 e H11).

Para obter os mais rápidos e mais lentos retornos financeiros, serão consideradas as amostras cujas potências consumidas estejam nos extremos máximo e mínimo. Através dos dados do anexo G, obtém-se os arranjos analisados e seus fabricantes. As especificações dos equipamentos de interesse foram extraídas das tabelas fornecidas pelo INMETRO e os valores para sua aquisição obtidos através de pesquisa de mercado. Os dados encontram-se no quadro 14.

Quadro 14 – Especificações dos Equipamentos com Máxima e Mínima Potência Elétrica Consumida (W) para a Análise do Retorno Financeiro

Especificações	Tecnologia (Convencional	Tecnologia Inverter				
	Mínima Potência (W)	Máxima Potência (W)	Mínima Potência (W)	Máxima Potência (W)			
Arranjo		2 x 9000 + 12000 F	Btu/h = 30000 Btu/h				
Fabricante	Philco	Midea	Midea	Samsung			
Potencia	2 x 782 + 1029 = 2593	2 x 1008 + 1250 = 3266	2 x 758 + 930 = 2446	2 x 927 + 1096 = 2950			
Elétrica (W):							
Faixa de	9000 Btu/h: B	9000 Btu/h: D	9000 Btu/h: A	9000 Btu/h: C			
Classificação	12000 Btu/h: A	12000 Btu/h: A	12000 Btu/h: A	12000 Btu/h: A			
(Selo PROCEL)							
Modelo da	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:			
Unidade	PH9000QFM2	42MWQA09M5	42PRQA09M5	AR09HSSPBSNXAZ			
Interna:	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:			
interna.	PH12000TQFM5	42RWQA012515LS	42PRQA12M5	AR12HSSPASNNAZ			
Modelo da	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:			
Unidade	PH9000QFM2	38MWQA09M5	38PRQA09M5	AR09HSSPBSNNAZ			
Externa:	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:			
	PH12000TQFM5	38KQB012515MS	38PRQA12M5	AR12HSSPASNXAZ			
Valores	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:	9000 Btu/h:			
Unitários	R\$ 1100,00 a R\$ 1300,00	R\$ 1300,00 a R\$ 1700,00	R\$ 1500,00 a R\$ 2000,00	R\$ 1400,00 a R\$ 1700,00			
aproximados	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:	12000 Btu/h:			
	R\$ 1400,00 a R\$ 1700,00	R\$ 1500,00 a R\$ 2100,00	R\$ 2100,00 a R\$ 2300,00	R\$ 1500,00 a R\$ 2400,00			
Valor Total	R\$3600,00 a R\$ 4300,00	R\$4100,00 a R\$ 5500,00	R\$5100,00 a R\$ 6300,00	R\$4300,00 a R\$ 5800,00			

Fonte: Adaptado de ANCE, 2017.

O preço mensal a ser pago pelo consumidor depende da soma da tarifa aos impostos. Por tarifa entende-se o valor cobrado pela geração, transmissão e distribuição da energia elétrica. (G1, 2018). Através da equação 9, a qual foi obtida consultando-se o portal CEEE (Companhia Estadual de Energia Elétrica – Rio Grande do Sul), pode-se calcular o a ser pago:

Preço Final =
$$\frac{Preço Homologado}{(1-PIS(\%)-COFINS(\%)-ICMS(\%))}$$
(9)

Onde PIS (%), COFINS (%) e ICMS (%) representam os impostos.

Devido a tarifa a ser paga, a qual é definida pela ANEEL (Agência Nacional de Energia Elétrica), variar regionalmente e os valores atribuídos ao PIS e COFINS serem ajustados mensalmente, será realizado o cálculo simplificado da conta, serviço que encontra-se disponível no portal CEEE em: http://www.ceee.com.br/pportal/ceee/Component/Controller.aspx?CC=1248.

Em 2015, a ANEEL colocou em vigor o uso de bandeiras tarifárias, as quais classificam-se em verde, amarela e vermelha, as quais atribui-se, respectivamente, as tarifas de: R\$0,00, R\$ 2,00 a e R\$ 3,50 em acréscimo a cada 100 KWh utilizados. A bandeira vermelha denota o acionamento das termelétricas, denotando assim nível crítico ao cenário consumidor (WEB ARCONDICIONADO, 2018).

Em Abril de 2018, o portal G1 divulgou os valores atualizados para as bandeiras tarifarias, onde a bandeira verde manteve-se, a amarela passou a R\$ 1,00, a vermelha 1 passou a R\$ 3,00 e a vermelha 2 passou para R\$ 5,00 (G1, 2018). Em Maio de 2018, o portal Correio do Povo divulgou que no mês de Junho a ANEEL acionou a bandeira tarifária vermelha em seu segundo patamar (Correio do Povo, 2018).

Em Outubro de 2017, o portal WEB ARCONDICIONADO publicou o valor das tarifas em R\$/KWh para as principais capitais brasileiras, informando que estes valores foram retirados do portal da ANEEL e são equivalentes ao grupo residencial B1. Para Porto Alegre, atribui-se o valor de 0,391 R\$/KWh, valor que representa a 24° posição entre os maiores do país. A 1° posição atribui-se o valor de 0,599 R\$/KWh, referente a região de Belém/PA. O anexo G apresenta a lista com os valores para as principais regiões do Brasil.

A ANEEL disponibiliza em seu portal o valor das tarifas homologadas referente a cada localidade. Consultando-se o portal, obtém-se a tarifa de 0,505 R\$/KWh, tendo sido o site atualizado em 29/05/2018.

Considerando-se o valor da tarifa como 0,505R\$/KWh e os dados apresentados no quadro 14, obtém-se os valores apresentados no quadro 15, onde o preço mensal foi calculado multiplicando-se a tarifa pelo consumo do equipamento.

Quadro 15 – Comparativo entre o consumo e os valores a serem pagos com aparelhos operando sob a Tecnologia Inverter e tecnologia Convencional

		Potência	Consumo do	Preço Mensal	Preço Mensal	Preço Mensal
Fabricante	Tecnologia	Consumida	Equipamento	Calculado – Bandeira	Calculado – Bandeira	Simulador
		(W)	(KWh/mês)	Verde (R\$)	Vermelha 2 (R\$)	CEEE (R\$)
Midea	Convencional	3266	457,24	230,91	250,91	339,71
Philco	Convencional	2593	363,02	183,33	198,33	269,83
Midea	Inverter	2446	342,44	172,93	187,93	254,22
Samsung	Inverter	2950	413,00	208,56	228,56	307,00

Analisando-se os valores do preço mensal calculado e o obtido com o simulador CEEE, temse uma diferença nos valores. Neste cálculo, o portal CEEE informa que se considera a bandeira tarifária verde para uma instalação residencial comum, ICMS de 30% e PIS/COFINS médio de 5% e que os valores obtidos não devem ser comparados aos valores reais devido as variações de bandeira e impostos mensais. Observa-se uma máxima economia para o custo mensal de R\$ 57,98 considerando-se a bandeira verde e de R\$ 62,98 considerando-se a bandeira vermelha 2 ao comparar-se os equipamentos Midea operando sob Tecnologia Convencional ao equipamento Midea operando sob Tecnologia Inverter.

A diferença entre os custos operacionais Δ_{op} obtida ao comparar-se as duas tecnologias encontra-se no quadro 16, onde os valores de Δ_{op} foram obtidos subtraindo-se os valores dos equipamentos convencionais dos valores dos equipamentos inverteres, criando-se possíveis cenários afim de comparar as características dos equipamentos apresentadas no quadro 15.

Quadro 16 – Possíveis Cenários do Impacto Econômico Obtido com os Equipamentos Operando sob a Tecnologia Inverter Versus a Tecnologia Convencional

Cenário	Equipamentos	Diferença do custo operacional –	Diferença do custo operacional
	Comparados	bandeira verde (R\$)	– bandeira vermelha (R\$)
1	Midea _{conv} X Midea _{inv}	$\Delta_{\rm op} R\$ = R\$ 57,98$	$\Delta_{\rm op}$ R\$ = R\$ 62,98
2	Mideaconv X Samsunginv	$\Delta_{\rm op} R\$ = R\$ \ 22,35$	$\Delta_{\rm op} R\$ = R\$ \ 22,35$
3	Philco _{conv} X Midea _{inv}	$\Delta_{\rm op} R\$ = R\$ 10,40$	$\Delta_{\rm op}$ R\$ = R\$ 10,40
4	Philco _{conv} X Samsung _{inv}	$\Delta_{\rm op} R\$ = -25{,}23$	$\Delta_{\rm op} R\$ = -30,23$

Observando-se o quadro 16, tem-se que os cenários 1, 2 e 3 apresentaram-se positivos, ou seja, ter-se-á o retorno do investimento inicial com a aquisição do equipamento. Apenas o cenário 4 apresentou-se negativo indicando que não ser possível obter-se o retorno financeiro com o investimento inicial independente.

Considerando-se os valores máximo e mínimo encontrados ao pesquisar-se o preço para a aquisição dos equipamentos apresentados no quadro 14, obtém-se os tempos para o retorno do investimento inicial da aquisição do equipamento Inverter versus o equipamento Convencional. Os resultados encontram-se no quadro 17, onde o valor de Δ_{aqmax} foi obtido subtraindo-se o valor máximo do equipamento Inverter do valor mínimo do equipamento Convencional.

Quadro 17 – Tempo de Retorno do Investimento Inicial Obtido com os Equipamentos Operando sob a Tecnologia Inverter Versus a Tecnologia Convencional

	Equipamentos	Diferença do custo operacional (R\$)		Diferença máxima do	•	e retorno do inicial (meses)
Cenário	Comparados	Verde	Vermelha 2	custo para aquisição (R\$)	Verde	Vermelha 2
1	Midea _{conv} X Midea _{inv}	Δ_{op} R\$ = R\$ 57,98	Δ_{op} R\$ = R\$ 62,98	$\Delta_{\text{aqmax}} R\$ = R\$$ $2200,00$	Tempo _R = 37,94 ~ 38	Tempo _R = 34,93 ~ 35
2	Midea _{conv} X Samsung _{inv}	Δ_{op} R\$ = R\$ 22,35	$\Delta_{\rm op} R $ \$ = $R $ \$ 22,35	$\Delta_{\text{aqmax}} R\$ = R\$$ $1700,00$	Tempo _R = 76,06 ~ 77	Tempo _R = 76,06 ~ 77
3	Philco _{conv} X Midea _{inv}	Δ_{op} R\$ = R\$ 10,40	$\Delta_{\rm op} R $ = R\$ 10,40	$\Delta_{aqmax}R\$ = R\$$ $2700,00$	Tempo _R = $259,61 \sim 260$	Tempo _R = 259,61 ~ 260

Observando-se o quadro 17, tem-se que o como melhor cenário o oferecido pela aquisição do equipamento do Fabricante Midea com Tecnologia Inverter, que apesar de ser o mais caro dos equipamentos para aquisição, oferece maior economia energética durante sua operação e mais rápido retorno do investimento inicial.

3.3.2.5 SIMULADORES

Os fabricantes de condicionadores de ar disponibilizam ferramentas de simulação que permitem ao consumidor ter a idéia de qual equipamento é o adequado a sua edificação. Através de um questionário, estes simuladores informam ao cliente a carga térmica aproximada do ambiente em análise. As perguntas disponíveis nos questionários, nem sempre permitem que o consumidor fornecer uma resposta exata, permitindo-lhe apenas que escolha a opção que melhor se enquadre ao seu caso.

O simulador do fabricante Consul consiste em 9 perguntas, onde o consumidor informa o tipo de habitação (prédio, casa com telhado ou casa sem telhado), o tipo de ambiente a ser climatizado (quarto, escritório ou sala de jantar), o tamanho do ambiente (não permite informar um valor exato, então utilizou-se 5m X 7m), se há exposição à radiação solar (manhã ou tarde), o número de janelas e se elas têm cortinas, a quantidade de pessoas que o ambiente irá comportar, o número de lâmpadas (fluorescentes ou incandescentes) e a quantidade de aparelhos eletroeletrônicos existentes no ambiente (televisor, computador, home theater ou outros).

O simulador do fabricante Electrolux consiste em 6 perguntas, onde o consumidor informa a área do ambiente, se há exposição à radiação solar (dia inteiro ou parcial), o tipo de de habitação (andar térreo, telhado convencional, laje ou entre andares), a quantidade de pessoas que o ambiente irá comportar, o número de lâmpadas (fluorescentes ou incandescentes) e a quantidade de aparelhos eletroeletrônicos existentes no ambiente (não há especificação quanto ao tipo de equipamento, apenas é informado a quantidade).

O simulador do fabricante Elgin consiste em 10 perguntas, onde o consumidor informa a região onde o equipamento será instalado (Norte, Sul, Nordeste ou Centro-Oeste), o tamanho do ambiente, se há exposição à radiação solar (manhã ou tarde), o tipo de cobertura do ambiente (telhado, laje ou entre andares), se existem vãos ou aberturas permanentes, o número de janelas e se elas têm cortinas, a quantidade de pessoas que o ambiente irá comportar, o número de lâmpadas (fluorescentes ou incandescentes) e a quantidade de aparelhos eletroeletrônicos existentes no ambiente (não há especificação quanto ao tipo de equipamento, apenas é informado a quantidade).

O simulador do fabricante LG consiste em 8 perguntas, onde o consumidor informa a região onde o equipamento será instalado (Norte, Sul, Nordeste ou Centro-Oeste), o tipo de ambiente a ser climatizado (quarto, escritório, cozinha, loja, sala de reunião/auditório ou sala de

estar/jantar), o tamanho do ambiente (não permite informar um valor exato, então utilizou-se 5m X 7m), se há exposição à radiação solar (manhã ou tarde), tipo de iluminação (fluorescente/led ou incandescente), o tipo de cobertura do ambiente (telhado, laje ou entre andares), a quantidade de pessoas que o ambiente irá comportar, e a quantidade de aparelhos eletroeletrônicos existentes no ambiente (televisor, computador, refrigerador, projetor ou outros).

O simulador do fabricante Midea consiste em 10 perguntas, onde o consumidor informa o estado onde o equipamento será instalado (RS), tipo de habitação (casa com telhado, casa com laje ou apartamento), o período de maior incidência solar (manhã, tarde ou ambos) o tipo de ambiente a ser climatizado (quarto, escritório, cozinha, sala ou cozinha americana) o tamanho do ambiente (não permite informar um valor exato, então utilizou-se 5m X 7m X 3m), o número de janelas e se elas têm cortinas, a quantidade de pessoas que o ambiente irá comportar, o número de lâmpadas (fluorescentes ou incandescentes), a quantidade de aparelhos eletroeletrônicos existentes no ambiente (não há especificação quanto ao tipo de equipamento, apenas é informado a quantidade).

O simulador do fabricante Philco consiste em 3 perguntas, onde o consumidor informa o a área do ambiente, a quantidade de pessoas que o ambiente irá comportar e a quantidade de aparelhos eletroeletrônicos existentes no ambiente (não há especificação quanto ao tipo de equipamento, apenas é informado a quantidade).

O simulador do fabricante Samsung consiste em 8 perguntas, onde o consumidor informa a área do ambiente (3-5m², 5-8m², 8-10m², 10-12m² ou mais de 12m²), o clima da região na maioria dos dias (muito frio, frio, moderado, quente ou muito quente), a quantidade de pessoas que o ambiente irá comportar (2, 2-4, 4-6, 6-10 ou mais de 10), se há exposição à radiação solar (dia inteiro, manhã, tarde ou meio dia), o fluxo de entrada/saída de pessoas (muito baixo, baixo, médio, intenso ou muito intenso), a quantidade de aparelhos eletroeletrônicos existentes no ambiente (não há especificação quanto ao tipo de equipamento, apenas é informado a quantidade cujas opções são: menos de 3, 3-5, 5-8, 8-10 ou mais de 10), o tipo de cobertura do ambiente (entre andares, telhado sem laje, telhado com laje, laje sem telhado com terraço ou laje sem telhado) e se o ambiente terá funcionamento noturno (entre 18:00-00:00 hrs, 00:00-06:00 hrs, 24 hrs ou as vezes).

Ao final das simulações, obteve-se os seguintes resultados:

 Consul: informou a potência necessária ao ambiente como 30000 Btu/h e sugeriu o uso de um condicionador de ar do tipo janela.

- Electrolux: informou a potência necessária ao ambiente como 27195 Btu/h e sugeriu o uso de um condicionador de ar Split com capacidade de refrigeração nominal de 30000 Btu/h.
- Elgin: sugeriu o uso de um condicionador de ar piso teto ou cassete, ambos com capacidade de refrigeração nominal de 36000 Btu/h.
- LG: o fabricante sugere ao cliente as opções Split cassete inverter de 35000 Btu/h, Split teto inverter de 35000 Btu/h, Split teto de 36000 Btu/h ou Split cassete de 45000 Btu/h, 46000 Btu/h ou 48000 Btu/h.
- Midea: realizou-se duas simulações, uma considerando-se uma casa com laje e outra um apartamento. Para o primeiro caso obteve-se que a potência necessária ao ambiente seria de 48000 Btu/h e para o segundo caso 22000 Btu/h. O fabricante informa que a simulação deve ser entendida apenas como uma referência exemplificativa e meramente aproximada aconselhando ainda que o cliente utilize a orientação de um técnico autorizado mediante análise e vistoria prévia do local.
- Philco: informa que o condicionador de ar ideal ao ambiente deverá ter no mínimo 33600 Btu/h.
- Samsung: informou a potência necessária ao ambiente como 24000 Btu/h.

Considerando-se os resultados obtidos com os simuladores tem-se os valores apresentados no quadro 18, onde Δ Cap é a diferença entre o valor obtido através do cálculo térmico (27976,47 Btu/h) e o valor fornecido pelo simulador.

Quadro 18 – Valores Obtidos Através dos Simuladores Comparados aos valores reais.

Fabricante	Melhor Valor Aconselhado (Btu/h)	ΔCap (Btu/h)
Consul	30000	2023,53
Electrolux	27195	-781,47
Elgin	36000	8023,53
LG	35000	7023,53
Midea	22000	-5976,47
Philco	33600	5623,53
Samsung	24000	-3976,47

Observando-se os valores obtidos para Δ Cap tem-se como o resultado mais satisfatório o fornecido pelo simulador da Electrolux. Seu valor diferiu em 2,79% do valor obtido com o cálculo térmico. O resultado menos satisfatório foi o fornecido pelo simulador da Elgin, o qual diferiu em 28,68% do valor dado pelo cálculo térmico.

4 CONCLUSÃO

Ao observar-se as capacidades de refrigeração nominal dos fabricantes analisados, nota-se que estes oferecem uma maior flexibilidade de opções para a Tecnologia Convencional do que para a Tecnologia Inverter e que, para edificações que demandam uma maior capacidade, as possibilidades diminuem ainda mais.

Os fabricantes oferecem mais opções ao consumidor nos condicionadores de ar que operam sob tecnologia convencional. Tal condição pode ser observada ao obter-se 664 amostras para análise, onde apenas 179 destas eram de equipamentos operando sob tecnologia convencional.

A Tecnologia Inverter existente no compressor rotativo evita os picos de energia do equipamento, conferindo economia de energia ao consumidor. Ainda que compressores rotativos comuns sejam os mais econômicos atualmente disponíveis, os compressores rotativos de tecnologia inverter, operando sob baixa frequência conferem satisfatória diferença, que pode ser observada nas amostras analisadas.

