

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

RONALDO RODRIGUES FERREIRA

Integrated Model-Based Design and

Simulation of Critical Embedded Systems

Bachelor’s Thesis.

Prof. Dr. Luigi Carro

Advisor UFRGS

Eng. Patrice Thebault

Supervisor AIRBUS France SAS

Porto Alegre, October 2009.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitora de Graduação: Profa. Valquiria Link Bassani

Diretor do Instituto de Informática: Prof. Flávio Rech Wagner

Coordenador do CIC: Prof. João César Netto

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

3

“Esperavam nas dos fundos, e saí pela porta da frente.”

Bochincho, Jayme Caetano Braun

AGRADECIMENTOS

Agradeço minha família, a qual me suportou, com bastante carinho, dizer todo final de ano a

mesma coisa: “esse final de ano eu termino”. Muito obrigado, finalmente terminar a graduação

seria impossível sem o apoio de vocês. Incluem-se todos aqui: primos, tios, avós, irmão, pai,

mãe, povo de Uberlândia, a farofada toda.

Meus amigos do Centro de Biologia de Genômica Molecular da PUCRS, em especial:

Cladi, Felipe, Nelson, Ricardo, Nelson, Alice, Beta, André, Manoel, Paulo, e o professor Sandro

Bonatto. Com vocês aprendi o que é ciência, viciei-me em chocolates Charge, descobri que há

mais alimentos no mundo além de pastel de carne e suco de laranja e o melhor, fiz amigos para

a vida inteira em um momento que eu acabara de chegar a Porto Alegre. Obrigado pela amizade

e diversão, todos são inesquecíveis.

Meus amigos do Laboratório de Sistemas Embarcados da UFRGS, em especial: Marcio,

Marco, Caco, Mateus, Girão, Mônica, Rhod, Lisane, Julius, Emilena, Ulisses, Thomás,

Crístofer, Brião, Gabriel, Assis, Thiago, Leo, e os professores Luigi Carro, Érika Cota e Flávio

Wagner. Indescritível esse lugar, nem ao menos tentarei fazê-lo. Obrigado pela amizade,

paciência (muita), discussões, conversas e tudo o mais que eu não me lembrar de nomear.

Obrigado aos meus professores orientadores pela dedicação, apoio e amizade ao longo da minha

Iniciação Científica e após a mesma. Grande parte do profissional que hoje sou é devido ao

empenho e dedicação de vocês comigo.

Meus amigos de apartamento (aquele cafofo térmico, gelado no inverno, deserto no verão,

mal-cheiroso e levemente sujo), praticamente minha família em Porto Alegre: Marcio, Diego,

Cláudio, Oyamada, Marco e Alex. Não sei como nós nos agüentávamos; depois desses anos

todos dividindo apartamento com vocês eu comecei a acreditar que a Paz Mundial é possível

(desde que cada um lave a própria louça após o uso).

Meus amigos de dominação mundial e entrevero: Marcos, Floriano e Hugo. U$ 2.4 bilhões e

uns chineses genéricos não amedrontam cabra-macho feito a gente.

Meus amigos de Uberaba, em especial: Talita, Rodrigo, Patrícia, Diego Arantes, Raphael,

Thiago, Eduardo, Rayanne, Hernando e Diego.

Meus amigos de Porto Alegre, em especial: Gabriel, Matheus, Montanha, Zidane, Elias,

Fhilipe, Anderson, Daiane, Bruna, Carlitos, Hugo, Lola, Paulo, Otávio, Flávia, Rodolfo e

Bonerges. Porto Alegre não é a mesma sem vocês. Obrigado pela amizade.

Meus amigos da AIRBUS France, Toulouse, em especial: Steve, Miloud, Julian, Larissa,

Raphael, Éverton, Sandeep, meu supervisor Patrice Thebault, Evelyn Fabiano e todo o grupo de

Energy Simulation. Os meus quatro meses aqui foram incríveis graças à amizade de vocês.

Muito importante para a minha estadia e graduação em Porto Alegre: Lancheria do Parque

pelo almoço por R$ 6,40 e o CNPq pelos R$ 300,00 mensais. Muito obrigado.

5

TABLE OF CONTENTS

AGRADECIMENTOS .. 4

ACRONYMS ... 8

FIGURES .. 11

TABLES .. 12

ABSTRACT .. 13

RESUMO .. 14

RÉSUMÉ ... 15

1 INTRODUCTION ... 16

1.1 Motivation .. 16

1.2 Problem Statement .. 17

1.3 The AIRBUS Company ... 18

1.4 Text Organization.. 19

2 MODEL-BASED SYSTEMS ENGINEERING .. 20

2.1 Introduction to Systems Engineering .. 20

2.2 Unified Modeling Language ... 21
2.2.1 Basic Principles.. 21
2.2.2 UML Infrastructure .. 22

2.2.2.1 Core::Abstractions .. 22
2.2.2.2 Core::Basics ... 23
2.2.2.3 Core::Constructs ... 24

2.2.3 UML Superstructure .. 24

2.3 Systems Engineering Modeling Language .. 25

2.4 Model-Based Systems Engineering .. 26
2.4.1 Basic Concepts ... 26
2.4.2 Harmony-SE .. 27
2.4.3 OOSEM ... 27
2.4.4 RUP-SE.. 28
2.4.5 Model-Based versus Document-Centered Systems Engineering 29

2.5 Systems Engineering at AIRBUS ... 30
2.5.1 Two Track Unified Process ... 30
2.5.2 EIA 632 Standard... 31
2.5.3 OSMOSE Process .. 32

3 MODELING AND SIMULATION ... 35

3.1 Introduction to Modeling and Simulation ... 35

3.2 Verification and Validation of Simulation Models ... 36

3.3 Model Simulation Accreditation and Certification .. 38

3.4 Modeling and Simulation Standard: NASA Approach .. 39

3.5 Model Simulation at AIRBUS .. 41
3.5.1 System Simulators ... 41
3.5.2 Development, Integration and Validation of Simulation Models 42

4 PROPOSED SOLUTION ... 44

4.1 Solution Artifacts and Requirements .. 44

4.2 Proposed Design Flow based on SysML .. 45

5 CASE STUDIES .. 49

5.1 A380 Navigation System ... 49
5.1.1 Navigation System Probes Embedded Avionics .. 49
5.1.2 SysML Design and Simulation and MICD Generation ... 50

5.2 Primary Flight Control Computer ... 54
5.2.1 A340 Flight Control Computer Organization .. 54
5.2.2 Primary Flight Control Computer Equipment UML State Machine 55

6 ASSESMENT AND CONCLUSIONS .. 63

6.1 Technical Evaluation ... 63
6.1.1 Model Transformations .. 63

6.1.1.1 Understanding .. 63
6.1.1.2 Completeness ... 63
6.1.1.3 Specification ... 63
6.1.1.4 Implementation .. 64

6.1.2 SysML Design and Simulation Models ... 64
6.1.2.1 Understanding .. 64
6.1.2.2 Abstraction ... 64
6.1.2.3 Implementation .. 65

6.1.3 MICD and Simulation Code Generation .. 65
6.1.3.1 Understanding .. 65

7

6.1.3.2 Completeness ... 65
6.1.3.3 Implementation .. 66

6.1.4 Integrated Model-Based Design and Simulation Process .. 66
6.1.4.1 Understanding .. 66
6.1.4.2 Completeness ... 66
6.1.4.3 Suitability ... 67

6.2 Contributions and Future Work .. 67

REFERENCES .. 69

ACRONYMS

2TUP Two Track Unified Process

A/C Aircraft

A/C ICD Aircraft Interface Control Document

ACARE Advisory Council for Aeronautics Research in Europe

ADIRU Air Data Inertial Reference Unit

ADF Automatic Direction Finders

ADR Air Data Reference

AFDX Avionics Full Duplex Switched Ethernet

AMISA Advanced Model-Integrated Specifications for AIRBUS

ARINC Aeronautical Radio INCorporation

ASPIC Atelier de Simulation Pour l'Intégration et la Conception

ATA Air Transport Association

ATL ATLAS Transformation Language

ATPRO ATelier de PROduction

ATT-HDG Autotrim Heading Angle System

BDD Block Definition Diagram

BNF Backus-Naur Form

CASE Computer-Aided Software Engineering

CSV Comma Separated Values

DAMAS DAta MAnager for Specifications

DME Distance Measuring Equipment

DoD-AU Australian Department of Defence

DoD-US US Department of Defense

DSL Domain Specific Language

EADS European Aeronautic Defense and Space Company

EDYYS Simulation Department at AIRBUS France

EIS Entry-Into-Service

9

EPOPÉE Etude Prospective d’Organisation d’un Poste d’Equipage Ergonomique

FBW Fly-By-Wire

GPS Global Positioning System

IBD Internal Block Diagram

IEEE Institute of Electrical and Electronics Engineers

INCOSE International Council on Systems Engineering

INSIDE Integrated Simulation Into DEsign

IRS Inertial Reference System

ISIS Integrated Standby Instrument System

ISO International Standardization Office

ISP Prise de Pression Statique

LR Left-Recursive Parser

MARTE Modeling and Analysis of Real-Time Embedded Systems

MBSE Model-Based Systems Engineering

MDE Model-Driven Engineering

M&S Modeling and Simulation

MFP Multi-Function Probes

MFPR Model Functional Performance Requirements

MICD Model Interface Control Document

MMR Multi Mode Receiver

MOF Meta Object Facility

MS Model Specification

OAP Outside Air Temperature

OCASIME Outil de Conception Assistée de SImulation Multi-Equipements

OMG Object Management Group

OOSEM Object-Oriented Systems Engineering Method

OSMOSE One Single Methodology supported by the Open Source Environment

PRIM Primary Flight Control Computer

RA Radar Altimeter

R&T Research and Technology

ROI Return on Investment

RUP Rational Unified Process

SAS Société par Actions Simplifiée

SAO Spécification Assistée par Ordinateur

SEC Secondary Flight Control Computer

SFPR UML Profile for Simulation Functional Performance Requirements

SysML System Engineering Modeling Language

UP2A UML Profile for AIRBUS AP2633

UML Unified Modeling Language

V&V Verification and Validation

11

FIGURES

Figure 2.1: Association versus attribute ... 24
Figure 2.2: Two Track Unified Process cycle .. 30
Figure 2.3: The EIA 632 process .. 31

Figure 2.4: OSMOSE process cycle ... 32
Figure 2.5: OSMOSE model package structure ... 33
Figure 3.1: AIRBUS aircraft development and simulation cycles 43
Figure 3.2: Simulation model life cycle. .. 43

Figure 4.1: Design and simulation interactions and artifacts ... 44

Figure 4.2: Design and simulation activities and artifacts of simulation development .. 45
Figure 4.3: SysML design model generation from A/C ICD ... 46
Figure 4.4: SysML simulation model generation from design model and from MFPR

analysis and requirements document .. 46
Figure 4.5: MICD generation from AP2633 compliant SysML simulation model 47

Figure 4.6: Complete integrated model-based design and simulation design flow 47
Figure 4.7: Simulation state machine code generation from UML State Machine

describing equipment behavior ... 48

Figure 5.1: A330 external navigation probes ... 50

Figure 5.2: A380 navigation systems’ A/C ICDs ... 51

Figure 5.3: SysML generation from A/C ICD performed with our tool prototype 51
Figure 5.4: Generated A380 navigation systems SysML Design models 52

Figure 5.5: SFPRPort simulation local parameters selection ... 52
Figure 5.6: ISIS SysML simulation model and generated SFPR dependencies 53
Figure 5.7: ISIS MICD output variables and their generated joining keys 53
Figure 5.8: ISIS MICD input variables and their generated joining keys 54

Figure 5.9: ISIS equipment screen ... 54
Figure 5.10: Primary Flight Control Computer UML Equipment State Machine 56
Figure 5.11: SFPR state selection ... 56
Figure 5.12: Final UML Equipment State Machine after useless state removal 57

TABLES

Table 2.1: Comparison between model-based and document-centered approaches for

Systems Engineering .. 29

13

ABSTRACT

Since the introduction of the fly-by-wire system in the Concorde and A320 civil

aircraft programs, overall aircraft embedded systems complexity is continuously

increasing. Current and forthcoming aircrafts highly depends on embedded avionics to

operate. Computer innovation in these embedded avionics enabled us to improve flight

safety, and the relation between the aircraft and environment, flying greener, cleaner,

quieter, and, furthermore, being economically cheaper and sustainable for airlines. As

the complexity grows due to continuous innovation in embedded avionics on aircrafts,

Systems Engineering techniques currently employed to devise such systems are

becoming insufficient to cope with existing requirements and dynamics in aircraft

design, development, and production.

Two activities that suffer the most with the pressure when complexity increases are

design and simulation of embedded avionics systems. Design concerns the development

of avionics equipments, answering to stakeholders’ requirements. Simulation concerns

both the validation and refinement of designed equipment, and the development of

aircraft simulators for training purposes. Despite the fact that design and simulation are

very dependent of each other in order to prospect and to validate embedded avionics,

respectively, current state-of-the-practice on Systems Engineering in AIRBUS put them

somehow apart; not intentionally, but due to the lack of formalism and standardization

when specifying design and simulation requirements, and when realizing them into

concrete implementations. The specifications of design and simulation are currently

performed in a textual document-centered approach, making very difficult the

deployment of techniques to trace how design decisions constrain simulation, and how

simulation requirements and results refine design.

To enable sustainable growth in complexity of forthcoming embedded avionics

systems, while being economically viable, and continuously add innovation on these

systems, this work proposes a Model-Based Systems Engineering approach to integrate

design and simulation activities in the aircraft development cycle, adopting

UML/SysML as specification language. By adopting a unified specification formalism

to design and simulation, we can trace how design elements constrain simulation, and

how simulation ones refine design, only by having them connected with UML/SysML

language constructs. We have validated the approach with real design artifacts and

simulation models from the A380 aircraft, showing a good scaling for complex models.

Keywords: Aircraft, AIRBUS, Code Generation, Eclipse, Metamodel, Model-Driven

Engineering, Simulation, System Engineering, SysML, UML.

Projeto e Simulação Integrados Baseados em Modelos para Sistemas

Embarcados Críticos

RESUMO

A partir da introdução do sistema de controle fly-by-wire nos programas Concorde e

A320 de aviação civil, a complexidade dos sistemas aviônicos embarcados aumenta

constantemente. A operação dos aviões atuais e futuros é fortemente dependente para

seu funcionamento dos seus sistemas aviônicos embarcados. A inovação em termos de

computação dessa aviônica embarcada nos permitiu aperfeiçoar a segurança de vôo,

bem como a relação entre a aeronave e o ambiente, voando de maneira mais

ecologicamente consciente, além de reduzir custos e permitir melhor sustentabilidade

para as companhias aéreas. Com o aumento da complexidade devido à constante

integração de inovação na aviônica embarcada, as técnicas de Engenharia de Sistemas

empregadas atualmente no desenvolvimento desses sistemas estão se tornando

insuficientes para gerenciar os requisitos e a dinâmica existentes no projeto, no

desenvolvimento e na produção de uma aeronave.

Duas atividades que mais sofrem a pressão com o aumento da complexidade são o

projeto e a simulação dos sistemas aviônicos embarcados. Ao projeto compete o

desenvolvimento dos equipamentos aviônicos, atendendo aos requisitos dos

stakeholders. À simulação compete a validação e o refinamento do projeto de um

equipamento, bem como o desenvolvimento de simuladores para treinamento de pilotos

do avião. Mesmo sendo duas atividades altamente inter-relacionadas, o atual estado da

prática na AIRBUS para a Engenharia de Sistemas do projeto e da simulação as

distancia; não intencionalmente, mas sim devido à inexistência de formalização e

padronização na especificação do projeto e simulação, bem como na implementação das

especificações. Atualmente, realizam-se as especificações de projeto e simulação com

uma abordagem centrada em documentos textuais, o que acarreta em dificuldade de

implantação de técnicas as quais permitam rastrear como as decisões tomadas no

projeto restringem a simulação, e como os requisitos de simulação refinam o projeto.

