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ABSTRACT 

Since the introduction of the fly-by-wire system in the Concorde and A320 civil 

aircraft programs, overall aircraft embedded systems complexity is continuously 

increasing. Current and forthcoming aircrafts highly depends on embedded avionics to 

operate. Computer innovation in these embedded avionics enabled us to improve flight 

safety, and the relation between the aircraft and environment, flying greener, cleaner, 

quieter, and, furthermore, being economically cheaper and sustainable for airlines. As 

the complexity grows due to continuous innovation in embedded avionics on aircrafts, 

Systems Engineering techniques currently employed to devise such systems are 

becoming insufficient to cope with existing requirements and dynamics in aircraft 

design, development, and production. 

Two activities that suffer the most with the pressure when complexity increases are 

design and simulation of embedded avionics systems. Design concerns the development 

of avionics equipments, answering to stakeholders’ requirements. Simulation concerns 

both the validation and refinement of designed equipment, and the development of 

aircraft simulators for training purposes. Despite the fact that design and simulation are 

very dependent of each other in order to prospect and to validate embedded avionics, 

respectively, current state-of-the-practice on Systems Engineering in AIRBUS put them 

somehow apart; not intentionally, but due to the lack of formalism and standardization 

when specifying design and simulation requirements, and when realizing them into 

concrete implementations. The specifications of design and simulation are currently 

performed in a textual document-centered approach, making very difficult the 

deployment of techniques to trace how design decisions constrain simulation, and how 

simulation requirements and results refine design. 

To enable sustainable growth in complexity of forthcoming embedded avionics 

systems, while being economically viable, and continuously add innovation on these 

systems, this work proposes a Model-Based Systems Engineering approach to integrate 

design and simulation activities in the aircraft development cycle, adopting 

UML/SysML as specification language. By adopting a unified specification formalism 

to design and simulation, we can trace how design elements constrain simulation, and 

how simulation ones refine design, only by having them connected with UML/SysML 

language constructs. We have validated the approach with real design artifacts and 

simulation models from the A380 aircraft, showing a good scaling for complex models. 

 

 

Keywords: Aircraft, AIRBUS, Code Generation, Eclipse, Metamodel, Model-Driven 

Engineering, Simulation, System Engineering, SysML, UML. 



Projeto e Simulação Integrados Baseados em Modelos para Sistemas 

Embarcados Críticos 

RESUMO 

A partir da introdução do sistema de controle fly-by-wire nos programas Concorde e 

A320 de aviação civil, a complexidade dos sistemas aviônicos embarcados aumenta 

constantemente. A operação dos aviões atuais e futuros é fortemente dependente para 

seu funcionamento dos seus sistemas aviônicos embarcados. A inovação em termos de 

computação dessa aviônica embarcada nos permitiu aperfeiçoar a segurança de vôo, 

bem como a relação entre a aeronave e o ambiente, voando de maneira mais 

ecologicamente consciente, além de reduzir custos e permitir melhor sustentabilidade 

para as companhias aéreas. Com o aumento da complexidade devido à constante 

integração de inovação na aviônica embarcada, as técnicas de Engenharia de Sistemas 

empregadas atualmente no desenvolvimento desses sistemas estão se tornando 

insuficientes para gerenciar os requisitos e a dinâmica existentes no projeto, no 

desenvolvimento e na produção de uma aeronave. 

Duas atividades que mais sofrem a pressão com o aumento da complexidade são o 

projeto e a simulação dos sistemas aviônicos embarcados. Ao projeto compete o 

desenvolvimento dos equipamentos aviônicos, atendendo aos requisitos dos 

stakeholders. À simulação compete a validação e o refinamento do projeto de um 

equipamento, bem como o desenvolvimento de simuladores para treinamento de pilotos 

do avião. Mesmo sendo duas atividades altamente inter-relacionadas, o atual estado da 

prática na AIRBUS para a Engenharia de Sistemas do projeto e da simulação as 

distancia; não intencionalmente, mas sim devido à inexistência de formalização e 

padronização na especificação do projeto e simulação, bem como na implementação das 

especificações. Atualmente, realizam-se as especificações de projeto e simulação com 

uma abordagem centrada em documentos textuais, o que acarreta em dificuldade de 

implantação de técnicas as quais permitam rastrear como as decisões tomadas no 

projeto restringem a simulação, e como os requisitos de simulação refinam o projeto. 

Com o intuito de pavimentar o crescimento sustentável da complexidade dos 

sistemas aviônicos embarcados nas aeronaves futuras, sendo ainda economicamente 

viável, além de continuamente agregar inovação nesses sistemas, este trabalho propõe 

uma abordagem de Engenharia de Sistemas Baseada em Modelos para integrar as 

atividades de projeto e simulação contidas no ciclo de projeto de uma aeronave, 

adotando UML/SysML como linguagem de especificação. Ao se adotar um formalismo 

único para o projeto e para a simulação, faz-se possível rastrearmos como os elementos 

de projeto restringem a simulação, e como os elementos de simulação refinam os de 

projeto. Alcança-se rastreabilidade somente através de construções padrão da linguagem 

UML/SysML. Validamos a nossa proposta com modelos de simulação e artefatos de 

projeto real do avião A380, demonstrando boa escalabilidade da proposta. 

Palavras-Chave: Aeronave, AIRBUS, Geração de Código, Eclipse, Engenharia de 

Sistemas, Engenharia Dirigida por Modelos, Metamodelo, Simulação, SysML, UML. 
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Intégration de Conception et de Simulation Basée sur les Modèles pour 

Systèmes Embarqués Critiques 

RÉSUMÉ 

Depuis l'introduction du système de commande de vol électrique dans les 

programmes d'avions civils Concorde et A320, la complexité des systèmes embarqués 

dans l’avion n’a cessé d'augmenter. Le fonctionnement des avions actuels et à venir est 

fortement dépendant de l'avionique embarquée. L'innovation dans ces calculateurs nous 

a permis d'améliorer la sécurité des vols, et a permis des avions plus écologiques et plus 

silencieux vis-à-vis de l’environnement, tout en réduisant les coûts et en augmentant la 

viabilité économique pour les compagnies aériennes. Alors que la complexité augmente 

en raison de l'innovation continue dans l'avionique embarquée, les techniques 

d’Ingénierie des Systèmes actuellement utilisées pour concevoir ces systèmes 

deviennent insuffisantes pour faire face aux exigences existantes et à la dynamique 

nécessaire dans la conception des avions, leur développement et leur production.  

Les deux activités qui souffrent le plus de cette augmentation de complexité sont la 

conception et la simulation de systèmes avioniques embarqués. La conception concerne 

le développement des équipements avionique, pour répondre aux exigences des parties 

prenantes. La simulation concerne la validation et le raffinement de la conception des 

équipements, puis le développement de simulateurs d'avion utilisés pour la formation 

des pilotes. En dépit du fait que la conception et la simulation sont en principe très 

dépendants l’un de l’autre pour l’amélioration et validation des systèmes embarqués 

avionique, les pratiques d’Ingénierie des Systèmes dans AIRBUS les ont séparées, non 

intentionnellement, mais en raison de l'absence de formalisme et de normalisation 

d’abord pendant la phase de spécification des exigences de la conception et de la 

simulation et ensuite lors de leur implémentation concrète en phase de réalisation. Les 

spécifications de conception et de simulation sont effectuées dans des documents 

textuels, ce qui rend très difficile le déploiement de techniques permettant d'une part de 

tracer les décisions de conception qui contraignent la simulation, et d'autre part d'utiliser 

les résultats de simulation pour affiner la conception. 

Afin de permettre une gestion efficace de la complexité des systèmes avioniques 

embarqués à venir, tout en étant économiquement viables, et d'ajouter de l'innovation 

sur ces systèmes, ce travail propose une approche Basée sur les Modèles visant à 

intégrer ensemble les activités de conception et de simulation dans le cycle de 

développement des avions, en utilisant UML/SysML comme langage de spécification. 

En adoptant un formalisme unifié pour la spécification des exigences de la conception et 

de la simulation, nous pouvons tracer comment la conception contraint la simulation, et 

comment les résultats de simulation  permettent d'affiner la conception. Nous avons 

validé la méthode proposée en utilisant des spécifications réelles de conception et de 

simulation de l'A380, montrant une bonne mise à l'échelle de la proposition. 

Mots-Clés: Avion, AIRBUS, Génération de Code, Eclipse, Ingénierie Basée sur 

Modèles, Ingénierie de Système, Métamodèle, Simulation, SysML, UML. 



1 INTRODUCTION 

This chapter presents the main motivation for this work in section 1.1, which 

explains how AIRBUS can continue to setting the standards. Section 1.2 states the 

problem this work address, based on the motivation we have discussed previously. To 

improve the comprehension and put this work within a period of technology advances in 

the Aeronautics domain, section 1.3 briefly introduces the AIRBUS Company history. 

Finally, section 1.4 presents the subsequent organization of this text. 

1.1 Motivation 

The aircraft industry is driven by continuous innovation, being this factor decisive 

for players in this industry. With innovation we can fly cheaper, greener, and with 

increasingly safety and decreasing costs. Since the milestone introduction of the fly-by-

wire in Concorde aircraft, and later in the A320 (Traverse, 2004), embedded computer 

systems have their place in both civil and military aircraft. Embedded systems have a 

high pace of adoption in aircrafts, and the days these systems were targeted only to 

aircraft control is in the past. Currently, the A380 aircraft entertainment systems, 

devoted to passenger seat music and video players, as well as gaming systems, accounts 

for around 30% of all wiring in the aircraft. Now modern aircrafts adjusts the interior 

cabin lightning and pressure to improve passenger conform in flight – everything 

controlled by embedded computer systems. Therefore, we cannot neglect the increasing 

complexity we find today in current and we will face in forthcoming aircraft programs, 

requiring new Systems Engineering techniques to handle this complexity if the aircraft 

manufacturer wants to stay competitive and innovative. 

AIRBUS internal research sees the Model-Based Systems Engineering (MBSE) 

approach as a promising answer to the increasingly complexity in the forthcoming 

aircraft designs. There are research projects currently in AIRBUS studying and 

developing methods for the adoption of UML/SysML as the formalism to specify 

avionics systems.  

The INtegrated Simulation Into DEsign (INSIDE) project is an internal research and 

technology (R&T) project aiming at foreseeing new systems design techniques and 

processes for avionics systems (AIRBUS, 2008b). In AIRBUS, the following activities 

compose system design: formalize specifications; generate the system model – 

executable specification; test the specification with simulation; analyze results; refine 

specifications with gathered knowledge from results analyzes. We iteratively perform 

these activities until results found are acceptable. 

Current systems design simulation platform is the OCASIME simulator (we will 

present it in subsequent chapters), which is integrated with other simulators, enabling 
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model reuse among these simulation platforms. Despite its well-founded simulation 

platform, OCASIME does not integrate the system validation framework, increasing 

validation time in the design life cycle. In addition, some models have a long 

compilation time, incurring in wasted time when these models have errors or are not 

acceptable. Another problem is that OCASIME test procedures are not reusable by other 

simulation platforms, increasing test time. 

Thus, the main INSIDE goals are, in short-term, to improve the OCASIME 

simulation platform, and, in long-term, to improve system design and simulation 

integration. We can accomplish this integration by providing a multi-specification-

formalisms platform, enabling to model each system component with the best suitable 

formalism (not only Simulink and SCADE, as today); enabling real-time 

interoperability between distinct simulation platforms, reducing turn-around time 

between simulators; sharing of test scenarios between distinct simulation platforms, 

what reduces test efforts while improving quality. The current adopted language for 

specifying simulations is UML/SysML. This work is in the frame of INSIDE. 

The Advanced Model-Integrated Specifications for Airbus (AMISA) is also an 

internal R&T, but differently from INSIDE that is targeted to system simulation, 

AMISA is targeted to systems design (AIRBUS, 2008c). AMISA will be partially 

deployed in the A350 aircraft program, but it is intended to be widely deployed in the 

A30X program (A320 program successor), as well as other model-based approaches. 

AMISA also adopts UML/SysML as specification language, and Simulink as low-level 

behavior implementation language. AMISA adopts Telelogics Rhapsody as its CASE 

tool, integrating automatically with Telelogics DOOR tool for requirements 

management, and with Simulink through its S-Functions (S-Functions are external 

behavior to the Simulink environment. Actually, it defines C code function 

implemented outside Simulink). INSIDE adopts TOPCASED as its CASE tool. As 

MBSE techniques are yet in research stage, AIRBUS does not have a closed decision in 

which tools to adopt. The main AMISA goal is to increase system maturity in Entry-

Into-Service (EIS) for a new devised aircraft program, correcting some problems to 

future aircrafts development identified in the A380 program regarding this issue. 

1.2 Problem Statement  

Concerning the development of design and simulation activities, the pace of 

innovation poses big challenges to forthcoming projects, and we foresee that current 

Systems Engineering techniques will not be suitable to handle this new complexity. 

AIRBUS identified some of these problems based on gathered knowledge from the 

A380 and previous programs (AIRBUS, 2008c): 

 Recurring problems due to misinterpretations of specifications between 

development teams. The main cause to that is the current way AIRBUS 

writes specifications, based on text documents and requirements; 

 Late identification of errors in the specifications, because currently they are 

not completely executable. This postpones errors finding when we integrate 

developed avionics equipments onto simulators; 

 Insufficient model exchange with AIRBUS suppliers. 