Pode-se evidenciar ainda que a maioria dos equipamentos operando sob a tecnologia inverter classifica-se como classe A apresentando alta performance, enquanto os equipamentos operando sob tecnologia convencional distribuem-se entre as classes A e D indicando variações consideráveis de consumo de energia entre as amostras. Tal comportamento pode ser observado nos equipamentos de maior e menor consumo, onde ao equipamento convencional foi atribuído classificação D e ao equipamento inverter classe A, demonstrando então que o selo PROCEL representa um bom indicativo da economia que o consumidor pode obter.

Nas amostras, chegou-se a uma diferença máxima de 3060 W entre os equipamentos operando sob a tecnologia convencional e sob a tecnologia inverter. Esta redução no consumo de potência resultou em uma economia de 57,73% ao mês, ou seja, ao optar-se pelo condicionador de ar inverter é possível gastar-se menos da metade da energia necessária para climatizar-se o ambiente com um condicionador de ar convencional.

Os cenários obtidos ao comparar-se equipamentos cujas capacidades de refrigeração nominal são iguais refletem as diferenças operacionais dos equipamentos. Ainda que os equipamentos operando sob velocidade variável representem para a maioria dos casos redução do consumo de energia, tem-se que para alguns casos tal característica não é verdadeira. Sendo ainda uma tecnologia nova comparada a Tecnologia Convencional, tem-se que os equipamentos operando sob a Tecnologia Inverter de alguns fabricantes ainda não representam a economia

esperada. Isso demonstra o quanto investimentos em melhorias tecnológicas de cada fabricante influenciam no consumo de energia que o consumidor terá com o uso do equipamento.

Analisando-se o tempo de retorno do investimento inicial evidenciou-se que apesar de mais caro para aquisição, o equipamento Inverter do fabricante Midea, por oferecer menor consumo de energia elétrica mensal, proporciona mais rápido retorno financeiro. Obteve-se uma economia máxima para o custo mensal de R\$ 62,98 e um tempo de retorno financeiro de aproximadamente 35 meses comparando-o ao equipamento Midea operando sob Tecnologia Convencional.

As economias máximas mensais bem como o mais rápido retorno financeiro deram-se quando se considerou o acionamento da bandeira tarifária vermelha no patamar 2. Tal situação justifica-se pelo fato de haver um maior acréscimo ao valor final no cenário onde há maior consumo de energia, visto que neste patamar é adicionado R\$ 5,00 a cada 100 KWh.

Observou-se ainda que os simuladores online disponibilizados pelos fabricantes fornecem resultados aproximados aos obtidos através dos cálculos térmicos, porém, para ter-se o correto dimensionamento para a carga térmica deve-se realizar o diagnóstico energético, evitando assim o desperdício de energia e possibilitando a economia ao usuário.

5 TRABALHOS FUTUROS

Através do estudo de caso apresentado no presente trabalho, pode-se observar alguns tópicos relevantes a serem analisados em trabalhos futuros:

- Analisar os valores relativos ao VPL (Valor Presente Líquido) e a TIR (Taxa Interna de Retorno) equivalente a substituição de um equipamento que opera sob velocidade fixa por um equipamento que opera sob velocidade variável.
- Analisar a possibilidade de uniformizar em uma única norma o cálculo de iluminação para interiores, visto que para este projeto teve-se de analisar três normas distintas, mas que apresentaram valores semelhantes.
- Realizar um ensaio adequado para poder fazer a coleta de valores adequados a análise de condicionadores de ar de ambas as tecnologias e compará-los aos valores fornecidos pelas tabelas do INMETRO.

REFERÊNCIAS

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 1: Introdução e Medições. 05/89.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 2: Ciclo de Refrigeração. 05/89.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 3: Compressores. 11/86.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 4: Condensadores – Reservatórios. 07/88.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 5: Evaporadores. 11/86.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 6: Dispositivos Medidores. 07/88.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 7: Controles Básicos do Ciclo. 05/89.

SPRINGER Carrier – Setor de Treinamento. **Fundamentos de Refrigeração** - Capítulo 8: Características dos Refrigerantes. 07/88.

Pena, Sergio Meirelles. Sistemas de Ar Condicionado. PROCEL, 2011.

BIBENG. Manual de NORMALIZAÇÃO de Trabalhos Acadêmicos, 2012.

Martinelli Júnior, Luiz Carlos. **Refrigeração**. UNIJUÍ, 2003. Disponível em:

< http://www.ebah.com.br/content/ABAAAAHeoAI/apostila-refrigeracao >. Acesso em 14/11/2017.

IPCC, Climate Change 2014 – Synthesis Report, 2014. Disponível em:

< http://www.ipcc.ch/report/ar5/syr/ >. Acesso em 27/11/2017.

IBDD, Regras de acessibilidade ao meio físico para o deficiente. Disponível em:

< http://www.ibdd.org.br/arquivos/acessibilidade.pdf >. Acesso em 03/12/2017.

NBR 13966, Móveis para escritório - Mesas - Classificação e características físicas e dimensionais.

NBR 16401-1, **Instalações de ar-condicionado – Sistemas centrais e unitários.** Parte1: Projetos das instalações.

NBR 5410, Instalações elétricas de baixa tensão.

NBR 5413, Iluminância de Interiores.

Dossat, Roy J.. **Princípios de refrigeração:** teoria, prática, exemplos, problemas, soluções. 1980.

Elonka, Stephen Michael; Minich, Quaid Walton. **Manual de Refrigeração e Ar Condicionado.** 1978.

IEE - USP - Instituto de Energia e Ambiente — Universidade de São Paulo. **Perguntas e Respostas sobre Lâmpadas.** Disponível em:

< <u>http://www.iee.usp.br/?q=pt-br/museu-virtual/perguntas-e-respostas</u> >. Acesso em 11/01/2018.

ENCE - Regulamento Específico para uso da Etiqueta Nacional de Conservação de Energia - Lâmpadas Fluorescentes Compactas, Circulares ou Similares (Integrados ou não, com Reator Eletromagnético ou Eletrônico). Disponível em:

< http://www.inmetro.gov.br/consumidor/pdf/resp010rev00.pdf >. Acesso em 11/01/2018.

ASBRAV – Associação Sul Brasileira de Refrigeração, Ar Condicionado, Aquecimento e Ventilação. Disponível em: < http://asbrav.org.br/23c-e-a-temperatura-ideal-para-buscar-conforto-termico-no-verao/. Acesso em 11/01/2018.

PROTESTE - Associação sem fins lucrativos para a defesa dos direitos do consumidor. Disponível em: < https://www.proteste.org.br/eletrodomesticos/ar-condicionado>. Acesso em 12/01/2018.

ELECTROLUX. Disponível em: < http://loja.electrolux.com.br/ar-e-ventilacao/ar-condicionado?specificationFilter_1365:split >. Acesso em 12/01/2018.

SAMSUNG. Disponível em: < http://www.samsung.com/br/air-conditioners/ar-condicionado-split-digital-inverter-quente-e-frio-2017/AR24KSSPASNNAZ/ Acesso em 12/01/2018.

MIDEA. Disponível em:

< http://www.mideadobrasil.com.br/pt/modelo/descricao/165/split-springer-midea-inverter >. Acesso em 12/01/2018.

LG. Disponível em: < http://www.lg.com/br/ar-condicionado/inverter-lg/index.jsp>. Acesso em 12/01/2018.

ELGIN. Disponível em: < https://www.elgin.com.br/institucional/produto.php?prod=ODI5>. Acesso em 12/01/2018.

CONSUL. Disponível em: < https://www.consul.com.br/produto/ar-condicionado-split-bem-estar-inverter-cbf09/>. Acesso em 12/01/2018.

ABRAVA – Associação Brasileira de Refrigeração, Ar Condicionado, Ventilação e Aquecimento - **Novo Split Springer Midea Inverter.** Disponível em: < http://abrava.com.br/?p=7027 >. Acesso em 17/01/2018.

Portal da Refrigeração – O Gás Refrigerante R134A. Disponível em:

< http://www.refrigeracao.net/Topicos/r134.htm >. Acesso em 17/01/2018.

Mundo da Elétrica – **Conversão de BTU para Watts! Entenda!.** Disponível em:

< https://www.youtube.com/watch?v=RQMJOEdtV8w >. Acesso em 17/01/2018.

WEB ARCONDICIONADO - Saiba o que é Dimensionamento, Subdimensionamento e Superdimensionamento Térmico. Disponível em:

< <u>http://www.webarcondicionado.com.br/saiba-o-que-e-dimensionamento-subdimensionamento-e-superdimensionamento-termico</u> >. Acesso em 17/01/2018.

WEB ARCONDICIONADO – **Qual o significado da palavra "SPLIT"?.** Disponível em:

< <u>http://www.webarcondicionado.com.br/qual-o-significado-da-palavra-split</u> >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **O que é um ar condicionado SPLIT?.** Disponível em:

< <u>http://www.webarcondicionado.com.br/o-que-e-um-ar-condicionado-split</u> >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **Ar condicionado do tipo Window Split.** Disponível em:

< <u>http://www.webarcondicionado.com.br/ar-condicionado-window-split</u> >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **Split quatro lados.** Disponível em:

< http://www.webarcondicionado.com.br/split-quatro-lados >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **Split canto teto.** Disponível em: < http://www.webarcondicionado.com.br/split-canto-teto >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **Você sabe o que é ar condicionado Multisplit?.** Disponível em: < http://www.webarcondicionado.com.br/ar-condicionado-multi-split >. Acesso em: 29/03/2018.

WEB ARCONDICIONADO – **Split Hi Wall.** Disponível em:

< http://www.webarcondicionado.com.br/split-hi-wall >. Acesso em: 30/03/2018.

WEB ARCONDICIONADO – **Split piso teto.** Disponível em: < http://www.webarcondicionado.com.br/split-piso-teto >. Acesso em: 30/03/2018.

WEB ARCONDICIONADO – **Split cassete.** Disponível em: < http://www.webarcondicionado.com.br/split-cassete >. Acesso em: 30/03/2018.

INMETRO, Instituto Nacional de Metrologia, Qualidade e Tecnologia – **Tabelas de consumo/eficiência energética: Condicionadores de ar.** Disponível em: < http://www.inmetro.gov.br/consumidor/pbe/condicionadores.asp >. Acesso em: 29/03/2018.

ENCE, Etiqueta Nacional de Conservação de Energia – Selo PROCEL de Economia de Energia. **Condicionadores de ar Split Cassete.** Disponível em: < http://www.inmetro.gov.br/consumidor/pbe/condicionadores ar cassete indice-novo.pdf >. Acesso em: 29/03/2018.

ENCE, Etiqueta Nacional de Conservação de Energia – Selo PROCEL de Economia de Energia. **Condicionadores de ar Split Hi Wall.** Disponível em: < http://www.inmetro.gov.br/consumidor/pbe/condicionadores ar split hiwall_indicenovo.pdf >. Acesso em: 29/03/2018.

ENCE, Etiqueta Nacional de Conservação de Energia – Selo PROCEL de Economia de Energia. **Condicionadores de ar Split piso-teto.** Disponível em: < http://www.inmetro.gov.br/consumidor/pbe/condicionadores_ar_piso-teto_indicenovo.pdf >. Acesso em: 29/03/2018.

Mundo da Elétrica – **Como funciona a tabela de eficiência energética do INMETRO?** Disponível em: < https://www.mundodaeletrica.com.br/como-funciona-a-tabela-de-eficiencia-energetica-do-inmetro/ >. Acesso em: 19/05/2018.

Mundo da Elétrica – **Como funciona o inversor de frequência.** Disponível em: < https://www.mundodaeletrica.com.br/como-funciona-o-inversor-de-frequencia/ >. Acesso em: 19/05/2018.

WEB ARCONDICIONADO – **Tipos de compressores utilizados em ar-condicionado.**Disponível em: < http://www.webarcondicionado.com.br/tipos-de-compressores-utilizados-em-ar-condicionado >. Acesso em: 19/05/2018.

WEB ARCONDICIONADO – **A História do Ar-Condicionado.** Disponível em: < http://www.webarcondicionado.com.br/a-historia-do-ar-condicionado >. Acesso em: 19/05/2018.

TOSHIBA – **Toshiba Ar Condicionado.** Disponível em: < https://www.dx-por.pt/ >.Acesso em: 19/05/2018.

FRIGELAR – **Ar Condicionado: Convencional X Inverter.** Disponível em: < https://www.frigelar.com.br/convencional-x-inverter >. Acesso em: 20/05/2018.

EMBRAR- CLIMATIZAÇÃO E REFRIGERAÇÃO – **O que é HVAC?.** Disponível em: < http://embrar.com.br/novidades/2014/05/22/o-que-e-hvac/ >. Acesso em: 21/05/2018.

G1 – Saiba como é calculada a energia que você consome. Disponível em:

< http://g1.globo.com/pernambuco/especial-publicitario/celpe/desligue-o-desperdicio/noticia/2016/05/saiba-como-e-calculada-energia-que-voce-consome.html >. Acesso em: 21/05/2018.

CEEE – Companhia Estadual de Energia Elétrica – Rio Grande do Sul – **Tarifas e Custos de Serviços**. Disponível em: < http://www.ceee.com.br/pportal/ceee/Archives/Upload/Tarifas_B-2017-12_26152.pdf >. Acesso em: 21/05/2018.

WEB ARCONDICIONADO - Tarifa de energia elétrica (kwh): valores e ranking das principais cidades. Disponível em: < http://www.webarcondicionado.com.br/tarifa-de-energia-eletrica-kwh-valores-e-ranking-cidades >. Acesso em: 21/05/2018.

WIKIPÉDIA – A Enciclopédia Livre – **Conversor de Frequência**. Disponível em: < https://pt.wikipedia.org/wiki/Conversor_de_frequ%C3%AAncia >. Acesso em: 23/05/2018.

G1 – Economia – **Aneel Aprova Mudanças nas Bandeiras Tarifárias e Confirma Reajuste na Bandeira Vermelha 2** – Disponível em: < https://g1.globo.com/economia/noticia/aneel-aprova-mudancas-nas-bandeiras-tarifarias-e-confirma-reajuste-na-bandeira-vermelha-2.ghtml >. Acesso em: 10/06/2018.

Correio do Povo – Economia – **Contas de Luz Terão Bandeira Vermelha no Patamar Dois em Junho** - Disponível em: <

https://www.correiodopovo.com.br/Noticias/Economia/2018/5/651493/Contas-de-luz-terao-bandeira-vermelha-no-patamar-dois-em-junho >. Acesso em: 10/06/2018.

SAMSUNG – Dicas: Como Saber Qual Ar Condicionado é Recomendado Para o Meu Ambiente? - Disponível em: < http://www.samsung.com/br/support/home-appliances/tips-how-do-i-know-which-air-conditioning-is-recommended-for-my-environment/ >. Acesso em: 10/06/2018.

PHILCO – **Cálculo de BTU** - Disponível em: < https://produtos.philco.com.br/ar-condicionado-philco-pac12000iqfm4-inverter-quente-e-frio/p >. Acesso em: 10/06/2018.

MIDEA – **Termo Simulador: Encontre o Condicionador de Ar Ideal Para Você** - Disponível em: < http://www.mideadobrasil.com.br/dimensionador/ >. Acesso em: 10/06/2018.

ELGIN – **Cálculo de Carga Térmica** - Disponível em: < http://www.elgin.com.br/institucional/lista_categoria.php?l=MQ==&cat=MQ==&titulo=QXIt <a href="http://www.elgin.com.br/institucional/lista_categoria.php?l=MQ==&cat=MQ==&titulo=QXIt <a href="http://www.elgin.com.br/institucional/lista_categoria.php?l=MQ==&titulo=&titul

ELECTROLUX – **Descubra a Quantidade de BTU's Ideal Para Você** - Disponível em: < https://loja.electrolux.com.br/ar-e-ventilacao/ar-condicionado?gclid=EAIaIQobChMIntecjMzF2wIVDYeRCh0KXQJIEAMYASAAEgIxK_D_BwE > . Acesso em: 10/06/2018.

LG – **Simulador de Capacidade** - Disponível em: < http://www.lg.com/br/simulador-de-capacidade/index.jsp >. Acesso em: 10/06/2018.

CONSUL – **Descubra o Ar Condicionado Ideal Para a Sua Casa** - Disponível em: < https://www.consul.com.br/simulador/ >. Acesso em: 10/06/2018.

NASA TV - NASA Study: First Direct Proof of Ozone Hole Recovery Due to Chemicals Ban. Disponível em: < https://www.nasa.gov/feature/goddard/2018/nasa-study-first-direct-proof-ozone-hole-recovery-due-to-chemicals-ban >. Acesso em: 05/07/2018.

KIA MOTORS – **Serviços** / **INMETRO.** Disponível em: < https://www.kia.com.br/Servicos/Inmetro/ >. Acesso em: 05/07/2018.

G1 – AUTO ESPORTE - **INMETRO Lança Edição 2017 de Programa que Mostra Consumo dos Carros no Brasil.** Disponível em: < https://g1.globo.com/carros/noticia/inmetro-lanca-edicao-2017-de-programa-que-mostra-consumo-dos-carros-no-brasil.ghtml >. Acesso em: 05/07/2018.

NBR 8995-1, Iluminância de Ambientes de Trabalho. Parte1: Interior.

Philips – **Fator de Utilização.** Disponível em: < http://joinville.ifsc.edu.br/~anabarbara/Projetos_Eletricos/Catalagos/Fatores_de_Utilizacao_P HILIPS_(parte_II).pdf >. Acesso em: 05/07/2018.

Lapsi, UFRGS - Instalações Elétricas Prediais A (ENG04482), Prof. Luiz Fernando Gonçalves. AULA 6: Método dos Lumens Porto Alegre, 2012. Disponível em: http://www.lapsi.eletro.ufrgs.br/~luizfg/disciplinas_IEPrediais_arquivos/ENG04482_aula_06. pdf >. Acesso em: 05/07/2018.

PROCEL - Critérios Para a Concessão do Selo Procel de Economia de Energia a Lâmpadas Fluorescentes Compactas com Reator Integrado.