Com o intuito de pavimentar o crescimento sustentável da complexidade dos

sistemas aviônicos embarcados nas aeronaves futuras, sendo ainda economicamente

viável, além de continuamente agregar inovação nesses sistemas, este trabalho propõe

uma abordagem de Engenharia de Sistemas Baseada em Modelos para integrar as

atividades de projeto e simulação contidas no ciclo de projeto de uma aeronave,

adotando UML/SysML como linguagem de especificação. Ao se adotar um formalismo

único para o projeto e para a simulação, faz-se possível rastrearmos como os elementos

de projeto restringem a simulação, e como os elementos de simulação refinam os de

projeto. Alcança-se rastreabilidade somente através de construções padrão da linguagem

UML/SysML. Validamos a nossa proposta com modelos de simulação e artefatos de

projeto real do avião A380, demonstrando boa escalabilidade da proposta.

Palavras-Chave: Aeronave, AIRBUS, Geração de Código, Eclipse, Engenharia de

Sistemas, Engenharia Dirigida por Modelos, Metamodelo, Simulação, SysML, UML.

15

Intégration de Conception et de Simulation Basée sur les Modèles pour

Systèmes Embarqués Critiques

RÉSUMÉ

Depuis l'introduction du système de commande de vol électrique dans les

programmes d'avions civils Concorde et A320, la complexité des systèmes embarqués

dans l’avion n’a cessé d'augmenter. Le fonctionnement des avions actuels et à venir est

fortement dépendant de l'avionique embarquée. L'innovation dans ces calculateurs nous

a permis d'améliorer la sécurité des vols, et a permis des avions plus écologiques et plus

silencieux vis-à-vis de l’environnement, tout en réduisant les coûts et en augmentant la

viabilité économique pour les compagnies aériennes. Alors que la complexité augmente

en raison de l'innovation continue dans l'avionique embarquée, les techniques

d’Ingénierie des Systèmes actuellement utilisées pour concevoir ces systèmes

deviennent insuffisantes pour faire face aux exigences existantes et à la dynamique

nécessaire dans la conception des avions, leur développement et leur production.

Les deux activités qui souffrent le plus de cette augmentation de complexité sont la

conception et la simulation de systèmes avioniques embarqués. La conception concerne

le développement des équipements avionique, pour répondre aux exigences des parties

prenantes. La simulation concerne la validation et le raffinement de la conception des

équipements, puis le développement de simulateurs d'avion utilisés pour la formation

des pilotes. En dépit du fait que la conception et la simulation sont en principe très

dépendants l’un de l’autre pour l’amélioration et validation des systèmes embarqués

avionique, les pratiques d’Ingénierie des Systèmes dans AIRBUS les ont séparées, non

intentionnellement, mais en raison de l'absence de formalisme et de normalisation

d’abord pendant la phase de spécification des exigences de la conception et de la

simulation et ensuite lors de leur implémentation concrète en phase de réalisation. Les

spécifications de conception et de simulation sont effectuées dans des documents

textuels, ce qui rend très difficile le déploiement de techniques permettant d'une part de

tracer les décisions de conception qui contraignent la simulation, et d'autre part d'utiliser

les résultats de simulation pour affiner la conception.

Afin de permettre une gestion efficace de la complexité des systèmes avioniques

embarqués à venir, tout en étant économiquement viables, et d'ajouter de l'innovation

sur ces systèmes, ce travail propose une approche Basée sur les Modèles visant à

intégrer ensemble les activités de conception et de simulation dans le cycle de

développement des avions, en utilisant UML/SysML comme langage de spécification.

En adoptant un formalisme unifié pour la spécification des exigences de la conception et

de la simulation, nous pouvons tracer comment la conception contraint la simulation, et

comment les résultats de simulation permettent d'affiner la conception. Nous avons

validé la méthode proposée en utilisant des spécifications réelles de conception et de

simulation de l'A380, montrant une bonne mise à l'échelle de la proposition.

Mots-Clés: Avion, AIRBUS, Génération de Code, Eclipse, Ingénierie Basée sur

Modèles, Ingénierie de Système, Métamodèle, Simulation, SysML, UML.

1 INTRODUCTION

This chapter presents the main motivation for this work in section 1.1, which

explains how AIRBUS can continue to setting the standards. Section 1.2 states the

problem this work address, based on the motivation we have discussed previously. To

improve the comprehension and put this work within a period of technology advances in

the Aeronautics domain, section 1.3 briefly introduces the AIRBUS Company history.

Finally, section 1.4 presents the subsequent organization of this text.

1.1 Motivation

The aircraft industry is driven by continuous innovation, being this factor decisive

for players in this industry. With innovation we can fly cheaper, greener, and with

increasingly safety and decreasing costs. Since the milestone introduction of the fly-by-

wire in Concorde aircraft, and later in the A320 (Traverse, 2004), embedded computer

systems have their place in both civil and military aircraft. Embedded systems have a

high pace of adoption in aircrafts, and the days these systems were targeted only to

aircraft control is in the past. Currently, the A380 aircraft entertainment systems,

devoted to passenger seat music and video players, as well as gaming systems, accounts

for around 30% of all wiring in the aircraft. Now modern aircrafts adjusts the interior

cabin lightning and pressure to improve passenger conform in flight – everything

controlled by embedded computer systems. Therefore, we cannot neglect the increasing

complexity we find today in current and we will face in forthcoming aircraft programs,

requiring new Systems Engineering techniques to handle this complexity if the aircraft

manufacturer wants to stay competitive and innovative.

AIRBUS internal research sees the Model-Based Systems Engineering (MBSE)

approach as a promising answer to the increasingly complexity in the forthcoming

aircraft designs. There are research projects currently in AIRBUS studying and

developing methods for the adoption of UML/SysML as the formalism to specify

avionics systems.

The INtegrated Simulation Into DEsign (INSIDE) project is an internal research and

technology (R&T) project aiming at foreseeing new systems design techniques and

processes for avionics systems (AIRBUS, 2008b). In AIRBUS, the following activities

compose system design: formalize specifications; generate the system model –

executable specification; test the specification with simulation; analyze results; refine

specifications with gathered knowledge from results analyzes. We iteratively perform

these activities until results found are acceptable.

Current systems design simulation platform is the OCASIME simulator (we will

present it in subsequent chapters), which is integrated with other simulators, enabling

17

model reuse among these simulation platforms. Despite its well-founded simulation

platform, OCASIME does not integrate the system validation framework, increasing

validation time in the design life cycle. In addition, some models have a long

compilation time, incurring in wasted time when these models have errors or are not

acceptable. Another problem is that OCASIME test procedures are not reusable by other

simulation platforms, increasing test time.

Thus, the main INSIDE goals are, in short-term, to improve the OCASIME

simulation platform, and, in long-term, to improve system design and simulation

integration. We can accomplish this integration by providing a multi-specification-

formalisms platform, enabling to model each system component with the best suitable

formalism (not only Simulink and SCADE, as today); enabling real-time

interoperability between distinct simulation platforms, reducing turn-around time

between simulators; sharing of test scenarios between distinct simulation platforms,

what reduces test efforts while improving quality. The current adopted language for

specifying simulations is UML/SysML. This work is in the frame of INSIDE.

The Advanced Model-Integrated Specifications for Airbus (AMISA) is also an

internal R&T, but differently from INSIDE that is targeted to system simulation,

AMISA is targeted to systems design (AIRBUS, 2008c). AMISA will be partially

deployed in the A350 aircraft program, but it is intended to be widely deployed in the

A30X program (A320 program successor), as well as other model-based approaches.

AMISA also adopts UML/SysML as specification language, and Simulink as low-level

behavior implementation language. AMISA adopts Telelogics Rhapsody as its CASE

tool, integrating automatically with Telelogics DOOR tool for requirements

management, and with Simulink through its S-Functions (S-Functions are external

behavior to the Simulink environment. Actually, it defines C code function

implemented outside Simulink). INSIDE adopts TOPCASED as its CASE tool. As

MBSE techniques are yet in research stage, AIRBUS does not have a closed decision in

which tools to adopt. The main AMISA goal is to increase system maturity in Entry-

Into-Service (EIS) for a new devised aircraft program, correcting some problems to

future aircrafts development identified in the A380 program regarding this issue.

1.2 Problem Statement

Concerning the development of design and simulation activities, the pace of

innovation poses big challenges to forthcoming projects, and we foresee that current

Systems Engineering techniques will not be suitable to handle this new complexity.

AIRBUS identified some of these problems based on gathered knowledge from the

A380 and previous programs (AIRBUS, 2008c):

 Recurring problems due to misinterpretations of specifications between

development teams. The main cause to that is the current way AIRBUS

writes specifications, based on text documents and requirements;

 Late identification of errors in the specifications, because currently they are

not completely executable. This postpones errors finding when we integrate

developed avionics equipments onto simulators;

 Insufficient model exchange with AIRBUS suppliers.

Regarding the problems above, it is desirable to have a well-defined and

unambiguously modeling approach for specifying system functions, behaviors, and

performance, allowing for early model validation by executing these models, as well as

to ensure interoperability between devised models by defining common model

interfaces which modeling teams can rely on.

Specific to simulation design, the problems are:

 Currently, the simulation model code generator only accepts Simulink,

SCADE, SAO, and C code. If the system is not specified with these

formalisms, they cannot be validated with the existing simulation platform;

 Simulation model generation is not fully integrated with its validation,

requiring the Simulation Model Designer to use two distinct environments to

perform model generation and validation;

 Model generation can be very time-consuming, requiring in some cases a

couple of days to generate model code. If we consider an iterative process

cycle to correct model errors, these days can become weeks or months until

the model reaches stability;

 The simulation platform is not too robust, being quite closed to internal

AIRBUS employees, preventing simulation deployment to suppliers;

Another issue is that simulation and design activities are somehow apart in the

development process, while ideally they should be very connected. The main problem is

that it is quite difficult to trace what design elements a simulation element is simulating.

This can incur into redundancies between design and simulation elements.

Simulation in AIRBUS has advanced a lot since its first deployment around twenty

years ago. However, clearly, forthcoming requirements and innovation in new aircrafts

demand to improve current processes.

1.3 The AIRBUS Company

A consortium of European industries formed the Airbus Company to compete with

North American companies such as Boeing. In the mid-60s, tentative negotiations began

regarding a European joint venture – some European companies have discussed such a

possibility. At the 1965 Paris Air Show, some major European commercial airline

companies discussed the requirements for a new passenger aircraft, capable of

transporting more than one hundred customers on short to middle distances at a low

cost. In 1966, first formed partners were Sud Aviation from France, Deutsch Airbus

from Germany, and Hawker Siddeley from the United Kingdom; the three home

governments of each company listed above also formed the consortium.

In early 1967, this consortium has launched the A300 brand, and has evolved this

aircraft to have 320 passenger seats, being a twin-engine aircraft. In middle July 1967,

the three cited governments agreed to start the project. Sud Aviation was in charge of

cockpit and flight control systems, as well as fuselage’s lower central section. Deutsch

Airbus was in charge of forward and read fuselage sections and upper centre section.

Fokker from Netherlands was in charge of flaps and spoilers systems; and CASA (not

yet a full consortium member) from Spain was in charge of horizontal tail plane. In

December 1970, the consortium constituted Airbus Industrie as an Economic Interest

Group.

19

In early 1990, the former AIRBUS CEO wanted to constitute the Company as a

conventional one, but due to difficulties in integrating and measuring the economical

assets of Airbus at that time, he postponed this initiative until 2000. In 2000, all

companies merged, forming the European Aeronautic Defense and Space Company

(EADS), enabling the new constitution process.

The consortium constituted Airbus in 1970 and its headquarters are located in

Toulouse, France. It has around 57,000 employees in the World, divided in four

European sites (France, Germany, Spain and the United Kingdom), as well as in five

main subsidiaries (North America, China, India, Japan and Transport International). It

has currently 270 clients worldwide and has over 5,400 aircrafts in service.

1.4 Text Organization

This work is organized as follows:

 Chapter 2 introduces the Systems Engineering domain, its concepts, and

current approaches for model-based systems engineering. It reviews the basic

UML concepts we use throughout this work, and briefly compares model-

based versus document-centered approaches for Systems Engineering. It

ends with a presentation of the Systems Engineering approach in AIRBUS;

 Chapter 3 introduces the Simulation domain, its concepts, and current

standards for simulation of critical hardware and software. It discusses

verification and validation of simulation models, and Model Simulation

accreditation and certification. It ends with a presentation of System

Simulation in AIRBUS;

 Chapter 4 presents our proposed solution to the problems discussed in this

chapter, in section 1.2;

 Chapter 5 presents the case studies we have performed to evaluate and

validate our proposed approach;

 Chapter 6 draws our technical assessment regarding the proposed approach

and the case studies performed, and conclusions concerning the next steps to

make our approach better.

2 MODEL-BASED SYSTEMS ENGINEERING

This chapter introduces the main Model-Based Systems Engineering (MBSE)

concepts related with this work and how Systems Engineering is at AIRBUS. Section

2.1 introduces what is Systems Engineering and its main concepts and terminology.

Section 2.2 introduces the Unified Modeling Language (UML), as well as its main

constructs used in this work, while section 2.3 presents the Systems Engineering

Modeling Language (SysML), the UML’s counterpart targeted to Systems Engineering.

Section 2.4 presents some available methodologies supporting the Model-Based

Systems Engineering approach. Finally, section 2.5 presents the Systems Engineering

approach that both INSIDE project and this work adopt.

2.1 Introduction to Systems Engineering

This section introduces Systems Engineering basic concepts and how they relate to

this work. In addition, it presents one of the most used Systems Engineering processes

up to now, the IEEE 1220. Section 2.5.2 presented the EIA 632 process, which together

with IEEE 1220 are the most well-know Systems Engineering processes in industry.

A system is a set of arrangement of related elements [people, products (hardware and

software) and processes (facilities, equipment, material, and procedures)], and whose

behavior satisfies operational needs and provides for the life cycle sustainability of the

products. In addition, it contains the people required to develop, produce, test,

distribute, operate, support, or dispose the system (IEEE, 2005). By this definition, the

main difference of a system from Systems Engineering to Software Engineering

perspective is that a system may compose hardware and software components, being

these two different architectures well described in the system’s specifications. In

Software Engineering, usually the underlying hardware is not a concern, only when we

consider Embedded Software (Ferreira, 2009).

A system is a composition of related systems, which together provide some useful

service to the environment through its published interfaces, as well as consume services

from other systems from this environment. An environment can be either software or

hardware systems, or even a human user. The general system hierarchy is: system,

product, subsystem, assemblies, components, subcomponents, and parts. Several

products can compose a system, and a product can define several subsystems, which are

in turn composed of several components (IEEE, 2005).

A life cycle is the system or product evolution initiated by perceived stakeholder

needs through the disposal of the products (IEEE, 2005). The following functional

processes compose the usual Systems Engineering life cycle:

21

Development, which is the planning and execution of system and subsystem

definition tasks required to evolve the system from stakeholder needs to

product solutions and their life cycle processes.

Manufacturing, composing tasks, actions, and activities for fabrication and

assembly of engineering test models, prototypes, and production of product

solutions and their life cycle process products.

Test, composing tasks, actions, and activities for evaluating product solutions

and their life cycles processes to measure specification conformance or

stakeholder satisfaction.

Distribution, composing the tasks, actions, and activities to initially transport,

assemble, install, test, and check out products to effect proper transition to

users, operators or consumers.

Operations, tasks, actions, and activities associated with the use of the

product or a life cycle process.

Support, involves tasks, actions, and activities providing maintenance,

support material and facility management sustaining operations.

Training, measurable tasks, actions, and activities required to achieve and

maintain the knowledge, skills, and abilities necessary to perform efficiently

and effectively operations, support, and disposal throughout the system life

cycle.

Disposal, tasks, actions, and activities to ensure that disposal or recycling of

destroyed or irreparable consumer and life cycle processes and by-products

comply with applicable environmental regulations and directives.

(IEEE, 2005)

The Systems Engineering process usually composes a set of activities: requirement

analysis, requirements validation, functional analysis, functional verification, synthesis,

and design verification. These activities are well known in the Software Engineering

context, and they are not discussed further here. The main difference between the

Systems and Software Engineering is that in the former we consider in addition to

software, hardware portions. For details, refer to IEEE (2005).