Regarding the problems above, it is desirable to have a well-defined and 

unambiguously modeling approach for specifying system functions, behaviors, and 



performance, allowing for early model validation by executing these models, as well as 

to ensure interoperability between devised models by defining common model 

interfaces which modeling teams can rely on. 

Specific to simulation design, the problems are: 

 Currently, the simulation model code generator only accepts Simulink, 

SCADE, SAO, and C code. If the system is not specified with these 

formalisms, they cannot be validated with the existing simulation platform; 

 Simulation model generation is not fully integrated with its validation, 

requiring the Simulation Model Designer to use two distinct environments to 

perform model generation and validation; 

 Model generation can be very time-consuming, requiring in some cases a 

couple of days to generate model code. If we consider an iterative process 

cycle to correct model errors, these days can become weeks or months until 

the model reaches stability; 

 The simulation platform is not too robust, being quite closed to internal 

AIRBUS employees, preventing simulation deployment to suppliers; 

Another issue is that simulation and design activities are somehow apart in the 

development process, while ideally they should be very connected. The main problem is 

that it is quite difficult to trace what design elements a simulation element is simulating. 

This can incur into redundancies between design and simulation elements. 

Simulation in AIRBUS has advanced a lot since its first deployment around twenty 

years ago. However, clearly, forthcoming requirements and innovation in new aircrafts 

demand to improve current processes. 

1.3 The AIRBUS Company 

A consortium of European industries formed the Airbus Company to compete with 

North American companies such as Boeing. In the mid-60s, tentative negotiations began 

regarding a European joint venture – some European companies have discussed such a 

possibility. At the 1965 Paris Air Show, some major European commercial airline 

companies discussed the requirements for a new passenger aircraft, capable of 

transporting more than one hundred customers on short to middle distances at a low 

cost. In 1966, first formed partners were Sud Aviation from France, Deutsch Airbus 

from Germany, and Hawker Siddeley from the United Kingdom; the three home 

governments of each company listed above also formed the consortium. 

In early 1967, this consortium has launched the A300 brand, and has evolved this 

aircraft to have 320 passenger seats, being a twin-engine aircraft. In middle July 1967, 

the three cited governments agreed to start the project. Sud Aviation was in charge of 

cockpit and flight control systems, as well as fuselage’s lower central section. Deutsch 

Airbus was in charge of forward and read fuselage sections and upper centre section. 

Fokker from Netherlands was in charge of flaps and spoilers systems; and CASA (not 

yet a full consortium member) from Spain was in charge of horizontal tail plane. In 

December 1970, the consortium constituted Airbus Industrie as an Economic Interest 

Group. 
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In early 1990, the former AIRBUS CEO wanted to constitute the Company as a 

conventional one, but due to difficulties in integrating and measuring the economical 

assets of Airbus at that time, he postponed this initiative until 2000. In 2000, all 

companies merged, forming the European Aeronautic Defense and Space Company 

(EADS), enabling the new constitution process. 

The consortium constituted Airbus in 1970 and its headquarters are located in 

Toulouse, France. It has around 57,000 employees in the World, divided in four 

European sites (France, Germany, Spain and the United Kingdom), as well as in five 

main subsidiaries (North America, China, India, Japan and Transport International). It 

has currently 270 clients worldwide and has over 5,400 aircrafts in service. 

1.4 Text Organization 

This work is organized as follows: 

 Chapter 2 introduces the Systems Engineering domain, its concepts, and 

current approaches for model-based systems engineering. It reviews the basic 

UML concepts we use throughout this work, and briefly compares model-

based versus document-centered approaches for Systems Engineering. It 

ends with a presentation of the Systems Engineering approach in AIRBUS; 

 Chapter 3 introduces the Simulation domain, its concepts, and current 

standards for simulation of critical hardware and software. It discusses 

verification and validation of simulation models, and Model Simulation 

accreditation and certification. It ends with a presentation of System 

Simulation in AIRBUS; 

 Chapter 4 presents our proposed solution to the problems discussed in this 

chapter, in section 1.2; 

 Chapter 5 presents the case studies we have performed to evaluate and 

validate our proposed approach; 

 Chapter 6 draws our technical assessment regarding the proposed approach 

and the case studies performed, and conclusions concerning the next steps to 

make our approach better. 



2 MODEL-BASED SYSTEMS ENGINEERING 

This chapter introduces the main Model-Based Systems Engineering (MBSE) 

concepts related with this work and how Systems Engineering is at AIRBUS. Section 

2.1 introduces what is Systems Engineering and its main concepts and terminology. 

Section 2.2 introduces the Unified Modeling Language (UML), as well as its main 

constructs used in this work, while section 2.3 presents the Systems Engineering 

Modeling Language (SysML), the UML’s counterpart targeted to Systems Engineering. 

Section 2.4 presents some available methodologies supporting the Model-Based 

Systems Engineering approach. Finally, section 2.5 presents the Systems Engineering 

approach that both INSIDE project and this work adopt. 

2.1 Introduction to Systems Engineering 

This section introduces Systems Engineering basic concepts and how they relate to 

this work. In addition, it presents one of the most used Systems Engineering processes 

up to now, the IEEE 1220. Section 2.5.2 presented the EIA 632 process, which together 

with IEEE 1220 are the most well-know Systems Engineering processes in industry. 

A system is a set of arrangement of related elements [people, products (hardware and 

software) and processes (facilities, equipment, material, and procedures)], and whose 

behavior satisfies operational needs and provides for the life cycle sustainability of the 

products. In addition, it contains the people required to develop, produce, test, 

distribute, operate, support, or dispose the system (IEEE, 2005). By this definition, the 

main difference of a system from Systems Engineering to Software Engineering 

perspective is that a system may compose hardware and software components, being 

these two different architectures well described in the system’s specifications. In 

Software Engineering, usually the underlying hardware is not a concern, only when we 

consider Embedded Software (Ferreira, 2009). 

A system is a composition of related systems, which together provide some useful 

service to the environment through its published interfaces, as well as consume services 

from other systems from this environment. An environment can be either software or 

hardware systems, or even a human user. The general system hierarchy is: system, 

product, subsystem, assemblies, components, subcomponents, and parts. Several 

products can compose a system, and a product can define several subsystems, which are 

in turn composed of several components (IEEE, 2005). 

A life cycle is the system or product evolution initiated by perceived stakeholder 

needs through the disposal of the products (IEEE, 2005). The following functional 

processes compose the usual Systems Engineering life cycle: 
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Development, which is the planning and execution of system and subsystem 

definition tasks required to evolve the system from stakeholder needs to 

product solutions and their life cycle processes. 

Manufacturing, composing tasks, actions, and activities for fabrication and 

assembly of engineering test models, prototypes, and production of product 

solutions and their life cycle process products. 

Test, composing tasks, actions, and activities for evaluating product solutions 

and their life cycles processes to measure specification conformance or 

stakeholder satisfaction. 

Distribution, composing the tasks, actions, and activities to initially transport, 

assemble, install, test, and check out products to effect proper transition to 

users, operators or consumers. 

Operations, tasks, actions, and activities associated with the use of the 

product or a life cycle process. 

Support, involves tasks, actions, and activities providing maintenance, 

support material and facility management sustaining operations. 

Training, measurable tasks, actions, and activities required to achieve and 

maintain the knowledge, skills, and abilities necessary to perform efficiently 

and effectively operations, support, and disposal throughout the system life 

cycle. 

Disposal, tasks, actions, and activities to ensure that disposal or recycling of 

destroyed or irreparable consumer and life cycle processes and by-products 

comply with applicable environmental regulations and directives. 

(IEEE, 2005) 

The Systems Engineering process usually composes a set of activities: requirement 

analysis, requirements validation, functional analysis, functional verification, synthesis, 

and design verification. These activities are well known in the Software Engineering 

context, and they are not discussed further here. The main difference between the 

Systems and Software Engineering is that in the former we consider in addition to 

software, hardware portions. For details, refer to IEEE (2005). 

2.2 Unified Modeling Language 

This section discusses the UML metamodel constructs used during through this 

work. Thus, it assumes that the reader has some user knowledge on the Unified 

Modeling Language (UML) and its basic diagrams (mainly class, sequence, states, 

activities, and use cases) and on the class-based Object-Oriented paradigm (the 

difference between a class and an instance). We refer interested readers aiming at 

earning good knowledge on UML to Larman (2004) and on Object-Oriented approaches 

to Craig (2007). 

2.2.1 Basic Principles 

Currently on its version 2.2, two documents specify the UML language, UML 

Infrastructure (OMG, 2009a) and UML Superstructure (OMG, 2009b). The 

Infrastructure document specifies the UML core elements, used to specify several 



OMG specifications, including UML itself. The Superstructure specifies more detailed 

elements, such as behavior and interactions; usually, it is not reused by other OMG 

specifications. 

UML was devised to meet some requirements (OMG, 2009a): modularity, having 

strong cohesion and being loosely coupled; layering, to separate UML specification 

from metamodels and models, as well as to enable different abstraction levels of the 

same model; partitioning, enabling smooth UML metalanguage extension; extensibility, 

through the use of profiles, having, thus, a built-in support for several application 

domains; and reuse, enabling new specifications to use the UML concepts coherently. 

The UML Infrastructure documents specify the Core and Profiles package, which 

contains the PrimitiveTypes, Abstractions, Constructs, and Basic Packages. 

PrimitiveTypes contains the primitive types in UML: Boolean, Integer, String, and 

UnlimitedNatural. Abstractions package contains metaclasses designed to be specialized 

by other metamodels reusing the UML Infrastructure. Constructs define metaclasses 

related to Object-Oriented modeling, mainly used to implement the UML kernel 

constructs. Basic defines the constructs enabling the UML serialization to XMI. Profiles 

package enables to tailor specific domain model concepts into existing ones in the target 

metamodel.  

The UML language also defines the four-layer metamodel hierarchy, used to specify 

how model levels are interconnected, enabling the concept of metamodeling. The four-

layers hierarchy is composed by: M3 layer, which corresponds to the meta-metamodel, 

defined by the Meta Object Facility (MOF) (OMG, 2006a) specification; M2 layer, 

which corresponds to the metamodel, defined by the UML language specification; M1 

layer, defined by some user application model, expressed by the adopted metamodel 

language, in this example the UML one; and M0 layer, which is the actual runtime 

instance of the M1 layer. 

When devising the UML metamodel, OMG has adopted some formal techniques, 

aiming at some goals, to know: correctness, by defining well-formed rules and methods 

to validate a model; precision, eliminating syntactic and interpretation ambiguity; 

conciseness, avoiding non-necessary and superfluous constructs; consistency, by 

guaranteeing that metamodel constructs do not create contradictions; and 

understandability, improving the readability and understanding of the specification, 

preferring to apply a less formal mechanism when it improves readability over the 

formal one. Due to this last design decision, UML is considered a semiformal language. 

In addition, to some constructs more related with implementation issues, the UML 

specification can specify this case as a semantic variation point, being the correct 

specification in charge of who implements this construct in the target execution 

environment. 

2.2.2 UML Infrastructure 

Two packages compose the UML Infrastructure (OMG, 2009a), Core and Profiles, 

decomposed further in more sub packages, as presented above. This section presents the 

most important UML Infrastructure constructs to this work. 

2.2.2.1 Core::Abstractions 

The UML metaclasses important to this work are Classifier, Feature, 

StructuralFeature, BehavioralFeature, Element, InstanceSpecification, and Slot.  
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 Classifier defines a namespace that can contain features; it is some sort of a 

named container for features. Classifier is an abstract metaclass.  

 Feature is an abstract metaclass defining a behavioral or structural feature of 

a Classifier; it is only used to unify methods accessing Features, enabling to 

handle both structural and behavioral ones.  

 StructuralFeature is a typed feature of a classifier specifying that this 

classifier has a structure, which can be instantiated during runtime, being 

allocated into some slot. StructureFeature is an abstract metaclass.  

 BehavioralFeature is an abstract metaclass that specifies some behavior 

attached to the Classifier this BehavioralFeature is contained.  

 Element is an abstract metaclass with no super class, being the UML 

metamodel root class.  

 InstanceSpecification is a concrete metaclass defining some model entity, 

partially or even completely. This definition is made by assigning values 

(InstanceValue metaclass) to the entity’s slots. InstanceSpecification is used 

to represent the modeled system during runtime, e.g. an 

InstanceSpecification of the Classifier  

 Class represents an element of the model domain, and its instance is an 

object. Slot specifies that some StructuralFeature owned by an 

InstanceSpecification owns a value, e.g. the Slot of a Class’ Property is a 

value assigned during runtime. 

2.2.2.2 Core::Basics 

The important metaclasses in this package are: NamedElement, Type, 

TypedElement, Class, Operation, and Property.  

 A NamedElement is an Element that may have a name.  

 Type is an abstract metaclass that introduces a typing system, being the type 

of a TypedElement.  

 TypedElement is an abstract metaclass extending NamedElement, adding a 

Type to it.  

 Class extends Type, enabling itself to have a Type with properties (Class 

attribute ownedAttribute[*]) and operations (Class attribute 

ownedOperation[*]), and to introduce a type hierarchy through the 

superClass[*] attribute – note that multiple inheritance is possible, and how 

to handle this is a semantic variation point.  