COBEQIC – Congresso Brasileiro de Engenharia Química em Iniciação Científica 2015-Simulação Numérica dos Fluidos Refrigerantes R11, R12, R22, R134A e R717 Aplicados no Ciclo de refrigeração por Compressão de Vapor Convencional. Disponível em: http://pdf.blucher.com.br.s3-sa-east $\frac{1.amazonaws.com/chemicalengineering proceedings/cobeqic 2015/413-34030-263261.pdf}{Acesso~em:~05/07/2018}.$

ANEXO A – TABELA DE CONDUTIVIDADE TÉRMICA DE MATERIAIS USADOS EM PAREDES DE ARMAZENAGEM FRIA

TABELA 10-4. Condutividade Térmica de Materiais Usados

Material	Descrição	Condutividade Térmica (k)*	Condutância Térmica (C)*
Alvenaria	Tijolo, comum	5.0	
Alvenaria		9.0	
	Tijolo, fachada Concreto, argamassa ou reboco	5.0	
	Concreto, agregado de areia	12.0	
	Bloco de concreto		
	Agregado de areia 4 pol.		1.40
	Agregado de areia 8 pol.		0.90
	Agregado de areia 12 pol.		0.78
	Agregado de escória 4 pol.		0.90
	Agregado de escória 8 pol.		0.58
	Agregado de escória 12 pol.		0.53
	Argamassa de gesso 1/2 pol.		3.12
	Telha, argila vazada 4 pol.		0.90
	Telha, argila vazada 6 pol.		0.66
	Telha, argila vazada 8 pol.		0.54
avidana saliteta m	Bordo, carvalho, madeiras de lei similares		1.10
Madeiras	Abeto, pinho, madeiras macias similares		0.80
	Abeto, pinno, madei as macias similares		1.60
	Madeira compensada 1/2 pol. Madeira compensada 3/4 pol.		1.07
Cobertura	Cobertura de rolo de asfalto	6.50	0.15
Copertura	Cobertura construída 3/8 pol.	3.00	0.33
Materiais de	Manta ou mat. fibroso, fibra de vidro ou m	nineral 0.27	
isolamento	Chapa ou laje	0.40	
	Vidro celular	0.30	
	Placa de cortiça	0.25	
	Fibra de vidro	0.20	
	Poluestireno expandido	0.17	
	Poliuretano expandido	0.17	
	Enchimento frouxo	0.27	
	Papel laminado ou massa de madeira	0.45	
	Serragem ou aparas	0.27	
	Lã mineral (rocha, vidro, escória)		
	Casca de pau-brasil (madeira vermelha)	0.30	
	Fibra de madeira (madeiras moles)	0.00	1.65
Condutância	Ar parado		4.00
da superfície	Ar em movimento (7,5 m/h)		6.00
(coeficiente	Ar em movimento (15 m/h)		0.00
de convecção)			1.13
Vidro	Vidraça simples		0.46
	Duas vidraças		0.29
	Três vidraças		0.21
	Quatro vidraças		

Do Manual ASHRAE, Volume de Fundamentos, Edição 1972, por permissão da Sociedade Americana de Engenharia de Calor, Refrigeração e Condicionamento de Ar.

Fonte: Princípios de Refrigeração - [Dossat, 2004].

ANEXO B – TABELA DE TOLERÂNCIA PARA A RADIAÇÃO SOLAR

TABELA 10-5 Tolerância para a Radiação Solar

(Graus Fahrenheit para serem acrescidos à diferença de temperatura normal para cálculos de dispersão de calor para compensação do efeito do sol. Não usar para projetos de condicionamento de ar).

Tipo de Superfície	Parede Este	Parede Sul	Parede Oeste	Telhado Plano
Superfícies escuras tais como: Telhado de ardósia	8 8	5	8	20
Telhado betuminado Pinturas pretas				
Superfícies de meio tom, tais como:				
Madeira sem pintura				
Tijolo	6	4	6	15
Telha vermelha Cimento escuro				
Pintura vermelha, cinza ou verde				edia din
Superfícies claras tais como:				
Pedra branca	Hallin silven	4 4 4 4 4	Hal a yelf	0
Cimento claro	4	2	4	101019
Pintura branca		Service State 5	T-1-1-1-1	

Do Manual ASRE, Volume de Projetos, Edição 1957-1958, por permissão da Sociedade Americana de Engenharia de Calor, Refrigeração e Condicionamento de Ar.

Fonte: Princípios de Refrigeração - [Dossat, 2004].

ANEXO C - POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO HI WALL

(continua)

	Mo		Capacidade de	Potência Elétrica	
Fabricante	Unidade Interna	Unidade Externa	Tipo	Refrigeração Nominal (Btu/h)	Consumida (W)
<u> </u>		TECNOLOGIA CONVE	NCIONAL	1	
Consul	CBE07A	CBH07A	Frio	7000	633
Consul	CBV07D	CBY07D	Frio	7000	633
Consul	CBA07C	CBB07C	Frio	7000	633
Consul	CBV07B	CBY07B	Frio	7000	638
Consul	CBV07C	CBY07C	Frio	7000	638
Consul	CBW07A	CBX07A	Reverso	7000	633
Consul	CBU07D	CBZ07D	Reverso	7000	633
Consul	CBU07B	CBZ07B	Reverso	7000	638
Consul	CBU07C	CBZ07C	Reverso	7000	638
Consul	CBE09A	CBH09A	Frio	9000	814
Consul	CBV09D	CBY09D	Frio	9000	814
Consul	CBA09C	CBB09C	Frio	9000	814
Consul	CBN09B	CBO09B	Frio	9000	814
Consul	CBV09B	CBY09B	Frio	9000	821
Consul	CBV09C	CBY09C	Frio	9000	821
Consul	CBW09A	CBX09A	Reverso	9000	814
Consul	CBU09D	CBZ09D	Reverso	9000	814
Consul	CBP09B	CBQ09B	Reverso	9000	814
Consul	CBC09C	CBD09C	Reverso	9000	814
Consul	CBU09B	CBZ09B	Reverso	9000	821
Consul	CBU09C	CBZ09C	Reverso	9000	821
Consul	CBE12A	CBH12A	Frio	12000	1085
Consul	CBV12D	CBY12D	Frio	12000	1085
Consul	CBA12C	CBB12C	Frio	12000	1085
Consul	CBN12B	CBO12B	Frio	12000	1085
Consul	CBV12B	CBY12B	Frio	12000	1096
Consul	CBV12C	CBY12C	Frio	12000	1096
Consul	CBW12A	CBX12A	Reverso	12000	1085
Consul	CBU12D	CBZ12D	Reverso	12000	1085
Consul	CBP12B	CBQ12B	Reverso	12000	1085
Consul	CBC12C	CBD12C	Reverso	12000	1085
Consul	CBU12B	CBZ12B	Reverso	12000	1096
Consul	CBU12C	CBZ12C	Reverso	12000	1096
Consul	CBE18A	CBH18A	Frio	18000	1628
Consul	CBV18D	CBY18D	Frio	18000	1628
Consul	CBA18C	CBB18C	Frio	18000	1628
Consul	CBN18B	CBO18B	Frio	18000	1628
Consul	CBV18B	CBY18B	Frio	18000	1644
Consul	CBV18C	CBY18C	Frio	18000	1644
Consul	CBW18A	CBX18A	Reverso	18000	1628
Consul	CBU18D	CBZ18D	Reverso	18000	1628
Consul	CBP18B	CBQ18B	Reverso	18000	1628
Consul	CBC18C	CBD18C	Reverso	18000	1628
Consul	CBU18B	CBZ18B	Reverso	18000	1644

					(continuação)
Consul	CBU18C	CBZ18C	Reverso	18000	1644
Consul	CBE22A	CBH22A	Frio	22000	1989
Consul	CBA22C	CBB22C	Frio	22000	1989
Consul	CBN22B	CBO22B	Frio	22000	1989
Consul	CBV22D	CBY22D	Frio	22000	1990
Consul	CBV22B	CBY22B	Frio	22000	2008
Consul	CBV22C	CBY22C	Frio	22000	2008
Consul	CBW22A	CBX22A	Reverso	22000	1989
Consul	CBP22B	CBQ22B	Reverso	22000	1989
Consul	CBC22C	CBD22C	Reverso	22000	1989
Consul	CBU22D	CBZ22D	Reverso	22000	1990
Consul	CBU22C	CBZ22C	Reverso	22000	1990
Consul	CBU22B	CBZ22B	Reverso	22000	2008
Electrolux	TI07F	TE07F	Frio	7000	633
Electrolux	VI07F	VE07F	Frio	7000	633
Electrolux	PI07F	PE07F	Frio	7000	639
Electrolux	TI07R	TE07R	Reverso	7000	633
Electrolux	VI07R	VE07R	Reverso	7000	633
Electrolux	PI07R	PE07R	Reverso	7000	639
Electrolux	TI09F	TE09F	Frio	9000	815
Electrolux	VI09F	VE09F	Frio	9000	815
Electrolux	HI09F	HE09F	Frio	9000	822
Electrolux	PI09F	PE09F	Frio	9000	822
Electrolux	TI09R	TE09R	Reverso	9000	815
Electrolux	VI09R	VE09R	Reverso	9000	815
Electrolux	HI09R	HE09R	Reverso	9000	822
Electrolux	PI09R	PE09R	Reverso	9000	822
Electrolux	TI12F	TE12F	Frio	12000	1086
Electrolux	HI12F	HE12F	Frio	12000	1096
Electrolux	PI12F	PE12F	Frio	12000	1096
Electrolux	TI12R	TE12R	Reverso	12000	1086
Electrolux	HI12R	HE12R	Reverso	12000	1096
Electrolux	PI12R	PE12R	Reverso	12000	1096
Electrolux	TI18F	TE18F	Frio	18000	1743
Electrolux	PI18F	PE18F	Frio	18000	1753
Electrolux	TI18R	TE18R	Reverso	18000	1743
Electrolux	PI18R	PE18R	Reverso	18000	1753
Electrolux	TI24F	TE24F	Frio	24000	2497
Electrolux	PI24F	PE24F	Frio	24000	2504
Electrolux	TI24R	TE24R	Reverso	24000	2497
Electrolux	PI24R	PE24R	Reverso	24000	2504
Electrolux	TI30F	TE30F	Frio	30000	2712
Electrolux	PI30F	PE30F	Frio	30000	3128
Electrolux	TI30R	TE30R	Reverso	30000	2712
Electrolux	PI30R	PE30R	Reverso	30000	3128
Elgin	SUFI – 7000 -2	SUFE – 7000 -2	Frio	7000	685
Elgin	SOFI – 7000 -2	SOFE – 7000 -2	Frio	7000	730
Elgin	SRFI – 7000 -2	SOFE - 7000 -2 SOFE - 7000 -2	Frio	7000	730
	SMFI – 7000 -2 SMFI – 7000 -2				
Elgin		SJFE - 7000 -2 SJFEX - 7000 -2	Frio	7000	730
Elgin	SMFIX - 7000 -2		Frio	7000	730
Elgin	SUQI – 7000 -2	SUQE - 7000 -2	Reverso	7000	685
Elgin	HWFI09B2IA	HWFE09B2NA	Frio	9000	777
Elgin	SUFIL-9000-2	SUFEA-9000-2	Frio	9000	790

					(commuação
Elgin	SUFIA-9000-2	SUFEA-9000-2	Frio	9000	790
Elgin	HLFI09B2FA	HLFE09B2NA	Frio	9000	800
Elgin	HEFI09B2IA	HEFE09B2IA	Frio	9000	810
Elgin	SSFIA-9000-2	SSFEA-9000-2	Frio	9000	810
Elgin	HPFI09A2NA	HPFE09A2NA	Frio	9000	814
Elgin	SUFI-9000-2	SUFE-9000-2	Frio	9000	855
Elgin	HCFI09A1NA	HCFE09A1NA	Frio	9000	880
Elgin	HCFI09A1NA	HCFE09A1CA	Frio	9000	880
Elgin	SHFI-9000-2	SHFE-9000-2	Frio	9000	885
Elgin	HCFI09A2NA	HCFI09A2NA	Frio	9000	890
Elgin	SFFI-9.000-2	SFFE-9.000-2	Frio	9000	890
Elgin	SHFI-9000-2	SJFE-9000-2	Frio	9000	890
Elgin	SRFI-9000-2	SRFE-9000-2	Frio	9000	890
Elgin	HCFI09A2NA	HCFE09A2CA	Frio	9000	890
Elgin	SZFI-9000-2	SZFE-9000-2	Frio	9000	935
Elgin	SMFI - 9.000-2	SJFE - 9.000-2	Frio	9000	990
Elgin	SMFIX-9000-2	SJFEX-9000-2	Frio	9000	990
Elgin	HWQI09B2IA	HWQE09B2NA	Reverso	9000	782
Elgin	SUQIL-9000-2	SUQEA-9000-2	Reverso	9000	790
Elgin	SUQIA-9000-2	SUQEA-9000-2	Reverso	9000	790
Elgin	SSQIA-9000-2	SSQEA-9000-2	Reverso	9000	800
Elgin	HLQI09B2FA	HLQE09B2NA	Reverso	9000	807
Elgin	HPQI09A2NA	HPQE09A2NA	Reverso	9000	814
Elgin		7		9000	815
_	HEQI09B2IA	HEQE09B2IA	Reverso		
Elgin	SUQI-9000-2	SUQE-9000-2	Reverso	9000	850
Elgin	SRQI-9000-2	SRQE-9000-2	Reverso	9000	880
Elgin	SHQI-9000-2	SHQE-9000-2	Reverso	9000	905
Elgin	SSFIA-12000-2	SSFEA-12000-2	Frio	12000	1020
Elgin	HWFI12B2IA	HWFE12B2NA	Frio	12000	1067
Elgin	HEFI12B2IA	HEFE12B2IA	Frio	12000	1075
Elgin	SUFIL-12000-2	SUFEA-12000-2	Frio	12000	1085
Elgin	SUFIA-12000-2	SUFEA-12000-2	Frio	12000	1085
Elgin	HPFI12A2NA	HPFE12A2NA	Frio	12000	1086
Elgin	HLFI12B2FA	HLFE12B2NA	Frio	12000	1086
Elgin	SHFI-12000-2	SHFE-12000-2	Frio	12000	1140
Elgin	SUFI-12000-2	SUFE-12000-2	Frio	12000	1150
Elgin	SFFI-12.000-2	SFFE-12.000-2	Frio	12000	1185
Elgin	SRFI-12000-2	SRFE-12000-2	Frio	12000	1190
Elgin	SMFI - 12.000-2	SJFE - 12.000-2	Frio	12000	1200
Elgin	SMFIX-12000-2	SJFEX-12000-2	Frio	12000	1200
Elgin	SZFI-12000-2	SZFE-12000-2	Frio	12000	1255
Elgin	SHFI-12000-2	SJFE-12000-2	Frio	12000	1300
Elgin	SSQIA-12000-2	SSQEA-12000-2	Reverso	12000	1040
Elgin	HWQI12B2IA	HWQE12B2NA	Reverso	12000	1058
Elgin	HLQI12B2FA	HLQE12B2NA	Reverso	12000	1067
Elgin	HEQI12B2IA	HEQE12B2IA	Reverso	12000	1085
Elgin	SUQIL-12000-2	SUQEA-12000-2	Reverso	12000	1085
Elgin	SUQIA-12000-2	SUQEA-12000-2	Reverso	12000	1085
Elgin	HPQI12A2NA	HPQE12A2NA	Reverso	12000	1086
Elgin	SUQI-12000-2	SUQE-12000-2	Reverso	12000	1120
Elgin	SRQI-12000-2	SRQE-12000-2	Reverso	12000	1190
Elgin	SHQI-12000-2	SHQE-12000-2	Reverso	12000	1200
Elgin	HEFI18B2IA	HEFE18B2IA	Frio	18000	1590

					(continuação
Elgin	HLFI18B2FA	HLFE18B2NA	Frio	18000	1618
Elgin	SRFIA-18000-2	SRFEA-18000-2	Frio	18000	1620
Elgin	HWFI18B2IA	HWFE18B2NA	Frio	18000	1630
Elgin	SHFI18000-2	SHFE-18000-2	Frio	18000	1720
Elgin	SRFI-18000-2	SRFE-18000-2	Frio	18000	1750
Elgin	SZFI-18000-2	SZFE-18000-2	Frio	18000	1980
Elgin	SRQIA-18000-2	SRQEA-18000-2	Reverso	18000	1600
Elgin	HLQI18B2FA	HLQE18B2NA	Reverso	18000	1623
Elgin	HEQI18B2IA	HEQE18B2IA	Reverso	18000	1630
Elgin	HWQI18B2IA	HWQE18B2NA	Reverso	18000	1630
Elgin	SRQI-18000-2	SRQE-18000-2	Reverso	18000	1790
Elgin	SHQI-18000-2	SHQE-18000-2	Reverso	18000	1890
Elgin	HWFI24B2IA	HWFE24B2NA	Frio	24000	2111
Elgin	HLFI24B2FA	HLFE24B2NA	Frio	24000	2157
Elgin	HEFI24B2IA	HEFE24B2IA	Frio	24000	2170
Elgin	SSFI-24000-2	SSFE-24000-2	Frio	24000	2400
Elgin	SHFI-24000-2	SHFE-24000-2	Frio	24000	2410
Elgin	SRFI-24000-2	SRFE-24000-2	Frio	24000	2490
Elgin	HWQI24B2IA	HWQE24B2NA	Reverso	24000	2033
Elgin	HEQI24B2IA	HEQE24B2IA	Reverso	24000	2170
Elgin	HLQI24B2FA	HLQE24B2NA	Reverso	24000	2170
Elgin	SHQI-24000-2	SHQE-24000-2	Reverso	24000	2400
Elgin	SSQI-24000-2	SSQE-24000-2	Reverso	24000	2400
Elgin	SRQI-24000-2	SRQE-24000-2	Reverso	24000	2490
Elgin	HWFI30B2IA	HWFE30B2NA	Frio	30000	2576
Elgin	HLFI30B2FA	HLFE30B2NA	Frio	30000	2689
Elgin	SRFI-30000-2	SRFE-30000-2	Frio	30000	3050
Elgin	HWQI30B2IA	HWQE30B2NA		30000	2608
	HLQI30B2FA	HLQE30B2NA	Reverso Reverso	30000	2713
Elgin Elgin	HEQI30B2IA	HEQE30B2IA	Reverso	30000	2715
_	-	7		30000	3000
Elgin	SRQI-30000-2	SRQE-30000-2	Reverso		
Elgin	SHQI-30000-2	SHQE-30000-2	Reverso	30000	3250
LG	TSNC072W4W0	TSUC072W4W0	Frio	7500	675
LG	TSNH072YMA0	TSUH072YMA0	Reverso	7500	660
LG	TSNH072W4W0	TSUH072W4W0	Reverso	7500	675
LG	TSNH072YNW0	TSUH072YNW0	Reverso	7500	678
LG	TSNC092TNW6	TSUC092TNW6	Frio	9000	814
LG	TSNC092W4W0	TSUC092W4W0	Frio	9000	814
LG	TSNH092H4W0	TSUH092H4W0	Reverso	9000	815
LG	TSNH092YMA0	TSUH092YMA0	Reverso	9000	870
LG	TSNH092YNW0	TSUH092YNW0	Reverso	9000	870
LG	TSNH092ERM1	TSUH092ERM1	Reverso	9000	870
LG	TSNH092EFW1	TSUH092EFW1	Reverso	9000	870
LG	TSNC122H4W0	TSUC122H4W0	Frio	12000	1085
LG	TSNH122H4W0	TSUH122H4W0	Reverso	12000	1085
LG	TSNH122ERM1	TSUH122ERM1	Reverso	12000	1100
LG	TSNH122YMA0	TSUH122YMA0	Reverso	12000	1160
LG	TSNH122YNW0	TSUH122YNW0	Reverso	12000	1160
LG	TSNH122EFW5	TSUH122EFW5	Reverso	12000	1160
LG	TSNH122H4W0	TSUH122H4W0	Reverso	17000	1640
LG	TSNC122EFW5	TSUC1825MA2	Frio	18000	1650
LG	TSNH1825NW5	TSUH1825NW5	Reverso	18000	1740
LG	TSNH1828FW5	TSUH1828FW5	Reverso	18000	1740