2.2 Unified Modeling Language

This section discusses the UML metamodel constructs used during through this

work. Thus, it assumes that the reader has some user knowledge on the Unified

Modeling Language (UML) and its basic diagrams (mainly class, sequence, states,

activities, and use cases) and on the class-based Object-Oriented paradigm (the

difference between a class and an instance). We refer interested readers aiming at

earning good knowledge on UML to Larman (2004) and on Object-Oriented approaches

to Craig (2007).

2.2.1 Basic Principles

Currently on its version 2.2, two documents specify the UML language, UML

Infrastructure (OMG, 2009a) and UML Superstructure (OMG, 2009b). The

Infrastructure document specifies the UML core elements, used to specify several

OMG specifications, including UML itself. The Superstructure specifies more detailed

elements, such as behavior and interactions; usually, it is not reused by other OMG

specifications.

UML was devised to meet some requirements (OMG, 2009a): modularity, having

strong cohesion and being loosely coupled; layering, to separate UML specification

from metamodels and models, as well as to enable different abstraction levels of the

same model; partitioning, enabling smooth UML metalanguage extension; extensibility,

through the use of profiles, having, thus, a built-in support for several application

domains; and reuse, enabling new specifications to use the UML concepts coherently.

The UML Infrastructure documents specify the Core and Profiles package, which

contains the PrimitiveTypes, Abstractions, Constructs, and Basic Packages.

PrimitiveTypes contains the primitive types in UML: Boolean, Integer, String, and

UnlimitedNatural. Abstractions package contains metaclasses designed to be specialized

by other metamodels reusing the UML Infrastructure. Constructs define metaclasses

related to Object-Oriented modeling, mainly used to implement the UML kernel

constructs. Basic defines the constructs enabling the UML serialization to XMI. Profiles

package enables to tailor specific domain model concepts into existing ones in the target

metamodel.

The UML language also defines the four-layer metamodel hierarchy, used to specify

how model levels are interconnected, enabling the concept of metamodeling. The four-

layers hierarchy is composed by: M3 layer, which corresponds to the meta-metamodel,

defined by the Meta Object Facility (MOF) (OMG, 2006a) specification; M2 layer,

which corresponds to the metamodel, defined by the UML language specification; M1

layer, defined by some user application model, expressed by the adopted metamodel

language, in this example the UML one; and M0 layer, which is the actual runtime

instance of the M1 layer.

When devising the UML metamodel, OMG has adopted some formal techniques,

aiming at some goals, to know: correctness, by defining well-formed rules and methods

to validate a model; precision, eliminating syntactic and interpretation ambiguity;

conciseness, avoiding non-necessary and superfluous constructs; consistency, by

guaranteeing that metamodel constructs do not create contradictions; and

understandability, improving the readability and understanding of the specification,

preferring to apply a less formal mechanism when it improves readability over the

formal one. Due to this last design decision, UML is considered a semiformal language.

In addition, to some constructs more related with implementation issues, the UML

specification can specify this case as a semantic variation point, being the correct

specification in charge of who implements this construct in the target execution

environment.

2.2.2 UML Infrastructure

Two packages compose the UML Infrastructure (OMG, 2009a), Core and Profiles,

decomposed further in more sub packages, as presented above. This section presents the

most important UML Infrastructure constructs to this work.

2.2.2.1 Core::Abstractions

The UML metaclasses important to this work are Classifier, Feature,

StructuralFeature, BehavioralFeature, Element, InstanceSpecification, and Slot.

23

 Classifier defines a namespace that can contain features; it is some sort of a

named container for features. Classifier is an abstract metaclass.

 Feature is an abstract metaclass defining a behavioral or structural feature of

a Classifier; it is only used to unify methods accessing Features, enabling to

handle both structural and behavioral ones.

 StructuralFeature is a typed feature of a classifier specifying that this

classifier has a structure, which can be instantiated during runtime, being

allocated into some slot. StructureFeature is an abstract metaclass.

 BehavioralFeature is an abstract metaclass that specifies some behavior

attached to the Classifier this BehavioralFeature is contained.

 Element is an abstract metaclass with no super class, being the UML

metamodel root class.

 InstanceSpecification is a concrete metaclass defining some model entity,

partially or even completely. This definition is made by assigning values

(InstanceValue metaclass) to the entity’s slots. InstanceSpecification is used

to represent the modeled system during runtime, e.g. an

InstanceSpecification of the Classifier

 Class represents an element of the model domain, and its instance is an

object. Slot specifies that some StructuralFeature owned by an

InstanceSpecification owns a value, e.g. the Slot of a Class’ Property is a

value assigned during runtime.

2.2.2.2 Core::Basics

The important metaclasses in this package are: NamedElement, Type,

TypedElement, Class, Operation, and Property.

 A NamedElement is an Element that may have a name.

 Type is an abstract metaclass that introduces a typing system, being the type

of a TypedElement.

 TypedElement is an abstract metaclass extending NamedElement, adding a

Type to it.

 Class extends Type, enabling itself to have a Type with properties (Class

attribute ownedAttribute[*]) and operations (Class attribute

ownedOperation[*]), and to introduce a type hierarchy through the

superClass[*] attribute – note that multiple inheritance is possible, and how

to handle this is a semantic variation point.

 An Operation is a kind of container to some behavior, being owned only by

instances of Class. An Operation extends both TypedElement and

MultiplicityElement, and may have a list of parameters (Operation attribute

ownedParameter[*]).

 A Property is a TypedElement, being an attribute of a Class. The strange is

that on the UML Infrastructure is possible for an attribute to exist without a

container class, given its class[0..1] attribute has the lower bound set to 0

(OMG, 2009a, p.98). The UML Infrastructure document does not specify

why this is possible.

2.2.2.3 Core::Constructs

The important metaclasses in this package are DirectedRelationship, and

Association.

 DirectedRelationship is a Relationship in which it is possible to distinguish

between source and target Elements, through the attributes

source[1..*]::Element and target[1..*]::Element. Note that any kind of

metaclass can be a source or target within a DirectedRelationship.

 Association defines a set of tuples, whose values refer to typed instances.

Association is a Classifier, thus it can be instantiated, and we call its

instances links. This is sometimes a source of confusion, and it is worthy of a

better explanation. Let us have a look in the example in Figure 2.1.

Class A
Class B

void foo()

Class A

b : B

Class B

void foo()

Figure 2.1: Association versus attribute

Are these two UML models equivalents? The answer is yes and no. Pragmatically,

yes; semantically, no. Let us assume that we have an object of type A called a. The

difference is when we have the call a.b.foo(), due to the context of execution. In the first

case, b.foo() execution is going to happen “inside” the link instance created for the

association between Class A and Class B, that’s why an Association introduces a tuple:

in this example, we have <Class A, Class B> tuple. In the attribute case, b.foo()

execution is going to be performed “inside” the a object. Pragmatically, they are the

same, because usually code generators do not create the link object, considering the

association target as an attribute of the association source.

2.2.3 UML Superstructure

The UML Superstructure specification (OMG, 2009b) is the actual definition of the

UML language, which reuses and extends the majority of the concepts introduced in the

UML Infrastructure specification (OMG, 2009a). It divides into two big parts: Structure

and Behavior.

From the Structure part, the most important metaclasses to this work are:

Dependency, from Structure::Classes package; Port, from Structure::

CompositeStructure package; From the Behavior part, the most important metaclasses

are Behavior, BehavioredClassifier, and BehavioralFeature, from Behavior::

CommonBehavior; and OpaqueAction, from Behavior::Actions.

 Dependency specifies that to define a set of client NamedElements it requires

another set of suppliers NamedElements. Thus, the clients’ complete

25

definition is only possible with all their suppliers. Dependency has no

runtime semantics; it completely defines itself in terms of model elements,

not instances. UML enables models to specialize the semantics of

Dependency, making it most appropriate for the model’s specific domain.

 BehavioredClassifier specializes Classifier metaclass enabling a Classifier to

own behaviors contained in its namespace. BehavioredClassifier has two

main attributes: ownedBehavior[0..*], which is the set of behaviors within

the BehavioredClassifier namespace; and classifierBehavior[0..1], which is

the behavior of the BehavioredClassifier, being this attribute a subset of

ownedBehavior[0..*]. The behavior specified in classifierBehavior attribute

executes just after the BehavioredClassifer instantiation.

 Behavior is the specification of how its context Classifier changes over time.

This behavior specification can be an atomic, emergent, or even an

illustration of a subset of real execution. The behavior is said to be atomic if

it is contained in only one implementation, e.g. within an Activity. The

behavior is emergent if its specification depends on the interaction of more

than one BehavioredClassifiers, usually being specified by a

CollaborationUse. The illustration is the case when the behavior is specified

with a Sequence Diagram, which is actually a scenario of execution, not its

complete specification. The Behavior has two main attributes:

specification[0..1]::BehavioralFeature, being the behavior specification

itself; and context[0..1]::BehavioredClassifier, which defines where this

behavior is going to be executed (recall the example from Figure 2.1,

Association versus Attribute).

 BehavioralFeature declares and implements a behavior. The

BehavioralFeature specifies, thus, which behavior is executed when the

BehavioralFeature is invoked. It has one main attribute,

method[0..*]::Behavior, which defines the behaviors executed when the

BehavioralFeature is invoked. The formal parameter list match against a

method is done in the BehavioralFeature context, but how this is done is a

semantic variation point, as some languages employ covariance, while others

contra-variance.

 OpaqueAction is an Action that is used as a placeholder for an

implementation. An OpaqueAction enables to implement an Action in a

language apart from UML, for example Java or C++, as long as this language

source-code has text format.

2.3 Systems Engineering Modeling Language

This section briefly introduces the Systems Engineering Modeling Language

(SysML) on a user-centered approach. We are not going to discuss its metamodel, even

because metamodel constructs used in this work are fairly the same from UML, which

section 2.2 presented. For a gentle introduction to SysML, we refer interested readers to

Weilkiens (2008).

Apart from UML which was designed to model software systems, SysML (OMG,

2008b) was designed to smoothly handle systems composed by hardware, information,

and so on, not only software-based systems. To do so, it reuses some portions of the

UML 2 language (OMG, 2009a), and extends it to better represent concepts from the

systems engineering domain.

The most important changes in SysML from UML are (Weilkiens, 2008):

 Classes are called Blocks, and the Class diagram was changed to Block

Definition Diagram (BDD);

 The Composite diagram was changed to Internal Block Diagram (IBD);

 It is possible to specify item flow within an IBD;

 Support for continuous functions through actions and object nodes in

Activity diagram;

 Introduction of two new diagrams, Requirements, and Parametric.

The Requirement diagram defines a way to express system requirements in the

diagram, and to manage all the requirement life cycle through its defined dependencies:

derive requirement (the client was derived from the supplier); satisfy (the set of clients,

which are actually model elements, a Block for example, satisfies the supplier

requirement); copy (the client requirement is the same as the supplier, but its name and

unique identification); verify (the client test case is used to check the supplier

consistency); refine (the client is a model refine of the supplier); and trace (a very weak

dependency, it is used only to link the supplier requirement with a client model element

when the other dependencies presented are not suitable to represent their relationship)

(Weilkiens, 2008).

The Parametric diagram enables to parameterize the properties of some blocks,

creating parametric functions with them. A parametric function is a function that is

calculated given some parameters, which are properties in the model. For example, y =

ax + b is a parametric function. These parameters are specified within Constraint

Blocks. A Constraint block defines some constraints in its properties, e.g. if a Constraint

block has an integer property a, than a valid constraint would be a > 6 (Weilkiens,

2008).

It is important to define model view and viewpoints. A view is a representation of

the entire system, based on a selected viewpoint. A viewpoint specifies the structure of a

view based on a set of stakeholders. In other words, a view is an abstraction of the entire

subsystem, where the viewpoint defines this abstraction, depending on the stakeholders

of interest for a view. In this way, it is possible to create different representations of the

same system for different presentation purposes (Weilkiens, 2008).

2.4 Model-Based Systems Engineering

This section presents the basic concepts on Model-Based Systems Engineering

(MBSE), as well as some well-know methodologies supporting MBSE. This section is

based on a survey from the INCOSE Focus Group on MBSE (Estefan, 2007). Finally, in

section 2.4.5 it presents a comparison between the current state-of-the-practice and

model-based approaches for Systems Engineering.

2.4.1 Basic Concepts

We find five important concepts in MBSE: process, method, tool, methodology, and

environment.

27

A process is a logical sequence of tasks performed to achieve a particular

objective. A process defines what is to be done, without specifying how each

task is performed.

A method consists of techniques for performing a task, thus it defines how

each task is going to be realized.

A tool is an instrument that, when applied to a particular method, can enhance

the efficiency of the task, provided it is applied properly and by somebody

with proper skills and training.

A methodology is a collection of related processes, methods, and tools. It is

essentially a guide and can be thought of as application of related processes,

methods, and tools to a class of problems that all have something in common.

An environment consists of surroundings, external objects, conditions, or

factors that influence the actions of an object, individual person or group.

These conditions can be social, cultural, personal, physical, organizational, or

functional. The purpose of a project environment should be to integrate and

support the use of tools and methods on that project. Thus, it enables (or

disables) the what and the how.

(Estefan, 2007)

2.4.2 Harmony-SE

I-Logix (now Telelogics) has created the Harmony-SE methodology to support

Systems Engineering with SysML. Its improvement is mainly due to its integration with

a strong requirement management tool, in this case Telelogic DOORS. It had a good

acceptance because the US Department of Defense (DoD) used a tool called Software

Architect from Popkin Software Company, which was bought by Telelogic, and

integrates with Harmony-SE. Harmony-SE was designed to be vendor-neutral, but it is

only supported by Telelogic Rhapsody tool.

The key objectives that Harmony-SE methodology accomplishes are:

 Identify/derive required system functionality;

 Identify associated system states and modes;

 Allocate system functionality/modes to a physical architecture.

As usual on SysML, Harmony-SE is service-oriented, and uses SysML blocks to

represent the system structure. The communication between blocks is given with service

requests, which induces some state (or mode in Harmony-SE terminology) in the

requested block. Sequence Diagrams represents the communication between system

structures, and the system structure with internal block definition diagrams.

The interesting is that every Harmony-SE element traces and synchronizes with a

requirement on the requirements repository using Telelogic DOORS. For a more

detailed introduction to Harmony-SE, refer to (Estefan, 2007).

2.4.3 OOSEM

The Object-Oriented Systems Engineering Method (OOSEM) employs a top-down

approach for specification, verification, analysis, design and development, where the

SysML language supports all these levels (Estefan, 2007). By adopting SysML as its

implementing language, OOSEM methodology integrates smoothly with current Object-

Oriented techniques. The OOSEM key objectives are the following, extracted from

(Estefan, 2007):

 Capture and analysis of requirements and design information to specify

complex systems;

 Integration with Object-Oriented software, hardware, and other engineering

methodology;

 Support for system-level reuse and design evolution.

Three components compose the OOSEM structure:

 Systems Engineering Foundation: contains the systems engineering

processes defining how requirements must be elicited;

 Common Object-Oriented System Engineering: top-down and recursive

layer, it is use-case driven based on previous elicited requirements. Defines

black and white box components, using Object-Oriented concepts, and is

expressed with UML/SysML languages. It depends on Systems Engineering

Foundation layer;

 OOSEM Unique: concerns the system activities, such as business model,

context where the system is going to be deployed, system/logical

decomposition, partitioning, allocation, and further system high-level

activities. Is depends on Common Object-Oriented System Engineering

layer.

The three previous cited key objects are unrolled into the following activities, based

on the V model (Forsberg, 1991):

 Analyze stakeholder requirements;

 Define system requirements;

 Define logical architecture;

 Synthesize candidate allocated architecture;

 Optimize and evaluate design alternatives;

 Validate and verify the overall system.

2.4.4 RUP-SE

The Rational Unified Process for Systems Engineering (RUP-SE) is based on the

well-know software development RUP process, incrementing it to deal with systems

specification, analysis, design and development (RATIONAL, 2002). RUP is based on

content-elements, describing what must be produced in each RUP cycle. These cycles

can be represented by the well know RUP’s whale chart.