 An Operation is a kind of container to some behavior, being owned only by 

instances of Class. An Operation extends both TypedElement and 

MultiplicityElement, and may have a list of parameters (Operation attribute 

ownedParameter[*]).  

 A Property is a TypedElement, being an attribute of a Class. The strange is 

that on the UML Infrastructure is possible for an attribute to exist without a 

container class, given its class[0..1] attribute has the lower bound set to 0 



(OMG, 2009a, p.98). The UML Infrastructure document does not specify 

why this is possible. 

2.2.2.3 Core::Constructs 

The important metaclasses in this package are DirectedRelationship, and 

Association.  

 DirectedRelationship is a Relationship in which it is possible to distinguish 

between source and target Elements, through the attributes 

source[1..*]::Element and target[1..*]::Element. Note that any kind of 

metaclass can be a source or target within a DirectedRelationship.  

 Association defines a set of tuples, whose values refer to typed instances. 

Association is a Classifier, thus it can be instantiated, and we call its 

instances links. This is sometimes a source of confusion, and it is worthy of a 

better explanation. Let us have a look in the example in Figure 2.1. 

Class A
Class B

void foo()

Class A

b : B

Class B

void foo()

 

Figure 2.1: Association versus attribute 

Are these two UML models equivalents? The answer is yes and no. Pragmatically, 

yes; semantically, no. Let us assume that we have an object of type A called a. The 

difference is when we have the call a.b.foo(), due to the context of execution. In the first 

case, b.foo() execution is going to happen “inside” the link instance created for the 

association between Class A and Class B, that’s why an Association introduces a tuple: 

in this example, we have <Class A, Class B> tuple. In the attribute case, b.foo() 

execution is going to be performed “inside” the a object. Pragmatically, they are the 

same, because usually code generators do not create the link object, considering the 

association target as an attribute of the association source. 

2.2.3 UML Superstructure 

The UML Superstructure specification (OMG, 2009b) is the actual definition of the 

UML language, which reuses and extends the majority of the concepts introduced in the 

UML Infrastructure specification (OMG, 2009a). It divides into two big parts: Structure 

and Behavior. 

From the Structure part, the most important metaclasses to this work are: 

Dependency, from Structure::Classes package; Port, from Structure:: 

CompositeStructure package; From the Behavior part, the most important metaclasses 

are Behavior, BehavioredClassifier, and BehavioralFeature, from Behavior:: 

CommonBehavior; and OpaqueAction, from Behavior::Actions. 

 Dependency specifies that to define a set of client NamedElements it requires 

another set of suppliers NamedElements. Thus, the clients’ complete 
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definition is only possible with all their suppliers. Dependency has no 

runtime semantics; it completely defines itself in terms of model elements, 

not instances. UML enables models to specialize the semantics of 

Dependency, making it most appropriate for the model’s specific domain.  

 BehavioredClassifier specializes Classifier metaclass enabling a Classifier to 

own behaviors contained in its namespace. BehavioredClassifier has two 

main attributes: ownedBehavior[0..*], which is the set of behaviors within 

the BehavioredClassifier namespace; and classifierBehavior[0..1], which is 

the behavior of the BehavioredClassifier, being this attribute a subset of 

ownedBehavior[0..*]. The behavior specified in classifierBehavior attribute 

executes just after the BehavioredClassifer instantiation. 

 Behavior is the specification of how its context Classifier changes over time. 

This behavior specification can be an atomic, emergent, or even an 

illustration of a subset of real execution. The behavior is said to be atomic if 

it is contained in only one implementation, e.g. within an Activity. The 

behavior is emergent if its specification depends on the interaction of more 

than one BehavioredClassifiers, usually being specified by a 

CollaborationUse. The illustration is the case when the behavior is specified 

with a Sequence Diagram, which is actually a scenario of execution, not its 

complete specification. The Behavior has two main attributes: 

specification[0..1]::BehavioralFeature, being the behavior specification 

itself; and context[0..1]::BehavioredClassifier, which defines where this 

behavior is going to be executed (recall the example from Figure 2.1, 

Association versus Attribute). 

 BehavioralFeature declares and implements a behavior. The 

BehavioralFeature specifies, thus, which behavior is executed when the 

BehavioralFeature is invoked. It has one main attribute, 

method[0..*]::Behavior, which defines the behaviors executed when the 

BehavioralFeature is invoked. The formal parameter list match against a 

method is done in the BehavioralFeature context, but how this is done is a 

semantic variation point, as some languages employ covariance, while others 

contra-variance. 

 OpaqueAction is an Action that is used as a placeholder for an 

implementation. An OpaqueAction enables to implement an Action in a 

language apart from UML, for example Java or C++, as long as this language 

source-code has text format. 

2.3 Systems Engineering Modeling Language 

This section briefly introduces the Systems Engineering Modeling Language 

(SysML) on a user-centered approach. We are not going to discuss its metamodel, even 

because metamodel constructs used in this work are fairly the same from UML, which 

section 2.2 presented. For a gentle introduction to SysML, we refer interested readers to 

Weilkiens (2008). 

Apart from UML which was designed to model software systems, SysML (OMG, 

2008b) was designed to smoothly handle systems composed by hardware, information, 

and so on, not only software-based systems. To do so, it reuses some portions of the 



UML 2 language (OMG, 2009a), and extends it to better represent concepts from the 

systems engineering domain. 

The most important changes in SysML from UML are (Weilkiens, 2008): 

 Classes are called Blocks, and the Class diagram was changed to Block 

Definition Diagram (BDD); 

 The Composite diagram was changed to Internal Block Diagram (IBD); 

 It is possible to specify item flow within an IBD; 

 Support for continuous functions through actions and object nodes in 

Activity diagram; 

 Introduction of two new diagrams, Requirements, and Parametric. 

The Requirement diagram defines a way to express system requirements in the 

diagram, and to manage all the requirement life cycle through its defined dependencies: 

derive requirement (the client was derived from the supplier); satisfy (the set of clients, 

which are actually model elements, a Block for example, satisfies the supplier 

requirement); copy (the client requirement is the same as the supplier, but its name and 

unique identification); verify (the client test case is used to check the supplier 

consistency); refine (the client is a model refine of the supplier); and trace (a very weak 

dependency, it is used only to link the supplier requirement with a client model element 

when the other dependencies presented are not suitable to represent their relationship) 

(Weilkiens, 2008).  

The Parametric diagram enables to parameterize the properties of some blocks, 

creating parametric functions with them. A parametric function is a function that is 

calculated given some parameters, which are properties in the model. For example, y = 

ax + b is a parametric function. These parameters are specified within Constraint 

Blocks. A Constraint block defines some constraints in its properties, e.g. if a Constraint 

block has an integer property a, than a valid constraint would be a > 6 (Weilkiens, 

2008). 

It is important to define model view and viewpoints. A view is a representation of 

the entire system, based on a selected viewpoint. A viewpoint specifies the structure of a 

view based on a set of stakeholders. In other words, a view is an abstraction of the entire 

subsystem, where the viewpoint defines this abstraction, depending on the stakeholders 

of interest for a view. In this way, it is possible to create different representations of the 

same system for different presentation purposes (Weilkiens, 2008). 

2.4 Model-Based Systems Engineering 

This section presents the basic concepts on Model-Based Systems Engineering 

(MBSE), as well as some well-know methodologies supporting MBSE. This section is 

based on a survey from the INCOSE Focus Group on MBSE (Estefan, 2007). Finally, in 

section 2.4.5 it presents a comparison between the current state-of-the-practice and 

model-based approaches for Systems Engineering. 

2.4.1 Basic Concepts 

We find five important concepts in MBSE: process, method, tool, methodology, and 

environment.  
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A process is a logical sequence of tasks performed to achieve a particular 

objective. A process defines what is to be done, without specifying how each 

task is performed. 

A method consists of techniques for performing a task, thus it defines how 

each task is going to be realized. 

A tool is an instrument that, when applied to a particular method, can enhance 

the efficiency of the task, provided it is applied properly and by somebody 

with proper skills and training. 

A methodology is a collection of related processes, methods, and tools. It is 

essentially a guide and can be thought of as application of related processes, 

methods, and tools to a class of problems that all have something in common. 

An environment consists of surroundings, external objects, conditions, or 

factors that influence the actions of an object, individual person or group. 

These conditions can be social, cultural, personal, physical, organizational, or 

functional. The purpose of a project environment should be to integrate and 

support the use of tools and methods on that project. Thus, it enables (or 

disables) the what and the how. 

(Estefan, 2007) 

2.4.2 Harmony-SE 

I-Logix (now Telelogics) has created the Harmony-SE methodology to support 

Systems Engineering with SysML. Its improvement is mainly due to its integration with 

a strong requirement management tool, in this case Telelogic DOORS. It had a good 

acceptance because the US Department of Defense (DoD) used a tool called Software 

Architect from Popkin Software Company, which was bought by Telelogic, and 

integrates with Harmony-SE. Harmony-SE was designed to be vendor-neutral, but it is 

only supported by Telelogic Rhapsody tool. 

The key objectives that Harmony-SE methodology accomplishes are: 

 Identify/derive required system functionality; 

 Identify associated system states and modes; 

 Allocate system functionality/modes to a physical architecture. 

As usual on SysML, Harmony-SE is service-oriented, and uses SysML blocks to 

represent the system structure. The communication between blocks is given with service 

requests, which induces some state (or mode in Harmony-SE terminology) in the 

requested block. Sequence Diagrams represents the communication between system 

structures, and the system structure with internal block definition diagrams. 

The interesting is that every Harmony-SE element traces and synchronizes with a 

requirement on the requirements repository using Telelogic DOORS. For a more 

detailed introduction to Harmony-SE, refer to (Estefan, 2007). 

2.4.3 OOSEM 

The Object-Oriented Systems Engineering Method (OOSEM) employs a top-down 

approach for specification, verification, analysis, design and development, where the 

SysML language supports all these levels (Estefan, 2007). By adopting SysML as its 



implementing language, OOSEM methodology integrates smoothly with current Object-

Oriented techniques. The OOSEM key objectives are the following, extracted from 

(Estefan, 2007): 

 Capture and analysis of requirements and design information to specify 

complex systems; 

 Integration with Object-Oriented software, hardware, and other engineering 

methodology; 

 Support for system-level reuse and design evolution. 

Three components compose the OOSEM structure: 

 Systems Engineering Foundation: contains the systems engineering 

processes defining how requirements must be elicited; 

 Common Object-Oriented System Engineering: top-down and recursive 

layer, it is use-case driven based on previous elicited requirements. Defines 

black and white box components, using Object-Oriented concepts, and is 

expressed with UML/SysML languages. It depends on Systems Engineering 

Foundation layer; 

 OOSEM Unique: concerns the system activities, such as business model, 

context where the system is going to be deployed, system/logical 

decomposition, partitioning, allocation, and further system high-level 

activities. Is depends on Common Object-Oriented System Engineering 

layer. 

The three previous cited key objects are unrolled into the following activities, based 

on the V model (Forsberg, 1991): 

 Analyze stakeholder requirements; 

 Define system requirements; 

 Define logical architecture; 

 Synthesize candidate allocated architecture; 

 Optimize and evaluate design alternatives; 

 Validate and verify the overall system. 

2.4.4 RUP-SE 

The Rational Unified Process for Systems Engineering (RUP-SE) is based on the 

well-know software development RUP process, incrementing it to deal with systems 

specification, analysis, design and development (RATIONAL, 2002). RUP is based on 

content-elements, describing what must be produced in each RUP cycle. These cycles 

can be represented by the well know RUP’s whale chart.  

All iterations in the RUP life cycle have seven disciplines: business modeling, 

requirements, analysis and design, implementation, test, and deployment. RUP-SE 

extends RUP by defining new roles, by including for example the systems engineer; 

new artifacts related to systems engineer non-function requirements, such as security, 

training, and logistics; by adding the concepts of model level, view and viewpoints. A 

model level groups model element with similar level of details – it does not group 
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abstraction levels. RUP-SE offers more scalability due the concept of viewpoint from 

SysML, enabling to provide the same model with different presentation details for 

distinct groups of stakeholders, without replicating model elements and it offer built-in 

support for non-functional requirements. IBM Company through its IBM Rational 

Software Suite offers tool support for RUP-SE. 

2.4.5 Model-Based versus Document-Centered Systems Engineering 

As stated before, a Systems Engineering process encompasses some well-defined 

activities: requirements analysis, requirements validation, functional analysis, functional 

verification, synthesis, and physical verification. A process defines how these activities 

are going to be realized, thus we can imagine that there are a lot of ways of doing so, 

and indeed there are. Previously in this section some methodologies and processes 

based on models were presented, but as stated by Baker (2000), MBSE is not the current 

state-of-the-practice. Moreover, we can push this even nowadays, almost ten years later. 

Currently, companies still rely on document-centered processes and methodologies to 

have implemented their Systems Engineering process; even in AIRBUS, where we have 

the Model Functional Performance Requirement (MFPR) document stating the 

equipment simulation requirements, and partially the simulation model itself, described 

by the Model Interface Document (MICD) Excel sheet. In AIRBUS, only model 

behavior is implemented with a model-based approach, using Simulink and SCADE 

models, but the model architecture (or model interface) is completely document-

centered. Baker (2000) made a comparison between MBSE and the document-centered 

approach, which Table 2.1 summarizes. 