					(Continuação
LG	TSNH1825MA1	TSUH1825MA1	Reverso	18000	1750
LG	TSNH1828RM1	TSUH1828RM1	Reverso	18000	1750
LG	TSNC242C4W0	TSUC242C4W0	Frio	23000	2225
LG	TSNH242C4W0	TSUH242C4W0	Reverso	23000	2390
LG	TSNH2425MA1	TSUH2425MA1	Reverso	24000	2345
LG	TSNH2428RM1	TSUH2428RM1	Reverso	24000	2345
LG	TSNH2428FW1	TSUH2428FW1	Reverso	24000	2345
LG	TSNH2425NW1	TSUH2425NW1	Reverso	24000	2350
Midea	42LUCC07C5	38KCH07C5	Frio	7000	633
Midea	42MLCA07M5	38MLCA07M5	Frio	7000	639
Midea	42MWCA07M5	38MWCA07M5	Frio	7000	680
Midea	42MWCB07M5	38MWCB07M5	Frio	7000	727
Midea	42MMCA07F5	38MMCA07F5	Frio	7000	729
Midea	42MTCA07M5	38MTCA07M5	Frio	7000	729
Midea	42MTCB07M5	38MTCB07M5	Frio	7000	729
Midea	42LUQC07C5	38KQH07C5	Reverso	7000	633
Midea	42LUQA007515LC	38KQA007515MC	Reverso	7000	639
Midea	42MLQA07M5	38MLQA07M5	Reverso	7000	639
Midea	42MWQA07M5	38MWQA07M5	Reverso	7000	680
Midea	42MMQA07F5	38MMQA07F5	Reverso	7000	729
Midea	42MMQB07F5	38MMQB07F5	Reverso	7000	729
Midea	42MTQB07M5	38MTQB07M5	Reverso	7000	729
Midea	42MLCC07M5	38KCJ07M5	Frio	7500	664
Midea	42LUCE07S5	38KCE07S5	Frio	7500	665
Midea	42MDCA07M5	38KCG07M5	Frio	7500	674
Midea	42RNCA07S5	38KCF07S5	Frio	7500	678
Midea	42RYCC07A5	38KCG07A5	Frio	7500	718
Midea	42MMCC07F5	38KCG07F5	Frio	7500	718
Midea	42MMCD07F5	38KCG07F5	Frio	7500	718
Midea	42MDQA07M5	38KQG07M5	Reverso	7500	674
Midea	42LUQE07S5	38KQE07S5	Reverso	7500	675
Midea	42MLQC07M5	38KQJ07M5	Reverso	7500	678
Midea	42RNQA07S5	38KQF07S5	Reverso	7500	678
Midea	42RWQB007515LS	38KQC007515MS	Reverso	7500	685
Midea	42RYQC07A5	38KQG07A5	Reverso	7500	691
Midea	42MMQC07F5	38KQG07F5	Reverso	7500	691
Midea	42MMQD07F5	38KQG07F5	Reverso	7500	691
Midea	42LUCC09C5	38KCH09C5	Frio	9000	814
Midea	42MLCB09M5	38MLCB09M5	Frio	9000	814
Midea	42MLCC09M5	38KCJ09M5	Frio	9000	814
Midea	42MFCA09M5	38KCN09M5	Frio	9000	814
Midea	42MFCW09M5	38KCN09M5	Frio	9000	814
Midea	42RNCA09S5	38KCF09S5	Frio	9000	814
Midea	42FNCA09S5	38KCF09S5	Frio	9000	814
	42FNCA09S5 42MACA09S5	38KCX09S5			
Midea			Frio	9000	814
Midea	42MLCA09M5	38MLCA09M5	Frio		816
Midea	42LUCA009515LC	38KCA009515MC	Frio	9000	822
Midea	42LUCE09S5	38KCE09S5	Frio	9000	822
Midea	42MVCA09M5	38MVCA09M5	Frio	9000	824
Midea	42MDCA09M5	38KCG09M5	Frio	9000	869
Midea	42RWCA009515LS	38KCB009515MS	Frio	9000	874
Midea	42RYCC09A5	38KCG09A5	Frio	9000	916
Midea	42MMCC09F5	38KCG09F5	Frio	9000	916

					(commuação
Midea	42MMCD09F5	38KCG09F5	Frio	9000	916
Midea	42MMCA09F5	38MMCA09F5	Frio	9000	933
Midea	42MMCB09F5	38MMCB09F5	Frio	9000	933
Midea	42MWCB09M5	38MWCB09M5	Frio	9000	935
Midea	42MWCA09M5	38MWCA09M5	Frio	9000	1008
Midea	42LUQC09C5	38KQH09C5	Reverso	9000	814
Midea	42MLQC09M5	38KQJ09M5	Reverso	9000	814
Midea	42MFQA09M5	38KQN09M5	Reverso	9000	814
Midea	42RNQA09S5	38KQF09S5	Reverso	9000	814
Midea	42FNQA09S5	38KQO09S5	Reverso	9000	814
Midea	42MAQA09S5	38KQX09S5	Reverso	9000	814
Midea	42MLQA09M5	38MLQA09M5	Reverso	9000	816
Midea	42LUQA009515LC	38KQA009515MC	Reverso	9000	822
Midea	42MVQA09M5	38MVQA09M5	Reverso	9000	824
Midea	42MDQA09M5	38KQG09M5	Reverso	9000	851
Midea	42RWQA009515LS	38KQB009515MS	Reverso	9000	874
Midea	42MMQD09F5	38KQG09F5	Reverso	9000	897
Midea	42MMQA09F5	38MMQA09F5	Reverso	9000	933
Midea	42MMQB09F5	38MMQB09F5	Reverso	9000	933
Midea	42MTQA09M5	38MTQA09M5	Reverso	9000	933
Midea	42MTQB09M5	38MTQB09M5	Reverso	9000	933
Midea	42MWQA09M5	38MWQA09M5	Reverso	9000	1008
Midea	42MLCC12M5	38KCJ12M5	Frio	12000	1059
Midea	42MLCB12M5	38MLCB12M5	Frio	12000	1076
					1076
Midea	42LUCC12C5	38KCM12C5	Frio	12000	
Midea	42MFCA12M5	38KCN12M5	Frio	12000	1085
Midea	42MFCW12M5	38KCN12M5	Frio	12000	1085
Midea	42RNCA12S5	38KCF12S5	Frio	12000	1085
Midea	42RNCA12S5	38KCK12C5	Frio	12000	1085
Midea	42FNCA12S5	38KCO12S5	Frio	12000	1085
Midea	42MACA12S5	38KCX12S5	Frio	12000	1085
Midea	42LUCE12S5	38KCE12S5	Frio	12000	1095
Midea	42RWCB012515LS	38KCC012515MS	Frio	12000	1095
Midea	42MVCA12M5	38MVCA12M5	Frio	12000	1118
Midea	42LUCA012515LC	38KCA012515MC	Frio	12000	1168
Midea	42MMCB12F5	38MMCB12F5	Frio	12000	1217
Midea	42MTCA12M5	38MTCA12M5	Frio	12000	1217
Midea	42RYCC12A5	38KCG12A5	Frio	12000	1221
Midea	42MMCD12F5	38KCG12F5	Frio	12000	1221
Midea	42MDCA12M5	38KCG12M5	Frio	12000	1234
Midea	42MLQC12M5	38KQJ12M5	Reverso	12000	1066
Midea	42RNQB12S5	38KQK12C5	Reverso	12000	1066
Midea	42MFQA12M5	38KQN12M5	Reverso	12000	1085
Midea	42FNQA12S5	38KQO12S5	Reverso	12000	1085
Midea	42MAQA12S5	38KQX12S5	Reverso	12000	1085
Midea	42MLQA12M5	38MLQA12M5	Reverso	12000	1092
Midea	42MVQA12M5	38MVQA12M5	Reverso	12000	1118
Midea	42LUQC12C5	38KQH12C5	Reverso	12000	1161
Midea	42MMQA12F5	38MMQA12F5	Reverso	12000	1217
Midea	42MMQB12F5	38MMQB12F5	Reverso	12000	1217
Midea	42MTQB12M5	38MTQB12M5	Reverso	12000	1217
Midea	42RYQC12A5	38KQG12A5	Reverso	12000	1234
Midea	42MMQC12F5	38KQG12F5	Reverso	12000	1234

					_
Midea	42MMQD12F5	38KQG12F5	Reverso	12000	1234
Midea	42MDQA12M5	38KQG12M5	Reverso	12000	1243
Midea	42RWQA012515LS	38KQB012515MS	Reverso	12000	1250
Midea	42RWQB012515LS	38KQC012515MS	Reverso	12000	1250
Midea	42MLCC18M5	38KCJ18M5	Frio	18000	1628
Midea	42MFCA18M5	38KCN18M5	Frio	18000	1628
Midea	42MACA18S5	38KCX18S5	Frio	18000	1628
Midea	42LUCE18S5	38KCE18S5	Frio	18000	1640
Midea	42MDCA18M5	38KCG18M5	Frio	18000	1649
Midea	42MLCA18M5	38MLCA18M5	Frio	18000	1695
Midea	42MDCA18M5	38KCR18M5	Frio	18000	1707
Midea	42LUCC18C5	38KCH18C5	Frio	18000	1741
Midea	42LUCC18C5	38KCM18C5	Frio	18000	1741
Midea	42RNCA18S5	38KCF18S5	Frio	18000	1741
Midea	42RNCA18S5	38KCK18C5	Frio	18000	1741
Midea	42FNCA18S5	38KCO18S5	Frio	18000	1741
Midea	42MMCA18F5	38MMCA18F5	Frio	18000	1954
Midea	42MMCB18F5	38MMCB18F5	Frio	18000	1954
Midea	42MTCB18M5	38MTCB18M5	Frio	18000	1954
Midea	42MLQC18M5	38KQJ18M5	Reverso	18000	1628
Midea	42MFQA18M5	38KQN18M5	Reverso	18000	1628
Midea	42FNQA18S5	38KQO18S5	Reverso	18000	1628
Midea	42MAQA18S5	38KQX18S5	Reverso	18000	1628
Midea	42LUQE18S5	38KQE18S5	Reverso	18000	1640
Midea	42MDQA18M5	38KQG18M5	Reverso	18000	1649
Midea	42MLQA18M5	38MLQA18M5	Reverso	18000	1695
Midea	42LUQC18C5	38KQH18C5	Reverso	18000	1741
Midea	42MVQA18M5	38MVQA18M5	Reverso	18000	1743
Midea	42LUQA018515LC	38KQA018515MC	Reverso	18000	1752
Midea	42MMQA18F5	38MMQA18F5	Reverso	18000	1954
Midea	42MMQB18F5	38MMQB18F5	Reverso	18000	1954
Midea	42MTQB18M5	38MTQB18M5	Reverso		1954
Midea	`			18000 22000	1990
	42LUCD22C5	38KCM22C5	Frio		
Midea	42MFCA22M5	38KCN22M5	Frio	22000	1990
Midea	42MACA22S5	38KCX22S5	Frio	22000	1990
Midea	42LUCE22S5	38KCE22S5	Frio	22000	2010
Midea	42LUCC22C5	38KCH22C5	Frio	22000	2128
Midea	42RNCA22S5	38KCF22S5	Frio	22000	2128
Midea	42LUCA022515LC	38KCA022515MC	Frio	22000	2142
Midea	42FNCA22S5	38KCO22S5	Frio	22000	2249
Midea	42MAQA22S5	38KQX22S5	Reverso	22000	1990
Midea	42MFQA22M5	38KQN22M5	Reverso	22000	2127
Midea	42FNQA22S5	38KQO22S5	Reverso	22000	2127
Midea	42LUQC22C5	38KQH22C5	Reverso	22000	2128
Midea	42RNQA22S5	38KQF22S5	Reverso	22000	2128
Midea	42LUQA022515LC	38KQA022515MC	Reverso	22000	2142
Midea	42MTQA22M5	38MTQA22M5	Reverso	22000	2430
Midea	42MDCB24M5	38KCR24M5	Frio	24000	2198
Midea	42MLCD24M5	38KCS24M5	Frio	24000	2247
Midea	42MLCC24M5	38KCJ24M5	Frio	24000	2494
Midea	42MDCA24M5	38KCG24M5	Frio	24000	2576
Midea	42MMQA24F5	38MMQA24F5	Reverso	24000	2558
Midea	42MMQB24F5	38MMQB24F5	Reverso	24000	2558

Midea	42MDQA24M5	38KQG24M5	Reverso	24000	2576
Midea	42MLQC24M5	38KQJ24M5	Reverso	24000	2695
Midea	42MTCA28M5	38MTCA28M5	Frio	28000	3143
Midea	42MTCB28M5	38MTCB28M5	Frio	28000	3143
Midea	42MTQA28M5	38MTQA28M5	Reverso	28000	3143
Midea	42MTQB28M5	38MTQB28M5	Reverso	28000	3143
Midea	42LUCD30C5	38KCM30C5	Frio	30000	2748
Midea	42MLCD30M5	38KCS30M5	Frio	30000	2883
Midea	42MACA30S5	38KCX30S5	Frio	30000	2902
Midea	42MLCC30M5	38KCJ30M5	Frio	30000	3118
Midea	42LUCA030515LC	38XCE030515MC	Frio	30000	3160
Midea	42LUCB030515LC	38XCE030515MC	Frio	30000	3160
Midea	42LUCB030515LC	38KCB030515MC	Frio	30000	3160
Midea	42LUCC30C5	38KCH30C5	Frio	30000	3160
Midea	42MLCB30M5	38MLCB30M5	Frio	30000	3256
Midea	42MAQA30S5	38KQX30S5	Reverso	30000	2902
Midea	42MLQA30M5	38MLQA30M5	Reverso	30000	3032
Midea	42MLQC30M5	38KQJ30M5	Reverso	30000	3118
Midea	42LUQA030515LC	38XQE030515MC	Reverso	30000	3170
Midea	42LUQB030515LC	`		30000	3170
	`	38KQB030515MC	Reverso		
Midea	42LUQC30C5	38KQH30C5	Reverso	30000	3170
Philco	PH9000FM2	PH9000FM2	Frio	9000	782
Philco	PH900T0FM5	PH9000TFM5	Frio	9000	810
Philco	PH9000QFM2	PH9000QFM2	Reverso	9000	782
Philco	PH12000TFM5	PH12000TFM5	Frio	12000	1029
Philco	PH12000FM2	PH12000FM2	Frio	12000	1068
Philco	PH12000FM5	PH12000FM5	Frio	12000	1068
Philco	PH12000TQFM5	PH12000TQFM5	Reverso	12000	1029
Philco	PH12000QFM2	PH12000QFM2	Reverso	12000	1068
Philco	PH12000QFM5	PH12000QFM5	Reverso	12000	1068
Philco	PH18000FM4	PH18000FM4	Frio	18000	1563
Philco	PH18000FM	PH18000FM	Frio	18000	1656
Philco	PH18000QFM4	PH18000QFM4	Reverso	18000	1563
Philco	PH18000QFM	PH18000QFM	Reverso	18000	1656
Philco	PH24000FM4	PH24000FM4	Frio	24000	2070
Philco	PH24000FM	PH24000FM	Frio	24000	2322
Philco	PH24000QFM4	PH24000QFM4	Reverso	24000	2070
Philco	PH24000QFM	PH24000QFM	Reverso	24000	2322
Samsung	AR09KCFUBWQNAZ	AR09KCFUBWQXAZ	Frio	9000	812
Samsung	AR09JCSUAWQYAZ +	AR09JCSUAWQNAZ +	Frio	9000	813
Samsung	AR09JCSUAWQZAZ AR09KPFUAWONAZ	AR09JCSUAWQXAZ AR09KPFUAWQXAZ	Frio	9000	814
Samsung	AS09UWBUNXAZ	AS09UWBUXXAZ	Frio	9000	815
Samsung	AR09KCSUBWONAZ	AR09KCSUBWQXAZ	Frio	9000	815
Samsung	AR09KCFUBWQXAZ	AR09KCFUBWQXAZ	Frio	9000	815
				12000	1075
Samsung	AR12KCFUAWQNAZ	AR12KCFUAWQXAZ	Frio		
Samsung	AR12KCSUAWQNAZ	AR12KCSUAWQXAZ	Frio	12000	1075
Samsung	AR12KCFUAWQNAZ	AR12KCFUAWQXAZ	Frio	12000	1075
Samsung	AR12HPSUAWQNAZ	AR12HPSUAWQXAZ	Reverso	12000	1075
Samsung	AR12KPFUAWQNAZ	AR12KPFUAWQXAZ	Reverso	12000	1086
Samsung	AR18KCFUAWQNAZ	AR18KCFUAWQXAZ	Frio	18000	1739
Samsung	AR18HCSUAWQNAZ	AR18HCSUAWQXAZ	Frio	18000	1740
Samsung	AR18KPFUAWQNAZ	AR18KPFUAWQXAZ	Reverso	18000	1740

					(Commuação
Samsung	AR18KPSUAWQNAZ	AR18KPSUAWQXAZ	Reverso	18000	1740
Samsung	AR18KPFUAWQNAZ	AR18KPFUAWQXAZ	Reverso	18000	1740
Samsung	AR24KCFUAWQNAZ	AR24KCFUAWQXAZ	Frio	24000	2318
Samsung	AR24HCSUAWQNAZ	AR24HCSUAWQXAZ	Frio	24000	2320
Samsung	AR24KPFUAWQNAZ	AR24KPFUAWQXAZ	Reverso	24000	2320
Samsung	AR24KPSUAWQNAZ	AR24KPSUAWQXAZ	Reverso	24000	2320
Samsung	AR24KPFUAWQNAZ	AR24KPFUAWQXAZ	Reverso	24000	2320
		TECNOLOGIA INVE	RTER		
Consul	CBF09C	CBG09C	Frio	9000	810
Consul	CBF09D	CBG09D	Frio	9000	814
Consul	СВЈ09С	CBM09C	Reverso	9000	810
Consul	CBJ09D	CBM09D	Reverso	9000	814
Consul	CBF12C	CBG12C	Frio	12000	1080
Consul	CBF12D	CBG12D	Frio	12000	1085
Consul	CBJ12C	CBM12C	Reverso	12000	1080
Consul	CBJ12D	CBM12D	Reverso	12000	1085
Consul	CBF18C	CBG18C	Frio	18000	1618
Consul	CBF18D	CBG18D	Frio	18000	1628
Consul	CBJ18C	CBM18C	Reverso	18000	1618
Consul	CBJ18D	CBM18D	Reverso	18000	1628
Consul	CBF22C	CBG22C	Frio	22000	1980
Consul	CBF22D	CBG22D	Frio	22000	1989
Consul	CBJ22C	CBM22C	Reverso	22000	1980
Consul	CBJ22D	CBM22D	Reverso	22000	1989
Electrolux	BI07F	BE07F	Frio	7000	633
Electrolux	BIO/F BIO7R	BE07R	Reverso	7000	
	BIO/R BIO9F	BE09F		9000	633 813
Electrolux			Frio		
Electrolux	BI09R	BE09R	Reverso	9000	813
Electrolux	BI12F	BE12F	Frio	12000	1085
Electrolux	BI12R	BE12R	Reverso	12000	1085
Electrolux	BI18F	BE18F	Frio	18000	1627
Electrolux	BI18R	BE18R	Reverso	18000	1627
Electrolux	BI22F	BE22F	Frio	22000	1989
Electrolux	BI22R	BE22R	Reverso	22000	1989
Elgin	IBFIA-9000-2	IBFEA-9000-2	Frio	9000	790
Elgin	HVFI09B2IA	HVFE09B2IA	Frio	9000	815
Elgin	IBQIA-9000-2	IBQEA-9000-2	Reverso	9000	800
Elgin	HVQI09B2IA	HVQE09B2IA	Reverso	9000	809
Elgin	IBFIA-12000-2	IBFEA-12000-2	Frio	12000	985
Elgin	HVFI12B2IA	HVFE12B2IA	Frio	12000	1086
Elgin	IBQIA-12000-2	IBQEA-12000-2	Reverso	12000	1050
Elgin	HVQI12B2IA	HVQE12B2IA	Reverso	12000	1080
Elgin	HVFI18B2IA	HVFE18B2IA	Frio	18000	1630
Elgin	HVQI18B2IA	HVQE18B2IA	Reverso	18000	1625
Elgin	HVQI24B2IA	HVQE24B2IA	Reverso	24000	2168
Elgin	HVQI24B2IA	HVQE24B2IA	Reverso	24000	2173
LG	ASNQ092WSA0	ASUQ092WSA0	Frio	8500	769
LG	ASNW092B4A0 ASNW092BRW0	ASUW092B4A0 ASUW092BRW0	Reverso	8500	600
LG	ASNW092BRZ0 ASNW092WSA0	ASUW092BRZ0 ASUW092WSA0	Reverso	8500	770
LG	ASNQ092B4A0 ASNQ092BRW0	ASUQ092B4A0 ASUQ092BRW0A	Frio	9000	775
1.0	ASNQ092BRZ0	SUQ092BRZ0	<u> </u>	6000	202
LG	ASNQ092BRG2	ASUQ092BRG2	Frio	9000	800

