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“The question of whether computers can think

is like the question of whether submarines can swim.”

— EDSGER W. DIJKSTRA



ABSTRACT

Recommender systems have been a popular research topic in the field of Machine Learn-

ing and are of great commercial interest for many businesses. This work aims to imple-

ment and evaluate different recommendation strategies in the context of a crowdfunding

platform. The main approaches used in modern commercial applications are considered

in this work and several performance metrics are measured in order to evaluate each im-

plemented recommendation system. The crowdfunding platform in which we evaluate

these different recommendation algorithms provides many interesting challenges, such as

the transient nature of projects and the low amount of information available for rating

prediction. Results from production tests with real users are provided in order to compare

each approach with a chosen baseline. In the end, we conclude that a Hybrid approach

applied to the chosen platform can increase our main metric of Conversion Rate by as

much as 50%.

Keywords: Machine learning. recommender systems. AI. crowdfunding.



Uma Comparação de Sistemas de Recomendação para Projetos de Financiamento

Coletivo

RESUMO

Sistemas de recomendação são um tópico de grande interesse de pesquisa na área de

aprendizado de máquina e são de grande interesse comercial para vários negócios. Esse

trabalho propõe implementar e analisar diferentes estratégias de recomendação para uma

plataforma de financiamento coletivo em particular. As principais abordagens emprega-

das em sistemas comerciais modernos são analisadas, e várias métricas de performance

são avaliadas para cada uma delas. A plataforma de financiamento coletivo na qual ava-

liamos as técnicas de recomendação selecionadas apresenta diversas características que

dificultam a implementação de sistemas de recomendação, tais como a natureza transiente

dos projetos e a pequena quantidade de dados disponíveis para prever as avaliações dos

usuários. São apresentados resultados comparando cada tipo de sistema de recomendação

implementado em um sistema de produção com usuários reais, e no final concluímos que

uma abordagem Híbrida aplicada na plataforma escolhida pode aumentar nossa métrica

principal de taxa de conversão em até 50%.

Palavras-chave: aprendizado de máquina. sistemas de recomendação. IA. financiamento

coletivo.
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1 INTRODUCTION

People have always relied on recommendations from many sources to base their

decisions on, be it spoken word, magazines, travel guides and so forth. The decision to

buy a new book, for example, is often based on the opinions of a close group of friends;

employers count on recommendation letters for recruiting; and when selecting a movie to

watch, people rely on movie critics they have read. Recommender systems aim to aug-

ment this social process in order to assist people in sifting through an ever-growing list

of movies, books and all sorts of items. Recommender Systems (RSs) are widely used in

the industry today to provide useful suggestions to end-users in a completely automated

manner. They are ubiquitous in modern e-commerce Web sites (SCHAFER; KONSTAN;

RIEDL, 2001), where new products can be recommended based on a customer’s interests

and preferences, and in many other fields such as movies (Netflix) and music (Spotify).

The effectiveness of targeted recommendations, as measured by click-through and con-

version rates (i.e., the ratio of users who clicked on a specific link and the total number of

users who viewed a page, and the ratio of users who performed the desired final action—

such as buying the product—and the number of users who viewed the page, respectively),

far exceed those of untargeted content (LINDEN; SMITH; YORK, 2003). By customiz-

ing recommendations for each user, search effort is reduced, leading to greater customer

loyalty, higher sales and advertising revenues, and better targeted promotions (ANSARI;

ESSEGAIER; KOHLI, 2000).

A recommender system typically focuses on a specific type of "item"—the gen-

eral term used to denote what the system recommends to users. The sort of items rec-

ommended by such systems can vary tremendously. Apart from the most well-known

examples such as Amazon, which recommends products, and Netflix with movies, RSs

are also used to recommend social connections in platforms such as Facebook, as well

as news in news aggregators like Google News. Table 1.1 shows a list of recommender

systems used in real-world applications. Some of these systems are discussed in further

details in Chapter 3.

The mathematical objective of the recommendation problem can be formulated in

a number of ways. Aggarwal et al. (AGGARWAL, 2016) propose the following main

models/objectives:

• Prediction: In this approach, we try to predict the rating value for a user-item com-

bination; in particular, given a list J of items and a history of past ratings given
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Table 1.1: Example of recommended products by various real-world applications
System Product

Amazon.com Books and other products
Netflix DVDs, Streaming Video
Jester Jokes

GroupLens News
MovieLens Movies

last.fm Music
Google News News
Google Search Advertisements

Facebook Friends, Advertisements
Pandora Music
YouTube Online videos

Tripadvisor Travel products
IMDb Movies

Source: (AGGARWAL, 2016)

by a user with index i to various items Ji ⊂ J , we estimate the ratings that this

user would give to any other items j 6∈ Ji. The training data, based on which the

RS will be trained, is given by a sparse RMxN matrix, where M is the number of

users and N the number of items. In this matrix, each entry (i, j) represents the

rating given by user i to item j. This matrix is extremely sparse in most cases since

most users only rate a very small subset of the available items. The observed val-

ues, which indicate user preferences for items, are used to train a model which will

try to fill in the missing or unobserved ratings in the matrix. Since we have an in-

completely specified matrix of values, this problem is sometimes referred to as the

matrix completion problem.

• Ranking: For many applications, it is not necessary to obtain absolute numerical

values for the predicted ratings. Instead, we are more interested in obtaining the

top-k items to recommend to a user, or the top-k users to promote a particular item.

Both methods are exactly analogous, with the former being much more common in

practice. This problem is often referred to as the top-k recommendation problem.