Table 2.1: Comparison between model-based and document-centered approaches for 

Systems Engineering 

Characteristic Model-based Document-centered 

Information Repository Models Documents 

Reviews Automated by model 

inspection 

Manual, by reading and 

comparing text in natural 

language 

Verification Incremental (model 

refinements) and automated 

(model checker) 

Manual, audited by human 

inspector 

Communication Consistent through model 

views and well-defined 

semantics 

Ambiguous, it depends on 

reader’s interpretation 

Validation Performed by different 

stakeholder’s views 

Text walk-through 

Traceability 

(requirements to design 

verification) 

Completely traceable Accuracy depends on hard 

efforts 

Reuse Model repository, plug-and-

play 

None, only copy-and-paste 

Cultural Adoption Probably new paradigm 

within R&D team 

Status-quo 

Source: BAKER, 2000, p. 5. 



The only “drawback” is the requirement to have tool support, but this can be easily 

accomplished, and several tools were presented to that. Thus, the initial effort to 

implement a MBSE approach probably offers an excellent Return on Investment (ROI).  

2.5 Systems Engineering at AIRBUS 

Systems Engineering, in a broad sense, is the use of well-defined methodology 

(engineering part) to design and develop products that together offer a valuable service 

to some user (system part). The Airbus Avionics and Simulation Department defined a 

System Engineering process based on a model-driven approach and SysML called 

OSMOSE (One Single Methodology supported by the Open Source Environment). The 

OSMOSE process focuses in defining equipment requirements and produces design 

artifacts in a more formal fashion. Within OSMOSE, a requirement specification is 

described with SysML. OSMOSE was created based on the EIA632 standard and on the 

Two Track Unified Process (2TUP). 

2.5.1 Two Track Unified Process 

The well know Unified Process (UP) is a development process that uses as its 

working language the UML. It is an iterative, incremental, and use case-driven process. 

Several CASE tools support it, such as IBM Rational Rose, and have a very successful 

history in the software development industry. The 2TUP (Roques, 2003) extends UP by 

adding one development branch in addition to the existing functional requirements one. 

The added branch deals with technical constraints that describe some operational 

constraints such as software specification, underlying hardware and operating 

environment. Thus, 2TUP also handles physical non-functional requirements. Figure 2.2 

presents the 2TUP general process chart. 

Figure 2.2: Two Track Unified Process cycle 

Each Y cycle phase in 2TUP describe the abstraction level of a given specification, 

where the outer leaves are more abstract than the central branch and its lower level 

phases. The generic design phase intends for constructing standardized and reusable 

components by other system components. The preliminary design phase merges the 
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functional and non-functional branches, resolving conflicts between them if any. The 

detailed design phase assesses how to create actual components from preliminary 

design specification. The remaining two stages concerns components construction and 

its proper validation. 2TUP was firstly designed to deal with Information Systems, thus 

the OSMOSE methodology had adapted it for Systems Engineering. 

2.5.2 EIA 632 Standard 

The EIA 632 standard (Martin, 1998) defines some Systems Engineering practices 

to improve the overall quality of a system design and development, in order to reduce 

time-to-market and to manage budgets initially made available to the project. This 

standard defines a systematic approach to engineer and/or reengineer a system, and 

bases itself on the following principles: 

 A system is composed of one or more related products that allow end 

products over their life cycle to satisfy all stakeholders requirements; 

 A system can be hierarchically organized; 

 The successive application of a set of well-defined processes accomplishes a 

Systems Engineering process. 

Figure 2.3 presents the EIA 632 standard processes. 
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Figure 2.3: The EIA 632 process 



2.5.3 OSMOSE Process 

The EIA 632 defines what to do within an Engineering process, while 2TUP defines 

how to do. The specialization of these two processes gave rise to the OSMOSE Airbus 

Internal process for Avionics Systems (AIRBUS, 2007a). The OSMOSE process cycle 

is presented in Figure 2.4. 
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Figure 2.4: OSMOSE process cycle 

As any design and development process, OSMOSE starts with requirements 

elicitation and specification (boxes Customer requirements and Other requirements 

from stakeholders in Figure 2.4). It formalizes each gathered requirement from the 

stakeholders according to internal Airbus specification directives. After a requirement is 

formalized and ratified, it is further detailed. This detailing process creates the technical 

specification of new equipment (box Requirements organization and validation in 

Figure 2.4). Once the requirements were gathered, ratified and the technical equipment 

specification was built, OSMOSE advances to the solution definition stage. 

The logical solution is the realization of system objectives, services and functional 

architecture, while the physical solution is the technical implementation of the logical 

one based on actual hardware and software components. For each possible solution (a 

solution is possible when it satisfies all requirements, and a solution varies due to the 

several ways we can realize a set of requirements by architectural designs), an 

architecture must be defined, ratified, and the logical solution must be checked for 

requirements conformance. Based on effectiveness and risk analysis, the designer can 

choose a final solution. After deciding the logical and physical solutions, we create, 

ratify, and check the detailed subsystems specification composing the specified system. 

As OSMOSE merges both design and development processes into a single life cycle, 

it is possible to maintain traceability between design decision and its development 

realization. The logical solution is a high-level product functional description; it details 

its main functions, objectives and provided services. Thus, each definition inside a 

logical solution describes the logical structure of the product, i.e. there is an association 

between a high-level specification and its logical structure. On the other hand, the 

physical structure is the actual implementation of each logical structure. This step 

defines the block interfaces between components, their input and output ports for data-
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flow and signals, creating in this way an association between the logical structure and 

its physical constituting blocks. 

Each equipment model (the actual product that the OSMOSE process creates) is 

constituted by a SysML model. This SysML model has a defined package structure, 

where each package contains specific design model elements. The OSMOSE model 

package structure is presented in Figure 2.5. 
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Figure 2.5: OSMOSE model package structure 

The Context package defines the product’s environment, and it is independent of the 

packages containing model elements defining the product. It is forbidden to create any 

dependency between Context and Logical View and Physical View packages. The 

Context::Domain Models package formalizes all concepts necessary to product 

specification, such as physical laws. Context::Connected Products describes all 

elements composing product’s external structure, such as initialization files. 

Context::Standards contains standards and norms, and specifies interfaces between 

components and data types. Context::Actors Model specifies the product’s interacting 

actors. 

The Requirements package contains requirements specifications described with 

SysML requirements diagrams, as well as its inner packages Requirements::Customer 

Requirements, Requirements::Other Stakeholders Requirements, and Requirements:: 

Organized Requirements. 

The Logical View package contains the high-level functional product (equipment) 

description. Logical View::Functions describes product objectives described in Logical 

View::Function::Use Cases, and creates within Logic View::Function::Collaboration 



the association between these objectives and product structure. Logic View::Structure 

describes product’s architecture, containing mainly block elements from SysML and 

composition relationships between these blocks. It is worth noting that Logic View is 

both structural and behavioral system specification. 

The Physical View package specifies the actual hardware and software product 

structure. Physical View::Structure realizes (or implements) the elements from Logic 

View packages. Physical View also describes ports and internal connections between 

actual blocks. 

The Allocation package specifies the allocation of roles defined in Logical 

View::Structure into Physical View::Structure actual elements. 
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3 MODELING AND SIMULATION 

This chapter discusses modeling and simulation (M&S) requirements, development, 

and deployment in organizations, particularly in AIRBUS. Section 3.1 introduces M&S, 

and how these activities are inserted in the development cycle. Section 3.2 presents 

Verification and Validation (V&V) of M&S, its basic concepts and some approaches to 

perform V&V applied to M&S. Section 3.2 discusses accreditation and certification, 

and how they connect with M&S for safe-critical domains. Section 3.4 presents the 

NASA standard processes for M&S, which contains the basic requirements for any safe-

critical M&S activity. Finally, section 3.5 presents the AIRBUS simulation platforms, 

and the Systems Engineering process deployed in AIRBUS for M&S development. 

3.1 Introduction to Modeling and Simulation 

With the increasingly complexity of current systems, and we include here aircrafts, 

it is imperative to devise techniques to handle in an abstract and as formal as possible 

fashion this complexity. Another issue is the pressure to reduce time-to-market, what 

can be crucial to a new product. Just to remember the A380 delay, a €13 billion 

program, and its €6.3 to €7.9 billion cash shortfall due to its two years delivery delay, 

and the new prospects says that EADS is going to achieve investment break-even only 

in ten years (Clark, 2006). Therefore, in addition to handle safe-critical issues, a feasible 

development approach must help in respecting time development constraints and 

budgets. The ACARE Quality & Affordability Report discusses that, by 2020, is 

imperative to reduce 50% of current time in the supply-chain for aircraft production, 

considering both time-to-market (engineering and design time of a new aircraft) and 

time-to-delivery (manufacturing and delivery time to airlines), and one way of doing so 

is to improve Systems Engineering processes, mainly modeling and simulation (M&S) 

of new avionics equipment (ACARE, 2002). 

The central concept in modeling is model. A model is a representation of something 

in the real world, called model domain. Brade (2003) defines a model as: 

“A model is an abstract and idealized replication of a real system, 

which reflects all of its relevant properties with sufficient accuracy 

with respect to the intended purpose” 

It is possible to create a model even if the real system is still incomplete. A model 

usually abstracts away low-level details that are useless to the analysis we are going to 

conduce with the modeled system. Thus, a model can be more tractable because it is 

simpler, in the opposite of the very detailed real system. We can define model 

resolution as the perceived level of reality contained in the model. A model with high 

resolution is closer to the real system, while a model with less resolution is more 



abstract (Brade, 2003). One of the main difficulties in modeling is to define the best 

suitable resolution to adopt. There is no correct answer to that; adopted resolution 

barely depends on the system itself, it depends more on analysis and studies we will 

carry with the model. Different analyses (or model goals) define different model views, 

being each defined view more appropriate to one analysis and group of stakeholders as 

the other. 

A model may contain structural and behavioral descriptions. A structural 

description consists of all model elements and their interdependencies and hierarchies. 

The behavioral description is a functional specification of how model inputs transform 

into model outputs, and how internal states of model elements change over time to 

realize the generation of outputs from inputs (Brade, 2003). 

A model has three representations, depending on its purposes: conceptual, formal, 

and executable. A conceptual model presents the domain elements and their structure 

and behavior, and centers itself in reasoning about the modeled system. A formal model 

is a formal specification of the conceptual model, based on some adopted formalism 

with well-defined semantics. The executable model implements the formal model, and 

includes necessary information to be executed in a computer (Brade, 2003). 

With a formal model, we can perform analysis of the produced outputs for the 

models inputs. When we execute the model to analyze its output, we are performing a 

model simulation. IEEE (2001) standard defines simulation as: 

“Simulation is the execution of a model that behaves similar to the 

real system when provided a set of controlled inputs over time” 

The model behavior is the way outputs change over time during simulation. Brade 

(2003) presents a simulation model taxonomy:  

 Quasi-continuous vs. discrete simulation: depending whether the state 

space is continuous or discrete, respectively. 

 Time-stepped vs. discrete-event simulation: depending whether the 

simulation advances over a predefined time intervals, or based on 

triggered events in the simulation model. Time-stepped simulation 

supports for real-time and in-the-loop simulations, while in discrete-event 

usually external agents can trigger events conducing the simulation. 

 Deterministic vs. stochastic simulation: depending whether the produced 

outputs depends on the inputs or not, respectively. 

For more details in modeling and simulation, please refer to Brade (2003). 

3.2 Verification and Validation of Simulation Models 

Verification and Validation (V&V) techniques want to answer whether a model is 

correct, and what we can do to ensure a model is correct. Verification aims at ensuring 

that both conceptual model and its executable model are correct given the requirements 

specification. Validation informs whether an executable model results are within an 

acceptable range as defined in its conceptual model. V&V quite relates to model 

accreditation, which is concerned with building into users the confidence necessary to 

rely on the model, and on data it produces (Sargent, 2008). We will discuss model 

accreditation in the next section. 
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Sargent (2008) points out four approaches to conduct model V&V inside the 

simulation model development team: 

 The model development team is itself in charge of performing V&V 

activities. The team makes subjective decisions based on earlier model 

evaluations, e.g. tests or model execution; 

 Assuming that we have two separate teams, one dedicated to model 

development, and the other to model V&V, and if the development team is 

not too large, one of its members can help the conduction of V&V. In 

addition to verification, this approach increases accreditation, due to the 

participation of a simulation model user in its V&V process; 

 The approach called Independent V&V assumes a V&V authority in charge 

of the decision whether V&V results proposed by the simulation model 

V&V team is valid or not. This approach is suitable when the simulation 

model development team is too large, or when it is involved in many projects 

with several suppliers. In this approach, an iterative refinement process 

between the Independent V&V authority, V&V team, and development 

teams occurs; 

 The last approach is to use a scoring model. Scoring is conducted 

subjectively, based on V&V team experience. In this case, some model 

aspects are explicitly chosen over others, attributing a bigger score to the 

most important, and a smaller one to the least important. 