					` ,
LG	USNQ092WSZ2	USUQ092WSZ2	Frio	9000	805
LG	USNQ092WSG3	USUQ092WSG3	Frio	9000	815
LG	ASNW092BRG2	ASUW092BRG2	Reverso	9000	800
LG	USNW092WSZ2	USUW092WSZ2	Reverso	9000	805
LG	USNW092WSG3	USUW092WSG3	Reverso	9000	815
LG	USNQ122HSG3	USUQ122HSG3	Frio	11500	1040
LG	USNW122HSG3	USUW122HSG3	Reverso	11500	1040
	ASNQ122B4A0	ASUQ122B4A0	Frio		
LG	ASNQ122BRW0	ASUQ122BRW0		12000	1030
LG	ASNQ122BRZ0 ASNQ122BSA1	ASUQ122BRZ0 ASUQ122BSA1	Frio	12000	1085
LG	USNQ122BSZ2	USUQ122BSZ2	Frio	12000	1085
LG	ASNQ122BRG2	ASUQ122BRG2	Frio	12000	1085
	ASNW122B4A0	ASUW122B4A0	Reverso	12000	1000
LG	ASNW122BRW0	ASUW122BRW0	Reverso	12000	1010
LG	ASNW122BRZ0 ASNW1223WB0	ASUW122BRZ0 ASUW1223WB0	Reverso	12000	1080
LG	ASNW122BSA1	ASUW122BSA1	Reverso	12000	1085
LG	USNW122BSZ2	USUW122BSZ2	Reverso	12000	1085
LG				12000	1085
	ASNW122BRG2	ASUW122BRG2	Reverso		
LG	ASNQ182CSA1	ASUQ182CSA1	Frio	17000	1538
LG	ASNW182CSA1	ASUW182CSA1	Reverso	17000	1538
LG	ASNQ182C4A0 ASNQ182CRW0	ASUQ182C4A0A SUQ182CRW0	Frio	18000	1550
	ASNQ182CRZ0	ASUQ182CRZ0			
LG	USNQ182CSZ2	USUQ182CSZ2	Frio	18000	1600
LG	ASNQ182CRG2	ASUQ182CRG2	Frio	18000	1600
LG	USNQ182CSG3	USUQ182CSG3	Frio	18000	1600
LG	ASNW182C4A0 ASNW182CRW0	ASUW182C4A0 ASUW182CRW0	Reverso	18000	1500
	ASNW182CRZ0	ASUW182CRZ0			
LG	USNW182CSZ2	USUW182CSZ2	Reverso	18000	1600
LG	ASNW182CRG2	ASUW182CRG2	Reverso	18000	1600
LG	USNW182CSG3	USUW182CSG3	Reverso	18000	1600
LG	ASNQ242CSA1	ASUQ242CSA1	Frio	22000	1990
LG	USNQ242CSZ2	USUQ242CSZ2	Frio	22000	1990
LG	ASNQ242CRZ1	ASUQ242CRZ1	Frio	22000	1990
LG	ASNQ242CRG2	ASUQ242CRG2	Frio	22000	1990
LG	USNQ242CSG3	USUQ242CSG3	Frio	22000	1990
LG	ASNQ242C4A0	ASUQ242C4A0	Frio	22000	2010
LG	ASNQ242CRW0 ASNW242CSA1	ASUQ242CRW0 ASUW242CSA1	Reverso	22000	1990
					1990
LG	USNW242CSZ2	USUW242CSZ2	Reverso	22000	
LG	ASNW242CRG2	ASUW242CRG2	Reverso	22000	1990
LG	USNW242CSG3	USUW242CSG3	Reverso	22000	1990
LG	ASNW242CRZ1	ASUW242CRZ1	Reverso	22000	2190
LG	ASNW242C4A0 ASNW242CRW0	ASUW242C4A0 ASUW242CRW0	Reverso	24000	2190
Midea	42PRCA09M5	38PRCA09M5	Frio	9000	754
Midea	42MBCA09M5	38MBCA09M5	Frio	9000	762
Midea	42MKCA09M5	38MKCA09M5	Frio	9000	776
Midea	42LVCC09C5	38LVCC09C5	Frio	9000	776
Midea	42LVCC09C5	42LVCC09C5	Frio	9000	776
Midea	42LVCA009515LC	38LVCA009515MC	Frio	9000	787
	42LVCB009515LC	38LVCB009515MC			
Midea	42VFCA09M5	38VFCA09M5	Frio	9000	799
Midea	42MECA09M5	38MECA09M5	Frio	9000	822
Midea	42PRQA09M5	38PRQA09M5	Reverso	9000	758
Midea	42FVQA09C5	38FVQA09C5	Reverso	9000	783

					(Continuação
Midea	42MBQA09M5	38MBQA09M5	Reverso	9000	784
Midea	42MKQA09M5	38MKQA09M5	Reverso	9000	799
Midea	42VFQA09M5	38VFQA09M5	Reverso	9000	799
Midea	42LVQC09C5	38LVQC09C5	Reverso	9000	799
Midea	42LVQC09C5	38LVQC09C5	Reverso	9000	799
Midea	RAS-10SKV-E2	RAS-10SAV-E2	Reverso	9000	800
Midea	42LVQA009515LC	38LVQA009515MC	Reverso	9000	800
Midea	42LVQB009515LC 42MEQA09M5	38LVQB009515MC 38MEQA09M5	Reverso	9000	822
Midea	42PRCA12M5	38PRCA12M5	Frio	12000	991
Midea	42MBCA12M5	38MBCA12M5	Frio	12000	1049
Midea	42LVCA012515LC	38LVCA012515MC	Frio	12000	1050
Midea	42LVCB012515LC 42MKCA12M5	38LVCB012515MC 38MKCA12M5	Frio	12000	1069
Midea	42LVCC12C5	38LVCC12C5	Frio	12000	1069
Midea	42LVCC12C5	38LVCC12C5	Frio	12000	1069
Midea	42VFCA12M5	38VFCA12M5	Frio	12000	1082
Midea	42MECA12M5	38MECA12M5	Frio	12000	1096
Midea	42PRQA12M5	38PRQA12M5	Reverso	12000	930
Midea	42FVQA12C5	38FVQA12C5	Reverso	12000	1025
Midea	42MKQA12M5	38MKQA12M5	Reverso	12000	1053
Midea	42LVQC12C5	38LVQC12C5	Reverso	12000	1053
Midea	42LVQC12C5	38LVQC12C5	Reverso	12000	1053
Midea	42LVQA012515LC 42LVQB012515LC	38LVQA012515MC 38LVQB012515MC	Reverso	12000	1065
Midea	42VFQA12M5	38VFQA12M5	Reverso	12000	1066
Midea	RAS-13SKV-E2	RAS-13SAV-E2	Reverso	12000	1070
Midea	42MBQA12M5	38MBQA12M5	Reverso	12000	1082
Midea	42MEQA12M5	38MEQA12M5	Reverso	12000	1096
Midea	RAS-16SKV-E	RAS-16SAV-E	Reverso	16000	1650
Midea	42MKCA18M5	38MKCA18M5	Frio	17000	1528
Midea	42LVCC18C5	38LVCC18C5	Frio	17000	1528
Midea	42LVQA018515LC	38LVQA018515MC	Reverso	17000	1510
Midea	42LVQB018515LC 42LVCC18C5	38LVQB018515MC 38LVCC18C5	Frio	18000	1528
Midea	42MKCB18M5	38MKCB18M5	Frio	18000	1547
Midea	42LVCD18C5	38LVCD18C5	Frio	18000	1547
	42LVCA018515LC	38LVCA018515MC	Frio		
Midea	42LVCB018515LC	38LVCB018515MC	FIIO	18000	1550
Midea	42MECA18M5	38MECA18M5	Frio	18000	1621
Midea	42MBCA18M5	38MBCA18M5	Frio	18000	1623
Midea	42VFCA18M5	38VFCA18M5	Frio	18000	1628
Midea	42MKQA18M5	38MKQA18M5	Reverso	18000	1525
Midea	42LVQC18C5	38LVQC18C5	Reverso	18000	1525
Midea	42LVQC18C5	38LVQC18C5	Reverso	18000	1525
Midea	42FVQA18C5	38FVQA18C5	Reverso	18000	1556
Midea	42VFQA18M5	38VFQA18M5	Reverso	18000	1599
Midea	42MBQA18M5	38MBQA18M5	Reverso	18000	1606
Midea	42MEQA18M5	38MEQA18M5	Reverso	18000	1621
Midea	42LVCA022515LC 42LVCB022515LC	38LVCA022515MC 38LVCB022515MC	Frio	22000	1895
Midea	42LVCB022515LC 42VFCA22M5	38VFCA22M5	Frio	22000	1919
Midea	42MKCA22M5	38MKCA22M5	Frio	22000	1948
Midea	42LVCC22C5	38LVCC22C5	Frio	22000	1948
Midea	42MECA22M5	38MECA22M5	Frio	22000	1983
Midea	42MKQA22M5	38MKQA22M5	Reverso	22000	1954
	42LVQC22C5		1		-7.4.

(conclusão)

Midea	42LVQC22C5	38LVQC22C5	Reverso	22000	1954
Midea	42LVQA022515LC 42LVQB022515LC	38LVQA022515MC 38LVQB022515MC	Reverso	22000	1955
Midea	42MEQA22M5	38MEQA22M5	Reverso	22000	1983
Midea	42VFQA22M5	38VFQA22M5	Reverso	22000	1984
Midea	42FVQA22C5	38FVQA22C5	Reverso	22000	1984
Midea	42MBCA22M5	38MBCA22M5	Frio	24000	2070
Midea	42MBQA22M5	38MBQA22M5	Reverso	24000	2070
Samsung	AR09JVSSAWKXAZ	AR09JVSSAWKNAZ	Frio	9000	680
Samsung	AR09HVSPASNNAZ	AR09HVSPASNXAZ	Frio	9000	790
Samsung	AR09KVSPBSNNAZ	AR09KVSPBSNXAZ	Frio	9000	790
Samsung	AR09HVSPBSNNAZ	AR09HVSPBSNXAZ	Frio	9000	927
Samsung	AR09HSSPASNNAZ	AR09HSSPASNXA	Reverso	9000	807
Samsung	AQV09PSBTNXAZ	AQV09PSBTXXAZ	Reverso	9000	807
Samsung	AR09KSSPBGMNAZ	AR09KSSPBGMXAZ	Reverso	9000	814
Samsung	AR09HSSPBSNNAZ	AR09HSSPBSNXAZ	Reverso	9000	927
Samsung	AR12JVSSAWKXAZ	AR12JVSSAWKNAZ	Frio	12000	1020
Samsung	AR12KVSPBGMNAZ	AR12KVSPBGMXAZ	Frio	12000	1085
Samsung	AR12HSSPASNNAZ	AR12HSSPASNXAZ	Frio	12000	1096
Samsung	AR12KSSPBGMNAZ	AR12KSSPBGMXAZ	Reverso	12000	1078
Samsung	AR12HSSPASNNAZ	AR12HSSPASNXAZ	Reverso	12000	1096
Samsung	AR18KVSPSGMNAZ	AR18KVSPSGMNAZ	Frio	18000	1630
Samsung	AR18JSSPSGMXAZ	AR18JSSPSGMNAZ	Reverso	18000	1515
Samsung	AR24KVSPASNNAZ	AR24KVSPASNXAZ	Frio	24000	2510
Samsung	AR24KSSPASNNAZ	AR24KSSPASNXAZ	Reverso	24000	2510

Fonte: Adaptado de ANCE, 2017.

ANEXO D – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO PISO TETO.

(continua)

Fabricante	Mo	odelo	Tipo	Capacidade de Refrigeração	Potência Elétrica
radificante 1	Unidade Interna	Unidade Externa	Про	Nominal (Btu/h)	Consumida (W)
<u>'</u>		TECNOLOGIA	CONVENCI	ONAL	1
Electrolux	CFI36	CFE36	Frio	36000	3745
Elgin	PEFI18B2NA	PEFE18B2NA	Frio	18000	1630
Elgin	PHFI-18000-2	PRFE-18000-2	Frio	18000	1800
Elgin	PHFI-18.000-2	PHFE-18.000-2	Frio	18000	1870
Elgin	PHFI-18000-2	PRFE-18000-2	Frio	18000	1870
Elgin	PHFI-18000-2	PHFE-18000-2	Frio	18000	1870
Elgin	PEQI18B2NA	PEQE18B2NA	Reverso	18000	1625
Elgin	PHQI-18000-2	PRQE-18000-2	Reverso	18000	1740
Elgin	PHQI-18.000-2	PHQE-18.000-2	Reverso	18000	1870
Elgin	PTFI30B2IA	PTFE30B2NA	Frio	30000	2668
Elgin	PHFI-30000-2	PHFE-30000-2	Frio	30000	2680
Elgin	PEFI30B2NA	PEFE30B2NA	Frio	30000	2715
Elgin	PEFI30B2NB	PEFE30B2NB	Frio	30000	2715
Elgin	PHFI-30000-2	PHFE-30000-2	Frio	30000	2860
Elgin	PHFI-30000-2	PRFE-30000-2	Frio	30000	2970
Elgin	PHFI-30000-2	PRFE-30000-2	Frio	30000	2970
Elgin	PTQI30B2IA	PTQE30B2NA	Reverso	30000	2668
Elgin	PEQI30B2NA	PEQE30B2NA	Reverso	30000	2717
Elgin	PHQI-30000-2	PHQE-30000-2	Reverso	30000	3060
Elgin	PEFI36B2NB	PEFE36B2NB	Frio	36000	3255
Elgin	PTFI36B2IA	PTFE36B2NA	Frio	36000	3258
Elgin	PTFI36B2IA	PTFE36B2NA	Frio	36000	3258
Elgin	PEFI36B2NA	PEFE36B2NA	Frio	36000	3345
Elgin	PHFI-36000-2	PHFE-36000-2	Frio	36000	3715
Elgin	PHFI-36000-2	PHFE-36000-2	Frio	36000	3715
Elgin	PTQI36B2IA	PTQE36B2NA	Reverso	36000	3143
Elgin	PEQI36B2NA	PEQE36B2NA	Reverso	36000	3485
Elgin	PHQI-36.000-2	PHQE-36.000-2	Reverso	36000	3675
LG	LVNC182JLA0	LVUC182JLA0	Frio	18000	1950
LG	LVNC362KLA0	LVUC362KLA0	Frio	36000	3700
Midea	42XQM18C5	38KCD018515MC	Frio	18000	1990
Midea	42XQM18C5	38KCD018515MC	Reverso	18000	1990
Midea	42XQM30C5	38KCA030515MC	Frio	30000	3080
Midea	42XQM30C5	38KQA030515MC	Reverso	30000	3100
Midea	42MPCA36M5	38CCF36M5	Frio	35000	3890
Midea	42XQM36C5	38CCT036515MC	Frio	36000	3737
Midea	42XQM36C5	38CCP036515MC	Frio	36000	3755
Midea	42XQM36C5	38CQT036515MC	Reverso	36000	3707

(conclusão)

Midea	42XQM36C5	38CQP036515MC	Reverso	36000	3970
		TECNOLOG	IA INVERT	ER	
LG	AVNQ18GJLA2	AUUQ18GH2	Frio	17000	1645
LG	AVNQ36GKLA2	AUUQ36GH2	Frio	35000	3380
LG	AVNQ36GM1A0	AVUQ36GM1A0	Frio	36000	3480
Midea	42XQV36C5	38CCV036515MC	Frio	36000	3226
Samsung	AC036JXADKC/VN	AC036JNCDKC/VN	Frio	35000	3191

Fonte: Adaptado de ANCE, 2017.

ANEXO E – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE UTILIZANDO O MODELO CASSETE.

F1: .	M	odelo	TE:	Capacidade de Refrigeração	Potência Elétrica
Fabricante	Unidade Interna	Unidade Externa	Tipo	Nominal (Btu/h)	Consumida (W)
		TECNOLOGIA (CONVENCION	AL	
Electrolux	ZI36F	ZE36F	Frio	36000	3740
Electrolux	KI36F	KE36F	Frio	36000	3754
Elgin	KEFI18B2NA	KEFE18B2NA	Frio	18000	1860
Elgin	KEQI18B2NA	KEQE18B2NA	Reverso	18000	1870
Elgin	KEFI30B2NB	KEFE30B2NB	Frio	30000	2715
Elgin	KEFI30B2NA	KEFE30B2NA	Frio	30000	2895
Elgin	KEQI30B2NB	KEQE30B2NB	Reverso	30000	2715
Elgin	KEQI30B2NA	KEQE30B2NA	Reverso	30000	2900
Elgin	KTFI36B2IA	KTFE36B2NA	Frio	36000	3249
Elgin	KEFI36B2NA	KEFE36B2NA	Frio	36000	3380
Elgin	KBFI-36000-2	KHFE-36000-2	Frio	36000	3730
Elgin	KTQI36B2IA	KTQE36B2NA	Reverso	36000	3162
Elgin	KEQI36B2NA	KEQE36B2NA	Reverso	36000	3365
Elgin	KBQI-36000-2	KHQE-36000-2	Reverso	36000	3500
LG	LTNC182QLE0	LTUC182QLE0	Frio	18000	1860
LG	LTNH182QLE0	LTUH182QLE0	Reverso	18000	1860
LG	LTNH282PLE1	LTUH282PLE1	Reverso	28000	3145
LG	LTNC332NLE1	LTUC332NLE1	Frio	33000	3700
LG	LTNH332NLE1	LTUH332NLE1	Reverso	33000	3650
Midea	38KCD018515MC	40KWCA018515LC	Frio	18000	2020
Midea	38KCD018515MC	40KWCC18C5	Frio	18000	2020
Midea	38KQD018515MC	40KWQB18C5	Reverso	18000	2020
Midea	38KCD018515MC	40KWCA018515LC	Reverso	18000	2650
Midea	38CCD036515MC	40KWCB36C5	Frio	36000	3900
Midea	38CQD036515MC	40KWQB36C5	Reverso	36000	3720
		TECNOLOG	IA INVERTER		
LG	ATNQ12GULA0	ATUQ12GULA0	Frio	11000	996
LG	ATNQ18GPLE3	AUUQ18GH1	Frio	17000	1430
LG	ATNQ18GPLE5	AUUQ18GH2	Frio	17000	1440
LG	ATNQ21GPLE3	AUUQ21GH1	Frio	21000	1900
LG	ATNQ24GNLE3	AUUQ24GH1	Frio	24000	1930
LG	ATNQ24GPLE5	AUUQ24GH2	Frio	25000	2260
LG	ATNQ36GMLE3	AUUQ36GH1	Frio	35000	3000
LG	ATNQ36GPLE5	AUUQ36GH2	Frio	35000	3380

Fonte: Adaptado de ANCE, 2017.