The first formulation of the problem is more general since it is possible to derive

the second one by predicting ratings for every item and then ranking the predictions.

However, in many cases, it is easier and more practical to solve the ranking problem

directly.

Along with the definition or objective of the problem, it is important to define

the desired operational and technical characteristics of recommender systems. The main

desired properties of any recommendation algorithm are as follows:
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• Relevance: The main goal in recommender systems is to provide recommendations

that are relevant to the user at hand. Users are much more likely to consume items

which they find interesting and are tailored for them.

• Novelty: Users are much more engaged when confronting items they have not seen

in the past. Recommending the same items over and over, however good the rec-

ommendations may be, is not a good strategy.

• Serendipity: Serendipity in recommender systems happens when recommendations

are somewhat surprising or unexpected to the user, as opposed to obvious recom-

mendations. It differs from the concept of Novelty in that it does not simply rec-

ommend items the user did not know about before but allows the user to discover

entirely new areas of interest. For example, recommending a new spicy Mexican

restaurant to someone who regularly visits Mexican restaurants may be novel, but

it is not surprising at all. Recommending a Thai restaurant instead might allow the

user to discover a whole new interest, increasing sales diversity and user satisfac-

tion.

• Diversity: Recommender systems usually suggest a list of top-k items to the user.

If all the recommended items are similar, there is an increased chance that the user

will not like any of the items. On the other hand, if we show diversified items there

is a higher chance that the user will like at least one of them.

Additionally, we can define the main goals of the system as a whole from the

perspective of the service provider. There are many reasons why service providers may

wish to invest in RSs (RICCI et al., 2010):

• Increase sales: Arguably the most important goal for a commercial RS, this can

be achieved because recommended items are more likely to suit the user’s needs

than a generic non-personalized item list. In general, the primary goal of a RS is to

increase the conversion rate, i.e., the number of items consumed in relation to the

number of page views.

• Diversify sales: In a movie rental system such as Netflix, for instance, the service

provider is interested in renting all of its catalog instead of just the most popular

movies. However, advertising relatively unknown movies to all its user base could

be risky. A RS can alleviate this problem by providing different recommendations

for each user, thus increasing the effectiveness of the advertisement.

• Increase user satisfaction: By providing interesting and relevant recommendations,
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RSs can improve the experience of the user with the application, therefore increas-

ing the user’s evaluation of the system.

• Increase user fidelity: The more a user interacts with a RS the more refined its user

model becomes, giving them the feeling of being recognized as a valuable visitor.

• Understand user needs: The output of a RS can be used for many other purposes

such as improving the management of an item’s stock or creating promotions tar-

geting specific user segments.

1.1 Motivation

The objective of this work is to evaluate and compare different state-of-the-art ap-

proaches for building RSs in the context of a particular crowdfunding platform—Catarse—

of which the author is a developer.

Launched in January 2011, Catarse was the first crowdfunding platform for cre-

ative projects in Brazil. With over 7000 successfully financed projects raising R$77m

from 480.000 people, it is currently the largest national platform of its kind. It works

similarly to most crowdfunding platforms: the project owner presents his or her idea for

a project which they wish to be funded and specifies the required investment as well as

the cutoff date for the project while offering rewards for those who back it. Projects are

divided into 3 main categories: all-or-nothing, flexible, and recurrent. In the first type,

projects are available for backing (i.e., to start receiving pledges from supporters) up to

60 days, and the project owner only receives the raised amount if the project’s goal (total

required amount of money for developing it) is met; otherwise all the money is returned

to its original backers. On flexible projects, the owner receives the raised amount whether

the goal was reached or not. Recurrent projects are subscription-based and the owner can

collect the money monthly.

Catarse’s business model relies on charging a fixed percentage of the total pledged

amount from successful projects, even if this amount is greater than the original goal.

Failed projects, i.e. projects that did not meet their goal by the deadline, represent a major

financial cost to Catarse since transaction fees involved in the refund process are fully

absorbed by the company. Therefore, we expect to benefit from RSs in two ways: first, by

increasing the average pledged amount per project, which can be achieved by presenting

appropriate projects that are tailored for the user; and secondly, by increasing project dis-
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coverability we expect that more projects will be successfully funded and fewer projects

will fail. As discussed in Chapter 4, we evaluate different RS approaches according to

how well they achieve these objectives.

As of April 2018, over 1500 projects in 18 different categories are online and avail-

able for backing in Catarse. It would be unreasonable to expect users to browse through

all projects before deciding which ones to back. For this reason, some sort of ranking is

fundamental when showing projects to users, and there is no doubt that the choice of this

ranking method will greatly affect conversion rates and successful funding of projects.

At the time of this writing, several ranking strategies are in use. First, on the home page

projects are shown ordered by popularity, defined here simply by the pledged(contributed)

amount in the last 48 hours. Another section of the website shows which projects were

backed by particular Facebook friends of the user, for those users who opted to connect

their Facebook account to their Catarse account. Finally, on the explore page, we also

have filters for displaying projects expiring soon. It should be noted that none of these

sections of the Catarse website, with the exception of the backed by friends section, dis-

play projects that are tailored for each specific user: every user will see the same projects

in the same order.

Given the above properties and goals of Catarse, project recommendation can be

considered a crucial aspect of Catarse’s business model. We can expect any marginal im-

provement in this regard to be of great benefit to the company and its users. Therefore,

a user-tailored recommendation system is very important to stay competitive and is ex-

pected to increase user satisfaction, both for backers who will be able to more easily find

projects that are interesting to them and for project owners who will receive more visits

to their projects due to increased discoverability.