Furthermore, Sargent (2008) describes several techniques to perform V&V in 

simulation models: 

 Animation: model’s behavior is presented in a step-by-step fashion, usually 

enabling to control what is being displayed, and how animation advances; 

 Comparison: this technique compares the results produced by the 

undergoing simulation model with a similar, previously validated, simulation 

model. Based on an acceptance threshold, we can say that differences 

between the two models are acceptable or not; 

 Degenerate tests: this tests how model degenerates when its inputs are 

increasingly closer to the acceptable specified limits; 

 Event validity: compares the fidelity of simulated events or the number of 

model elements occurrences with real ones; 

 Extreme condition tests: tests the robustness of the simulation model, and 

how it behaves in extreme values, for example, division by zero; 

 Face validity: evaluates with a domain expert if the outputs the simulation 

model produces are correct, or at least seems to be correct; 

 Historical data validation: uses previous validated data, if existing, to 

validate if new produced data is correct; 

 Historical methods: divided into three sub-techniques:  rationalism assumes 

that model team knows which output is correct, and uses this knowledge to 

assess the model; empiricism requires that all rational assumption to be 



empirically validated; and positive economics assess causal relationships 

constructed from rationalism are empirically valid; 

 Internal validity: only applies to stochastic models (models where outputs 

are independent of inputs), assess the amount of variability produced 

between model executions. Depending on the model domain, high variability 

can indicate lack of consistency; 

 Operation graphics: V&V model team observe model behavior with 

graphical analysis of its generated output; 

 Sensitivity analysis: variations in model outputs caused by perturbations in 

its inputs must be the same in both the real system and the simulation model; 

 Predictive validation: V&V team uses the model to foresee the real system 

behavior. Usually, this model is developed before the real system, in order to 

conduct feasibility analysis, for example; 

 Traces: several modeled entities have their execution traced to check if they 

behave properly and as expected during simulation execution; 

 Turing tests: experts in the model domain evaluate if they can discriminate 

the outputs produced between simulation and real systems. 

3.3 Model Simulation Accreditation and Certification 

When we refer to accreditation and certification, we mean that the product under 

certification provides guarantees that it supports all requirements agreed by parts as 

being important for product’s domain. Certification is necessary because, while we still 

continue not to use exhaustive V&V techniques (mainly due to scalability issues), we 

cannot be sure that our models are 100% reliable, correct, and suitable (Brade, 2003). 

Assuming this, we need to define the degree of confidence a model provides. This 

degree is based both on model’s depth (it implements the correct level of details of its 

functionalities) and breadth (it implements all functionalities it needs to provide). 

Model suitability is a measure that accounts if model’s depth and breadth are acceptable 

to model requirements. Based on these concepts, Brade (2003) defines credibility: 

“The credibility of a model or simulation results is an expression of 

the degree to which one is convinced that a particular model or 

particular set of simulations results are suitable for an intended 

purpose and correct” 

Accreditation is the process of certification that a legal and recognized Institution or 

Body conducts to assert if the product (in our case simulation models) has credibility for 

its purpose. Balci (2001), based on the International Standardization Office (ISO), 

presents the definition of certification and accreditation as: 

“Certification is a procedure by which a third party gives written 

assurance that a product, process or service conforms to specified 

characteristics” 

“Accreditation is a procedure by which an authoritative body gives 

formal recognition that a body or person is competent to carry out 

specific tasks” 
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The US Department of Defense (DoD-US) defines simulation model accreditation as 

(Brade, 2003 apud DoD-US 1996). 

“Accreditation is the official certification that a model, simulation, 

or federation of models and simulations is acceptable for use for a 

specific purpose” 

In AIRBUS, simulation is not certified yet, but with the steps beyond integrating 

design and simulation, in the future certifying executable simulation models may be 

interesting. If executable simulation models were certified, design teams and external 

suppliers could reuse them, reducing time-to-market and increasing credibility in the 

aircraft development cycle and its iterations. Considering the aeronautical domain as a 

multidomain and safe-critical, where knowledge from several disciples interconnect, 

certification is still complicated, being a difficult process and management issue if 

deciding to certify simulation models (Rodríguez-Dapena, 1999). 

3.4 Modeling and Simulation Standard: NASA Approach 

The three most deployed standards for M&S were proposed by three governmental 

agencies: the US Department of Defense (DoD-US, 2004), the Australian Department 

of Defence (DoD-AU, 2005), and the National Aeronautical and Space Administration 

(NASA, 2008). We do not see published proposals from industry to M&S, and usually 

companies adapt one of the three presented M&S standards (as is the case in Boeing 

Company, which adapts the DoD-US approach). To present the requirements involved 

in M&S activities, this section describes requirements from the NASA M&S standard 

(NASA, 2008), and as all the three standards are similar, we have a good coverage of 

existing requirements to develop M&S activities. NASA created this standard to tackle 

the following activities, which can be adopted and adapted in any organization: 

 Identify best practices to ensure that knowledge from operations is captured 

in the user interfaces (the way users interact with models); 

 Develop process for tool verification, validation, certification, reverification, 

revalidation, and recertification based on operational data; 

 Develop standards for documentation, configuration management, and 

quality assurance; 

 Identify any training or certification requirements to ensure proper 

operational capabilities; 

 Provide a plan for tool management, maintenance, and obsolescence 

consistent with M&S environments; 

 Develop a process for user feedback when results appear unrealistic or defy 

explanations; 

 Provide a standard method to assess the credibility of the models and 

simulations presented to stakeholders when making critical decisions; 

 Assure that model and simulation credibility meets project requirements. 

The organization or group of individuals in charge of conducting M&S is called 

responsible party. The responsible party is in charge of M&S activities inside the 

project or program, and is responsible of requirements analysis, documents 



management, and the definition of objectives for all M&S activities. In the following, 

we present the requirements associated with each M&S activity defined in the NASA 

M&S standard the responsible party must perform. Note that these requirements can be 

adapted for each specific M&S project or program; it is not necessary to conduct all 

existing requirements. 

Concerning M&S program management, NASA (2004) defines for the responsible 

party: 

 Define M&S acceptance criteria and accreditation; 

 Define scoring rationale to V&V activities; 

 Define the intended use of M&S; 

 Define metrics to assess program milestones; 

 Report M&S results to support technical decisions; 

 Control management of M&S (artifacts, project schedule, and processes). 

Concerning model development, responsible party’s activities are: 

 Document design decisions in the conceptual model; 

 Document model structure and behavior (e.g. equations); 

 Document model inputs and data set to be used; 

 Document units of the input data; 

 Document model’s limits of operation; 

 Document how to use correctly the model; 

 Document how to calibrate input data; 

 Document model update, assigning for each different update an unique 

identification; 

 Document criteria and date for model obsolescence; 

 Provide a mechanism to enable model users to report erroneous behavior and 

non expected results found with the model; 

 Keep models and associated documentation in control management 

repository. 

Concerning model simulation and analysis, activities are: 

 Assure that simulations occurred within the established limits, or, in case of 

transposing these limits, document the consequences in doing so; 

 Document warning and error messages found during simulation; 

 Document the version of M&S analysis results; 

 Document necessary computational resources to execute the simulation; 

 Document the process of constructing and publishing acquired simulation 

results to stakeholders; 
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 Document the history of M&S within the same or close applications that are 

useful to establish model credibility for the current M&S application; 

 Document the evaluation if performed simulation and analysis are useful to 

the current M&S application; 

 Document any decision concerning simulation and analysis configuration. 

Concerning model V&V, activities are: 

 Document which V&V techniques were used; 

 Document numerical estimation errors, convergence, precision for the 

results; 

 Document current status of model V&V; 

 Document metrics used to validate the model and its inputs; 

 Document any studies conducted with the simulation results. 

Finally, concerning model credibility, activities are: 

 Identify model credibility based on criteria established for the project; 

 Justify assigned credibility for all used criteria; 

 Sum up scores and assign overall model credibility score; 

 Publish results to stakeholders; 

 Include warnings in the final report when: some acceptance criteria was not 

met, violation of any model’s premises, violation in model operational limits, 

execution errors and warning messages thrown, unfavorable results from the 

analysis of simulation results. 

3.5 Model Simulation at AIRBUS 

3.5.1 System Simulators 

Simulation has three branches at AIRBUS: engineering, which is used to test and to 

validate aircraft equipments during the development of aircraft systems, and is very 

useful to test flight parameters on ground in order to guide equipments design: training, 

which is used to train aircraft crew, in this case AIRBUS delivers to Full Flight 

simulators manufacturers the core simulation systems; and research, which is 

independent of an aircraft program and is used to carry tests on new concepts and 

designs, and architectural proposals. In general, system simulation is very important to 

reduce development time. 

Inside AIRBUS, there is the Simulation Products Department (EDYYS), which is in 

charge of functional simulation activities, being the AIRBUS centre of competence on 

real-time simulation. The EDYYS has expertise on aircraft system simulation and is 

deeply involved on the aircraft development process. It has expertise also on 

electronics, flight simulation methods and architectures. Its main missions are: to 

design, develop and integrate simulation hardware and software components into 

simulators, as well as to assure their maintenance within the Company; to design 

electronic interfaces for engineering simulators; to develop software simulation 



packages for every new aircraft program started; to guarantee that training simulators 

will be available before the new aircraft entries into service; to facilitate the 

development of low cost and high quality training devices; and to develop commercial 

business simulators together with the airlines and with training centers. 

Figure 3.1 jointly presents the AIRBUS aircraft development and simulation cycles. 

The simulation and development cycles at AIRBUS take the form of a standard V 

development cycle (Forsberg, 1991), where it is possible to note that a simulation 

platform (white boxes) is associated for every development phase (gray boxes). In this 

way, simulation is highly coupled with the development, enhancing quality for the later 

development phases quite early in the development cycle. 

The following simulators compose the simulation platform at AIRBUS: 

 EPOPÉE (Etude Prospective pour l’Organisation d’un Poste d’Equipage 

Ergonomique): this simulator corresponds to the first simulation platform of 

Figure 3.1. It helps the development teams to choose new design concepts 

and techniques before a new aircraft program is launched, assessing control 

laws, cockpit ergonomics and crew workload; 

 OCASIME (Outil de Conception Assistée de Simulation Multi-

Equipements) : this simulator is dedicated to system design, hosting software 

simulating the flight loop and other programs used to validate and test 

aircraft logics and equipments specification; 

 A/C -1: this simulator is specific for a given aircraft program, and provides a 

representative system simulation used to test and to improve control laws, to 

assess cockpit ergonomics and crew workload. It represents most of the 

elements on the cockpit and some buttons are operational through touch 

screens. 

 System Integration Test Rigs: after complete equipment definition and 

development, we integrate single equipment on functional test rigs connected 

to simulation platforms. These platforms host simulation packages 

simulating some aircraft systems such as the Flight Warning System (checks 

the aircraft integrity) and the Control and Display System (displays the 

cockpit information). 

 A/C 0: this simulator, also called Iron Bird, integrates all actual equipments 

before their deployment on the final aircraft. It needs the most representative 

environments, and is composed of a real cockpit, all on-board computers, a 

reproduction of electrical and hydraulics wiring, aircraft actuators, and 

environment system simulation (simulates real world atmosphere conditions, 

such as rain, snow, hot, and so on), and aircraft physics (flight mechanics). 

3.5.2 Development, Integration and Validation of Simulation Models 

The current AIRBUS process for developing, integrating, and validating simulation 

models is the AP2633 (AIRBUS, 2008). When we say simulation model, actually we 

refer to an AP2633 Compliant Simulation Model. Thus, a simulation model must 

comply with AP2663 process directives to be deployable in the system simulators 

presented in the last section. The AP2633 process is a standard V cycle, and is divided 

in four phases: definition, development, evolution, and maintenance.  
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Definition contains all activities related to identifying simulation model 

requirements. Development contains all activities supporting the development of 

simulation models to reach their deliveries with the full requested functionalities, i.e. 

stable requirements as well as their development and validation. Evolution contains 

activities in charge of making corrections in simulation models to make them 

AP2633 compliant, as well as model updates to follow A/C systems evolution 

before Aircraft Entry Into Service (EIS). 

Figure 3.1: AIRBUS aircraft development and simulation cycles 

The Simulation Model Life Cycle is presented in Figure 3.2. The sub-processes 

presented in Figure 3.2 are as follows: 
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Figure 3.2: Simulation model life cycle.  

At A/C program level, sub-process 1: Identify General Simulation Models Needs. At 

model/macro-model level 2: Define Model Functional and Performance Requirements; 

3: Plan Simulation Model(s) Development; 4: Develop Shared Simulation Model; 5: 

Perform Delivery Preliminary Acceptance; 6: Define Integration and Validation Plan; 7: 

Integrate (Model/Macro-Model); 8: Validate (Model/Macro-Model); and 9: Define 

Macro-Model Verification Plan. This work applies to the fourth activity in the 

simulation model life cycle. 
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4 PROPOSED SOLUTION 

This chapter presents the proposed solution to the problems discussed in the first 

chapter, section 1.2. Section 4.1 presents the requirements and the artifacts we need to 

produce and trace, while section 4.2 presents the low-level design flow detailing all 

proposed activities. 

4.1 Solution Artifacts and Requirements 

Considering the development V-cycle presented in section 3.5, Figure 3.1, this work 

is focused in the OCASIME simulator, despite of its applicability in other development 

stages. Figure 4.1 presents the design and simulation interactions occurring in this 

development cycle. 