ANEXO F – POTÊNCIA ELÉTRICA MÁXIMA E MÍNIMA DAS POSSÍVEIS ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE

(continua)

	Capacidade de Refrigeração		Potência Elétrica Consumida (W)		
Fabricante	Tipo	Nominal (Btu/h)	Mínima	Máxima	
		HI WALL - TECNOLOGIA CON'	VENCIONAL		
Consul	Frio	7000	633	638	
Consul	Reverso	7000	633	638	
Consul	Frio	9000	814	821	
Consul	Reverso	9000	814	821	
Consul	Frio	12000	1085	1096	
Consul	Reverso	12000	1085	1096	
Consul	Frio	18000	1628	1644	
Consul	Reverso	18000	1628	1644	
Consul	Frio	22000	1989	2008	
Consul	Reverso	22000	1989	2008	
Electrolux	Frio	7000	633	639	
Electrolux	Reverso	7000	633	639	
Electrolux	Frio	9000	815	822	
Electrolux	Reverso	9000	815	822	
Electrolux	Frio	12000	1086	1096	
Electrolux	Reverso	12000	1086	1096	
Electrolux	Frio	18000	1743	1753	
Electrolux	Reverso	18000	1743	1753	
Electrolux	Frio	24000	2497	2504	
Electrolux	Reverso	24000	2497	2504	
Electrolux	Frio	30000	2712	3128	
Electrolux	Reverso	30000	2712	3128	
Elgin	Frio	7000	685	730	
Elgin	Reverso	7000	685		
Elgin	Frio	9000	777	990	
Elgin	Reverso	9000	782	905	
Elgin	Frio	12000	1020	1300	
Elgin	Reverso	12000	1040	1200	
Elgin	Frio	18000	1590	1980	
Elgin	Reverso	18000	1600	1890	
Elgin	Frio	24000	2111	2490	
Elgin	Reverso	24000	2033	2490	
Elgin	Frio	30000	2576	3050	
Elgin	Reverso	30000	2608	3250	
LG	Frio	7500	675	+	
LG	Reverso	7500	660	678	
LG	Frio	9000	814		
LG	Reverso	9000	815	870	
LG	Frio	12000	1085		
LG	Reverso	12000	1085	1160	
LG	Reverso	17000	1640		
LG	Frio	18000	1650		
LG	Reverso	18000	1740	1750	
LG	Frio	23000	2225		

				(Commuação
LG	Reverso	23000	2390	
LG	Reverso	24000	2345	2350
Midea	Frio	7000	633	729
Midea	Reverso	7000	633	729
Midea	Frio	7500	664	718
Midea	Reverso	7500	674	691
Midea	Frio	9000	814	1008
Midea	Reverso	9000	814	1008
Midea	Frio	12000	1059	1234
Midea	Reverso	12000	1066	1250
Midea	Frio	18000	1628	1954
Midea	Reverso	18000	1628	1954
Midea	Frio	22000	1990	2249
Midea	Reverso	22000	1990	2430
Midea	Frio	24000	2198	2576
Midea	Reverso	24000	2558	2695
Midea	Frio	28000	3143	
Midea	Reverso	28000	3143	
Midea	Frio	30000	2748	3256
Midea	Reverso	30000	2902	3170
Philco	Frio	9000	782	810
Philco	Reverso	9000	782	
Philco	Frio	12000	1029	1068
Philco	Reverso	12000	1029	1068
Philco	Frio	18000	1563	1656
Philco	Reverso	18000	1563	1656
Philco	Frio	24000	2070	2322
Philco	Reverso	24000	2070	2322
Samsung	Frio	9000	812	815
Samsung	Frio	12000	1075	013
Samsung	Reverso	12000	1075	1086
Samsung	Frio	18000	1739	1740
Samsung	Reverso	18000	1740	1740
Samsung	Frio	24000	2318	2320
Samsung	Reverso	24000	2320	2320
Samsung	Reverso			
C1	г.	HI WALL - TECNOLOGI	1	014
Consul	Frio	9000	810	814
Consul	Reverso		810	814
Consul	Frio	12000	1080	1085
Consul	Reverso	12000	1080	1085
Consul	Reverso	12000	1085	1.00
Consul	Frio	18000	1618	1628
Consul	Reverso	18000	1618	1628
Consul	Frio	22000	1980	1989
Consul	Reverso	22000	1980	1989
Electrolux	Frio	7000	633	
Electrolux	Reverso	7000	633	
Electrolux	Frio	9000	813	
Electrolux	Reverso	9000	813	
Electrolux	Frio	12000	1085	
Electrolux	Reverso	12000	1085	
Electrolux	Frio	18000	1627	
Electrolux	Reverso	18000	1627	

				(continuação)
Electrolux	Frio	22000	1989	
Electrolux	Reverso	22000	1989	
Elgin	Frio	9000	790	815
Elgin	Reverso	9000	800	809
Elgin	Frio	12000	985	1086
Elgin	Reverso	12000	1050	1080
Elgin	Frio	18000	1630	
Elgin	Reverso	18000	1625	
Elgin	Reverso	24000	2168	2173
LG	Frio	8500	769	
LG	Reverso	8500	600	770
LG	Frio	9000	775	815
LG	Reverso	9000	800	815
LG	Frio	11500	1040	
LG	Reverso	11500	1040	
LG	Frio	12000	1030	1085
LG	Reverso	12000	1010	1085
LG	Frio	17000	1538	
LG	Reverso	17000	1538	
LG	Frio	18000	1550	1600
LG	Reverso	18000	1500	1600
LG	Frio	22000	1990	2010
LG	Reverso	22000	1990	2190
LG	Reverso	24000	2190	
Midea	Frio	9000	754	822
Midea	Reverso	9000	758	822
Midea	Frio	12000	991	1096
Midea	Reverso	12000	930	1096
Midea	Reverso	16000	1650	
Midea	Frio	17000	1528	
Midea	Reverso	17000	1510	
Midea	Frio	18000	1528	1628
Midea	Reverso	18000	1525	1621
Midea	Frio	22000	1895	1983
Midea	Reverso	22000	1954	1984
Midea	Frio	24000	2070	1701
Midea	Reverso	24000	2070	
Samsung	Frio	9000	680	927
Samsung	Reverso	9000	807	927
Samsung	Frio	12000	1020	1096
Samsung	Reverso	12000	1078	1096
Samsung	Frio	18000	1630	1070
Samsung	Reverso	18000	1515	
Samsung	Frio	24000	2510	
Samsung	Reverso	24000 ISO TETO - TECNOLOGIA O	2510	
Flaatu-1				T
Electrolux	Frio	36000	3745	1070
Elgin	Frio	18000	1630	1870
Elgin	Reverso	18000	1625	1870
Elgin	Frio	30000	2668	2970
Elgin	Reverso	30000	2668	3060
Elgin	Frio	36000	3255	3715
Elgin	Reverso	36000	3143	3675

(conclusão)

LG	Frio	18000	1950	
LG	Frio	36000	3700	
Midea	Frio	18000	1990	
Midea	Reverso	18000	1990	
Midea	Frio	30000	3080	
Midea	Reverso	30000	3100	
Midea	Frio	35000	3890	
Midea	Frio	36000	3737	3755
Midea	Reverso	36000	3707	3970
		PISO TETO - TECNOLOG	IA INVERTER	
LG	Frio	17000	1645	
LG	Frio	35000	3380	
LG	Frio	36000	3480	
Midea	Frio	36000	3226	
Samsung	Frio	35000	3191	
		CASSETE - TECNOLOGIA C	CONVENCIONAL	
Electrolux	Frio	36000	3740	3754
Elgin	Frio	18000	1860	
Elgin	Reverso	18000	1870	
Elgin	Frio	30000	2715	2895
Elgin	Reverso	30000	2715	2900
Elgin	Frio	36000	3249	3730
Elgin	Reverso	36000	3162	3500
LG	Frio	18000	1860	
LG	Reverso	18000	1860	
LG	Reverso	28000	3145	
LG	Frio	33000	3700	
LG	Reverso	33000	3650	
Midea	Frio	18000	2020	
Midea	Reverso	18000	2020	2650
Midea	Frio	36000	3900	
Midea	Reverso	36000	3720	
		CASSETE - TECNOLOGI	A INVERTER	1
LG	Frio	11000	996	
LG	Frio	17000	1430	1440
LG	Frio	21000	1900	
LG	Frio	24000	1930	
LG	Frio	25000	2260	
LG	Frio	35000	3000	3380
	1		i	

Fonte: Adaptado de ANCE, 2017.

ANEXO G – POTÊNCIA ELÉTRICA DAS POSSÍVEIS ESCOLHAS PARA A CLIMATIZAÇÃO DO AMBIENTE

(continua)

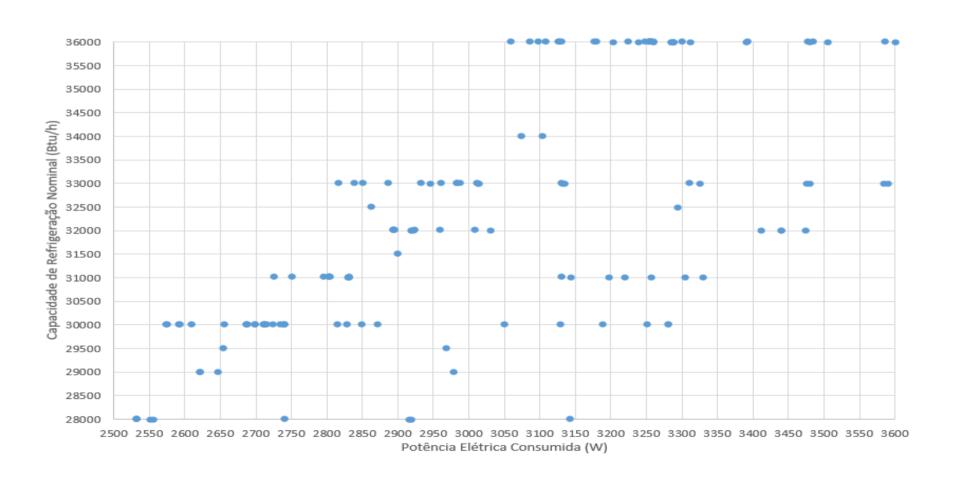
				po			
		Frio		Reverso			
Fabricante Configuração	Adequada	Potência Elétrica		Potência Elétrica			
			Consumida (W)		Consumida (W)		
		Mínima	Máxima	Mínima	Máxima		
HI WALL - TECNOLOGIA CONVENCIONAL							
Consul 4 x 7000 Btu/h =	= 28000 Btu/h	2532	2552	2532	2552		
Consul 7000 Btu/h + 22000 B	tu/h = 29000 Btu/h	2622	2646	2622	2646		
Consul 12000 Btu/h + 18000 B	Btu/h = 30000 Btu/h	2713	2740	2713	2740		
Consul 2 x 9000 Btu/h + 12000	Btu/h = 30000 Btu/h	2713	2738	2713	2738		
Consul 9000 Btu/h + 22000 B	tu/h = 31000 Btu/h	2803	2829	2803	2829		
Consul 2 x 12000 Btu/h + 7000	Btu/h = 31000 Btu/h	2803	2830	2803	2830		
Consul 2 x 7000 Btu/h + 18000	Btu/h = 32000 Btu/h	2894	2920	2894	2920		
Consul 2 x 9000 Btu/h + 2 x 700	sul 2 x 9000 Btu/h + 2 x 7000 Btu/h = 32000 Btu/h		2918	2894	2918		
Consul 2 x 12000 Btu/h + 9000	Consul 2 x 12000 Btu/h + 9000 Btu/h = 33000 Btu/h		3013	2984	3013		
Consul 12000 Btu/h + 22000 B	Btu/h = 34000 Btu/h	3074	3104	3074	3104		
Consul 2 x 7000 Btu/h + 22000	Btu/h = 36000 Btu/h	3255	3284	3255	3284		
Consul 2 x 18000 Btu/h=	= 36000 Btu/h	3256	3288	3256	3288		
Consul 3 x 12000 Btu/h=	= 36000 Btu/h	3255	3288	3255	3288		
Consul 4 x 9000 Btu/h=	36000 Btu/h	3256	3284	3256	3284		
Electrolux 4 x 7000 Btu/h =	= 28000 Btu/h	2532	2556	2532	2556		
Electrolux 12000 Btu/h + 18000 B	Btu/h = 30000 Btu/h	2829	2849	2829	2849		
Electrolux 1 x 30000 Btu/h :	= 30000 Btu/h	2712	3128	2712	3128		
Electrolux 2 x 9000 Btu/h + 12000	Btu/h = 30000 Btu/h	2716	2740	2716	2740		
Electrolux 7000 Btu/h + 24000 B	tu/h = 31000 Btu/h	3130	3143	3130	3143		
Electrolux 2 x 12000 Btu/h + 7000	Btu/h = 31000 Btu/h	2805	2831	2805	2831		
Electrolux 2 x 7000 Btu/h + 18000	Btu/h = 32000 Btu/h	3009	3031	3009	3031		
Electrolux 2 x 9000 Btu/h + 2 x 700	0 Btu/h = 32000 Btu/h	2896	2922	2896	2922		
Electrolux 2 x 12000 Btu/h + 9000	Btu/h = 33000 Btu/h	2987	3014	2987	3014		
Electrolux 9000 Btu/h + 24000 B	tu/h = 33000 Btu/h	3312	3326	3312	3326		
Electrolux 12000 Btu/h + 24000 B	Btu/h = 36000 Btu/h	3587	3600	3587	3600		
Electrolux 2 x 18000 Btu/h=	= 36000 Btu/h	3486	3506	3486	3506		
Electrolux 3 x 12000 Btu/h=	= 36000 Btu/h	3258	3288	3258	3288		
Electrolux 4 x 9000 Btu/h=	36000 Btu/h	3260	3288	3260	3288		

				(5)	minuação)
Elgin	4 x 7000 Btu/h = 28000 Btu/h	2740	2920	2740	
Elgin	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2610	3280	2640	3090
Elgin	1 x 30000 Btu/h = 30000 Btu/h	2576	3050	2608	3250
Elgin	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2574	3280	2604	3010
Elgin	7000 Btu/h + 24000 Btu/h = 31000 Btu/h	2796	3220	2718	
Elgin	2 x 12000 Btu/h + 7000 Btu/h = 31000 Btu/h	2725	3330	2765	
Elgin	2 x 7000 Btu/h + 18000 Btu/h = 32000 Btu/h	2960	3440	2970	
Elgin	2 x 9000 Btu/h + 2 x 7000 Btu/h = 32000 Btu/h	2924	3440	2934	
Elgin	2 x 12000 Btu/h + 9000 Btu/h = 33000 Btu/h	2817	3590	2862	3305
Elgin	9000 Btu/h + 24000 Btu/h = 33000 Btu/h	2888	3480	2815	3395
Elgin	12000 Btu/h + 24000 Btu/h = 36000 Btu/h	3131	3790	3073	3690
Elgin	2 x 18000 Btu/h= 36000 Btu/h	3180	3960	3200	3780
Elgin	3 x 12000 Btu/h= 36000 Btu/h	3060	3900	3120	3600
Elgin	4 x 9000 Btu/h= 36000 Btu/h	3108	3960	3128	3620
LG	12000 Btu/h + 17000 Btu/h = 29000 Btu/h			2725	
LG	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2713		2715	2900
LG	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2735		2825	2910
LG	4 x 7500 Btu/h = 30000 Btu/h	2700		2640	2712
LG	7500 Btu/h + 23000 Btu/h = 31500 Btu/h	2900		3050	
LG	7500 Btu/h + 24000 Btu/h = 32500 Btu/h			3005	3028
LG	9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h	2984		2830	2998
LG	9000 Btu/h + 24000 Btu/h = 33000 Btu/h			3160	3220
LG	2 x 17000 Btu/h = 34000 Btu/h			3280	
LG	12000 Btu/h + 24000 Btu/h = 36000 Btu/h			3430	3510
LG	2 x 18000 Btu/h= 36000 Btu/h	3300		3480	3500
LG	3 x 12000 Btu/h= 36000 Btu/h	3255		3255	3480
LG	4 x 9000 Btu/h= 36000 Btu/h	3256		3260	3480
Midea	1 x 28000 Btu/h = 28000 Btu/h	3143		3143	
Midea	4 x 7000 Btu/h = 28000 Btu/h	2532	2916	2532	2916
Midea	7000 Btu/h + 22000 Btu/h = 29000 Btu/h	2623	2978	2623	3159
Midea	7500 Btu/h + 22000 Btu/h = 29500 Btu/h	2654	2967	2664	3121
Midea	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2687	3250	2694	3266
Midea	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2687	3188	2694	3204
Midea	4 x 7500 Btu/h = 30000 Btu/h	2656	2872	2696	2764
Midea	7000 Btu/h + 24000 Btu/h = 31000 Btu/h	2831	3305	3191	3424
Midea	9000 Btu/h + 22000 Btu/h = 31000 Btu/h	2804	3257	2804	3438
Midea	2 x 12000 Btu/h + 7000 Btu/h = 31000 Btu/h	2751	3197	2765	3229
L	İ	Ì		İ	