Catarse’s dataset is unique in a variety of ways that makes collaborative filter-

ing (CF) techniques (explained later in Chapter 2) hard to apply. First, unlike regular

e-commerce Web sites such as Amazon, where products stay available for many years,

crowdfunding projects have a predetermined cutoff date, after which it is no longer pos-

sible to make a pledge. It makes no sense to recommend expired projects, limiting our

possible recommendations to online projects only (see Section 1.3 for more details on the

terminology employed in this work). Another challenge is the fact that the majority of

Catarse’s users only back one project, thus making it hard to collect enough data for CF

methods to work properly. One typical characteristic of classic CF systems is that they

may have to be retrained after every new interaction; this imposes scalability challenges



15

when implemented on highly dynamic data, such as the training data of Catarse. On the

other hand, content-based methods (discussed in Chapter 2) allows us to train our model

with the whole dataset in order to extract backer-project features only once, and later use

this model to search for online projects with the highest backing probability for the cur-

rent user. However, such methods also have drawbacks, as discussed in Chapter 2. These

challenges motivate us to search for methods that are adequate for our specific needs.

1.2 Goals

This work aims to implement and compare the main computational strategies for

building RSs and apply them in the context of a particular large-scale Crowdfunding web-

site. Several metrics are used to determine the best approach, which will then be deployed

in a production environment. Our primary goal is to find a strategy that is at least better

than the current-used popularity ranking, which is usually hard to beat in realistic scenar-

ios.

1.3 Definitions and Terminology

We present, below, some crowdfunding-specific definitions and terminology that

are used throughout this work:

• Contribution, pledge or back: financial endorsement by a user to a specific project;

• Backer: a platform user that contributed to a project;

• Project Owner: the user that created the project;

• Successful Project: a project that, by the end of its deadline, has reached its goal;

• Failed Project: a project that, by the end of its deadline, has not reached its goal;

• Online Project: a project that is available for backing and has not yet reached its

deadline;

• Reward: something that is offered or promised to backers for contributing to the

project;
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1.4 Structure

This work is divided into 6 chapters. In the second chapter, theoretical background

for the employed methods is presented. In the third chapter, we analyze a few existing

applications that rely on Recommender Systems. The fourth chapter describes how we

conducted our experiments. In the fifth chapter experimental results are presented and

discussed. Finally, in the sixth chapter, we summarize our conclusions and describe future

work.
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2 THEORETICAL BACKGROUND

In this chapter, we review the main concepts behind Recommender Systems. We

discuss the most common approaches used in the industry today and provide a detailed

comparison of their general characteristics, as well as insights that are relevant to our par-

ticular application. For each general approach for constructing a RS, we give descriptions

of the most used algorithms along with state-of-the-art techniques that were selected for

use in the experiments that we conduct (see Section 4).

The basic idea behind any recommender system is to obtain a utility function to

estimate user preferences towards an item (RAKESH; LEE; REDDY, 2016). The mean-

ing of this function will differ for each context; it could mean how likely a user will want

to watch a specific movie or listen to a song, or the likelihood of buying a particular prod-

uct. In our case, the goal is to find projects the customer is most likely to back given his

backing history and other characteristics.

Methods for implementing Recommender Systems can be broadly divided into

two categories: Content-Based (CB) and Collaborative Filtering (CF) methods (RAKESH;

LEE; REDDY, 2016). The former utilizes user features and content features (describing

items, such as relevant keywords) in order to recommend items to users. In collaborative

filtering methods, user ratings are used in order to calculate similarities between users

(user-based CF) or between items (item-based CF), which are then ranked in order to

show the most relevant recommendations to each specific user by exploiting inter-user

and inter-item relationships. How these similarities are computed and used to rank items

is described in Section 2.1. Content-Based models also utilize user ratings in most cases;

however, the model usually focuses on predicting the ratings of a single user, instead of

attempting to discover inter-user relationships. These two methods are sometimes com-

bined into what is known as Hybrid Recommender Systems. Hybrid systems can combine

the strengths of various models in order to perform more robustly in a wide variety of set-

tings.

In the next sections, we provide mathematical models for these approaches, as

well as a discussion of their main advantages and shortcomings.
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2.1 Collaborative Filtering

Collaborative filtering (CF) is based on the principle that similar users will share

similar interests. Assuming that ratings are highly correlated across various users and

items, it is possible to predict a rating not yet given by the user. For example, if the

algorithm identifies that user Alice and Bob have similar tastes, even if only Alice rated a

certain item, we can surmise that Bob would give a similar rating as hers.

CF algorithms can be divided into two categories: Memory-Based and Model-

Based approaches (LEE; SUN; LEBANON, 2012). Memory-Based CF algorithms, also

referred to as neighborhood-based collaborative filtering algorithms, represent each cus-

tomer by a N -dimensional vector of item ratings, where N stands for the number of

available items, and where each vector component corresponds to the user rating of the

corresponding item. These ratings can be obtained explicitly — e.g. star rating or "likes"

— or implicitly — e.g. a user buying an item or listening to a song can be considered

a positive rating. By collecting ratings from M users, we build a Rn×m matrix which

is the starting point for Memory-Based CF. Each entry Rij in this matrix corresponds to

an observed rating by user i to item j, while missing ratings are represented with some

sort of null value. For most applications, R will be extremely sparse (SU; KHOSHGOF-

TAAR, 2009). Our job is to try to predict the missing ratings; for this to be possible,

most models focus on leveraging inter-item or inter-user correlations, that is, the similar-

ities between items or between users. Memory-Based methods were among the earliest

CF methods proposed (AGGARWAL, 2016). Although very simple to implement, these

methods often have trouble with very sparse matrices, since they use theR matrix directly

to compute similarities and make predictions, which is often very large. Neighborhood

methods are discussed in Section 2.1.1.