All iterations in the RUP life cycle have seven disciplines: business modeling,

requirements, analysis and design, implementation, test, and deployment. RUP-SE

extends RUP by defining new roles, by including for example the systems engineer;

new artifacts related to systems engineer non-function requirements, such as security,

training, and logistics; by adding the concepts of model level, view and viewpoints. A

model level groups model element with similar level of details – it does not group

29

abstraction levels. RUP-SE offers more scalability due the concept of viewpoint from

SysML, enabling to provide the same model with different presentation details for

distinct groups of stakeholders, without replicating model elements and it offer built-in

support for non-functional requirements. IBM Company through its IBM Rational

Software Suite offers tool support for RUP-SE.

2.4.5 Model-Based versus Document-Centered Systems Engineering

As stated before, a Systems Engineering process encompasses some well-defined

activities: requirements analysis, requirements validation, functional analysis, functional

verification, synthesis, and physical verification. A process defines how these activities

are going to be realized, thus we can imagine that there are a lot of ways of doing so,

and indeed there are. Previously in this section some methodologies and processes

based on models were presented, but as stated by Baker (2000), MBSE is not the current

state-of-the-practice. Moreover, we can push this even nowadays, almost ten years later.

Currently, companies still rely on document-centered processes and methodologies to

have implemented their Systems Engineering process; even in AIRBUS, where we have

the Model Functional Performance Requirement (MFPR) document stating the

equipment simulation requirements, and partially the simulation model itself, described

by the Model Interface Document (MICD) Excel sheet. In AIRBUS, only model

behavior is implemented with a model-based approach, using Simulink and SCADE

models, but the model architecture (or model interface) is completely document-

centered. Baker (2000) made a comparison between MBSE and the document-centered

approach, which Table 2.1 summarizes.

Table 2.1: Comparison between model-based and document-centered approaches for

Systems Engineering

Characteristic Model-based Document-centered

Information Repository Models Documents

Reviews Automated by model

inspection

Manual, by reading and

comparing text in natural

language

Verification Incremental (model

refinements) and automated

(model checker)

Manual, audited by human

inspector

Communication Consistent through model

views and well-defined

semantics

Ambiguous, it depends on

reader’s interpretation

Validation Performed by different

stakeholder’s views

Text walk-through

Traceability

(requirements to design

verification)

Completely traceable Accuracy depends on hard

efforts

Reuse Model repository, plug-and-

play

None, only copy-and-paste

Cultural Adoption Probably new paradigm

within R&D team

Status-quo

Source: BAKER, 2000, p. 5.

The only “drawback” is the requirement to have tool support, but this can be easily

accomplished, and several tools were presented to that. Thus, the initial effort to

implement a MBSE approach probably offers an excellent Return on Investment (ROI).

2.5 Systems Engineering at AIRBUS

Systems Engineering, in a broad sense, is the use of well-defined methodology

(engineering part) to design and develop products that together offer a valuable service

to some user (system part). The Airbus Avionics and Simulation Department defined a

System Engineering process based on a model-driven approach and SysML called

OSMOSE (One Single Methodology supported by the Open Source Environment). The

OSMOSE process focuses in defining equipment requirements and produces design

artifacts in a more formal fashion. Within OSMOSE, a requirement specification is

described with SysML. OSMOSE was created based on the EIA632 standard and on the

Two Track Unified Process (2TUP).

2.5.1 Two Track Unified Process

The well know Unified Process (UP) is a development process that uses as its

working language the UML. It is an iterative, incremental, and use case-driven process.

Several CASE tools support it, such as IBM Rational Rose, and have a very successful

history in the software development industry. The 2TUP (Roques, 2003) extends UP by

adding one development branch in addition to the existing functional requirements one.

The added branch deals with technical constraints that describe some operational

constraints such as software specification, underlying hardware and operating

environment. Thus, 2TUP also handles physical non-functional requirements. Figure 2.2

presents the 2TUP general process chart.

Figure 2.2: Two Track Unified Process cycle

Each Y cycle phase in 2TUP describe the abstraction level of a given specification,

where the outer leaves are more abstract than the central branch and its lower level

phases. The generic design phase intends for constructing standardized and reusable

components by other system components. The preliminary design phase merges the

Elicitation of functional

requirements

Elicitation of technical

requirements

Analysis Generic design

Preliminary design

Detailed design

Coding

Verification & validation

Functional

constraints

Technical

constraints

Elicitation of functional

requirements

Elicitation of technical

requirements

Analysis Generic design

Preliminary design

Detailed design

Coding

Verification & validation

Functional

constraints

Technical

constraints

31

functional and non-functional branches, resolving conflicts between them if any. The

detailed design phase assesses how to create actual components from preliminary

design specification. The remaining two stages concerns components construction and

its proper validation. 2TUP was firstly designed to deal with Information Systems, thus

the OSMOSE methodology had adapted it for Systems Engineering.

2.5.2 EIA 632 Standard

The EIA 632 standard (Martin, 1998) defines some Systems Engineering practices

to improve the overall quality of a system design and development, in order to reduce

time-to-market and to manage budgets initially made available to the project. This

standard defines a systematic approach to engineer and/or reengineer a system, and

bases itself on the following principles:

 A system is composed of one or more related products that allow end

products over their life cycle to satisfy all stakeholders requirements;

 A system can be hierarchically organized;

 The successive application of a set of well-defined processes accomplishes a

Systems Engineering process.

Figure 2.3 presents the EIA 632 standard processes.

Technical Management

Planning
process

Assessment
process

Control
process

Technical Evaluation

System
analysis
process

Requirements
validation
process

System
verification
process

End products
validation
process

Acquisition & Supply

Supply
process

Acquisition
process

System Design

Requirements
definition process

Solution definition
process

Product Realization

Implementation
process

Transaction to use
process

Requirements

Designs

Products

Plans,
Directives
& Status

Outcomes
& Feedback

Acquisition
Request

System
Products

Figure 2.3: The EIA 632 process

2.5.3 OSMOSE Process

The EIA 632 defines what to do within an Engineering process, while 2TUP defines

how to do. The specialization of these two processes gave rise to the OSMOSE Airbus

Internal process for Avionics Systems (AIRBUS, 2007a). The OSMOSE process cycle

is presented in Figure 2.4.

Customer requirements

Requirements organization
and validation

Logical solution definition

Physical solution definition

Detailed specification of
the chosen solution

Other requirements from
stakeholders

Requirement

Functional definition: use case & activity

Structural definition: block definition, activity, state machine

internal block

Structural definition: block definition, activity, state machine

internal block

Structural definition: block definition, activity, state machine

internal block

Figure 2.4: OSMOSE process cycle

As any design and development process, OSMOSE starts with requirements

elicitation and specification (boxes Customer requirements and Other requirements

from stakeholders in Figure 2.4). It formalizes each gathered requirement from the

stakeholders according to internal Airbus specification directives. After a requirement is

formalized and ratified, it is further detailed. This detailing process creates the technical

specification of new equipment (box Requirements organization and validation in

Figure 2.4). Once the requirements were gathered, ratified and the technical equipment

specification was built, OSMOSE advances to the solution definition stage.

The logical solution is the realization of system objectives, services and functional

architecture, while the physical solution is the technical implementation of the logical

one based on actual hardware and software components. For each possible solution (a

solution is possible when it satisfies all requirements, and a solution varies due to the

several ways we can realize a set of requirements by architectural designs), an

architecture must be defined, ratified, and the logical solution must be checked for

requirements conformance. Based on effectiveness and risk analysis, the designer can

choose a final solution. After deciding the logical and physical solutions, we create,

ratify, and check the detailed subsystems specification composing the specified system.

As OSMOSE merges both design and development processes into a single life cycle,

it is possible to maintain traceability between design decision and its development

realization. The logical solution is a high-level product functional description; it details

its main functions, objectives and provided services. Thus, each definition inside a

logical solution describes the logical structure of the product, i.e. there is an association

between a high-level specification and its logical structure. On the other hand, the

physical structure is the actual implementation of each logical structure. This step

defines the block interfaces between components, their input and output ports for data-

33

flow and signals, creating in this way an association between the logical structure and

its physical constituting blocks.

Each equipment model (the actual product that the OSMOSE process creates) is

constituted by a SysML model. This SysML model has a defined package structure,

where each package contains specific design model elements. The OSMOSE model

package structure is presented in Figure 2.5.

Model Structurepackage OSMOSE[]

Other Stakeholders

Requirements

Organized

Requirements

Customer

Requirements

Requirements

Collaboration

OSMOSE

Connected

Products

Standards

Allocation

Functions

Structure

Structure

Domain

Models

Physical

View

ContextLogical

View

Events

Actors

Model

Use

Cases

Events

Signal

Figure 2.5: OSMOSE model package structure

The Context package defines the product’s environment, and it is independent of the

packages containing model elements defining the product. It is forbidden to create any

dependency between Context and Logical View and Physical View packages. The

Context::Domain Models package formalizes all concepts necessary to product

specification, such as physical laws. Context::Connected Products describes all

elements composing product’s external structure, such as initialization files.

Context::Standards contains standards and norms, and specifies interfaces between

components and data types. Context::Actors Model specifies the product’s interacting

actors.

The Requirements package contains requirements specifications described with

SysML requirements diagrams, as well as its inner packages Requirements::Customer

Requirements, Requirements::Other Stakeholders Requirements, and Requirements::

Organized Requirements.

The Logical View package contains the high-level functional product (equipment)

description. Logical View::Functions describes product objectives described in Logical

View::Function::Use Cases, and creates within Logic View::Function::Collaboration

the association between these objectives and product structure. Logic View::Structure

describes product’s architecture, containing mainly block elements from SysML and

composition relationships between these blocks. It is worth noting that Logic View is

both structural and behavioral system specification.

The Physical View package specifies the actual hardware and software product

structure. Physical View::Structure realizes (or implements) the elements from Logic

View packages. Physical View also describes ports and internal connections between

actual blocks.

The Allocation package specifies the allocation of roles defined in Logical

View::Structure into Physical View::Structure actual elements.

35

3 MODELING AND SIMULATION

This chapter discusses modeling and simulation (M&S) requirements, development,

and deployment in organizations, particularly in AIRBUS. Section 3.1 introduces M&S,

and how these activities are inserted in the development cycle. Section 3.2 presents

Verification and Validation (V&V) of M&S, its basic concepts and some approaches to

perform V&V applied to M&S. Section 3.2 discusses accreditation and certification,

and how they connect with M&S for safe-critical domains. Section 3.4 presents the

NASA standard processes for M&S, which contains the basic requirements for any safe-

critical M&S activity. Finally, section 3.5 presents the AIRBUS simulation platforms,

and the Systems Engineering process deployed in AIRBUS for M&S development.

3.1 Introduction to Modeling and Simulation

With the increasingly complexity of current systems, and we include here aircrafts,

it is imperative to devise techniques to handle in an abstract and as formal as possible

fashion this complexity. Another issue is the pressure to reduce time-to-market, what

can be crucial to a new product. Just to remember the A380 delay, a €13 billion

program, and its €6.3 to €7.9 billion cash shortfall due to its two years delivery delay,

and the new prospects says that EADS is going to achieve investment break-even only

in ten years (Clark, 2006). Therefore, in addition to handle safe-critical issues, a feasible

development approach must help in respecting time development constraints and

budgets. The ACARE Quality & Affordability Report discusses that, by 2020, is

imperative to reduce 50% of current time in the supply-chain for aircraft production,

considering both time-to-market (engineering and design time of a new aircraft) and

time-to-delivery (manufacturing and delivery time to airlines), and one way of doing so

is to improve Systems Engineering processes, mainly modeling and simulation (M&S)

of new avionics equipment (ACARE, 2002).

The central concept in modeling is model. A model is a representation of something

in the real world, called model domain. Brade (2003) defines a model as:

“A model is an abstract and idealized replication of a real system,

which reflects all of its relevant properties with sufficient accuracy

with respect to the intended purpose”

It is possible to create a model even if the real system is still incomplete. A model

usually abstracts away low-level details that are useless to the analysis we are going to

conduce with the modeled system. Thus, a model can be more tractable because it is

simpler, in the opposite of the very detailed real system. We can define model

resolution as the perceived level of reality contained in the model. A model with high

resolution is closer to the real system, while a model with less resolution is more

abstract (Brade, 2003). One of the main difficulties in modeling is to define the best

suitable resolution to adopt. There is no correct answer to that; adopted resolution

barely depends on the system itself, it depends more on analysis and studies we will

carry with the model. Different analyses (or model goals) define different model views,

being each defined view more appropriate to one analysis and group of stakeholders as

the other.

A model may contain structural and behavioral descriptions. A structural

description consists of all model elements and their interdependencies and hierarchies.

The behavioral description is a functional specification of how model inputs transform

into model outputs, and how internal states of model elements change over time to

realize the generation of outputs from inputs (Brade, 2003).

A model has three representations, depending on its purposes: conceptual, formal,

and executable. A conceptual model presents the domain elements and their structure

and behavior, and centers itself in reasoning about the modeled system. A formal model

is a formal specification of the conceptual model, based on some adopted formalism

with well-defined semantics. The executable model implements the formal model, and

includes necessary information to be executed in a computer (Brade, 2003).

With a formal model, we can perform analysis of the produced outputs for the

models inputs. When we execute the model to analyze its output, we are performing a

model simulation. IEEE (2001) standard defines simulation as:

“Simulation is the execution of a model that behaves similar to the

real system when provided a set of controlled inputs over time”

The model behavior is the way outputs change over time during simulation. Brade

(2003) presents a simulation model taxonomy:

 Quasi-continuous vs. discrete simulation: depending whether the state

space is continuous or discrete, respectively.

 Time-stepped vs. discrete-event simulation: depending whether the

simulation advances over a predefined time intervals, or based on

triggered events in the simulation model. Time-stepped simulation

supports for real-time and in-the-loop simulations, while in discrete-event

usually external agents can trigger events conducing the simulation.

 Deterministic vs. stochastic simulation: depending whether the produced

outputs depends on the inputs or not, respectively.

For more details in modeling and simulation, please refer to Brade (2003).

3.2 Verification and Validation of Simulation Models

Verification and Validation (V&V) techniques want to answer whether a model is

correct, and what we can do to ensure a model is correct. Verification aims at ensuring

that both conceptual model and its executable model are correct given the requirements

specification. Validation informs whether an executable model results are within an

acceptable range as defined in its conceptual model. V&V quite relates to model

accreditation, which is concerned with building into users the confidence necessary to

rely on the model, and on data it produces (Sargent, 2008). We will discuss model

accreditation in the next section.

37

Sargent (2008) points out four approaches to conduct model V&V inside the

simulation model development team:

 The model development team is itself in charge of performing V&V

activities. The team makes subjective decisions based on earlier model

evaluations, e.g. tests or model execution;

 Assuming that we have two separate teams, one dedicated to model

development, and the other to model V&V, and if the development team is

not too large, one of its members can help the conduction of V&V. In

addition to verification, this approach increases accreditation, due to the

participation of a simulation model user in its V&V process;

 The approach called Independent V&V assumes a V&V authority in charge

of the decision whether V&V results proposed by the simulation model

V&V team is valid or not. This approach is suitable when the simulation

model development team is too large, or when it is involved in many projects

with several suppliers. In this approach, an iterative refinement process

between the Independent V&V authority, V&V team, and development

teams occurs;

 The last approach is to use a scoring model. Scoring is conducted

subjectively, based on V&V team experience. In this case, some model

aspects are explicitly chosen over others, attributing a bigger score to the

most important, and a smaller one to the least important.