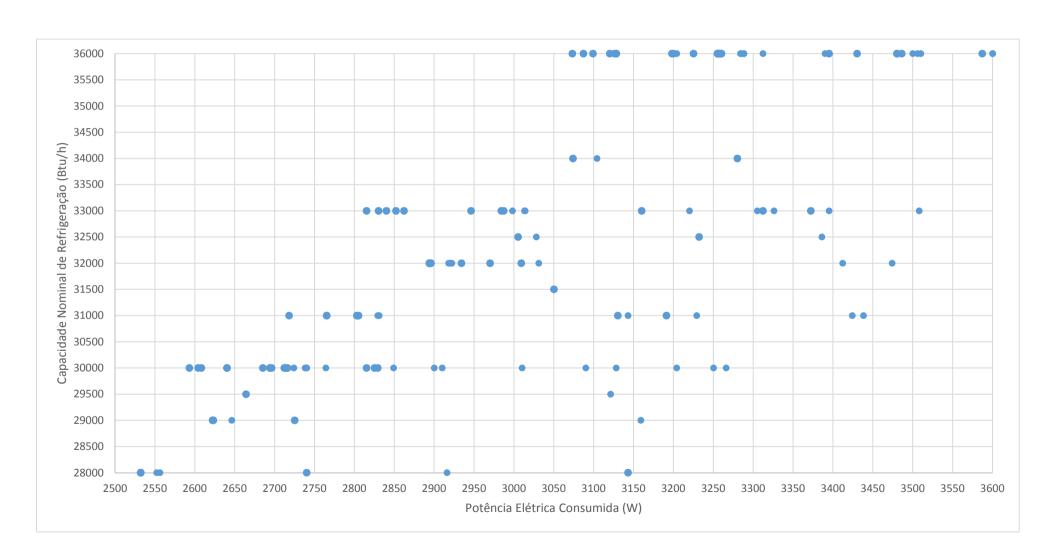
Midea 2 x 7000 Btu/h + 18000 Btu/h = 32000 Btu/h 2894 3412 289 Midea 2 x 7000 Btu/h + 2 x 9000 Btu/h = 32000 Btu/h 2894 3474 289 Midea 7500 Btu/h + 24000 Btu/h = 32500 Btu/h 2862 3294 323 Midea 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2932 3476 294 Midea 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 3012 3584 337 Midea 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3257 3810 362 Midea 2 x 18000 Btu/h = 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h = 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h = 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 36000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h <th>3474 32 3386 3508 3703 34 3945 36 3908 3750 4032 33 2724</th>	3474 32 3386 3508 3703 34 3945 36 3908 3750 4032 33 2724
Midea 7500 Btu/h + 24000 Btu/h = 32500 Btu/h 2862 3294 323 Midea 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2932 3476 294 Midea 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 3012 3584 337 Midea 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3257 3810 362 Midea 2 x 18000 Btu/h = 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h = 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h = 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	3386 3508 3508 3703 34 3945 36 3908 38 3750 36 4032 37 30 38 3750 39 4032 30 4032
Midea 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2932 3476 294 Midea 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 3012 3584 337 Midea 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3257 3810 362 Midea 2 x 18000 Btu/h = 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h = 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h = 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 2 x 12000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 36000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	3508 3703 3703 34 3945 36 3908 3750 36 4032 3750 375
Midea 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 3012 3584 337 Midea 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3257 3810 362 Midea 2 x 18000 Btu/h = 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h = 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h = 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 36000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	72 3703 24 3945 36 3908 38 3750 36 4032 37 2724
Midea 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3257 3810 362 Midea 2 x 18000 Btu/h = 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h = 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h = 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 36000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	3945 66 3908 88 3750 66 4032 85 2724
Midea 2 x 18000 Btu/h= 36000 Btu/h 3256 3908 325 Midea 3 x 12000 Btu/h= 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h= 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	3908 38 3750 36 4032 33 2724 40 2724
Midea 3 x 12000 Btu/h= 36000 Btu/h 3177 3702 319 Midea 4 x 9000 Btu/h= 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	98 3750 66 4032 93 2724
Midea 4 x 9000 Btu/h= 36000 Btu/h 3256 4032 325 Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	36 4032 33 35 2724 40 4032
Philco 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2593 2688 259 Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	23 25 2724 20
Philco 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2592 2724 268 Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	35 2724
Philco 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2840 2946 284 Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	.0
Philco 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 2852 3132 285 Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	
Philco 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3099 3390 309	2
Philco 2 x 18000 Btu/h= 36000 Btu/h 3126 3312 312	9 3390
	26 3312
Philco 3 x 12000 Btu/h= 36000 Btu/h 3087 3204 308	3204
Philco 4 x 9000 Btu/h= 36000 Btu/h 3128 3240 312	8
Samsung 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2699	
Samsung 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2814 281	5
Samsung 9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h 2962	
Samsung 9000 Btu/h + 24000 Btu/h = 33000 Btu/h 3130 3135	
Samsung 12000 Btu/h + 24000 Btu/h = 36000 Btu/h 3393 339	15
Samsung 2 x 18000 Btu/h= 36000 Btu/h 3478 3480 348	0
Samsung 3 x 12000 Btu/h= 36000 Btu/h 3225 322	25 3258
Samsung 4 x 9000 Btu/h= 36000 Btu/h 3248 3260	
HI WALL - TECNOLOGIA INVERTER	
Consul 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2698 2713 269	2713
Consul 2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h 2700 2713 270	00 2713
Consul 9000 Btu/h + 22000 Btu/h = 31000 Btu/h 2790 2803 279	00 2803
Consul 2 x 12000 Btu/h + 9000 Btu/h = 33000 Btu/h 2970 2984 297	0 2984
Consul 12000 Btu/h + 22000 Btu/h = 34000 Btu/h 3060 3074 306	50 3074
Consul 2 x 18000 Btu/h= 36000 Btu/h 3236 3256 323	3256
Consul 3 x 12000 Btu/h= 36000 Btu/h 3240 3255 324	0 3255
Consul 4 x 9000 Btu/h= 36000 Btu/h 3240 3256 324	0 3256
Electrolux 4 x 7000 Btu/h = 28000 Btu/h 2532 253	2
Electrolux 7000 Btu/h + 22000 Btu/h = 29000 Btu/h 2622 262	2
Electrolux 12000 Btu/h + 18000 Btu/h = 30000 Btu/h 2712 271	2

				,	• ′
Electrolux	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2711		2711	
Electrolux	9000 Btu/h + 22000 Btu/h = 31000 Btu/h	2802		2802	
Electrolux	2 x 12000 Btu/h + 7000 Btu/h = 31000 Btu/h	2803		2803	
Electrolux	2 x 7000 Btu/h + 18000 Btu/h = 32000 Btu/h	2893 2893			
Electrolux	2 x 9000 Btu/h + 2 x 7000 Btu/h = 32000 Btu/h	2892 2892			
Electrolux	2 x 12000 Btu/h + 9000 Btu/h = 33000 Btu/h	2983		2983	
Electrolux	12000 Btu/h + 22000 Btu/h = 34000 Btu/h	3074 3074			
Electrolux	2 x 7000 Btu/h + 22000 Btu/h = 36000 Btu/h	3255		3255	
Electrolux	2 x 18000 Btu/h= 36000 Btu/h	3254		3254	
Electrolux	3 x 12000 Btu/h= 36000 Btu/h	3255		3255	
Electrolux	4 x 9000 Btu/h= 36000 Btu/h	3252		3252	
Elgin	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2565	2716	2650	2698
Elgin	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2615		2675	
Elgin	9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h	2760	2987	2900	2969
Elgin	9000 Btu/h + 24000 Btu/h = 33000 Btu/h			2968	2982
Elgin	12000 Btu/h + 24000 Btu/h = 36000 Btu/h			3218	3253
Elgin	2 x 18000 Btu/h= 36000 Btu/h	3260		3250	
Elgin	3 x 12000 Btu/h= 36000 Btu/h	2955	3258	3150	3240
Elgin	4 x 9000 Btu/h= 36000 Btu/h	3160	3260	3200	3236
LG	2 x 8500 Btu/h + 11500 Btu/h = 28500 Btu/h	2578		2240	
LG	11500 Btu/h + 17000 Btu/h = 28500 Btu/h	2578		2578	
LG	12000 Btu/h + 17000 Btu/h = 29000 Btu/h	2568		2548	
LG	2 x 9000 Btu/h + 11500 Btu/h= 29500 Btu/h	2590		2640	
LG	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2580	2715	2610	2715
LG	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2580	2685	2510	2685
LG	8500 Btu/h + 22000 Btu/h = 30500 Btu/h	3759		2590	2960
LG	9000 Btu/h + 22000 Btu/h = 31000 Btu/h	2765	2825	2790	3005
LG	8500 Btu/h + 24000 Btu/h = 32500 Btu/h			2790	
LG	9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h	2835	2985	2820	2985
LG	9000 Btu/h + 24000 Btu/h = 33000 Btu/h			2990	
LG	11500 Btu/h + 22000 Btu/h = 33500 Btu/h	3030		3030	
LG	2 x 17000 Btu/h = 34000 Btu/h	3076		3076	
LG	4 x 8500 Btu/h= 34000 Btu/h	3076		2400	3080
LG	12000 Btu/h + 22000 Btu/h = 34000 Btu/h	3020	3095	3000	3275
LG	3 x 8500 Btu/h + 9000 Btu/h= 34500 Btu/h	3082		2600	3125
LG	3 x 11500 Btu/h= 34500 Btu/h	3120		3120	
LG	2 x 8500 Btu/h + 2 x 9000 Btu/h= 35000 Btu/h	3088		2800	3170
		1		1	

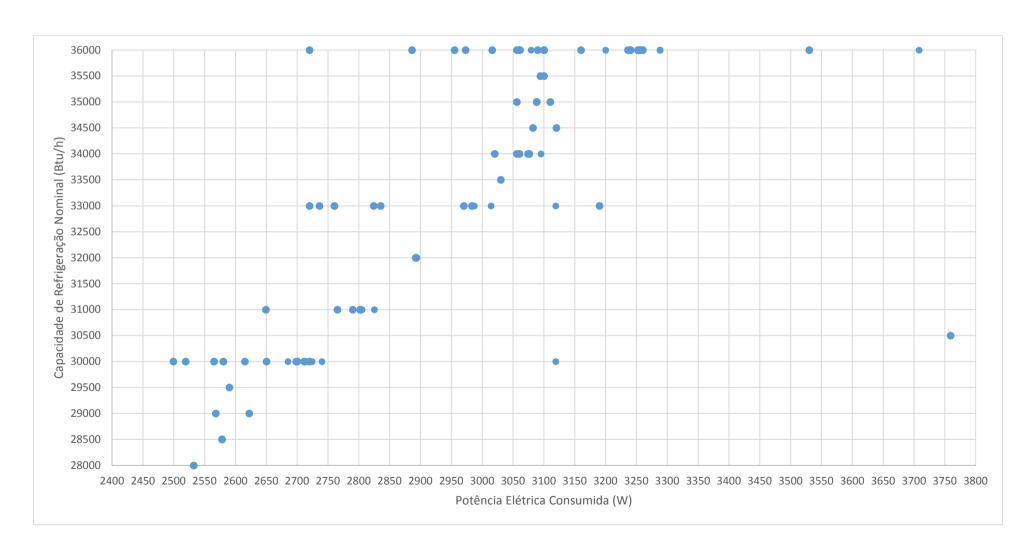
				(5)	mimuação)
LG	17000 Btu/h + 18000 Btu/h = 35000 Btu/h	3088		3088	
LG	2 x 11500 Btu/h + 12000 Btu/h = 35000 Btu/h	3110		3090	
LG	11500 Btu/h + 2 x 12000 Btu/h = 35500 Btu/h	3100		3060	
LG	11500 Btu/h + 24000 Btu/h = 35500 Btu/h			3230	
LG	8500 Btu/h + 3 x 9000 Btu/h= 35500 Btu/h	3094		3000	3215
LG	12000 Btu/h + 24000 Btu/h = 36000 Btu/h			3200	
LG	2 x 18000 Btu/h= 36000 Btu/h	3100	3200	3000	3200
LG	3 x 12000 Btu/h= 36000 Btu/h	3090	3255	3030	3255
LG	4 x 9000 Btu/h= 36000 Btu/h	3100	3260	3200	3260
Midea	12000 Btu/h + 16000 Btu/h = 28000 Btu/h			2580	
Midea	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2499	2740	2446	2740
Midea	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2519	2724	2455	2717
Midea	9000 Btu/h + 22000 Btu/h = 31000 Btu/h	2649	2805	2712	2806
Midea	2 x 16000 Btu/h= 32000 Btu/h			3300	
Midea	9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h	2736	3014	2618	3014
Midea	9000 Btu/h + 24000 Btu/h = 33000 Btu/h	2824		2828	
Midea	16000 Btu/h + 17000 Btu/h = 33000 Btu/h			3160	
Midea	16000 Btu/h + 18000 Btu/h = 34000 Btu/h			3175	
Midea	2 x 9000 Btu/h + 16000 Btu/h = 34000 Btu/h			3166	
Midea	2 x 17000 Btu/h= 34000 Btu/h	3056		3020	
Midea	17000 Btu/h + 18000 Btu/h = 35000 Btu/h	3056		3035	
Midea	3 x 12000 Btu/h= 36000 Btu/h	2973	3288	2790	3288
Midea	4 x 9000 Btu/h= 36000 Btu/h	3016	3288	3032	3288
Midea	12000 Btu/h + 22000 Btu/h = 36000 Btu/h	2886	3079	2884	3080
Midea	2 x 18000 Btu/h= 36000 Btu/h	3056	3256	3050	3242
Midea	12000 Btu/h + 24000 Btu/h = 36000 Btu/h	3061		3000	
Samsung	2 x 9000 Btu/h + 12000 Btu/h = 30000 Btu/h	2720	2950	2950	2963
Samsung	12000 Btu/h + 18000 Btu/h = 30000 Btu/h	2650		2593	
Samsung	9000 Btu/h + 2 x 12000 Btu/h = 33000 Btu/h	2720	3119	2963	3119
Samsung	9000 Btu/h + 24000 Btu/h = 33000 Btu/h	3190		3317	
Samsung	12000 Btu/h + 24000 Btu/h = 36000 Btu/h	3530		3588	
Samsung	2 x 18000 Btu/h= 36000 Btu/h	3260		3030	
Samsung	3 x 12000 Btu/h= 36000 Btu/h	3060	3288	3234	3288
Samsung	4 x 9000 Btu/h= 36000 Btu/h	2720	3708	3228	3708
PISO TETO - TECNOLOGIA CONVENCIONAL					
Electrolux	1 x 36000 Btu/h= 36000 Btu/h	3745			
Elgin	1 x 30000 Btu/h= 30000 Btu/h	2668	2970	2668	3060
		1			

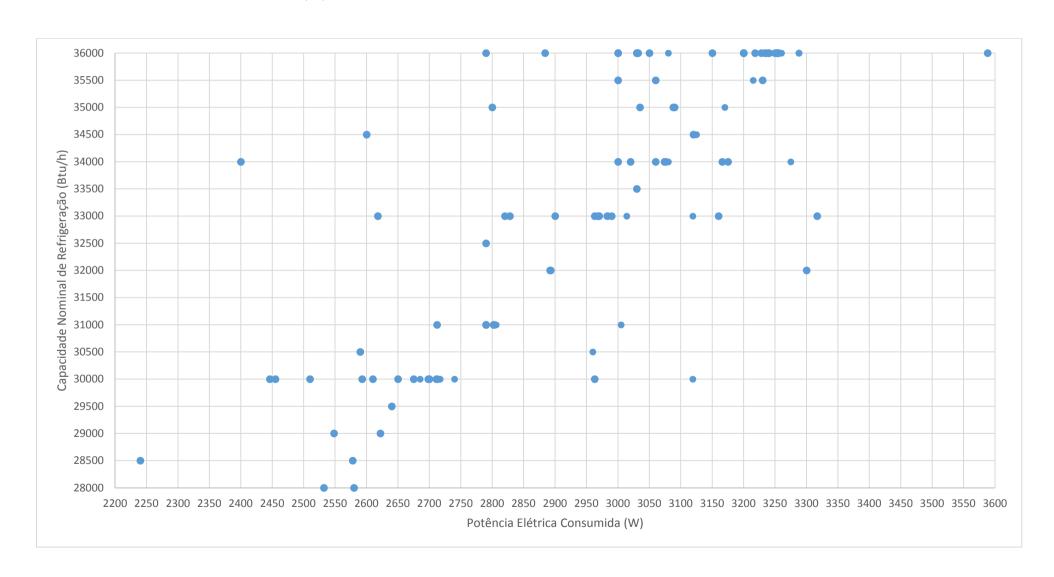

(conclusão)

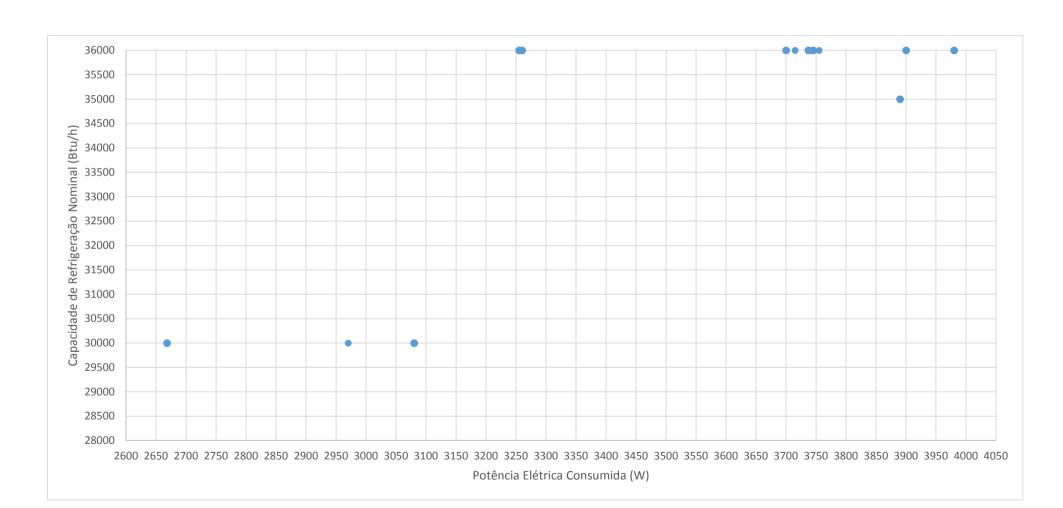
				`	concrasao)
Elgin	2 x 18000 Btu/h= 36000 Btu/h	3260	3740	3250	3740
Elgin	1 x 36000 Btu/h= 36000 Btu/h	3255	3715	3143	3675
LG	2 x 18000 Btu/h= 36000 Btu/h	3900			
LG	1 x 36000 Btu/h= 36000 Btu/h	3700			
Midea	1 x 30000 Btu/h= 30000 Btu/h	3080		3100	
Midea	1 x 35000 Btu/h= 35000 Btu/h	3890			
Midea	2 x 18000 Btu/h= 36000 Btu/h	3980		3980	
Midea	1 x 36000 Btu/h= 36000 Btu/h	3737	3755	3707	3970
	PISO TETO - TECNOLOGIA	NVERTER			
LG	2 x 17000 Btu/h= 34000 Btu/h	3290			
LG	1 x 35000 Btu/h= 35000 Btu/h	3380			
LG	1 x 36000 Btu/h= 36000 Btu/h	3480			
Midea	1 x 36000 Btu/h= 36000 Btu/h	3226			
Samsung	1 x 35000 Btu/h= 35000 Btu/h	3191			
I	CASSETE - TECNOLOGIA CON	VENCIONA	AL		
Electrolux	1 x 36000 Btu/h= 36000 Btu/h	3740		3754	
Elgin	1 x 30000 Btu/h= 30000 Btu/h	2715	2895	2715	2900
Elgin	1 x 36000 Btu/h= 36000 Btu/h	3249	3730	3162	3500
Elgin	2 x 18000 Btu/h= 36000 Btu/h	3720		3740	
LG	1 x 28000 Btu/h= 28000 Btu/h			3145	
LG	1 x 33000 Btu/h= 33000 Btu/h	3700		3650	
LG	2 x 18000 Btu/h= 36000 Btu/h	3720			
Midea	1 x 36000 Btu/h= 36000 Btu/h	3900		3720	
Midea	2 x 18000 Btu/h= 36000 Btu/h	4040		4040	5300
	CASSETE - TECNOLOGIA II	NVERTER			
LG	11000 Btu/h + 17000 Btu/h = 28000 Btu/h	2426			
LG	11000 Btu/h + 21000 Btu/h = 32000 Btu/h	2896			
LG	3 x 11000 Btu/h= 33000 Btu/h	2988			
LG	11000 Btu/h + 24000 Btu/h = 35000 Btu/h	2926			
LG	1 x 35000 Btu/h = 35000 Btu/h	3000	3380		
LG	11000 Btu/h + 25000 Btu/h = 36000 Btu/h	3256			

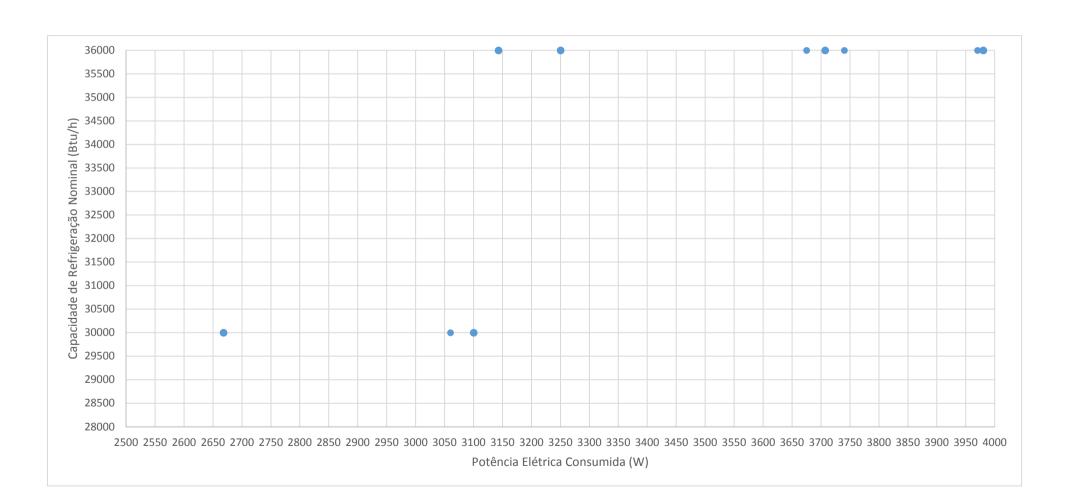

Fonte: Adaptado de ANCE, 2017.