In Model-Based CF methods, on the other hand, machine learning and data mining

algorithms are used to develop a model based on the R ratings matrix that will be used to

predict user ratings (AGGARWAL, 2016). Some examples include decision trees, rule-

based models, Bayesian methods and latent factor models. These methods can solve

some of the shortcomings of Memory-Based approaches, such as the need for large rating

matrices since they use a pre-computed model instead of directly using the R matrix to

make predictions, often by means of dimensionality reduction of the R matrix. Finally,

both approaches can be combined into Hybrid Recommenders. An overview of these

techniques is depicted in Figure 2.1.
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2.1.1 Neighborhood Methods for CF

Neighborhood methods take rows or columns of R and compute a similarity value

between them. If the rows correspond to users and the columns to items, we can obtain

the similarity between two users u and v by computing the correlation between the rows

u and v of R. This is usually referred to as User-Based CF. In the same fashion, the

similarity between items i and j can be computed by taking columns i and j of R and

calculating their distances, which is referred to as Item-Based CF.

For User-Based CF, given rows corresponding to users u and v in the R matrix,

one common method to compute similarity between users is the cosine measure given by:

sim(u, v) = cos(u, v) =
u · v

||u|| · ||v||
=

∑
i∈Iuv ruirvi√∑

i∈Iu r
2
ui

√∑
i∈Iv r

2
vi

where Iu and Iv are the sets of items rated by user u and v respectively, Iuv = Iu ∩ Iv and

rxi is the observed rating of user x to item i (SU; KHOSHGOFTAAR, 2009). To get a

rating prediction řui given by the user u to item i, we aggregate ratings from the subset of

users most similar to u, U ′. One such aggregation function could be:

řui = n
∑
u′∈U ′

sim(u, u′)ru′i

where n is a normalizing factor. For large databases, User-based CF can be prohibitively

computationally expensive. Its worst-case performance is O(MN) where M is the num-

ber of customers and N is the number of items (LINDEN; SMITH; YORK, 2003); this

problem can, sometimes, be partially alleviated by exploiting sparsity in the customer

vector.

Item-Based CF works almost exactly the same as User-Based CF. One important

distinction is that item-based CF retrieves recommendations directly from the similarity

matrix (an M ×M matrix of user similarities or an N × N matrix of item similarities)

and does not require R to be kept in memory (VINAGRE, 2012). A major reason for

the adoption of this approach is that in most systems users are much more numerous

than items, leading to a significantly reduced similarity matrix when using item-based CF

(SARWAR et al., 2001). We can redefine the cosine measure for this case like so: let Ui

and Uj be the set of users who rated items i and j respectively, and Uij = Ui ∩ Uj be the

set of users who rated both items i and j, the similarity is then given by:
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sim(i, j) = cos(i, j) =
i · j

||i|| · ||j||
=

∑
u∈Uij

ruiruj√∑
u∈Ui

r2ui

√∑
u∈Uj

r2uj

Similarly, we define the rating prediction for item-based CF, considering J to be

the set of items j most similar to i, as:

řui =

∑
j∈J sim(i, j)ruj∑
j∈J sim(i, j)

Item-based CF was first proposed by Amazon (LINDEN; SMITH; YORK, 2003).

Each item purchased by the customer is compared to other items in the dataset in order to

calculate a similarity metric. The original algorithm is shown below:

for each item in product catalog, I1 do

for each customer C who purchased I1 do

for item I2 purchased by customer C do

Record that a customer purchased I1 and I2;

end

end

for each item I2 do

Compute the similarity between I1 and I2;

end

end
Algorithm 1: Item-to-item CF

In either case, for this to work large amounts of user data is required. This is

known as the cold start problem: new users who have not rated many items yet will

have a reduced recommendation quality (SU; KHOSHGOFTAAR, 2009). On the other

hand, no information about the item itself is needed, making CF especially applicable to

collections of hard-to-analyze items such as movies. Memory-based approaches also have

the advantage of being able to add new items or users on the fly by simply adding a new

row or column in R, without having to recalculate a model.

2.1.2 Model Based Methods for CF

Model based methods attempt to solve the scalability and sparsity problems of

Memory-Based approaches by leveraging a latent factor model that captures the similarity

between users and items. This is generally achieved by a matrix factorization method
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such as Singular Value Decomposition (SVD) (SU; KHOSHGOFTAAR, 2009), which is

explained below.

The basic goal in SVD is to find a factorization for the user-item ratings matrix

R that decreases its dimensions. In particular, we want to find item vectors qi and user

vectors pu such that the dot product is the expected rating r̂ui:

r̂ui = qTi pu

and we want to find, in particular, p and q such that the square error difference between

their dot product and the known rating rui is minimized:

min
∑

(u,i)∈R

(rui − qTi pu)2

In other words, for each row u in the R matrix (containing ratings of the corre-

sponding user for every available item), we want to find a new vector pu to describe this

user such that |pu| < |u| and qTi pu gives a good approximation of the real ratings.