Furthermore, Sargent (2008) describes several techniques to perform V&V in

simulation models:

 Animation: model’s behavior is presented in a step-by-step fashion, usually

enabling to control what is being displayed, and how animation advances;

 Comparison: this technique compares the results produced by the

undergoing simulation model with a similar, previously validated, simulation

model. Based on an acceptance threshold, we can say that differences

between the two models are acceptable or not;

 Degenerate tests: this tests how model degenerates when its inputs are

increasingly closer to the acceptable specified limits;

 Event validity: compares the fidelity of simulated events or the number of

model elements occurrences with real ones;

 Extreme condition tests: tests the robustness of the simulation model, and

how it behaves in extreme values, for example, division by zero;

 Face validity: evaluates with a domain expert if the outputs the simulation

model produces are correct, or at least seems to be correct;

 Historical data validation: uses previous validated data, if existing, to

validate if new produced data is correct;

 Historical methods: divided into three sub-techniques: rationalism assumes

that model team knows which output is correct, and uses this knowledge to

assess the model; empiricism requires that all rational assumption to be

empirically validated; and positive economics assess causal relationships

constructed from rationalism are empirically valid;

 Internal validity: only applies to stochastic models (models where outputs

are independent of inputs), assess the amount of variability produced

between model executions. Depending on the model domain, high variability

can indicate lack of consistency;

 Operation graphics: V&V model team observe model behavior with

graphical analysis of its generated output;

 Sensitivity analysis: variations in model outputs caused by perturbations in

its inputs must be the same in both the real system and the simulation model;

 Predictive validation: V&V team uses the model to foresee the real system

behavior. Usually, this model is developed before the real system, in order to

conduct feasibility analysis, for example;

 Traces: several modeled entities have their execution traced to check if they

behave properly and as expected during simulation execution;

 Turing tests: experts in the model domain evaluate if they can discriminate

the outputs produced between simulation and real systems.

3.3 Model Simulation Accreditation and Certification

When we refer to accreditation and certification, we mean that the product under

certification provides guarantees that it supports all requirements agreed by parts as

being important for product’s domain. Certification is necessary because, while we still

continue not to use exhaustive V&V techniques (mainly due to scalability issues), we

cannot be sure that our models are 100% reliable, correct, and suitable (Brade, 2003).

Assuming this, we need to define the degree of confidence a model provides. This

degree is based both on model’s depth (it implements the correct level of details of its

functionalities) and breadth (it implements all functionalities it needs to provide).

Model suitability is a measure that accounts if model’s depth and breadth are acceptable

to model requirements. Based on these concepts, Brade (2003) defines credibility:

“The credibility of a model or simulation results is an expression of

the degree to which one is convinced that a particular model or

particular set of simulations results are suitable for an intended

purpose and correct”

Accreditation is the process of certification that a legal and recognized Institution or

Body conducts to assert if the product (in our case simulation models) has credibility for

its purpose. Balci (2001), based on the International Standardization Office (ISO),

presents the definition of certification and accreditation as:

“Certification is a procedure by which a third party gives written

assurance that a product, process or service conforms to specified

characteristics”

“Accreditation is a procedure by which an authoritative body gives

formal recognition that a body or person is competent to carry out

specific tasks”

39

The US Department of Defense (DoD-US) defines simulation model accreditation as

(Brade, 2003 apud DoD-US 1996).

“Accreditation is the official certification that a model, simulation,

or federation of models and simulations is acceptable for use for a

specific purpose”

In AIRBUS, simulation is not certified yet, but with the steps beyond integrating

design and simulation, in the future certifying executable simulation models may be

interesting. If executable simulation models were certified, design teams and external

suppliers could reuse them, reducing time-to-market and increasing credibility in the

aircraft development cycle and its iterations. Considering the aeronautical domain as a

multidomain and safe-critical, where knowledge from several disciples interconnect,

certification is still complicated, being a difficult process and management issue if

deciding to certify simulation models (Rodríguez-Dapena, 1999).

3.4 Modeling and Simulation Standard: NASA Approach

The three most deployed standards for M&S were proposed by three governmental

agencies: the US Department of Defense (DoD-US, 2004), the Australian Department

of Defence (DoD-AU, 2005), and the National Aeronautical and Space Administration

(NASA, 2008). We do not see published proposals from industry to M&S, and usually

companies adapt one of the three presented M&S standards (as is the case in Boeing

Company, which adapts the DoD-US approach). To present the requirements involved

in M&S activities, this section describes requirements from the NASA M&S standard

(NASA, 2008), and as all the three standards are similar, we have a good coverage of

existing requirements to develop M&S activities. NASA created this standard to tackle

the following activities, which can be adopted and adapted in any organization:

 Identify best practices to ensure that knowledge from operations is captured

in the user interfaces (the way users interact with models);

 Develop process for tool verification, validation, certification, reverification,

revalidation, and recertification based on operational data;

 Develop standards for documentation, configuration management, and

quality assurance;

 Identify any training or certification requirements to ensure proper

operational capabilities;

 Provide a plan for tool management, maintenance, and obsolescence

consistent with M&S environments;

 Develop a process for user feedback when results appear unrealistic or defy

explanations;

 Provide a standard method to assess the credibility of the models and

simulations presented to stakeholders when making critical decisions;

 Assure that model and simulation credibility meets project requirements.

The organization or group of individuals in charge of conducting M&S is called

responsible party. The responsible party is in charge of M&S activities inside the

project or program, and is responsible of requirements analysis, documents

management, and the definition of objectives for all M&S activities. In the following,

we present the requirements associated with each M&S activity defined in the NASA

M&S standard the responsible party must perform. Note that these requirements can be

adapted for each specific M&S project or program; it is not necessary to conduct all

existing requirements.

Concerning M&S program management, NASA (2004) defines for the responsible

party:

 Define M&S acceptance criteria and accreditation;

 Define scoring rationale to V&V activities;

 Define the intended use of M&S;

 Define metrics to assess program milestones;

 Report M&S results to support technical decisions;

 Control management of M&S (artifacts, project schedule, and processes).

Concerning model development, responsible party’s activities are:

 Document design decisions in the conceptual model;

 Document model structure and behavior (e.g. equations);

 Document model inputs and data set to be used;

 Document units of the input data;

 Document model’s limits of operation;

 Document how to use correctly the model;

 Document how to calibrate input data;

 Document model update, assigning for each different update an unique

identification;

 Document criteria and date for model obsolescence;

 Provide a mechanism to enable model users to report erroneous behavior and

non expected results found with the model;

 Keep models and associated documentation in control management

repository.

Concerning model simulation and analysis, activities are:

 Assure that simulations occurred within the established limits, or, in case of

transposing these limits, document the consequences in doing so;

 Document warning and error messages found during simulation;

 Document the version of M&S analysis results;

 Document necessary computational resources to execute the simulation;

 Document the process of constructing and publishing acquired simulation

results to stakeholders;

41

 Document the history of M&S within the same or close applications that are

useful to establish model credibility for the current M&S application;

 Document the evaluation if performed simulation and analysis are useful to

the current M&S application;

 Document any decision concerning simulation and analysis configuration.

Concerning model V&V, activities are:

 Document which V&V techniques were used;

 Document numerical estimation errors, convergence, precision for the

results;

 Document current status of model V&V;

 Document metrics used to validate the model and its inputs;

 Document any studies conducted with the simulation results.

Finally, concerning model credibility, activities are:

 Identify model credibility based on criteria established for the project;

 Justify assigned credibility for all used criteria;

 Sum up scores and assign overall model credibility score;

 Publish results to stakeholders;

 Include warnings in the final report when: some acceptance criteria was not

met, violation of any model’s premises, violation in model operational limits,

execution errors and warning messages thrown, unfavorable results from the

analysis of simulation results.

3.5 Model Simulation at AIRBUS

3.5.1 System Simulators

Simulation has three branches at AIRBUS: engineering, which is used to test and to

validate aircraft equipments during the development of aircraft systems, and is very

useful to test flight parameters on ground in order to guide equipments design: training,

which is used to train aircraft crew, in this case AIRBUS delivers to Full Flight

simulators manufacturers the core simulation systems; and research, which is

independent of an aircraft program and is used to carry tests on new concepts and

designs, and architectural proposals. In general, system simulation is very important to

reduce development time.

Inside AIRBUS, there is the Simulation Products Department (EDYYS), which is in

charge of functional simulation activities, being the AIRBUS centre of competence on

real-time simulation. The EDYYS has expertise on aircraft system simulation and is

deeply involved on the aircraft development process. It has expertise also on

electronics, flight simulation methods and architectures. Its main missions are: to

design, develop and integrate simulation hardware and software components into

simulators, as well as to assure their maintenance within the Company; to design

electronic interfaces for engineering simulators; to develop software simulation

packages for every new aircraft program started; to guarantee that training simulators

will be available before the new aircraft entries into service; to facilitate the

development of low cost and high quality training devices; and to develop commercial

business simulators together with the airlines and with training centers.

Figure 3.1 jointly presents the AIRBUS aircraft development and simulation cycles.

The simulation and development cycles at AIRBUS take the form of a standard V

development cycle (Forsberg, 1991), where it is possible to note that a simulation

platform (white boxes) is associated for every development phase (gray boxes). In this

way, simulation is highly coupled with the development, enhancing quality for the later

development phases quite early in the development cycle.

The following simulators compose the simulation platform at AIRBUS:

 EPOPÉE (Etude Prospective pour l’Organisation d’un Poste d’Equipage

Ergonomique): this simulator corresponds to the first simulation platform of

Figure 3.1. It helps the development teams to choose new design concepts

and techniques before a new aircraft program is launched, assessing control

laws, cockpit ergonomics and crew workload;

 OCASIME (Outil de Conception Assistée de Simulation Multi-

Equipements) : this simulator is dedicated to system design, hosting software

simulating the flight loop and other programs used to validate and test

aircraft logics and equipments specification;

 A/C -1: this simulator is specific for a given aircraft program, and provides a

representative system simulation used to test and to improve control laws, to

assess cockpit ergonomics and crew workload. It represents most of the

elements on the cockpit and some buttons are operational through touch

screens.

 System Integration Test Rigs: after complete equipment definition and

development, we integrate single equipment on functional test rigs connected

to simulation platforms. These platforms host simulation packages

simulating some aircraft systems such as the Flight Warning System (checks

the aircraft integrity) and the Control and Display System (displays the

cockpit information).

 A/C 0: this simulator, also called Iron Bird, integrates all actual equipments

before their deployment on the final aircraft. It needs the most representative

environments, and is composed of a real cockpit, all on-board computers, a

reproduction of electrical and hydraulics wiring, aircraft actuators, and

environment system simulation (simulates real world atmosphere conditions,

such as rain, snow, hot, and so on), and aircraft physics (flight mechanics).

3.5.2 Development, Integration and Validation of Simulation Models

The current AIRBUS process for developing, integrating, and validating simulation

models is the AP2633 (AIRBUS, 2008). When we say simulation model, actually we

refer to an AP2633 Compliant Simulation Model. Thus, a simulation model must

comply with AP2663 process directives to be deployable in the system simulators

presented in the last section. The AP2633 process is a standard V cycle, and is divided

in four phases: definition, development, evolution, and maintenance.

43

Definition contains all activities related to identifying simulation model

requirements. Development contains all activities supporting the development of

simulation models to reach their deliveries with the full requested functionalities, i.e.

stable requirements as well as their development and validation. Evolution contains

activities in charge of making corrections in simulation models to make them

AP2633 compliant, as well as model updates to follow A/C systems evolution

before Aircraft Entry Into Service (EIS).

Figure 3.1: AIRBUS aircraft development and simulation cycles

The Simulation Model Life Cycle is presented in Figure 3.2. The sub-processes

presented in Figure 3.2 are as follows:

Definition

1 2

4

8

Development

Model

4

6

Evolution Maintenance

9

7

Macro-Model

3

5

7

Full
Functionalities

A/C Entry
Into Service

Figure 3.2: Simulation model life cycle.

At A/C program level, sub-process 1: Identify General Simulation Models Needs. At

model/macro-model level 2: Define Model Functional and Performance Requirements;

3: Plan Simulation Model(s) Development; 4: Develop Shared Simulation Model; 5:

Perform Delivery Preliminary Acceptance; 6: Define Integration and Validation Plan; 7:

Integrate (Model/Macro-Model); 8: Validate (Model/Macro-Model); and 9: Define

Macro-Model Verification Plan. This work applies to the fourth activity in the

simulation model life cycle.

Engineering

simulation package

System Integration

test bench

A/C 0

A/C 1

A/C -1

Desktop simulators,

OCASIME

Demonstrators and

research simulators

Choice of concepts,

control laws, technologies

Validation of

A/C system definition

Validation with

a pilot in the loop

Equipment definition and development

Validation and integration

at A/C system level

Validation and integration

at A/C level

Validation flight tests

Training

A/C development activity

Simulation platform

Engineering

simulation package

System Integration

test bench

A/C 0

A/C 1

A/C -1

Desktop simulators,

OCASIME

Demonstrators and

research simulators

Choice of concepts,

control laws, technologies

Validation of

A/C system definition

Validation with

a pilot in the loop

Equipment definition and development

Validation and integration

at A/C system level

Validation and integration

at A/C level

Validation flight tests

Training

A/C development activity

Simulation platform

4 PROPOSED SOLUTION

This chapter presents the proposed solution to the problems discussed in the first

chapter, section 1.2. Section 4.1 presents the requirements and the artifacts we need to

produce and trace, while section 4.2 presents the low-level design flow detailing all

proposed activities.

4.1 Solution Artifacts and Requirements

Considering the development V-cycle presented in section 3.5, Figure 3.1, this work

is focused in the OCASIME simulator, despite of its applicability in other development

stages. Figure 4.1 presents the design and simulation interactions occurring in this

development cycle.

Design (box 2) and simulation (box 4) start with a set of requirements (box 1 and 3,

for design and simulation, respectively). The design purpose is to provide a

specification of an avionics equipment structure (box 6) and behavior (box 5). In the

same way, the purpose of a simulation is also to provide structure (box 8) and behavior

(7), but for a simulation of some avionics equipment. As simulation artifacts simulate a

set of design artifacts (arrow 9), we can say that these design elements (and the

decisions around them) constrains the simulation requirements and elements (arrow 10).

As we use simulation knowledge to advance and improve design, we can say that

simulation refines design (arrow 11).

Desktop simulator

(OCASIME)

Validation of A/C

system definition

System design

requirements

System simulation

requirements

Equipment

behavior

Equipment

structure

Simulation

behavior

Simulation

structure

Simulate parts of

Specifies Specifies
Refines

Constrains
1

2

3

4

5 6 7 8

9

10

11

Desktop simulator

(OCASIME)

Validation of A/C

system definition

System design

requirements

System simulation

requirements

Equipment

behavior

Equipment

structure

Simulation

behavior

Simulation

structure

Simulate parts of

Specifies Specifies
Refines

Constrains
1

2

3

4

5 6 7 8

9

10

11

Figure 4.1: Design and simulation interactions and artifacts

45

To develop a simulation model, we can identify three activities: system design,

simulation requirements analysis, and simulation design. System design is concerned

with avionics equipment design (Figure 4.1, box 2). Simulation requirements analysis

specifies what must be simulated based on the constraints from design (Figure 4.1,

boxes 3 and 4). Finally, Simulation Design is the construction of both simulation

structure and behavior (Figure 4.1, boxes 7 and 8), implementing the simulation

requirements (Figure 4.1, box 3), which simulate equipment behavior and structure

(Figure 4.1, arrow 9). Figure 4.2 presents these three activities and the current and

proposed artifacts flow.

The problem is that both A/C ICD and MICD are very rudimentary documents, in

the sense of Information Systems. The former is a Comma Separated Text (CSV) file,

while the latter is an Excel sheet. Naming conventions and semi-automated document

production create the modeling coherences between A/C ICD, MFPR, MS and MICD.

Regarding MICD, there is an Excel Visual Basic Script called MICD Studio that

generates these coherences guided by commands given by the Simulation Model

Designer. One example of unstructured constructs existing in MICD is sheet naming. If

some expected sheet by the MICD Studio does not follow the naming convention, it

throws an error. This kind of consistency checking based only on naming convention

dates back before databases management systems, and research proved this as being a

bad approach for data management (Silberschatz, 2001).

Another issue, as explained earlier, is the difficulty in handling traceability between

design and simulation elements with the current approach. Figure 4.2 current upper

band shows listed artifacts and their use and/or production during equipment simulation.