Design (box 2) and simulation (box 4) start with a set of requirements (box 1 and 3, 

for design and simulation, respectively). The design purpose is to provide a 

specification of an avionics equipment structure (box 6) and behavior (box 5). In the 

same way, the purpose of a simulation is also to provide structure (box 8) and behavior 

(7), but for a simulation of some avionics equipment. As simulation artifacts simulate a 

set of design artifacts (arrow 9), we can say that these design elements (and the 

decisions around them) constrains the simulation requirements and elements (arrow 10). 

As we use simulation knowledge to advance and improve design, we can say that 

simulation refines design (arrow 11). 
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Figure 4.1: Design and simulation interactions and artifacts 
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To develop a simulation model, we can identify three activities: system design, 

simulation requirements analysis, and simulation design. System design is concerned 

with avionics equipment design (Figure 4.1, box 2). Simulation requirements analysis 

specifies what must be simulated based on the constraints from design (Figure 4.1, 

boxes 3 and 4). Finally, Simulation Design is the construction of both simulation 

structure and behavior (Figure 4.1, boxes 7 and 8), implementing the simulation 

requirements (Figure 4.1, box 3), which simulate equipment behavior and structure 

(Figure 4.1, arrow 9). Figure 4.2 presents these three activities and the current and 

proposed artifacts flow. 

The problem is that both A/C ICD and MICD are very rudimentary documents, in 

the sense of Information Systems. The former is a Comma Separated Text (CSV) file, 

while the latter is an Excel sheet. Naming conventions and semi-automated document 

production create the modeling coherences between A/C ICD, MFPR, MS and MICD. 

Regarding MICD, there is an Excel Visual Basic Script called MICD Studio that 

generates these coherences guided by commands given by the Simulation Model 

Designer. One example of unstructured constructs existing in MICD is sheet naming. If 

some expected sheet by the MICD Studio does not follow the naming convention, it 

throws an error. This kind of consistency checking based only on naming convention 

dates back before databases management systems, and research proved this as being a 

bad approach for data management (Silberschatz, 2001). 

Another issue, as explained earlier, is the difficulty in handling traceability between 

design and simulation elements with the current approach. Figure 4.2 current upper 

band shows listed artifacts and their use and/or production during equipment simulation. 

4.2 Proposed Design Flow based on SysML 

To improve equipment simulation, this work proposes the adoption of SysML as the 

means of representing design and simulation constructs and as the simulation structural 

language. Thus, this approach unifies in only one modeling language design and 

simulation activities, while maintaining simulation design traceability between design 

Figure 4.2: Design and simulation activities and artifacts of simulation 

development 



and simulation models, as well as between simulation model refinements. The proposed 

design flow is presented in Figure 4.2 in SysML lower band. 
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Figure 4.3: SysML design model generation from A/C ICD 

Figure 4.3 presents the activity representing System Design. A SysML Design Model 

is created from an A/C ICD repository, and the UML Profile for AIRBUS AP2633 is 

used to encapsulate parsed A/C ICD data. 

From the generated SysML Design Model and with the MFPR documents, it is 

possible to create the SysML Simulation Model. A simulation considers the UML Profile 

for Simulation Functional and Performance Requirements (SFPR) as its driving process. 

Figure 4.4 presents this process, and implements the Simulation Requirements Analysis 

in Figure 4.2. 
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Figure 4.4: SysML simulation model generation from design model and from MFPR 

analysis and requirements document 

After creating the SysML Simulation Model from the SysML Design Model, and 

refining simulation to meet MFPR functional and non-functional requirements, the 

Simulation Designer exports the final SysML Simulation Model to the Model Interface 

Control Document (MICD). MICD is a Microsoft Excel sheet describing how each 

model element is connected to build up the equipment. The MICD creation ends the 

simulation process for the simulated system. This step is the Simulation Design in 

Figure 4.5. 
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Figure 4.5: MICD generation from AP2633 compliant SysML simulation model 

Figure 4.6 presents the complete Integrated Model-Based Design and Simulation 

process, with all its required and produced artifacts, and its internal activities described 

above. This approach leverages simulation and design by putting them together with a 

unified modeling language, instead of several different documents. As we automatically 

generate all SysML models, we have modeling style consistency between the 

Simulation Model Design team, as well as human errors reduction. In addition, this 

approach contributes to leverage the simulation process, enabling in the future the  

SysML Simulation Model be completely executed, given that we can assume a SysML 

subset to be executable by some model interpretation engine. We have performed real 

design and simulation experiments from the A380 aircraft program in order to validate 

this approach, and section 5 presents and discusses the results. 
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Figure 4.6: Complete integrated model-based design and simulation design flow 

After creating the simulation model, the next step is simulation code production 

based on the simulation model interface. The Simulation Model Designer creates a 

SCADE or Simulink model implementing the model behavior, using simulation 

variables declared in the MICD document. After specifying all SCADE and Simulink 

models, the designer creates a state machine implementing the high-level behavior (or 

functions) the simulation model must perform. In this work, we propose to model this 

state machine with the UML State Machine, and to generate the simulation C code for 

this state machine calling the generated C code from SCADE or Simulink models. 

Figure 4.7 presents the design flow of simulation code production from UML. 
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Figure 4.7: Simulation state machine code generation from UML State Machine 

describing equipment behavior 
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5 CASE STUDIES 

This chapter presents the case studies we have performed to validate our proposal. It 

presents the approach from its user perspective. Section 5.1 presents the A380 

navigation system, and the generation of its specification to SysML Design Models, as 

well as the MICD production from SysML Simulation Models. Section 5.2 presents the 

Primary Flight Control Computer and the code generation process for its UML 

Equipment State Machine. 

5.1 A380 Navigation System 

5.1.1 Navigation System Probes Embedded Avionics  

The A380 navigation system, which the ATA 34 chapter regulates, is composed of 

33 equipment occurrences, as follows: 

 Two Automatic Direction Finders (ADF) occurrences. ADF is one of the 

simplest, but very useful, navigation equipment used when flying by 

instruments. The ADF points a navigator (it can be an arrow or digital earth 

coordinates) in the direction of a tuned radio frequency emitter; 

 Three Air Data Inertial Reference Unit (ADIRU) occurrences. ADIRU is 

composed of two applications, Air Data Reference (ADR) and Inertial 

Reference System (IRS). ADR provides air data information concerning 

airspeed, angle of attack, altitude, and IRS provides the aircraft position and 

attitude. These data are available to both the pilots and the aircraft; 

 One Air Data Switching (ADS) occurrence; 

 One Autotrim Heading Angle (ATT-HDG) occurrence. It enables to set 

(autotrim) an aircraft inclination based on the aircraft’s nose (heading angle) 

 Two Distance Measuring Equipment (DME) occurrences. DME provides the 

aircraft distance to the ground station. UHF waves sent from ground stations 

are caught by DME, and based on the time needed to these ground stations 

acknowledging the reception of waves sent back by the aircraft, DME can 

calculate the aircraft distance from ground; 

 Two Integrated Standby Instrument System (ISIS) occurrences. ISIS displays 

airspeed, altitude, Mach, attitude, and vertical speed; 

 Six Prise de Pression Statique (ISP) occurrences. It also calculates air data 

based on wind static pressure; 



 Three Multi-Function Probes (MFP) occurrences. It reads air data 

information, but instead of using pneumatic movements to publish this data 

to the aircraft navigation systems, it uses an ARINC 429 digital bus; 

 Two Multi-Mode Receiver (MMR) occurrences. It is used to perform aircraft 

landing based on microwave, instead of instrument or GPS landing. 

 Two Outside Air Temperature (OAP) probes. It gets the outside temperature 

and sends it to the navigation systems; 

 One Pitot standby probe. It calculates airspeed based on wind dynamic 

pressure that gets inside it. 

 Two Pitot Static probes. It is also used to calculate aircraft speed, Mach, and 

altitude based on wind pressure inside the Pitot probes, making pneumatic 

movements in the aircraft equipment; 

 Three Radar Altimeter (RA) occurrences. It calculates the aircraft distance 

from ground, i.e. it measures the altitude between the plane and the ground 

directly below the aircraft; 

 Three SSA occurrences. 

Figure 5.1 presents the Pitot and static pressure probes; we can find in the A330 

aircraft, which are very similar in the A380 one. 

Figure 5.1: A330 external navigation probes 

5.1.2 SysML Design and Simulation and MICD Generation 

Prises de pression statique 
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Each equipment occurrence has an A/C ICD describing its interfaces, thus, the A380 

navigation system is composed of 33 A/C ICDs. Figure 5.2 lists these files. 

Figure 5.2: A380 navigation systems’ A/C ICDs 

The first step is to generate the SysML Design Models from the A/C ICD repository 

presented in Figure 5.2. With our tool prototype, we just select this folder and click on 

Generate. Figure 5.3 presents this process. 

Figure 5.3: SysML generation from A/C ICD performed with our tool prototype 

After the translation process from A/C ICD using the algorithms we have devised, 

we have the following SysML Design Model organization, presented in  Figure 5.4. 



 Figure 5.4: Generated A380 navigation systems SysML Design models 

. After generating the SysML Design Models, we have to select which application 

local parameters we are going to simulate. Figure 5.5 presents some local parameters of 

the ISIS first occurrences, where all local parameters are going to be simulated. 

Figure 5.5: SFPRPort simulation local parameters selection 
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After the selection of which local parameters are going to be simulated, we can 

generate the SysML Simulation model. The SysML simulation model has the same 

information as the Design one, but the transformation blocks, and their internal 

structure. Figure 5.6 shows ISIS first occurrence simulation model, as well as some 

dependencies to trace the simulation elements into design ones. 

Figure 5.6: ISIS SysML simulation model and generated SFPR dependencies 

The last step is the MICD generation from SysML Simulation models. This process 

is automatic, not requiring human intervention. Figure 5.7 presents an extract of the 

generated output signals and Figure 5.8 the input ones of the MICD to the ISIS first 

occurrence. 

Figure 5.7: ISIS MICD output variables and their generated joining keys 

 



Figure 5.8: ISIS MICD input variables and their generated joining keys 

We can see in Figure 5.8 that ISIS’s inputs from the MMR equipment, as well as the 

IRS application provided by ADIRU. In Figure 5.7 we can see ISIS’s outputs, such as 

computed Mach and lateral acceleration. This information is later displayed by ISIS 

equipment screen. Figure 5.9 presents the ISIS equipment display. 

 

Figure 5.9: ISIS equipment screen 

5.2 Primary Flight Control Computer 

In this section, we present the UML Equipment State Machine process and code 

generation to the Primary Flight Control Computer. As we have presented the SysML 

process using theA380 Navigation Systems, and for any model the process is the same, 

in this section this is not going to be repeated. 

5.2.1 A340 Flight Control Computer Organization 

The flight control computer is the interface between pilot’s sidestick and aircraft 

sensors and actuators, implementing the Fly-By-Wire (FBW) system. The A340 aircraft 

has five flight control computers: three Primary Flight Control Computers (PRIM) and 

two Secondary Flight Control Computers (SEC) (A320 has two PRIMs and three SECs) 

(Flight International, 1991). The SEC computers act as a backup to PRIM. In case of 

failure or disagreement on results between the three PRIM computers, the SEC 

computers take the responsibilities of computation. 
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The AIRBUS FBW system operates under three control laws (Flight International, 

1991): 

 Normal: Auto-flight systems active, computer accepts pilot’s input in the 

sidestick, but the FBW system overrides pilot inputs in order to respect the 

Flight Envelop (FEP). The FEP specifies the security margins the aircraft 

must be operated. In normal control law, in the case the pilot pulls the 

sidestick to its limits, the FBW overrides this command to the maximum 

allowed value as specified in the FEP. FEP acts in three commands: pitch, 

roll, and angle-of-attack (preventing aircraft stalling); 

 Alternate: Auto-flight systems are inactive, computer accepts pilot’s input in 

the sidestick, but the FBW system overrides pilot’s inputs in order to respect 

FEP. Alternate law is activated when two or more failures that are critical 

occur in the PRIM computers. 

 Direct: Both auto-flight systems and FEP protection are turned off. There is 

no computer intervention between the pilot and the FBW system. SEC 

computers operate this control law, activated by failures in all three PRIM 

computers are inoperative, or their outputs are not reliable. 

During 99% of a flight, the aircraft stays in the normal control law managed by the 

autopilot/auto-flight systems (Flight Daily News, 2009). For a demonstration of the 

A320 FBW system being pushed to its limits, readers are recommended to watch 

(Discovery Channel, 2009). 

Both PRIM and SEC were designed to be hardware and software fault-tolerant. 

PRIM and SEC are designed by different providers, Aerospatiale (now Thales) and 

Sextant (now Honeywell), respectively. PRIM adopts Intel 80386 architecture, while 

SEC adopts Intel 80186. This avoids errors and provides fault-tolerance concerning 

hardware architecture design. In addition, the software running embedded in PRIM and 

SEC are design by different teams, providing better fault-tolerance due to flawed 

algorithms and hidden errors (Brière, 1993).  

The flight control computer has two functions: computation, which is the computing 

of normal and alternate control laws. In this case, the pilot does not directly intervenes; 

the computer drive the control surface to best implement the pilot’s commands; and 

execution, which is elaborating electrical signals for surface deflection (Flight 

International, 1991). 

For more details of the FBW system, refer to (Traverse, 2004), and for details of the 

Flight Control Computer, refer to (Brière, 1993). 