The above equation can be minimized using stochastic gradient descent algorithm

(SGD), which works by assigning random initial values to the entries in the qi and pu

vectors and iterating to reduce the error between each step. SGD is parametrized by a

learning rate γ, which determines by how much the values should be updated between

each step in the direction of the gradient of the objective equation.

2.2 Content-based Filtering

In this approach, a vector description of each item is constructed using structured

data or some sort of item presentation algorithms such as Latent Dirichlet Allocation

(LDA) or TF-IDF, which are used to build structured representations of unstructured data

such as unrestricted text fields (AGGARWAL, 2016). Along with the item descriptions,

a user profile is created for each user. This profile can consist of many different types

of information: a history of the user’s interaction with the system such as page views,

searches and purchases is often used to train the model without any explicit user input.

Some systems may require the user to explicitly state their interests, however, it may be

very hard to get users to make this effort, rendering this approach very limited in practice.

Item representations and the user profile are then combined to create a model that, given
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Figure 2.1: Overview of collaborative filtering techniques.

Source: (SU; KHOSHGOFTAAR, 2009)

a user profile and a new, unlabeled item, predicts the rating for the new item. One simple

approach, for instance, would be a nearest neighbor method that calculates the distance

between this new item and items already rated by the user and classifies this new item

according to the labels of its nearest neighbors.

As CB filtering focuses on item rather than user similarity, it avoids the cold start

problem since little information about user preference is needed. For instance, if user

Bob rated movie A but no other ratings are available for the movie, it is still possible to

recommend other movies based on the attributes of movie A, such as genre keywords or

release date. However, since only similar items to those already rated by the user will

be considered, CB strategies tend to suffer from over-specialization (IAQUINTA et al.,

2008). This is known as the serendipity problem. Another limitation of CB algorithms

is that items are required to contain enough information in order to distinguish items the

user likes from items the user does not like. For example, a dataset of songs where only

the song name is available would not be enough to make good predictions based on this

content only, however, this would pose no problem for collaborative filtering methods

which rely solely on user similarity. Finally, while CB methods excel in recommending

new items, they are not effective when it comes to new users. This is because the training

model requires a rating history in order to make robust predictions.

CB systems provide several advantages over CF approaches:
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• User independence: CB systems do not rely on rating information from other users;

this makes it possible to recommend items that were not yet rated by anyone else,

based solely on the items characteristics.

• Transparency: Predictions can be explained by listing specific content features that

caused an item to be recommended.

On the other hand, several shortcomings are present when compared to CF approaches:

• Limited content analysis: feature extraction is limited in most cases, limiting the

amount of information available to build the user model. For instance, performing a

text analysis on a news article will often completely ignore multimedia information

• Over-specialization: Also called the serendipity problem, CB systems are, by de-

sign, only able to recommend similar items to those already rated by the user. This

makes it impossible for the user to discover novel and unexpected items.

There are several approaches for implementing CB systems. We provide below

detailed explanation of one such approach — Gradient Boosting Trees — which can be

used as a binary classifier to implement a CB system by considering a positive rating as

belonging to the positive class and a negative rating as belonging to the negative class.

In recent years, tree boosting has become an increasingly popular method and been

shown to give state-of-the-art results for many classification problems (LI, 2012). As in

any supervised learning method, our objective is to train a model to predict a target vari-

able yi given features xi. Boosting methods are characterized by combining many weak

learners into a strong one in an iterative fashion. In this case, the model is an ensemble

of trees, more specifically a set of classification and regression trees (CART). Unlike de-

cision trees, where the leafs contain decision values, the leafs on gradient boosting trees

contain a score s ∈ R. Multiple simple trees are then constructed and the prediction of

each tree is summed up to get the final score as explained on Figure 2.2. The model can

then be defined as

ŷi =
K∑
k=1

fk(xi), fk ∈ F

where K is the number of trees, f is a function in the functional space F , and F is the set

of all possible CARTs (CHEN; GUESTRIN, 2016). The example in Figure 2.2 tries to

predict whether someone will like computer games or not. We can use the above equation

to compute the score for the boy, for example, by summing the corresponding leaf scores
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of each tree, i.e. the overall score associated with a given class is the sum of the scores

(as predicted by each individual tree) for that class.

Figure 2.2: GbTree example

Source: (CHEN, 2014)

The objective function can be written as

obj(θ) = L(θ) + Ω(θ)

obj(θ) =
n∑
i

l(yi, ŷi) +
K∑
k=1

Ω(fk)

where L is the training loss function and Ω is the regularization term. L can also be

written as the sum of the errors for all instances given by an error function l that takes as

parameters the real class yi and the predicted class ŷi.

One possible loss function would be the logistic loss function for logistic regres-

sion:

L(θ) =
∑
i

[yi ln(1 + e−ŷi) + (1− yi) ln(1 + eŷi)]

To define the regularization function, we first define the tree function ft(x) for

each tree t as

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, · · · , T}.

where w is the vector of scores on leaves for some given input x, q is a function assigning

each data point to the corresponding leaf, and T is the number of leaves. The regulariza-

tion function is then defined as follows:
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Ω(f) = Ω(wq(x)) = γT +
1

2
λ

T∑
j=1

w2
j

The ensemble is trained by using an additive strategy. We need to learn the func-

tions f that define the structure and leaf scores of each tree. This is done by fixing the

trees we have already learned and, based on them, adding one new tree at a time. The

prediction value at step t (t-th tree) for each instance i is given by:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

. . .