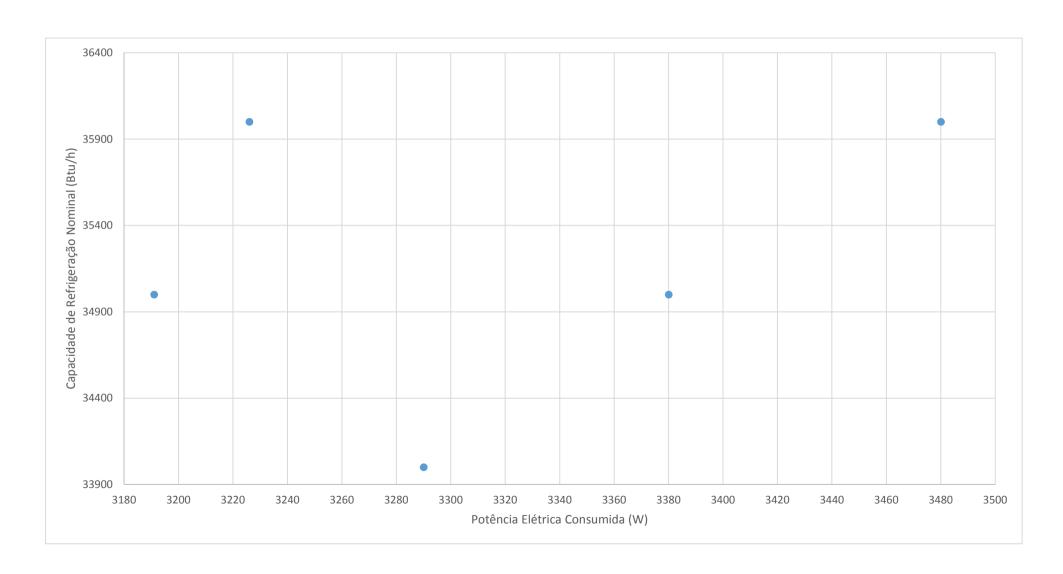
ANEXO H – DISTRIBUIÇÃO AMOSTRAL DOS CONDICIONADORES DE AR

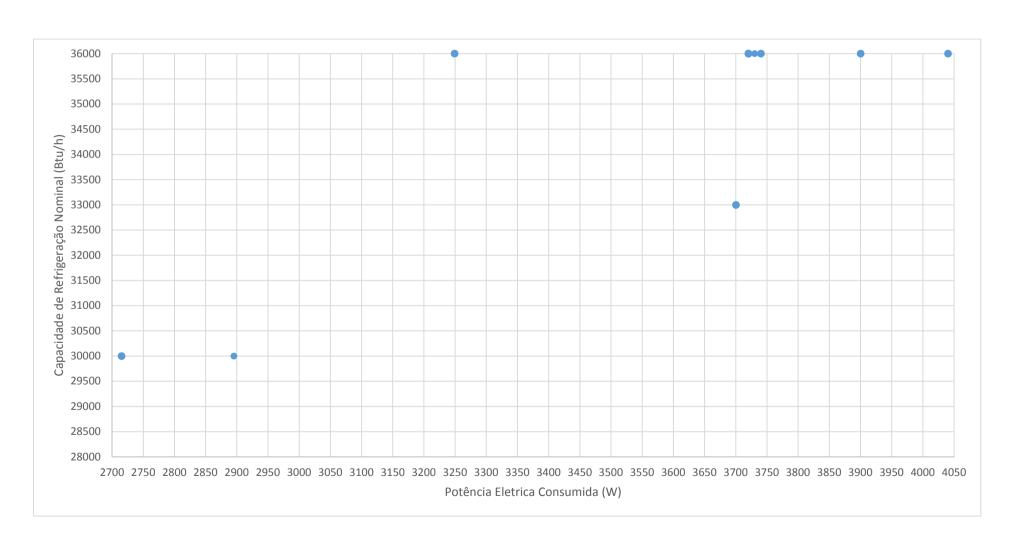

H1 - DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO HI WALL TIPO FRIO OPERANDO SOB TECNOLOGIA CONVENCIONAL.

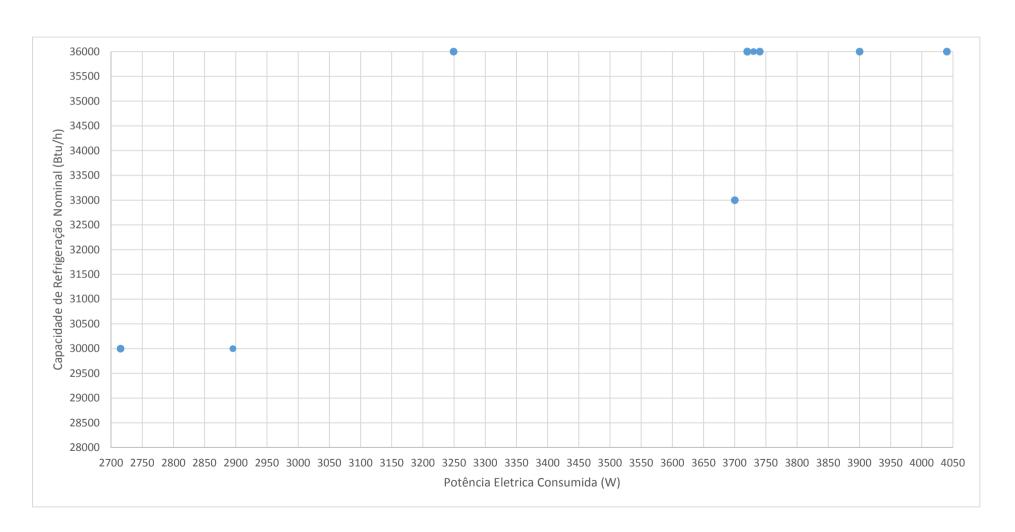

H2 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO HI WALL TIPO REVERSO OPERANDO SOB TECNOLOGIA CONVENCIONAL.

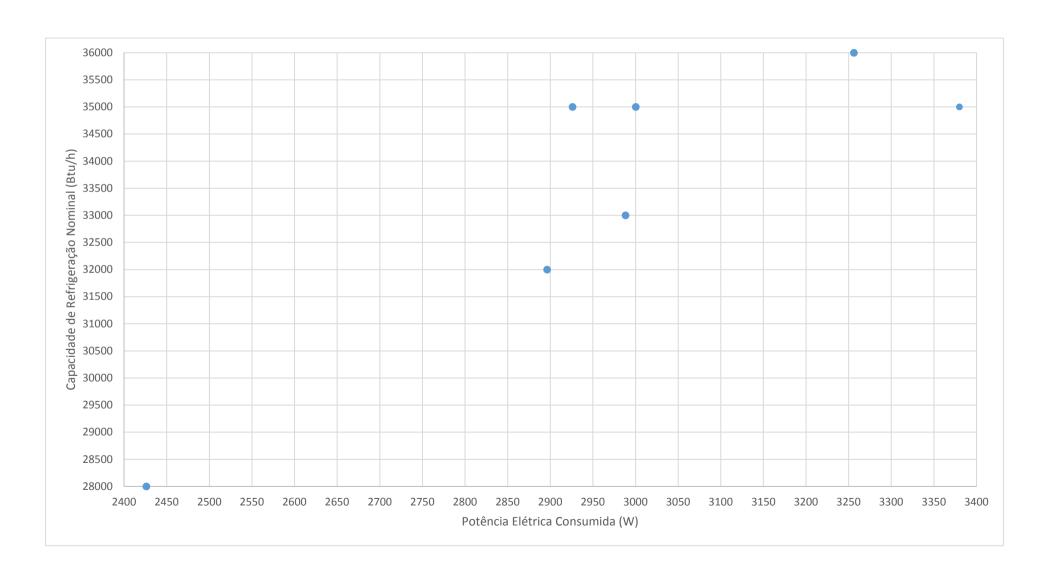

H3 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO HI WALL TIPO FRIO OPERANDO SOB TECNOLOGIA INVERTER.

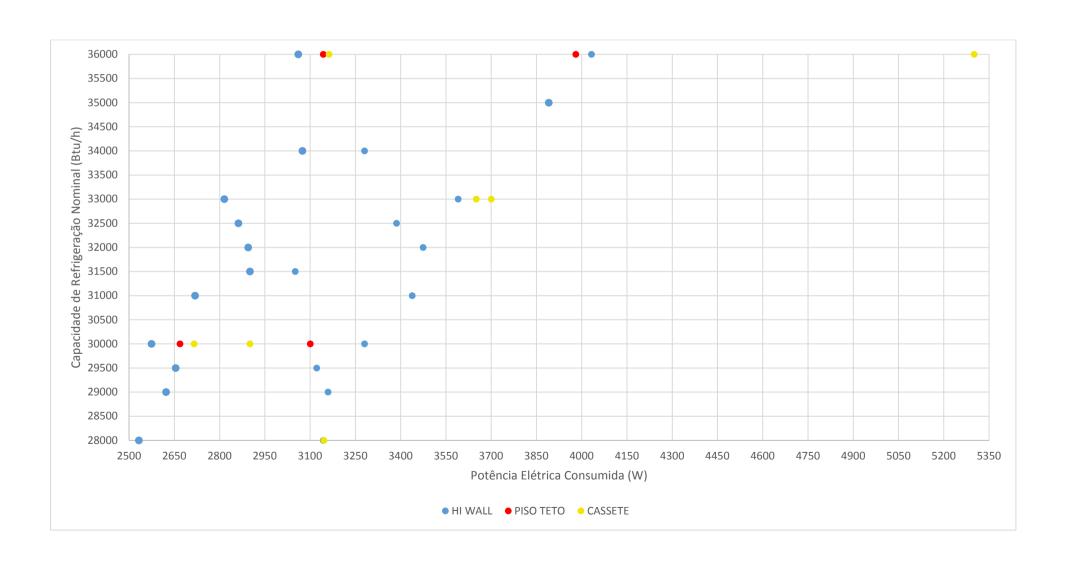

H4 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO HI WALL TIPO REVERSO OPERANDO SOB TECNOLOGIA INVERTER.

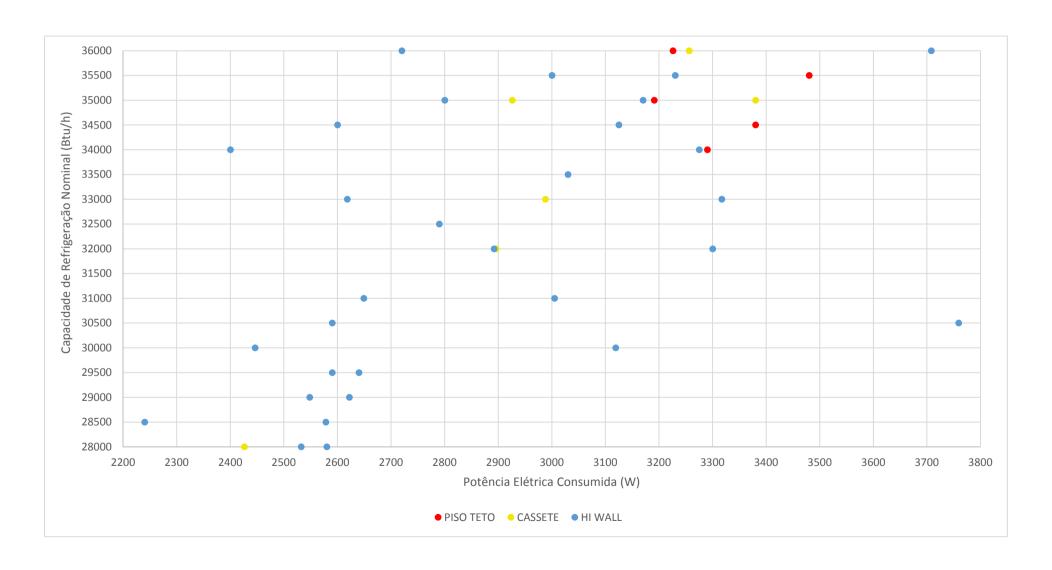

H5 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO PISO TETO TIPO FRIO OPERANDO SOB TECNOLOGIA CONVENCIONAL.


H6 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO PISO TETO TIPO REVERSO OPERANDO SOB TECNOLOGIA CONVENCIONAL.


H7 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO PISO TETO TIPO FRIO OPERANDO SOB TECNOLOGIA INVERTER.

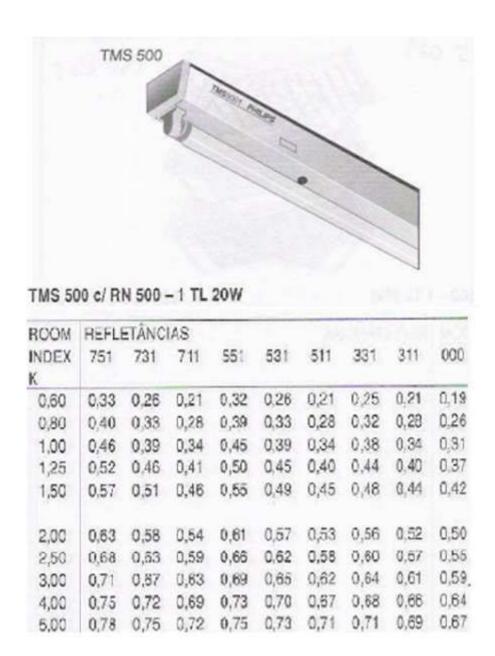

H8 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO CASSETE TIPO FRIO OPERANDO SOB TECNOLOGIA CONVENCIONAL.


H9 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO CASSETE TIPO REVERSO OPERANDO SOB TECNOLOGIA CONVENCIONAL.


H10 – DISTRIBUIÇÃO DE AMOSTRAS CONSIDERANDO A CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA CONSUMIDA (W) PARA O MODELO CASSETE TIPO FRIO OPERANDO SOB TECNOLOGIA INVERTER.

H11 – CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA MÁXIMA E MÍNIMA CONSUMIDA (W) PARA OS EQUIPAMENTOS OPERANDO SOB TECNOLOGIA CONVENCIONAL.

H12 – CAPACIDADE DE REFRIGERAÇÃO NOMINAL (BTU/H) VERSUS A POTÊNCIA ELÉTRICA MÁXIMA E MÍNIMA CONSUMIDA (W) PARA OS EQUIPAMENTOS OPERANDO SOB TECNOLOGIA INVERTER.



ANEXO I – TARIFAS DE ENERGIA ELÉTRICA (R\$/kWh) DAS PRINCIPAIS CIDADES BRASILEIRAS

Localidade	Distribuidora	Tarifa (R\$/kWh)	Vigência
Aracaju/SE	ESE	0.468	22/04/2017
Belém/PA	Celpa	0.599	07/08/2017
Belo Horizonte/MG	Cemig-D	0.494	25/08/2017
Boa Vista/RR	Boa Vista	0.337	01/11/2016
Brasília/DF	CEB-DIS	0.452	01/04/2017
Campo Grande/MS	EMS	0.492	08/04/2017
Cuiabá/MT	EMT	0.498	08/04/2017
Curitiba/PR	Copel- DIS	0.441	24/06/2017
Florianópolis/SC	Celesc-DIS	0.460	22/08/2017
Fortaleza/CE	Coelce	0.474	22/04/2017
Goiânia/GO	Celg	0.420	01/04/2017
João Pessoa/PB	EPB	0.495	28/08/2017
Macapá/AP	CEA	0.392	01/04/2017
Maceió/AL	Ceal	0.516	28/09/2017
Manaus/AM	AmE	0.536	01/04/2017
Natal/RN	Cosern	0.418	22/04/2017
Palmas/TO	ETO	0.549	04/07/2017
Porto Alegre/RS	CEEE-D	0.391	01/04/2017
Porto Velho/RO	Ceron	0.456	01/04/2017
Recife/PE	Celpe	0.480	29/04/2017
Rio Branco/AC	Eletroacre	0.498	01/04/2017
Rio de Janeiro/RJ	Light	0.527	01/04/2017
Salvador/BA	Coelba	0.443	22/04/2017
São Luís/MA	Cemar	0.561	28/08/2017
São Paulo/SP	Eletropaulo	0.420	04/07/2017
Teresina/PI	Cepisa	0.554	28/09/2017
Vitória/ES	Escelsa	0.485	07/08/2017

^{*}O ranking completo encontra-se disponível em: http://www.aneel.gov.br/ranking-das-tarifas

ANEXO J – FATOR DE UTILIZAÇÃO (FU)

Fonte: Adaptado de Philips, 2018.