5.2.2 Primary Flight Control Computer Equipment UML State Machine 

The UML Equipment State Machine describes the states and the functions 

performed in each state the equipment is. Figure 5.10 presents the PRIM UML 

Equipment State Machine. 
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Figure 5.10: Primary Flight Control Computer UML Equipment State Machine 

The PRIM Equipment UML State Machine is created by hand in the PRIM SysML 

Design Model, all transitions and ChangeEvents necessary to trigger state transitions. 

After creating and specifying the UML State Machine, the Simulation Model Designer 

applies the SFPR profile and selects which states he is going to use to perform the 

simulation he is creating. Figure 5.11 presents the SFPR profile application, as well as 

some simulated (white states) and not-simulated states (gray shaded states). Note that it 

is not shown in Figure 5.11, but both On and Off states have the SFPRState stereotype, 

suppressed to improve presentation. 
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Figure 5.11: SFPR state selection 
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Note that the state selection is performed by setting to true the SFPRState tagged 

value simulated. After selecting the states that are going to be simulated, we remove all 

useless states (states not reachable from some start pseudostate). Figure 5.12 presents 

the final simulation Equipment UML State Machine. 
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Figure 5.12: Final UML Equipment State Machine after useless state removal 

Note that we have removed the Off state because without the On state (removed 

because it was not selected to be simulated), Off is unreachable from the start 

pseudostate inside the Operational state. Although after useless state removal the 

Operational state has no inner behavior, it is not removed because maybe the 

Simulation Designer had set its before action to contain some behavior. Thus, even 

without inner states, the Operational state can still be useful. 

Finally, with the state machine presented in Figure 5.12, we can generate the 

simulation code. The generated C code for the Equipment UML State Machine 

presented in Figure 5.12 is shown below. 

STM_UTILS.H 

01. #ifndef STM_UTILS_H_ 

02. #define STM_UTILS_H_ 

03. #define TRUE 1 

04. #define FALSE 0 

05. #define STATE struct state 

06. #define PARAM struct formal_parameter 

07. #define CHANGE_EVENT struct change_event 

08. struct formal_parameter 

09. { 

10.  int integer_value; 

11.  float float_value; 

12.  char *param_name; 

13. }; 

14. struct state 

15. { 

16.  STATE *composite_state; 



17.  void (*do_action)(PARAM *); 

18.  STATE *(*evaluate_transition)(void); 

19.  CHANGE_EVENT *change_event_pool; 

20.  void (*init_state)(void); 

21. }; 

22. struct change_event 

23. { 

24.  int happens; 

25.  void *past_value; 

26.  void *current_value; 

27. };   

28. #endif /* STM_UTILS_H_ */  

 

PRIM_STM.C 

001. #include <stdio.h> 

002. #include <stdlib.h> 

003. #include <unistd.h> 

004. #include "stm_utils.h" 

005. void next_state(STATE *current); 

006. void evaluate_event(CHANGE_EVENT *pool); 

007. STATE *evaluate_st_notpowered(void); 

008. STATE *evaluate_st_powered(void); 

009. STATE *evaluate_st_start_reset(void); 

010. STATE *evaluate_st_safetytests(void); 

011. STATE *evaluate_st_dataloading(void); 

012. STATE *evaluate_st_operational(void); 

013. void st_notpowered_do_action(PARAM *params); 

014. void st_powered_do_action(PARAM *params); 

015. void st_start_reset_do_action(PARAM *params); 

016. void st_safetytests_do_action(PARAM *params); 

017. void st_dataloading_do_action(PARAM *params); 

018. void st_operational_do_action(PARAM *params); 

019. void st_finalstate1_do_action(PARAM *params); 

020. STATE *st_current; 

021. STATE *st_notpowered; 

022. STATE *st_powered; 

023. STATE *st_start_reset; 

024. STATE *st_safetytests; 

025. STATE *st_dataloading; 

026. STATE *st_operational; 

027. STATE *st_finalstate1; 

028. int main(void) 

029. { 

030.   init(); 

031.   next_state(st_current); 

032.   return EXIT_SUCCESS; 

033. } 

034. void next_state(STATE *current)  

035. { 

036.   do 

037.   { 

038.    current->do_action(NULL); 

039.   if(current->composite_state != NULL) 

040.    next_state(current->composite_state); 

041.   current = current->evaluate_transition(); 

042.  }  

043.  while( current != NULL );   

044. } 

045. void init(void)  
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046. {  

047.   st_notpowered  = (STATE *) malloc(sizeof(STATE)); 

048.   st_powered     = (STATE *) malloc(sizeof(STATE)); 

049.   st_start_reset = (STATE *) malloc(sizeof(STATE)); 

050.  st_safetytests = (STATE *) malloc(sizeof(STATE)); 

051.  st_dataloading = (STATE *) malloc(sizeof(STATE)); 

052.  st_operational = (STATE *) malloc(sizeof(STATE)); 

053.  st_finalstate1 = (STATE *) malloc(sizeof(STATE)); 

054.  initialize_st_notpowered(); 

055.  initialize_st_powered(); 

056.  initialize_st_start_reset(); 

057.  initialize_st_safetytests(); 

058.  initialize_st_dataloading(); 

059.  initialize_st_operational(); 

060.  initialize_st_finalstate1(); 

061.  st_current = st_notpowered; 

062. } 

063. void initialize_st_notpowered(void)  

064. { 

065.  st_notpowered->evaluate_transition = &evaluate_notpowered; 

066.  st_notpowered->composite_state = NULL; 

067.  st_notpowered->do_action = &st_notpowered_do_action; 

068.   st_notpowered->change_event_pool = 

069.    (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)*2); 

070. } 

071. void initialize_st_powered(void)  

072. { 

073.   st_powered->evaluate_transition = &evaluate_powered; 

074.   st_powered->composite_state = st_start_reset;  

075.    st_powered->do_action = &st_powered_do_action; 

076.    st_powered->change_event_pool = 

077.     (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)); 

078. }   

079. void initialize_st_start_reset(void)  

080. { 

081.     st_start_reset->evaluate_transition = &evaluate_start_reset 

082.     st_start_reset->composite_state = NULL;   

083.      st_start_reset->composite_state = NULL; 

084.      st_start_reset->do_action = &st_start_reset_do_action; 

085.      st_start_reset->change_event_pool = 

086.        (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)); 

087. } 

088. void initialize_st_safetytests(void)     

089. { 

090.     st_safetytests->evaluate_transition = &evaluate_safetytests; 

091.      st_safetytests->composite_state = NULL; 

092.      st_safetytests->do_action = &st_safetytests_do_action; 

093.      st_safetytests->change_event_pool = 

094.        (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)); 

095. } 

096. void initialize_st_dataloading(void) 

097. { 

098.     st_dataloading->evaluate_transition = &evaluate_dataloading; 

099.      st_dataloading->composite_state = NULL; 

100.      st_dataloading->do_action = &st_dataloading_do_action; 

101.      st_dataloading->change_event_pool = 

102.    (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)); 

103. } 

104. void initialize_st_operational(void) 

105. { 



106.      st_operational->evaluate_transition = &evaluate_operational; 

107.      st_operational->composite_state = NULL; 

108.      st_operational->do_action = &st_operational_do_action; 

109.      st_operational->change_event_pool = 

110.        (CHANGE_EVENT*)malloc(sizeof(CHANGE_EVENT)*4); 

111. } 

112. void initialize_st_finalstate1(void) 

113. { 

114.     st_finalstate1->evaluate_transition = NULL; 

115.      st_finalstate1->composite_state = NULL; 

116.      st_finalstate1->do_action = &st_finalstate1_do_action; 

117.      st_finalstate1->change_event_pool = NULL; 

118. } 

119. void st_notpowered_do_action(PARAM *params) 

120. { 

121.     // TODO: call Simulink/SCADE external code 

122. } 

123. void st_powered_do_action(PARAM *params) 

124. { 

125.      // TODO: call Simulink/SCADE external code 

126. } 

127. void st_start_reset_do_action(PARAM *params) 

128. { 

129.     // TODO: call Simulink/SCADE external code 

130. } 

131. void st_safetytests_do_action(PARAM *params) 

132. { 

133.      // TODO: call Simulink/SCADE external code 

134. } 

135. void st_dataloading_do_action(PARAM *params) 

136. { 

137.      // TODO: call Simulink/SCADE external code 

138. } 

139. void st_operational_do_action(PARAM *params) 

140. { 

141.     // TODO: call Simulink/SCADE external code 

142. } 

143. void st_finalstate1_do_action(PARAM *params) 

144. { 

145.     exit(EXIT_SUCCESS); 

146. } 

147. void evaluate_event(CHANGE_EVENT *pool) 

148. { 

149.     // TODO: handle change event based on current and past values 

150. } 

151. STATE *evaluate_st_notpowered(void) 

152. { 

153.   evaluate_event(st_notpowered->change_event_pool); 

154.   if(st_notpowered->change_event_pool[0].happens == TRUE) 

155.    return st_finalstate1; 

156.   if(st_notpowered->change_event_pool[1].happens == TRUE) 

157.    return st_powered; 

158.   return NULL; 

159. } 

160. STATE *evaluate_st_powered(void) 

161. { 

162.   evaluate_event(st_powered->change_event_pool); 

163.   if(st_powered->change_event_pool[0].happens == TRUE) 

164.    return st_notpowered; 

165.   return st_start_reset; 
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166. } 

167. STATE *evaluate_st_start_reset(void) 

168. { 

169.   evaluate_event(st_start_reset->change_event_pool); 

170.   if(st_start_reset->change_event_pool[0].happens == TRUE) 

171.    return st_fault; 

172.   if(st_start_reset->change_event_pool[1].happens == TRUE) 

173.    return st_operational; 

174.   return NULL; 

175. } 

176. STATE *evaluate_st_safetytests(void) 

177. { 

178.   evaluate_event(st_safetytests->change_event_pool); 

179.   if(st_safetytests->change_event_pool[0].happens == TRUE) 

180.    return st_start_reset; 

181.   return NULL; 

182. } 

183. STATE *evaluate_st_dataloading(void) 

184. { 

185.   evaluate_event(st_dataloading->change_event_pool); 

186.   if(st_dataloading->change_event_pool[0].happens == TRUE) 

187.    return st_start_reset; 

188.   return NULL; 

189. } 

190. STATE *evaluate_st_operational(void) 

191. { 

192.   evaluate_event(st_operational->change_event_pool); 

193.   if(st_operational->change_event_pool[0].happens == TRUE) 

194.    return st_dataloading; 

195.   if(st_operational->change_event_pool[1].happens == TRUE) 

196.    return st_safetytests; 

197.   if(st_operational->change_event_pool[2].happens == TRUE) 

198.    return st_start_reset; 

199.   if(st_operational->change_event_pool[3].happens == TRUE) 

200.    return st_fault; 

201.   return NULL; 

202. } 

 

The first generated file, “STM_UTILS.H”, defines the data structures we use in the 

state machine code. In this file, we have the declaration of a Simulink/SCADE formal 

parameter that is going to be passed to their functions (lines 8-13). From line 14 to 21, 

we have the declaration of a state of the state machine. In line 17, there is the function 

pointer to the Simulink/SCADE code, in line 18 there is the next state evaluation 

function based on state’s change events, in line 19 there is the set of change events a 

state has subscribed, and in line 20, there is the state memory initialization function. The 

change_event structure contains the data needed to declare a change event. The happens 

variable (line 24) contains the evaluation of a Boolean expression declaring the event 

itself; current_value and past_value are the computed values by the Simulink/SCADE 

function pointed by the function pointer in line 17. The change event is triggered when 

these two values are different (they are an AND clause in the change event Boolean 

expression). 

The second generated file, “PRIM_STM.H”, contains the specified state machine 

from Figure 5.12. From line 34 to 44 it is the next state function. It firstly calls the 

action defined for the current state (line 38) and then calls next state recursively to inner 

states (in case of the current be a composite state). In line 41 the state machine evaluates 



the next state to branch. It keeps executing until the evaluated next state is NULL (line 

43), or some of the evaluation functions exits the program.  

From line 45 to 62 there is the state memory allocation function, each state structure 

initialization and, lastly, the assignment of the initial state (line 61). In the case of the 

state machine presented in Figure 5.12, this state is the NotPowered one (remember that 

an initial node in a UML State Machine is a pseudostate; there is no associated actions 

with them. Initial states are only decorative, to graphically represent the actual initial 

node). 

From line 63 to 118 there is the memory and action state initialization for each 

specific state of the state machine. These functions set the STATE struct points to 

enable the next_state (line 38) function to execute state behavior independent of a 

specific state. Note the change_event_pool initialization. This field is an array of change 

events, and the array’s length is equal to the number of state’s outgoing edges. For 

example, in line 69 we have the NotPowered state change_event_pool initialization, and 

the number of elements to be allocated is two (one for the outgoing edge going to the 

Powered state, and the other to the FinalState). 

From line 119 to 150 we have the specific do_action for each state, calling the 

external Simulink/SCADE code. Due to time restriction, we could not implement the 

external code call, but it is straightforward. The do_action for each UML state has as its 

implementation the empty activity, which has an opaque action. The Simulink/SCADE 

function call is written in the opaque action’s body parameter by hand. The code 

generator only gets this specified function call and writes in the do_action body code 

specific to each state. 
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6 ASSESMENT AND CONCLUSIONS 

This chapter presents in section 6.1 the technical evaluation of every aspect 

discussed in this work, highlighting their problems and advantages. In section 6.2, we 

discuss further research to continue this work and our proposed approach.  