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi)

We optimize the objective function to build the tree at each step:

obj(t) =
n∑

i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi)

=
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant

After some algebra, the objective becomes:

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft)

where gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ). By defining Gj =

∑
i∈Ij gi

and Hj =
∑

i∈Ij hi, with Ij = {i|q(xi) = j} being the set of indices of data points

assigned to the j-th leaf, we can further simplify the objective function as:

obj∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT

The above equation measures how good a tree structure is, with smaller scores

representing better trees. Ideally, we could enumerate all possible trees and choose the

one with the lowest score given by this definition. However, such a problem would be

intractable so in practice we optimize for one level of the tree at a time. This is done by
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splitting a leaf into two leaves using the Gain function below:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ

the gain can be decomposed as the sum of the scores of the new left and right leafs minus

the score of the original leaf. We can see that if the gain is smaller than γ we should not

split the branch. This is the pruning step in the algorithm, after this, we can start building

the next tree of the ensemble, up to the specified number of trees desired.

2.3 Hybrid systems

When used in isolation, all the previous methods present shortcomings that are

hard to overcome. Hybrid systems are often used to solve these shortcomings by com-

bining results from many distinct models. There are basically 3 ways of creating hybrid

systems (AGGARWAL, 2016):

• Ensemble design: In this design, results from several algorithms are combined into a

single output. This can be done in several ways, such as by computing the weighted

average of the various predictions or by multiplying every prediction. It’s also

possible to not directly combine the outputs, but instead, use the output from one

algorithm as a feature for the next one.

• Monolithic design: In this approach, various data types are used as an input for a

single generic algorithm. This can be done by, for example, modifying existing CB

algorithms to take user rating matrices into account.

• Mixed systems: Like ensemble design, the output from multiple algorithms is com-

puted to obtain a score for each item, however, instead of combining these scores,

items from each algorithm are presented together side-by-side.

We can formalize the weighted average method from the ensemble design, which

is used in this work, by defining R = [ruj] as a m × n matrix of completely specified

ratings, in which the unobserved entries of R are predicted by q different algorithms. For

a set of weights α1..αq, the weighted hybrid method creates a combined prediction R̂ as

follows:

R̂ =

q∑
i=1

αiR̂i

Linear regression can be used to determine the optimal weights by minimizing
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metrics such as the Mean Squared Error (MSE) or Mean Absolute Error (MAE), given by

the following equations, with n being the number of predictions and e being the difference

between the expected value and the computed value:

MSE =
1

n

n∑
t=1

e2t

MAE =
1

n

n∑
t=1

|et|
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3 RELATED WORK

In this chapter, we discuss a few selected existing commercial applications of RSs.

These applications were chosen for their historical significance or their similarity to our

own system. For each application, the relevant underlying RS techniques (some of which

will later be used in our own implementation) are highlighted and a brief explanation of

how they were applied to that system (or how they differ from our use-case platform) is

provided. One related academic paper is also analyzed in detail. Details on how each

technique can be computationally implemented are discussed in Chapter 2.

3.1 GroupLens Recommender System

One of the first recommender systems to be developed, Grouplens (RICCI et al.,

2010) was used for recommendations of Usenet news. It worked by collecting ratings

from many Usenet readers in order to recommend new articles to users, a technique now

known as Collaborative Filtering (CF).

This basic approach was later extended to other settings such as ones for recom-

mending books and movies; these were referred to as Booklens and Movielens, respec-

tively. One important contribution of this research was the release of several datasets of

user ratings to the research community, which were not easily available at the time. One

of these datasets, Movielens, is still widely used in RS research to this day.

Collaborative filtering techniques such as the ones used by GroupLens remain one

of the most popular approaches for building RSs to this day. In our implementation, this

technique is used to recommend projects to users by collecting implicit ratings from users;

in the context of our crowdfunding project, the act of backing a project counts as a positive

rating to that project.

3.2 Netflix Recommender System

Netflix recommendations are obtained through user ratings on a 5-point scale (re-

cently changed to a thumbs up/down system) as well as implicit ratings, such as the action

of watching a movie. One interesting aspect of their system is the quality of explanations

provided to the recommendations. For instance, a list of recommendations can be pin-
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pointed to having watched a specific movie. This approach can help users decide what to

watch and also contribute to improving customer loyalty and retention.

The Netflix Prize contest was a competition organized by Netflix that ran from

2006 to 2009. Contestants were given a data set of (real-life anonymized) existing user

ratings for different movies and were expected to outperform Netflix’s own recommenda-

tion algorithm, Cinematch. This contest was responsible for many notable contributions to

recommendation systems’ research, such as advancements in latent factor models. Many

of these contributions were applied to the algorithms used in this work.

3.3 Kickstarter Recommender System

Kickstarter is the world’s largest crowdfunding platform and works very similarly

to Catarse, making it a great reference for our implementation. Kickstarter’s initial im-

plementation of its recommender system used a Collaborative Filtering approach. Later,

Content-Based recommendations, which are based on the similarity of the text, were used

by Kickstarter and implemented via a method called Latent Semantic Indexing (LSI).

Both these approaches were later combined into the current Hybrid system. For the initial

tests performed by Kickstarter, the "popular projects" ranking was used as a baseline for

comparing new algorithms. This ranking sorts projects by their total pledged amount in

the last 24 hours.

Due to the similarity between Kickstarter and Catarse’s platform, we can expect

that a similar RS implementation could work equally well. In fact, in our work, we

evaluate many of the techniques used by Kickstarter, such as CF-based RSs, CB-based

RSs, and a hybrid approach. Similarly to Kickstart, our performance evaluation is also

(partially) based on comparisons to the existing popularity metric. However, some key

differences between the platforms must be taken into account when designing a RS for

Catarse. Specifically, flexible projects, which do not exist on Kickstarter, must be taken

into consideration due to their distinct funding and time characteristics and constraints.