4.2 Proposed Design Flow based on SysML

To improve equipment simulation, this work proposes the adoption of SysML as the

means of representing design and simulation constructs and as the simulation structural

language. Thus, this approach unifies in only one modeling language design and

simulation activities, while maintaining simulation design traceability between design

Figure 4.2: Design and simulation activities and artifacts of simulation

development

and simulation models, as well as between simulation model refinements. The proposed

design flow is presented in Figure 4.2 in SysML lower band.

act Create SysML Design Model from A/C ICD

A/C ICD Repository

Create OSMOSE
Project

Select A/C ICD to
Import

OSMOSE Package
Structure

A/C ICD
Instances

Transform A/C ICD into
SysML Model

SysML Design
Model

Apply UP2A

Profile

Figure 4.3: SysML design model generation from A/C ICD

Figure 4.3 presents the activity representing System Design. A SysML Design Model

is created from an A/C ICD repository, and the UML Profile for AIRBUS AP2633 is

used to encapsulate parsed A/C ICD data.

From the generated SysML Design Model and with the MFPR documents, it is

possible to create the SysML Simulation Model. A simulation considers the UML Profile

for Simulation Functional and Performance Requirements (SFPR) as its driving process.

Figure 4.4 presents this process, and implements the Simulation Requirements Analysis

in Figure 4.2.

act Create SysML Simulation Model from Design

SysML Design
Model

MFPR
Select Local Parameters

To Simulate
Create Simulation

Model
SysML Simulation

Model

Apply SFPR

Profile

Figure 4.4: SysML simulation model generation from design model and from MFPR

analysis and requirements document

After creating the SysML Simulation Model from the SysML Design Model, and

refining simulation to meet MFPR functional and non-functional requirements, the

Simulation Designer exports the final SysML Simulation Model to the Model Interface

Control Document (MICD). MICD is a Microsoft Excel sheet describing how each

model element is connected to build up the equipment. The MICD creation ends the

simulation process for the simulated system. This step is the Simulation Design in

Figure 4.5.

47

act Create MICD from SysML Simulation Model

SysML Simulation
Model

MS

MICD

Create Intermediate
Simulation Model

Generate Excel MICD
Simulation Model

AP2633 Compliant
Simulation Model

Figure 4.5: MICD generation from AP2633 compliant SysML simulation model

Figure 4.6 presents the complete Integrated Model-Based Design and Simulation

process, with all its required and produced artifacts, and its internal activities described

above. This approach leverages simulation and design by putting them together with a

unified modeling language, instead of several different documents. As we automatically

generate all SysML models, we have modeling style consistency between the

Simulation Model Design team, as well as human errors reduction. In addition, this

approach contributes to leverage the simulation process, enabling in the future the

SysML Simulation Model be completely executed, given that we can assume a SysML

subset to be executable by some model interpretation engine. We have performed real

design and simulation experiments from the A380 aircraft program in order to validate

this approach, and section 5 presents and discusses the results.

act Integrated Model-Based Design & Simulation

A/C ICD Repository

MFPR

Create SysML Design
Model from A/C ICD

Create SysML Simulation
Model from Design

SysML Design
Model

SysML Simulation
Model

MS

Create MICD from SysML
Simulation Model

MICD

Figure 4.6: Complete integrated model-based design and simulation design flow

After creating the simulation model, the next step is simulation code production

based on the simulation model interface. The Simulation Model Designer creates a

SCADE or Simulink model implementing the model behavior, using simulation

variables declared in the MICD document. After specifying all SCADE and Simulink

models, the designer creates a state machine implementing the high-level behavior (or

functions) the simulation model must perform. In this work, we propose to model this

state machine with the UML State Machine, and to generate the simulation C code for

this state machine calling the generated C code from SCADE or Simulink models.

Figure 4.7 presents the design flow of simulation code production from UML.

act Simulation Code Generation

UML State
Machine

Select States
to Simulate

Apply

SFPRState

Constrained
State Machine

Remove Useless
States

Final
State Machine

Generate
C Code

C Code
State Machine

Figure 4.7: Simulation state machine code generation from UML State Machine

describing equipment behavior

49

5 CASE STUDIES

This chapter presents the case studies we have performed to validate our proposal. It

presents the approach from its user perspective. Section 5.1 presents the A380

navigation system, and the generation of its specification to SysML Design Models, as

well as the MICD production from SysML Simulation Models. Section 5.2 presents the

Primary Flight Control Computer and the code generation process for its UML

Equipment State Machine.

5.1 A380 Navigation System

5.1.1 Navigation System Probes Embedded Avionics

The A380 navigation system, which the ATA 34 chapter regulates, is composed of

33 equipment occurrences, as follows:

 Two Automatic Direction Finders (ADF) occurrences. ADF is one of the

simplest, but very useful, navigation equipment used when flying by

instruments. The ADF points a navigator (it can be an arrow or digital earth

coordinates) in the direction of a tuned radio frequency emitter;

 Three Air Data Inertial Reference Unit (ADIRU) occurrences. ADIRU is

composed of two applications, Air Data Reference (ADR) and Inertial

Reference System (IRS). ADR provides air data information concerning

airspeed, angle of attack, altitude, and IRS provides the aircraft position and

attitude. These data are available to both the pilots and the aircraft;

 One Air Data Switching (ADS) occurrence;

 One Autotrim Heading Angle (ATT-HDG) occurrence. It enables to set

(autotrim) an aircraft inclination based on the aircraft’s nose (heading angle)

 Two Distance Measuring Equipment (DME) occurrences. DME provides the

aircraft distance to the ground station. UHF waves sent from ground stations

are caught by DME, and based on the time needed to these ground stations

acknowledging the reception of waves sent back by the aircraft, DME can

calculate the aircraft distance from ground;

 Two Integrated Standby Instrument System (ISIS) occurrences. ISIS displays

airspeed, altitude, Mach, attitude, and vertical speed;

 Six Prise de Pression Statique (ISP) occurrences. It also calculates air data

based on wind static pressure;

 Three Multi-Function Probes (MFP) occurrences. It reads air data

information, but instead of using pneumatic movements to publish this data

to the aircraft navigation systems, it uses an ARINC 429 digital bus;

 Two Multi-Mode Receiver (MMR) occurrences. It is used to perform aircraft

landing based on microwave, instead of instrument or GPS landing.

 Two Outside Air Temperature (OAP) probes. It gets the outside temperature

and sends it to the navigation systems;

 One Pitot standby probe. It calculates airspeed based on wind dynamic

pressure that gets inside it.

 Two Pitot Static probes. It is also used to calculate aircraft speed, Mach, and

altitude based on wind pressure inside the Pitot probes, making pneumatic

movements in the aircraft equipment;

 Three Radar Altimeter (RA) occurrences. It calculates the aircraft distance

from ground, i.e. it measures the altitude between the plane and the ground

directly below the aircraft;

 Three SSA occurrences.

Figure 5.1 presents the Pitot and static pressure probes; we can find in the A330

aircraft, which are very similar in the A380 one.

Figure 5.1: A330 external navigation probes

5.1.2 SysML Design and Simulation and MICD Generation

Prises de pression statique

51

Each equipment occurrence has an A/C ICD describing its interfaces, thus, the A380

navigation system is composed of 33 A/C ICDs. Figure 5.2 lists these files.

Figure 5.2: A380 navigation systems’ A/C ICDs

The first step is to generate the SysML Design Models from the A/C ICD repository

presented in Figure 5.2. With our tool prototype, we just select this folder and click on

Generate. Figure 5.3 presents this process.

Figure 5.3: SysML generation from A/C ICD performed with our tool prototype

After the translation process from A/C ICD using the algorithms we have devised,

we have the following SysML Design Model organization, presented in Figure 5.4.

 Figure 5.4: Generated A380 navigation systems SysML Design models

. After generating the SysML Design Models, we have to select which application

local parameters we are going to simulate. Figure 5.5 presents some local parameters of

the ISIS first occurrences, where all local parameters are going to be simulated.

Figure 5.5: SFPRPort simulation local parameters selection

53

After the selection of which local parameters are going to be simulated, we can

generate the SysML Simulation model. The SysML simulation model has the same

information as the Design one, but the transformation blocks, and their internal

structure. Figure 5.6 shows ISIS first occurrence simulation model, as well as some

dependencies to trace the simulation elements into design ones.

Figure 5.6: ISIS SysML simulation model and generated SFPR dependencies

The last step is the MICD generation from SysML Simulation models. This process

is automatic, not requiring human intervention. Figure 5.7 presents an extract of the

generated output signals and Figure 5.8 the input ones of the MICD to the ISIS first

occurrence.

Figure 5.7: ISIS MICD output variables and their generated joining keys

Figure 5.8: ISIS MICD input variables and their generated joining keys

We can see in Figure 5.8 that ISIS’s inputs from the MMR equipment, as well as the

IRS application provided by ADIRU. In Figure 5.7 we can see ISIS’s outputs, such as

computed Mach and lateral acceleration. This information is later displayed by ISIS

equipment screen. Figure 5.9 presents the ISIS equipment display.

Figure 5.9: ISIS equipment screen

5.2 Primary Flight Control Computer

In this section, we present the UML Equipment State Machine process and code

generation to the Primary Flight Control Computer. As we have presented the SysML

process using theA380 Navigation Systems, and for any model the process is the same,

in this section this is not going to be repeated.

5.2.1 A340 Flight Control Computer Organization

The flight control computer is the interface between pilot’s sidestick and aircraft

sensors and actuators, implementing the Fly-By-Wire (FBW) system. The A340 aircraft

has five flight control computers: three Primary Flight Control Computers (PRIM) and

two Secondary Flight Control Computers (SEC) (A320 has two PRIMs and three SECs)

(Flight International, 1991). The SEC computers act as a backup to PRIM. In case of

failure or disagreement on results between the three PRIM computers, the SEC

computers take the responsibilities of computation.

55

The AIRBUS FBW system operates under three control laws (Flight International,

1991):

 Normal: Auto-flight systems active, computer accepts pilot’s input in the

sidestick, but the FBW system overrides pilot inputs in order to respect the

Flight Envelop (FEP). The FEP specifies the security margins the aircraft

must be operated. In normal control law, in the case the pilot pulls the

sidestick to its limits, the FBW overrides this command to the maximum

allowed value as specified in the FEP. FEP acts in three commands: pitch,

roll, and angle-of-attack (preventing aircraft stalling);

 Alternate: Auto-flight systems are inactive, computer accepts pilot’s input in

the sidestick, but the FBW system overrides pilot’s inputs in order to respect

FEP. Alternate law is activated when two or more failures that are critical

occur in the PRIM computers.

 Direct: Both auto-flight systems and FEP protection are turned off. There is

no computer intervention between the pilot and the FBW system. SEC

computers operate this control law, activated by failures in all three PRIM

computers are inoperative, or their outputs are not reliable.

During 99% of a flight, the aircraft stays in the normal control law managed by the

autopilot/auto-flight systems (Flight Daily News, 2009). For a demonstration of the

A320 FBW system being pushed to its limits, readers are recommended to watch

(Discovery Channel, 2009).

Both PRIM and SEC were designed to be hardware and software fault-tolerant.

PRIM and SEC are designed by different providers, Aerospatiale (now Thales) and

Sextant (now Honeywell), respectively. PRIM adopts Intel 80386 architecture, while

SEC adopts Intel 80186. This avoids errors and provides fault-tolerance concerning

hardware architecture design. In addition, the software running embedded in PRIM and

SEC are design by different teams, providing better fault-tolerance due to flawed

algorithms and hidden errors (Brière, 1993).

The flight control computer has two functions: computation, which is the computing

of normal and alternate control laws. In this case, the pilot does not directly intervenes;

the computer drive the control surface to best implement the pilot’s commands; and

execution, which is elaborating electrical signals for surface deflection (Flight

International, 1991).

For more details of the FBW system, refer to (Traverse, 2004), and for details of the

Flight Control Computer, refer to (Brière, 1993).

5.2.2 Primary Flight Control Computer Equipment UML State Machine

The UML Equipment State Machine describes the states and the functions

performed in each state the equipment is. Figure 5.10 presents the PRIM UML

Equipment State Machine.

Not Powered

Powered

Data Loading

Fault

Operational

On Off

Start/ResetSafety Tests

Figure 5.10: Primary Flight Control Computer UML Equipment State Machine

The PRIM Equipment UML State Machine is created by hand in the PRIM SysML

Design Model, all transitions and ChangeEvents necessary to trigger state transitions.

After creating and specifying the UML State Machine, the Simulation Model Designer

applies the SFPR profile and selects which states he is going to use to perform the

simulation he is creating. Figure 5.11 presents the SFPR profile application, as well as

some simulated (white states) and not-simulated states (gray shaded states). Note that it

is not shown in Figure 5.11, but both On and Off states have the SFPRState stereotype,

suppressed to improve presentation.

<< SFPRState >>

Not Powered

Powered

<< SFPRState >>

Data Loading

Fault

Operational

<< SFPRState >>
Start / Reset

On Off

<< SFPRState >>

<< SFPRState >>

Safety Tests

Figure 5.11: SFPR state selection

57

Note that the state selection is performed by setting to true the SFPRState tagged

value simulated. After selecting the states that are going to be simulated, we remove all

useless states (states not reachable from some start pseudostate). Figure 5.12 presents

the final simulation Equipment UML State Machine.

Not Powered

Powered

Data Loading

Operational

Start/ResetSafety Tests

Figure 5.12: Final UML Equipment State Machine after useless state removal

Note that we have removed the Off state because without the On state (removed

because it was not selected to be simulated), Off is unreachable from the start

pseudostate inside the Operational state. Although after useless state removal the

Operational state has no inner behavior, it is not removed because maybe the

Simulation Designer had set its before action to contain some behavior. Thus, even

without inner states, the Operational state can still be useful.

Finally, with the state machine presented in Figure 5.12, we can generate the

simulation code. The generated C code for the Equipment UML State Machine

presented in Figure 5.12 is shown below.