6.1 Technical Evaluation 

6.1.1 Model Transformations  

6.1.1.1 Understanding 

In the beginning, the focus of this work was to perform only the transformation 

between A/C ICD and the SysML Design Model. Concerning this transformation, in my 

opinion the most critical one, some aspects remain unclear.  

Despite the fact of A/C ICD being broadly adopted and well know in AIRBUS, 

there are some aspects unclear about its specification. Worst, some aspects of A/C ICD 

specification are not described in its specification document (e.g. how to treat some 

corner cases on variables types). We still have some flaws when translating A/C ICD 

into SysML, for example, when we have a message in the A/C ICD, but its local 

parameter field is empty; or yet, when we use some buses not declared in the A/C ICD 

(both cases have happened in the ADIRU A/C ICD presented in section 5.1).  

Maybe these cases are due to A/C ICD maturity, but there is no document specifying 

which constructs can happen (or are missing) for a given maturity level. I suggest 

defining this document, relating the three A/C ICD maturity level and the constructs an 

A/C ICD compliant to some level must have.  

6.1.1.2 Completeness 

A/C ICD is quite complete given its purpose, i.e. specifying how an embedded 

application interfaces with its equipment. With the new A/C ICD version near to its 

publishing this description is going to be even more detailed, containing, for example, 

the equipment power supply. A/C ICD completeness made easy its transformation to 

SysML. I think that all A/C ICD constructs were well translated into SysML Design 

Model, without any prejudice to its data or completeness. 

6.1.1.3 Specification 

As this work was refined as time has passed, growing fast in complexity, size, and 

target domains, we have defined transformation rules in an ad hoc fashion. In my 

opinion this was the best way to follow, given the exploratory bias of this work; we did 



not want to have a final, closed product, we wanted a research prototype that could 

show us the potentials, flaws, and feasibility of a model-based approach to simulation 

design of embedded avionics equipment instead. Now that the transformation rules are 

consolidated, I suggest specifying them in a more formal fashion (see implementation 

for a discussion on that). 

6.1.1.4 Implementation 

We have implemented the transformation rules in pure Java, summing around 

27.000 lines of code entirely written by hand. Java was chosen because in the beginning 

the work was small, but, as said before, its size has increased a lot. Currently, given the 

size of this work, as well as the complexity of the transformation rules, and the 

metamodels used, Java is far from being suitable to a more end-product version. The 

Java code is too big, complex, and its legibility is not good. We have not defined code 

conventions, prejudicing its manageability. Finally, as Java is not targeted to model 

transformations, the transformation rules are hidden in Java code, making very difficult 

their understanding. 

I suggest implementing a new version of our prototype with ATL (ATLAS 

Transformation Language). ATL was designed to handle model transformations, has a 

concise notation to that, making quite evident the transformation rules between 

metamodels. I think that our tool quality, manageability, and understanding would 

dramatically increase with this new coding in ATL. In addition, using ATL makes our 

tool closer to both TOPCASED and MDE (Model-Driven Engineering) communities.  

6.1.2 SysML Design and Simulation Models 

6.1.2.1 Understanding 

Both SysML Design and Simulation models were very understandable to everybody 

that was in contact with them. It contains clear and simple concepts, and in my opinion, 

this was achieved due to the definition of both the UP2A and SFPR profiles. The 

separation of design and simulation architectural levels was very clear, and how we 

trace both levels. The internal mapping structure between messages, signals, and local 

parameters is straightforward too. As we have adopted a block-oriented fashion to 

specify in SysML the A/C ICD constructs, and everybody in the simulation department 

has notions of Simulink/SCADE, both SysML Design and Simulation models 

understanding is straightforward. 

Concerning the empty activity and the UML Equipment State Machine we have 

received a feedback from a team member of the AMISA project saying that the 

interaction with the simulation platform scheduler was not clear, and how and when the 

do_action is executed. This is easily fixed just defining new stereotypes in the UP2A 

profile to represent the simulation scheduler, but it is not needed to do so. As soon as 

these rules are coded in the code generator, and the Simulation Designer creating the 

UML State Machine is aware of them, they are useless, being only a notational 

overhead decreasing model legibility and conciseness. 

6.1.2.2 Abstraction 

Both SysML Design and Simulation models have an adequate level of abstraction, 

but the internal mapping structure between messages, signals, and local parameters. 

These mapping structure contains several blocks, connectors, flow ports that, in my 
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opinion, does not need to be in the model. As discussed internally, we see the 

simulation being performed in terms of application variables (or local parameters), not 

anymore in terms of signals and messages. Assuming that this work is targeted for long-

term research, I think we can be more aggressive and get rid this information off the 

model. If this information is necessary for some analysis, a tool could retrieve it from a 

database. Thus, in this approach we only need to connect the model elements in the 

SysML models with its internal structure stored in the database. This database approach 

is suitable, in my opinion, because SysML models are good at system specification, but 

are quite bad in information storage. Putting the mapping structure in the SysML model 

is the wrong way of dealing with them. I think that this clear separation of modeling 

data and design data is the biggest impeditive of adopting model-based techniques in 

industry today, and I do not see any solution to integrate models with a relational 

database. This is another research direction that can be conducted in the frame of 

INSIDE or even AMISA. 

6.1.2.3 Implementation 

I have the same considerations as presented in section 6.1.1.4. We should implement 

the transformation rules in ATL, not in Java. In the TOPCASED project there is 

available a set of APIs to handle SysML models, and they can be easily integrated with 

ATL, as TOPCASED already does. Nevertheless, I think that it is best to use a text-to-

model tool to generate SysML from A/C ICD CSV files. Unfortunately, these tools are 

not widespread available in the community, they are rather incubated projects yet. 

6.1.3 MICD and Simulation Code Generation 

6.1.3.1 Understanding 

The MICD generation is straightforward, and its specification is good. Again, it fails 

in specifying corner cases, but it is possible to infer these cases. As MICD are broadly 

adopted, there is no problem of understanding how it is generated from SysML models. 

Concerning code generation, we have not closed how to specify when and how a 

state branches to other, thus, affecting code generation. A better specification and 

algorithms that are more detailed are left as future work. 

6.1.3.2 Completeness 

The MICD code generation supports only the minimum features to pass validation in 

the MICD Studio. Other data that we have in the A/C ICD may not be generated in the 

MICD due to this point. As we wanted to reconstruct only the joining keys to create a 

proof-of-concept, this is fine to our objectives. 

Concerning simulation code generation, it is missing how to evaluate the next state 

based on declared change events, and the connection with Simulink/SCADE. The 

former it lacking the formalization of change events specification, and the latter is just a 

matter of gluing the code inserted on the opaque action’s body field. In addition, it is 

needed to declare the MICD variables in the generated C code, which is quite 

straightforward too. 



6.1.3.3 Implementation 

I have implemented everything in Java, and, in the case of MICD generation, I think 

this is the best way of doing so right now. We have used the APACHE POI API to 

generate the Excel file, being very abstract and easy to use. Using such an API avoids 

the problem of byte serialization and compliance with the Microsoft Excel binary 

format. I do not recommend using a model-to-text transformation in this case. 

Regarding simulation code generation, I suggest using Acceleo tool to do that. It is 

very easy and high level, being perfect to code generation from well-defined 

metamodels. Unfortunately, C code generation from UML State Machines is not 

complete in Acceleo, but, in our case, we have a very simple code generation process, 

not requiring the implementation of all UML metamodel constructs related to state 

machines. 

6.1.4 Integrated Model-Based Design and Simulation Process 

6.1.4.1 Understanding 

The idea of integrating design and simulation in a more formal fashion (based on 

SysML models in our approach) received an excellent reception from AIRBUS 

engineers, both from the Design Office and the Avionics Simulation Products 

Department. Both departments recognize the lack of formalism in integrating design 

and simulation artifacts, and recognize the bad outcomes associated with it. Thus, this 

approach is completely feasible in the middle or long-terms. 

AIRBUS is a strong supporter of SysML and TOPCASED, so there is somehow a 

broad knowledge of it in the company; SysML is not seen as black magic or an 

unfeasible academic proposal. In this way, a model-based approach using SysML has 

the potential to decrease the adoption barrier and resistance to changes in status quo. 

Certainly, it will be necessary to provide training on SysML and the new process, and 

highlight that more formalism is beneficial to the aeronautic domain, helping engineers 

to make their jobs better and more reliable. 

I suggest organizing meetings with AMISA team to discuss common problems and 

solutions. AMISA has common problems and solution to INSIDE and this discussion 

can be very beneficial. In addition, it is the perfect opportunity to integrate design and 

simulation from the beginning with SysML. 

6.1.4.2 Completeness 

In this work, we have approached the process of importing current design artifacts 

into SysML, and selecting the ones we want to simulate, and, finally, generating the 

current simulation artifact from SysML. We have not approached how requirements 

engineering could be integrated in this approach, or event testing of the created models. 

Current tools for requirements engineering, e.g. Telelogic DOORS, support SysML 

models, creating requirement version management, as well as model artifacts. 

Nonetheless, it is still necessary to adopt how simulation requirements would be 

described with such an approach. Clearly, this is completely feasible. Regarding testing, 

it could be performed over the generated or hand written code from the SysML model, 

or over the SysML model, through the UML Profile for Testing or OCL constraints. 

The Cockpit Group in the Design Office (EDYAK) already uses Telelogic DOORS 

to handle requirements, and they have some integration with SysML models. It could be 
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interesting to discuss with them how their process is. Testing with UML/SysML model 

is still an open research problem, and there is no close solution to that. For me it seems 

interesting to express consolidated test procedures with OCL representing structural 

constraints that the model must respect, and exploratory test procedures with the UML 

Profile for Testing. From this profile, we could generate unit tests to test the generated 

code. Another open problem is how to integrate Simulink/SCADE models with these 

testing procedures. 

6.1.4.3 Suitability 

An integrated approach for design and simulation is completely suitable and 

necessary with the increase in aircraft design complexity. Current techniques based on 

textual documents, and ad hoc communication and traceability is far from efficiently 

manage this complexity. Any approach integrating design and simulation in a more 

formal fashion is more than desirable, it is essential. 

In our approach, the bottleneck is clearly two: the internal mapping from messages 

to signals and local parameters, and the CASE tool we have adopted (TOPCASED). As 

discussed before, the internal mapping is an overhead on abstraction not desirable when 

systems are getting more complex, thus, making this mapping even more obfuscated in 

SysML. Concerning TOPCASED, it is an excellent experimentation tool, and should be 

used in AIRBUS research projects, given its flexibility due to its open-source nature, 

but I think that it cannot be used yet in production. The environment is very unstable, 

with many beta tools working together, and the modeling area and properties panels’ 

sizes are not good to modeling (we can solve that using two monitors side-by-side). 

AMISA has adopted Telelogic Rhapsody as its CASE tool, and I think this is a good 

choice. It is completely integrated with DOORS, very robust, being in the market for 

year. Again, I recommend TOPCASED for R&T projects, while Rhapsody for 

production. 

6.2 Contributions and Future Work 

Our contributions are: 

 An approach enabling integrated design and simulation in a model-based 

fashion. With our approach, all simulation and design elements are traced, 

enabling further impact analysis between these two architectural levels. In 

addition, our approach removes all redundancies between simulation and 

design, given that a SysML model can be reused by other model, always 

referencing the source one; 

 Transformation and representation of aircraft design and simulation data in a 

more convenient formalism, moving from textual-based to model-based 

representations through the SysML Design and Simulation models, as well 

as the UP2A and SFPR UML profiles; 

 Separation and better understanding of simulation model and simulation 

platform responsibilities, in specific the simulation scheduler and the 

AP2633 state machine; 

 Definition and first algorithms for simulation code generation from SysML 

Simulation models and its integration with Simulink/SCADE, through the 

mechanism of change events; 



 Development of a tool prototype to perform and show the feasibility of our 

approach. One of the main difficulties to introduce new technology and to 

break status quo is to convince people that the new way of doing things is 

better, and with a tool prototype, this was easier. 

 

Another contribution is the further research and development this work opens: 

 Full simulation code generation from SysML Simulation models and its 

further integration with Simulink/SCADE. It is needed to define the change 

events semantics, its relation with the AP2633 state machine, and the best 

way to call Simulink/SCADE code. It would be interesting to use Acceleo to 

implement the code generator; 

 Implementation of the model-to-model transformation (A/C ICD-AP2633 to 

SysML Design Model, then to SysML Simulation Model) rules in ATL, the 

text-to-model transformations (A/C ICD CSV file to A/C ICD-AP2633 

metamodel), and model-to-text transformations (SysML Models to MICD 

Excel sheet). This would improve our tool, making easier to perform 

evolution, manageability, testing, and production; 

 Integration of relational databases with SysML models, enabling to store 

low-level data into databases, improving the abstraction of the SysML 

models. This is important to avoid using the SysML model as a data 

repository, and to improve impact analysis and engineering with SysML; 

 Full SysML Simulation model execution in SysML to enable exploratory 

modeling, reducing the simulation design cycle by performing partial 

simulations before OCASIME. It is necessary to define the subset of SysML 

we are going to use, and to code its virtual machine; 

 Devising design and simulation process for requirements management, and 

artifacts control integrated with OSMOSE. 
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