These considerations are further discussed in Chapter 4.
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4 EXPERIMENTAL METHODOLOGY

The experiments we conducted consisted of implementing and evaluating three

recommendation algorithms using the data available in Catarse’s database. The chosen

algorithms were: Collaborative Filtering with matrix factorization, a Content-Based ap-

proach using Gradient Boosting Trees, and a Hybrid system combining these two methods

by using weighted averages. These algorithms were chosen due to their state-of-the-art

performance and wide use in the industry, and also in order to test every major approach

in RSs in the context of Catarse’s environment. The existing popularity ranking was used

as a baseline in our tests.

In the next few sections, we describe how our training data was obtained and

prepared for use in each RS implementation, as well as provide evaluation metrics that

are commonly used in recommender systems in order to compare each approach. The

main benefits and shortcomings of each metric are presented and their applicability to our

experiment is also discussed.

4.1 Data Preparation

Two datasets were constructed from Catarses’s production database: one for our

CB model and one for the CF model. Each example in the dataset D for our CB model

consists of a project-backer pair (p, b) with 12 dimensions presented below:

• category count: Number of projects backed by the user b in the same category as

project p;

• mode count: Number of projects backed by the user b with the same funding mode

(all-or-nothing, flexible or subscription) as project p;

• same state: True if the project geographic location is the same as the backer’s;

• recommended: True if project p was manually recommended by an admin;

• has video: True if the project’s creator has uploaded a video describing it;

• budget: Length of the textual description (prepared by the project’s creator) of the

project’s budget;

• description: Length of the textual description (prepared by the project’s creator) of

the project’s description;

• pledged: Amount pledged in the first 3 days since the launch of the project;
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• contributions: Amount of contributions in the first 3 days

• progress: Percentage of goal reached in the first 3 days since the launch of the

project;

• owner projects: Amount of projects from the same project owner as p;

• reward count: Number of offered rewards in project p;

In order to trim irrelevant data, we remove canceled and draft projects as well as

projects with no backers from the dataset. The final cardinality of D was 300000 (p, b)

pairs. Since D consisted of only positive samples (a user backing a project denotes a

positive action), for the sake of balancing our dataset, we create 300000 more negative

instances by randomly combining users with projects they have not backed, an approach

suggested by Rakesh et al. (RAKESH; CHOO; REDDY, 2015). To further emphasize

project quality, only successful projects are considered for the positive instances, while

only failed projects are used for the negative instances. Finally, due to changes in the

platform that occurred in 2015, we ignore data from earlier periods so as to maintain a

consistent dataset.

The dataset used for the Collaborative Filtering model is a simple list of User ID

and Project ID pairs, one for each contribution in the database. With this information, we

build a Rn×m matrix where N is the number of users and M the number of projects. The

rows indices represent the User ID, while the columns indexes represent the Project ID.

A specific entry Ri,j will be 1 if there exists a contribution made by the user with ID i to

project with ID j, and 0 otherwise. At the time of writing, the cardinality of N was 900k

and M was 75k, resulting in a matrix R with 67.5 billion entries. To achieve reasonable

memory consumption, R is converted to a sparse representation.

4.2 Evaluation Metrics

There are basically 3 ways RSs can be evaluated: offline, online, and empirically.

Offline measures are those computed based on a given static dataset, generally through

techniques such as split validation and cross-validation. In these techniques, a subset of

the data is withheld to be later used for testing; metrics are then computed for the test set

only. According to Herlocker et al. (HERLOCKER et al., 2004), offline metrics can be

broadly classified into the following categories: predictive accuracy metrics, such as Mean

Absolute Error (MAE) and its variations; classification accuracy metrics, such as preci-
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sion, recall and F1-measure; rank accuracy metrics, such as Pearson’s product-moment

correlation, and normalized distance-based performance metric (NDPM). To define preci-

sion and recall, which are used to measure performance in this work, we must first define

the following terms: True Positives (TP): number of instances classified as belonging

to its true class; True Negatives (TN): number of instances classified as not belonging to

class A and that in fact do not belong to class A; False Positives (FP): number of instances

classified as class A but that do not belong to class A; False Negatives (FN): instances not

classified as belonging to class v but that in fact do belong to class A. We can then define

precision as P = TP/(TP + FP ), recall as R = TP/(TP + FN) and accuracy as

A = TP + TN/(TP + TN + FP + FN).

For ranked recommendations, we also define the Recall@N metric which evalu-

ates whether an item that the user has rated in the past is in the top N recommendations

from a random set of projects. It works as follows: a set of 100 random projects is aug-

mented with a project that the user has interacted previously; we then measure if the

interacted project is present in the top N recommendations.

In the experiments discussed in Chapter 5, we present results for the most com-

monly used offline metrics for each implemented algorithm; however, it should be noted

that they are not good indicators as to how well a RS will actually perform in production,

and trying to optimize for them may actually degrade real-life performance (MCNEE;

RIEDL; KONSTAN, 2006). To illustrate this point, let us consider a recommender sys-

tem for movies. Suppose user Bob likes movies A, B and C. We split our dataset in such

a way that movies A and B will be in the train set, while movie C is on the test set. Any

kind of offline metric will test in a way or another if movie C was recommended to user

Bob, resulting in a higher score if it is recommended and a lower score if other, unrelated

movies, are recommended. The problem is that an algorithm that recommends movies

D or E could actually be much better than one that recommends movie C, a fact that

no offline metric could account for. This can be fundamentally attributed to the fact that,

unlike most classification problems, recommender systems work with extremely sparse

matrices; this sort of validation strategy would only be valid if we knew the ratings given

by the user for every item beforehand. Evidently, in this imaginary scenario a RS would

be pointless in the first place, consequently, other evaluation strategies are required.