STM_UTILS.H

01. #ifndef STM_UTILS_H_

02. #define STM_UTILS_H_

03. #define TRUE 1

04. #define FALSE 0

05. #define STATE struct state

06. #define PARAM struct formal_parameter

07. #define CHANGE_EVENT struct change_event

08. struct formal_parameter

09. {

10. int integer_value;

11. float float_value;

12. char *param_name;

13. };

14. struct state

15. {

16. STATE *composite_state;

17. void (*do_action)(PARAM *);

18. STATE *(*evaluate_transition)(void);

19. CHANGE_EVENT *change_event_pool;

20. void (*init_state)(void);

21. };

22. struct change_event

23. {

24. int happens;

25. void *past_value;

26. void *current_value;

27. };

28. #endif /* STM_UTILS_H_ */

PRIM_STM.C

001. #include <stdio.h>

002. #include <stdlib.h>

003. #include <unistd.h>

004. #include "stm_utils.h"

005. void next_state(STATE *current);

006. void evaluate_event(CHANGE_EVENT *pool);

007. STATE *evaluate_st_notpowered(void);

008. STATE *evaluate_st_powered(void);

009. STATE *evaluate_st_start_reset(void);

010. STATE *evaluate_st_safetytests(void);

011. STATE *evaluate_st_dataloading(void);

012. STATE *evaluate_st_operational(void);

013. void st_notpowered_do_action(PARAM *params);

014. void st_powered_do_action(PARAM *params);

015. void st_start_reset_do_action(PARAM *params);

016. void st_safetytests_do_action(PARAM *params);

017. void st_dataloading_do_action(PARAM *params);

018. void st_operational_do_action(PARAM *params);

019. void st_finalstate1_do_action(PARAM *params);

020. STATE *st_current;

021. STATE *st_notpowered;

022. STATE *st_powered;

023. STATE *st_start_reset;

024. STATE *st_safetytests;

025. STATE *st_dataloading;

026. STATE *st_operational;

027. STATE *st_finalstate1;

028. int main(void)

029. {

030. init();

031. next_state(st_current);

032. return EXIT_SUCCESS;

033. }

034. void next_state(STATE *current)

035. {

036. do

037. {

038. current->do_action(NULL);

039. if(current->composite_state != NULL)

040. next_state(current->composite_state);

041. current = current->evaluate_transition();

042. }

043. while(current != NULL);

044. }

045. void init(void)

59

046. {

047. st_notpowered = (STATE *) malloc(sizeof(STATE));

048. st_powered = (STATE *) malloc(sizeof(STATE));

049. st_start_reset = (STATE *) malloc(sizeof(STATE));

050. st_safetytests = (STATE *) malloc(sizeof(STATE));

051. st_dataloading = (STATE *) malloc(sizeof(STATE));

052. st_operational = (STATE *) malloc(sizeof(STATE));

053. st_finalstate1 = (STATE *) malloc(sizeof(STATE));

054. initialize_st_notpowered();

055. initialize_st_powered();

056. initialize_st_start_reset();

057. initialize_st_safetytests();

058. initialize_st_dataloading();

059. initialize_st_operational();

060. initialize_st_finalstate1();

061. st_current = st_notpowered;

062. }

063. void initialize_st_notpowered(void)

064. {

065. st_notpowered->evaluate_transition = &evaluate_notpowered;

066. st_notpowered->composite_state = NULL;

067. st_notpowered->do_action = &st_notpowered_do_action;

068. st_notpowered->change_event_pool =

069. (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT)*2);

070. }

071. void initialize_st_powered(void)

072. {

073. st_powered->evaluate_transition = &evaluate_powered;

074. st_powered->composite_state = st_start_reset;

075. st_powered->do_action = &st_powered_do_action;

076. st_powered->change_event_pool =

077. (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT));

078. }

079. void initialize_st_start_reset(void)

080. {

081. st_start_reset->evaluate_transition = &evaluate_start_reset

082. st_start_reset->composite_state = NULL;

083. st_start_reset->composite_state = NULL;

084. st_start_reset->do_action = &st_start_reset_do_action;

085. st_start_reset->change_event_pool =

086. (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT));

087. }

088. void initialize_st_safetytests(void)

089. {

090. st_safetytests->evaluate_transition = &evaluate_safetytests;

091. st_safetytests->composite_state = NULL;

092. st_safetytests->do_action = &st_safetytests_do_action;

093. st_safetytests->change_event_pool =

094. (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT));

095. }

096. void initialize_st_dataloading(void)

097. {

098. st_dataloading->evaluate_transition = &evaluate_dataloading;

099. st_dataloading->composite_state = NULL;

100. st_dataloading->do_action = &st_dataloading_do_action;

101. st_dataloading->change_event_pool =

102. (CHANGE_EVENT *)malloc(sizeof(CHANGE_EVENT));

103. }

104. void initialize_st_operational(void)

105. {

106. st_operational->evaluate_transition = &evaluate_operational;

107. st_operational->composite_state = NULL;

108. st_operational->do_action = &st_operational_do_action;

109. st_operational->change_event_pool =

110. (CHANGE_EVENT*)malloc(sizeof(CHANGE_EVENT)*4);

111. }

112. void initialize_st_finalstate1(void)

113. {

114. st_finalstate1->evaluate_transition = NULL;

115. st_finalstate1->composite_state = NULL;

116. st_finalstate1->do_action = &st_finalstate1_do_action;

117. st_finalstate1->change_event_pool = NULL;

118. }

119. void st_notpowered_do_action(PARAM *params)

120. {

121. // TODO: call Simulink/SCADE external code

122. }

123. void st_powered_do_action(PARAM *params)

124. {

125. // TODO: call Simulink/SCADE external code

126. }

127. void st_start_reset_do_action(PARAM *params)

128. {

129. // TODO: call Simulink/SCADE external code

130. }

131. void st_safetytests_do_action(PARAM *params)

132. {

133. // TODO: call Simulink/SCADE external code

134. }

135. void st_dataloading_do_action(PARAM *params)

136. {

137. // TODO: call Simulink/SCADE external code

138. }

139. void st_operational_do_action(PARAM *params)

140. {

141. // TODO: call Simulink/SCADE external code

142. }

143. void st_finalstate1_do_action(PARAM *params)

144. {

145. exit(EXIT_SUCCESS);

146. }

147. void evaluate_event(CHANGE_EVENT *pool)

148. {

149. // TODO: handle change event based on current and past values

150. }

151. STATE *evaluate_st_notpowered(void)

152. {

153. evaluate_event(st_notpowered->change_event_pool);

154. if(st_notpowered->change_event_pool[0].happens == TRUE)

155. return st_finalstate1;

156. if(st_notpowered->change_event_pool[1].happens == TRUE)

157. return st_powered;

158. return NULL;

159. }

160. STATE *evaluate_st_powered(void)

161. {

162. evaluate_event(st_powered->change_event_pool);

163. if(st_powered->change_event_pool[0].happens == TRUE)

164. return st_notpowered;

165. return st_start_reset;

61

166. }

167. STATE *evaluate_st_start_reset(void)

168. {

169. evaluate_event(st_start_reset->change_event_pool);

170. if(st_start_reset->change_event_pool[0].happens == TRUE)

171. return st_fault;

172. if(st_start_reset->change_event_pool[1].happens == TRUE)

173. return st_operational;

174. return NULL;

175. }

176. STATE *evaluate_st_safetytests(void)

177. {

178. evaluate_event(st_safetytests->change_event_pool);

179. if(st_safetytests->change_event_pool[0].happens == TRUE)

180. return st_start_reset;

181. return NULL;

182. }

183. STATE *evaluate_st_dataloading(void)

184. {

185. evaluate_event(st_dataloading->change_event_pool);

186. if(st_dataloading->change_event_pool[0].happens == TRUE)

187. return st_start_reset;

188. return NULL;

189. }

190. STATE *evaluate_st_operational(void)

191. {

192. evaluate_event(st_operational->change_event_pool);

193. if(st_operational->change_event_pool[0].happens == TRUE)

194. return st_dataloading;

195. if(st_operational->change_event_pool[1].happens == TRUE)

196. return st_safetytests;

197. if(st_operational->change_event_pool[2].happens == TRUE)

198. return st_start_reset;

199. if(st_operational->change_event_pool[3].happens == TRUE)

200. return st_fault;

201. return NULL;

202. }

The first generated file, “STM_UTILS.H”, defines the data structures we use in the

state machine code. In this file, we have the declaration of a Simulink/SCADE formal

parameter that is going to be passed to their functions (lines 8-13). From line 14 to 21,

we have the declaration of a state of the state machine. In line 17, there is the function

pointer to the Simulink/SCADE code, in line 18 there is the next state evaluation

function based on state’s change events, in line 19 there is the set of change events a

state has subscribed, and in line 20, there is the state memory initialization function. The

change_event structure contains the data needed to declare a change event. The happens

variable (line 24) contains the evaluation of a Boolean expression declaring the event

itself; current_value and past_value are the computed values by the Simulink/SCADE

function pointed by the function pointer in line 17. The change event is triggered when

these two values are different (they are an AND clause in the change event Boolean

expression).

The second generated file, “PRIM_STM.H”, contains the specified state machine

from Figure 5.12. From line 34 to 44 it is the next state function. It firstly calls the

action defined for the current state (line 38) and then calls next state recursively to inner

states (in case of the current be a composite state). In line 41 the state machine evaluates

the next state to branch. It keeps executing until the evaluated next state is NULL (line

43), or some of the evaluation functions exits the program.

From line 45 to 62 there is the state memory allocation function, each state structure

initialization and, lastly, the assignment of the initial state (line 61). In the case of the

state machine presented in Figure 5.12, this state is the NotPowered one (remember that

an initial node in a UML State Machine is a pseudostate; there is no associated actions

with them. Initial states are only decorative, to graphically represent the actual initial

node).

From line 63 to 118 there is the memory and action state initialization for each

specific state of the state machine. These functions set the STATE struct points to

enable the next_state (line 38) function to execute state behavior independent of a

specific state. Note the change_event_pool initialization. This field is an array of change

events, and the array’s length is equal to the number of state’s outgoing edges. For

example, in line 69 we have the NotPowered state change_event_pool initialization, and

the number of elements to be allocated is two (one for the outgoing edge going to the

Powered state, and the other to the FinalState).

From line 119 to 150 we have the specific do_action for each state, calling the

external Simulink/SCADE code. Due to time restriction, we could not implement the

external code call, but it is straightforward. The do_action for each UML state has as its

implementation the empty activity, which has an opaque action. The Simulink/SCADE

function call is written in the opaque action’s body parameter by hand. The code

generator only gets this specified function call and writes in the do_action body code

specific to each state.

63

6 ASSESMENT AND CONCLUSIONS

This chapter presents in section 6.1 the technical evaluation of every aspect

discussed in this work, highlighting their problems and advantages. In section 6.2, we

discuss further research to continue this work and our proposed approach.

6.1 Technical Evaluation

6.1.1 Model Transformations

6.1.1.1 Understanding

In the beginning, the focus of this work was to perform only the transformation

between A/C ICD and the SysML Design Model. Concerning this transformation, in my

opinion the most critical one, some aspects remain unclear.

Despite the fact of A/C ICD being broadly adopted and well know in AIRBUS,

there are some aspects unclear about its specification. Worst, some aspects of A/C ICD

specification are not described in its specification document (e.g. how to treat some

corner cases on variables types). We still have some flaws when translating A/C ICD

into SysML, for example, when we have a message in the A/C ICD, but its local

parameter field is empty; or yet, when we use some buses not declared in the A/C ICD

(both cases have happened in the ADIRU A/C ICD presented in section 5.1).

Maybe these cases are due to A/C ICD maturity, but there is no document specifying

which constructs can happen (or are missing) for a given maturity level. I suggest

defining this document, relating the three A/C ICD maturity level and the constructs an

A/C ICD compliant to some level must have.

6.1.1.2 Completeness

A/C ICD is quite complete given its purpose, i.e. specifying how an embedded

application interfaces with its equipment. With the new A/C ICD version near to its

publishing this description is going to be even more detailed, containing, for example,

the equipment power supply. A/C ICD completeness made easy its transformation to

SysML. I think that all A/C ICD constructs were well translated into SysML Design

Model, without any prejudice to its data or completeness.

6.1.1.3 Specification

As this work was refined as time has passed, growing fast in complexity, size, and

target domains, we have defined transformation rules in an ad hoc fashion. In my

opinion this was the best way to follow, given the exploratory bias of this work; we did

not want to have a final, closed product, we wanted a research prototype that could

show us the potentials, flaws, and feasibility of a model-based approach to simulation

design of embedded avionics equipment instead. Now that the transformation rules are

consolidated, I suggest specifying them in a more formal fashion (see implementation

for a discussion on that).

6.1.1.4 Implementation

We have implemented the transformation rules in pure Java, summing around

27.000 lines of code entirely written by hand. Java was chosen because in the beginning

the work was small, but, as said before, its size has increased a lot. Currently, given the

size of this work, as well as the complexity of the transformation rules, and the

metamodels used, Java is far from being suitable to a more end-product version. The

Java code is too big, complex, and its legibility is not good. We have not defined code

conventions, prejudicing its manageability. Finally, as Java is not targeted to model

transformations, the transformation rules are hidden in Java code, making very difficult

their understanding.

I suggest implementing a new version of our prototype with ATL (ATLAS

Transformation Language). ATL was designed to handle model transformations, has a

concise notation to that, making quite evident the transformation rules between

metamodels. I think that our tool quality, manageability, and understanding would

dramatically increase with this new coding in ATL. In addition, using ATL makes our

tool closer to both TOPCASED and MDE (Model-Driven Engineering) communities.

6.1.2 SysML Design and Simulation Models

6.1.2.1 Understanding

Both SysML Design and Simulation models were very understandable to everybody

that was in contact with them. It contains clear and simple concepts, and in my opinion,

this was achieved due to the definition of both the UP2A and SFPR profiles. The

separation of design and simulation architectural levels was very clear, and how we

trace both levels. The internal mapping structure between messages, signals, and local

parameters is straightforward too. As we have adopted a block-oriented fashion to

specify in SysML the A/C ICD constructs, and everybody in the simulation department

has notions of Simulink/SCADE, both SysML Design and Simulation models

understanding is straightforward.

Concerning the empty activity and the UML Equipment State Machine we have

received a feedback from a team member of the AMISA project saying that the

interaction with the simulation platform scheduler was not clear, and how and when the

do_action is executed. This is easily fixed just defining new stereotypes in the UP2A

profile to represent the simulation scheduler, but it is not needed to do so. As soon as

these rules are coded in the code generator, and the Simulation Designer creating the

UML State Machine is aware of them, they are useless, being only a notational

overhead decreasing model legibility and conciseness.

6.1.2.2 Abstraction

Both SysML Design and Simulation models have an adequate level of abstraction,

but the internal mapping structure between messages, signals, and local parameters.

These mapping structure contains several blocks, connectors, flow ports that, in my

65

opinion, does not need to be in the model. As discussed internally, we see the

simulation being performed in terms of application variables (or local parameters), not

anymore in terms of signals and messages. Assuming that this work is targeted for long-

term research, I think we can be more aggressive and get rid this information off the

model. If this information is necessary for some analysis, a tool could retrieve it from a

database. Thus, in this approach we only need to connect the model elements in the

SysML models with its internal structure stored in the database. This database approach

is suitable, in my opinion, because SysML models are good at system specification, but

are quite bad in information storage. Putting the mapping structure in the SysML model

is the wrong way of dealing with them. I think that this clear separation of modeling

data and design data is the biggest impeditive of adopting model-based techniques in

industry today, and I do not see any solution to integrate models with a relational

database. This is another research direction that can be conducted in the frame of

INSIDE or even AMISA.

6.1.2.3 Implementation

I have the same considerations as presented in section 6.1.1.4. We should implement

the transformation rules in ATL, not in Java. In the TOPCASED project there is

available a set of APIs to handle SysML models, and they can be easily integrated with

ATL, as TOPCASED already does. Nevertheless, I think that it is best to use a text-to-

model tool to generate SysML from A/C ICD CSV files. Unfortunately, these tools are

not widespread available in the community, they are rather incubated projects yet.

6.1.3 MICD and Simulation Code Generation

6.1.3.1 Understanding

The MICD generation is straightforward, and its specification is good. Again, it fails

in specifying corner cases, but it is possible to infer these cases. As MICD are broadly

adopted, there is no problem of understanding how it is generated from SysML models.

Concerning code generation, we have not closed how to specify when and how a

state branches to other, thus, affecting code generation. A better specification and

algorithms that are more detailed are left as future work.

6.1.3.2 Completeness

The MICD code generation supports only the minimum features to pass validation in

the MICD Studio. Other data that we have in the A/C ICD may not be generated in the

MICD due to this point. As we wanted to reconstruct only the joining keys to create a

proof-of-concept, this is fine to our objectives.

Concerning simulation code generation, it is missing how to evaluate the next state

based on declared change events, and the connection with Simulink/SCADE. The

former it lacking the formalization of change events specification, and the latter is just a

matter of gluing the code inserted on the opaque action’s body field. In addition, it is

needed to declare the MICD variables in the generated C code, which is quite

straightforward too.

6.1.3.3 Implementation

I have implemented everything in Java, and, in the case of MICD generation, I think

this is the best way of doing so right now. We have used the APACHE POI API to

generate the Excel file, being very abstract and easy to use. Using such an API avoids

the problem of byte serialization and compliance with the Microsoft Excel binary

format. I do not recommend using a model-to-text transformation in this case.

Regarding simulation code generation, I suggest using Acceleo tool to do that. It is

very easy and high level, being perfect to code generation from well-defined

metamodels. Unfortunately, C code generation from UML State Machines is not

complete in Acceleo, but, in our case, we have a very simple code generation process,

not requiring the implementation of all UML metamodel constructs related to state

machines.

6.1.4 Integrated Model-Based Design and Simulation Process

6.1.4.1 Understanding

The idea of integrating design and simulation in a more formal fashion (based on

SysML models in our approach) received an excellent reception from AIRBUS

engineers, both from the Design Office and the Avionics Simulation Products

Department. Both departments recognize the lack of formalism in integrating design

and simulation artifacts, and recognize the bad outcomes associated with it. Thus, this

approach is completely feasible in the middle or long-terms.

AIRBUS is a strong supporter of SysML and TOPCASED, so there is somehow a

broad knowledge of it in the company; SysML is not seen as black magic or an

unfeasible academic proposal. In this way, a model-based approach using SysML has

the potential to decrease the adoption barrier and resistance to changes in status quo.

Certainly, it will be necessary to provide training on SysML and the new process, and

highlight that more formalism is beneficial to the aeronautic domain, helping engineers

to make their jobs better and more reliable.

I suggest organizing meetings with AMISA team to discuss common problems and

solutions. AMISA has common problems and solution to INSIDE and this discussion

can be very beneficial. In addition, it is the perfect opportunity to integrate design and

simulation from the beginning with SysML.

6.1.4.2 Completeness

In this work, we have approached the process of importing current design artifacts

into SysML, and selecting the ones we want to simulate, and, finally, generating the

current simulation artifact from SysML. We have not approached how requirements

engineering could be integrated in this approach, or event testing of the created models.

Current tools for requirements engineering, e.g. Telelogic DOORS, support SysML

models, creating requirement version management, as well as model artifacts.

Nonetheless, it is still necessary to adopt how simulation requirements would be

described with such an approach. Clearly, this is completely feasible. Regarding testing,

it could be performed over the generated or hand written code from the SysML model,

or over the SysML model, through the UML Profile for Testing or OCL constraints.

The Cockpit Group in the Design Office (EDYAK) already uses Telelogic DOORS

to handle requirements, and they have some integration with SysML models. It could be

67

interesting to discuss with them how their process is. Testing with UML/SysML model

is still an open research problem, and there is no close solution to that. For me it seems

interesting to express consolidated test procedures with OCL representing structural

constraints that the model must respect, and exploratory test procedures with the UML

Profile for Testing. From this profile, we could generate unit tests to test the generated

code. Another open problem is how to integrate Simulink/SCADE models with these

testing procedures.

6.1.4.3 Suitability

An integrated approach for design and simulation is completely suitable and

necessary with the increase in aircraft design complexity. Current techniques based on

textual documents, and ad hoc communication and traceability is far from efficiently

manage this complexity. Any approach integrating design and simulation in a more

formal fashion is more than desirable, it is essential.

In our approach, the bottleneck is clearly two: the internal mapping from messages

to signals and local parameters, and the CASE tool we have adopted (TOPCASED). As

discussed before, the internal mapping is an overhead on abstraction not desirable when

systems are getting more complex, thus, making this mapping even more obfuscated in

SysML. Concerning TOPCASED, it is an excellent experimentation tool, and should be

used in AIRBUS research projects, given its flexibility due to its open-source nature,

but I think that it cannot be used yet in production. The environment is very unstable,

with many beta tools working together, and the modeling area and properties panels’

sizes are not good to modeling (we can solve that using two monitors side-by-side).

AMISA has adopted Telelogic Rhapsody as its CASE tool, and I think this is a good

choice. It is completely integrated with DOORS, very robust, being in the market for

year. Again, I recommend TOPCASED for R&T projects, while Rhapsody for

production.

6.2 Contributions and Future Work

Our contributions are:

 An approach enabling integrated design and simulation in a model-based

fashion. With our approach, all simulation and design elements are traced,

enabling further impact analysis between these two architectural levels. In

addition, our approach removes all redundancies between simulation and

design, given that a SysML model can be reused by other model, always

referencing the source one;

 Transformation and representation of aircraft design and simulation data in a

more convenient formalism, moving from textual-based to model-based

representations through the SysML Design and Simulation models, as well

as the UP2A and SFPR UML profiles;

 Separation and better understanding of simulation model and simulation

platform responsibilities, in specific the simulation scheduler and the

AP2633 state machine;

 Definition and first algorithms for simulation code generation from SysML

Simulation models and its integration with Simulink/SCADE, through the

mechanism of change events;

 Development of a tool prototype to perform and show the feasibility of our

approach. One of the main difficulties to introduce new technology and to

break status quo is to convince people that the new way of doing things is

better, and with a tool prototype, this was easier.

Another contribution is the further research and development this work opens:

 Full simulation code generation from SysML Simulation models and its

further integration with Simulink/SCADE. It is needed to define the change

events semantics, its relation with the AP2633 state machine, and the best

way to call Simulink/SCADE code. It would be interesting to use Acceleo to

implement the code generator;

 Implementation of the model-to-model transformation (A/C ICD-AP2633 to

SysML Design Model, then to SysML Simulation Model) rules in ATL, the

text-to-model transformations (A/C ICD CSV file to A/C ICD-AP2633

metamodel), and model-to-text transformations (SysML Models to MICD

Excel sheet). This would improve our tool, making easier to perform

evolution, manageability, testing, and production;

 Integration of relational databases with SysML models, enabling to store

low-level data into databases, improving the abstraction of the SysML

models. This is important to avoid using the SysML model as a data

repository, and to improve impact analysis and engineering with SysML;

 Full SysML Simulation model execution in SysML to enable exploratory

modeling, reducing the simulation design cycle by performing partial

simulations before OCASIME. It is necessary to define the subset of SysML

we are going to use, and to code its virtual machine;

 Devising design and simulation process for requirements management, and

artifacts control integrated with OSMOSE.

69

REFERENCES

ADVISORY COUNCIL FOR AERONAUTICS RESEARCH IN EUROPE. : Strategic

Research Agenda 1. Volume 2, [S.l.], 2002.

AIRBUS SAS. M2633 Module 2: Shared Simulation Models Design Rules. Draft 4.

Toulouse, 2009.

AIRBUS SAS. AP2633: Develop, Integrate and Validate Shared Simulation Models.

Issue C. Toulouse, 2008.

AIRBUS SAS. X0WD0805765: Project INSIDE : INtegrated Simulation Into DEsign.

R&T Project Agreement. Toulouse, 2008b.

AIRBUS SAS. RP0816448: AMISA Method – Technical Report. Toulouse, 2008c.

AIRBUS SAS. UG0600603: OSMOSE Guide méthodologique outils : métier

équipement. Issue 3. Toulouse, 2007a.

AIRBUS SAS. V00RP0716320: A350 ISCD Policy. Issue 1. Toulouse, 2007b.

AIRBUS SAS. 509.0025/2003: AP2633 Model ICD Guideline. Technical Report.

Toulouse, 2006.

AIRBUS SAS. L00ME0315182: How to Fill the Column “Aircraft Signal Name” in

Model ICD. Memorandum. Toulouse, 2003.

AIR TRANSPORT ASSOCIATION. 99100P: Spec 100: Manufacturers’ Technical

Data. Revision 1999. Washington, 1999.

BAKER, L.; CLEMENTE, P.; COHEN, B.; PERMENTER, L.; PURVES, B.;

SALMON, P. Foundational Concepts for Model Driven System Design: INCOSE

Model Driven System Design Workgroup. [S.l.], 2000.

BALCI, O. A Methodology for Certification of Modeling and Simulation Applications.

ACM Transactions on Modeling and Computer Simulation. New York: ACM Press,

2001, v. 11, n. 4, p. 352-377.

BRADE, D. A Generalized Process for the Verification and Validation of Models

and Simulation Results. 2003. 239 f. Thesis (Doctor rerum naturalium) – Fakültat für

Informatik, Universität der Bundeswehr München, Munich, Germany.

BRIÈRE, D.; TRAVERSE, P. AIRBUS A320/330/340 electrical flight controls – A

family of fault-tolerant systems. In: THE TWENTY-THIRD INTERNATIONAL

SYMPOSIUM ON FAULT-TOLERANT COMPUTING (FCTS’93). FCTS 1993

Digest of Papers. Los Alamitos: IEEE Computer Society Press, 1993, p.616-623.

CLARK, N. Next Delay for A380: A Decade Before Break-Even. The New York

Times. 2006, 19
th

 October, Business Section. http://www.nytimes.com/2006/10/19/

business/worldbusiness/19iht-airbus.3222866.html. Accessed on July 2009.

CRAIG, I. D. Object-Oriented Programming Languages: Interpretation.

Undergraduate Topics in Computer Science (UTCS) Series. 1
st
 edition. Heidelberger,

Germany: Springer-Verlag, 2007.

DEPARTMENT OF DEFENCE OF AUSTRALIA. : Simulation Verification,

Validation and Accreditation Guide. Canberra, 2005.

DEPARTMENT OF DEFENSE OF UNITED STATES. MG101: Improving the

Composability of Department of Defense Models and Simulations. Santa Monica, 2004.

DISCOVERY CHANNEL. http://www.youtube.com/watch?v=IKBABNL-DDM.

Accessed on July 2009.

ESTEFAN, J. A. Survey of Model-Based System Engineering (MBSE)

Methodologies: INCOSE MBSE Focus Group. Revision A. [S.l.], 2007.

FERREIRA, R.; BRISOLARA, L.; MATTOS, J.; SPECHT, E.; COTA, E.; CARRO, L.

Engineering Embedded Software: from Application Modeling to Software

Synthesis. In: GOMES, L.; FERNANDES, J. (Org.). Behavioral Modeling for

Embedded Systems and Technologies: Applications for Design and Implementation.

Hershey: IGI Publishing Group, 2009.

FLIGHT DAILY NEWS. Paris Air Show: Perception By Wire. Flight Daily News.

2009. http://www.flightglobal.com/articles/2009/06/08/327191/paris-air-show-

perception- by -wire.html, Accessed on July 2009.

FLIGHT INTERNATIONAL. A340 Described: Architecture Refinement for A340

FBW. Flight International Magazine. [S.l.] : [S.n.], n.5, 11 June, 1991.

FORSBERG, K.; MOOZ, H. The Relation of System Engineering to the Project Cycle.

In: JOINT CONFERENCE OF THE NATIONAL COUNCIL ON SYSTEMS

ENGINEERING (NCOSE) AND THE AMERICAN SOCIETY FOR ENGINEERING

MANAGEMENT (ASEM) (ASEM’91). Proceedings of the 1991 ASEM.

Chattanooga, TN, USA: ASEM Press, 1991, p. 1-12.

IEEE COMPUTER SOCIETY. IEEE Std 1516.2-2000: IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) – Object Model Template

(OMT) Specification. Std 1516.2-2000. New York, 2001.

IEEE COMPUTER SOCIETY. IEEE Std 1220-2005: IEEE Standard for Application

and Management of the Systems Engineering Process. Std 1220-2005 (Revision of

IEEE Std 1220-1998). New York, 2005.

LARMAN, C. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. 3
rd

 edition. New Jersey, USA:

Prentice Hall, 2004.

MARTIN, J. N. Overview of the EIA 632 Standard: Processes for Engineering a

System. In: 17
th

 DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC’98).

Proceedings of the 17
th

 AAIA/IEEE/SAE DASC. [S.l.]: IEEE Computer Society

Press, 1998, v.31, n.1, p. B32 1-9 vol. 1.

71

MURPHY, C. A. The Definition and Potential Role of Simulation Within an Aerospace

Company. In: 2001 WINTER SIMULATION CONFERENCE (WSC’01). Proceedings

of the IEEE WSC 2001. [S.l.]: IEEE Computer Society Press, 2001, v. 1, p. 829-837.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. NASA-STD-7009:

Standard for Models and Simulations. 07-11-2008. Washington, 2008.

OBJECT MANAGEMENT GROUP. formal/06-01-01: Meta Object Facility (MOF)

Core Specification. Version 2.0. [S.l.], 2006a.

OBJECT MANAGEMENT GROUP. formal/2008-04-03: Meta Object Facility (MOF)

2.0 Query/View/Transformation Specification. Version 1.0. [S.l.], 2008a.

OBJECT MANAGEMENT GROUP. ormsc/2001-07-07, [S.l.], 2001.

OBJECT MANAGEMENT GROUP. formal/06-05-01: Object Constraint Language.

Version 2.0. [S.l.], 2006b.

OBJECT MANAGEMENT GROUP. formal/2008-11-02: OMG Systems Modeling

Language (OMG SysML
TM

). Version 1.1. [S.l.], 2008b.

OBJECT MANAGEMENT GROUP. formal/2009-02-04: OMG Unified Modeling

Language
TM

 (OMG UML), Infrastructure. Version 2.2. [S.l.], 2009a.

OBJECT MANAGEMENT GROUP. formal/2009-02-02: OMG Unified Modeling

Language
TM

 (OMG UML), Superstructure. Version 2.2. [S.l.], 2009b.

RATIONAL SOFTWARE. TP 165A: Rational Unified Process
®

 for Systems

Engineering: RUP
®
 SE1.1. Version 5/02. Cupertino, 2002.

RODRÍGUEZ-DAPENA, P. Software Safety Certification: A Multidomain Problem.

IEEE Software. Los Alamitos : IEEE Computer Society Press, 1999, v. 16, n. 4, p. 31-

38.

ROQUES, P.; VALLÉE, F. De l’analyse des besoins à la conception en Java. 2
éme

édition. Paris : Éditions Eyrolles, 2003.

SARGENT, R. G. Verification and Validation of Simulation Models. In: 2008

WINTER SIMULATION CONFERENCE (WSC’08). Proceedings of the 39
th

IEEE/ACM WSC 2008. Piscataway: IEEE Computer Society Press, 2007, p. 124-137.

SILBERSCHATZ, A.; KORTH, H. F.; SUDARSHAN, S. Database Systems

Concepts. 4
th

 ed. New York: McGraw-Hill Science/Engineering/Math, 2001.

TRAVERSE, P.; LACAZE, I.; SOUYRIS, J. Airbus Fly-By-Wire : A Total Approach

To Dependability. In: 18
th

 WORLD COMPUTER CONGRESS (WCC’04).

Proceedings of the IFIP WCC 2004. Toulouse: Springer Boston, v. 156/2004, p. 191-

212.

TOPCASED Modeling and Simulation CASE Tool. The Open-Source Toolkit for

Critical Systems. Version 2.5, http://www.topcased.org. Accessed on July 2009.

VOAS, J. Certifying Software for High-Assurance Environments. IEEE Software. Los

Alamitos: IEEE Computer Society Press, 1999, v. 16, n. 4, p. 48-54.

WEILKIENS, T. Systems Engineering with SysML/UML: Modeling, Analysis,

Design. 1
st
 ed. Amsterdam: The Morgan Kaufmann/OMG Press, 2008.

	AGRADECIMENTOS
	ACRONYMS
	FIGURES
	TABLES
	ABSTRACT
	RESUMO
	RÉSUMÉ
	Introduction
	Motivation
	Problem Statement
	The AIRBUS Company
	Text Organization

	Model-Based Systems Engineering
	Introduction to Systems Engineering
	Unified Modeling Language
	Basic Principles
	UML Infrastructure
	Core::Abstractions
	Core::Basics
	Core::Constructs

	UML Superstructure

	Systems Engineering Modeling Language
	Model-Based Systems Engineering
	Basic Concepts
	Harmony-SE
	OOSEM
	RUP-SE
	Model-Based versus Document-Centered Systems Engineering

	Systems Engineering at AIRBUS
	Two Track Unified Process
	EIA 632 Standard
	OSMOSE Process

	Modeling and Simulation
	Introduction to Modeling and Simulation
	Verification and Validation of Simulation Models
	Model Simulation Accreditation and Certification
	Modeling and Simulation Standard: NASA Approach
	Model Simulation at AIRBUS
	System Simulators
	Development, Integration and Validation of Simulation Models

	Proposed Solution
	Solution Artifacts and Requirements
	Proposed Design Flow based on SysML

	Case Studies
	A380 Navigation System
	Navigation System Probes Embedded Avionics
	SysML Design and Simulation and MICD Generation

	Primary Flight Control Computer
	A340 Flight Control Computer Organization
	Primary Flight Control Computer Equipment UML State Machine

	Assesment and Conclusions
	Technical Evaluation
	Model Transformations
	Understanding
	Completeness
	Specification
	Implementation

	SysML Design and Simulation Models
	Understanding
	Abstraction
	Implementation

	MICD and Simulation Code Generation
	Understanding
	Completeness
	Implementation

	Integrated Model-Based Design and Simulation Process
	Understanding
	Completeness
	Suitability

	Contributions and Future Work

	REFERENCES