Much more meaningful metrics can be obtained through online evaluation. While

much more expensive and time-consuming to perform than offline measurements, live

metrics are capable of testing directly whether the RS is achieving its intended purpose.
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The most common measures are the Click-Through Rate (CTR) and Conversion Rate

(CR). CTR is defined as the ratio of users who click on a specific link with respect to

the number of users who viewed the page. In our case, if a set of N recommendations

is displayed X times for distinct users, let Y be the number of times a user clicked on at

least one of the recommended items in N . CTR is then defined as Y
X

. CR is defined in the

same way as CTR, except that users must not only click on a specific recommendation

but also back the project. To compare two different RSs in an online setting, the most

prominent approach today is A/B-testing. Since our experiment consists of 3 different

approaches (in particular, CF, CB and Hybrid), an A/B/C test is performed. For our online

experiment, a recommendation algorithm was randomly selected for each user and click-

through and conversion rates were measured by adding a reference header to projects that

were accessed through the recommendations page.

Finally, empirical evaluation consists in having actually look at the results of an

algorithm for one or more user profiles. This is equally important in any business setting.

Consider a news portal that implemented a RS for its front page news. The RS might

start recommending articles about cute cats, which might very well provide higher click-

through rates than its more serious articles. This, however, is probably not what the

company had in mind, and such a change in content might hurt the company’s reputation

in the long run. It is thus paramount to perform sanity checks on recommendation results

manually. To achieve this in our experiment, a test page with each proposed algorithm

was made available and a survey was sent to 14 members of the Catarse team. Participants

were asked to analyze recommendations results for their own user on Catarse’s platform

for each proposed algorithm. The following questions were then asked of each algorithm:

1. : What is your level of satisfaction with this algorithm?

2. : How would you classify this algorithm with respect to the following properties (5

ratings, ranging from very unsatisfied to very satisfied)?

• This algorithm showed me projects I would back;

• This algorithm showed me projects I didn’t know about;

• This algorithm positively surprised me.
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5 RESULTS

In this chapter, we discuss performance results for each of the three implemented

algorithms, where (as discussed before) performance was measured according to the of-

fline, online, and empirical metrics. The computed offline metrics were accuracy, recall,

and precision, as defined in Section 4.2.

5.1 A Content-Based RS for Catarse

The Gradient Boosting tree method was chosen for our Content-Based system due

to its state-of-the-art performance in many real-world applications (CHEN; GUESTRIN,

2016). The data described in Section 4.1 was used to train a model that predicts the back-

ing probability of any user-project pair. The XGBoost Python library was used for this

implementation. Hyperparameters were tuned by running 10-fold cross validation while

optimizing for negative log-likelihood. No data standardization or normalization was nec-

essary since the base learners are trees. In order to understand how each feature affects

the outcome prediction in our model, we plot the SHAP1 values of every feature for every

sample in Figure 5.1. From this plot, we can draw some interesting conclusions: the most

important feature in determining backing probability is the number of backed projects in

the same category, followed closely by the project progress in the first 3 days. We can

also see that having a low number of available rewards decreases backing probability.

To determine how individual features affect the output of the model, let’s take our

most significant feature, category_count, and plot its value against the corresponding

SHAP value for all examples in our dataset. Vertical dispersion shows the interaction

between features, in this case how category_count relates to reward_count. The result

is shown in Figure 5.2. We can see that a higher category_count results in higher SHAP

values, which in turn means that the backing probability is increased. This is easy to

understand intuitively: the more projects in a certain category a user backs the more

probable it is that they keep backing projects in the same category.

This approach gave exceptional results in every computed offline metric, as seen

1SHAP is a unified approach to explain the output of any machine learning model. SHAP connects
game theory with local explanations, uniting several previous methods and representing the only possible
consistent and locally accurate additive feature attribution method based on expectations. SHAP values
measure the relative impact of each feature on the model output (backing probability in our case), with
higher SHAP values indicating a higher importance or weight of that feature when computing the output
for a given instance (LUNDBERG; LEE, 2017).
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Figure 5.1: Feature importance in Gradient Boosting Tree

on Table 5.1. This, however, should be considered with care: our dataset is intrinsically

predictable to the point that any method should give great results; in fact, a simple test to

check if the category_count feature is greater than zero already yields us an accuracy of

94.5%. This is due to the fact that most users only back one project in one category.

Table 5.1: Content-Based Offline metrics
Recall Accuracy Precision

0.990450 0.986260 0.982813

5.2 A Collaborative Filtering RS for Catarse

Our Collaborative Filtering model was implemented using the LightFM library,

which uses a Model-based matrix factorization algorithm. This algorithm was chosen for

its simplicity and high performance in our extremely sparse rating matrix (approximately

1 rating for every 75k entries in the matrix). As depicted on Table 5.2, every offline

metric for the CF approach, when applied to the Catarse system, performed much worse

than its Content-Based counterpart. This was expected due to our dataset characteristics:

since most users only back one project in their lifetime there is not enough rating data for

CF to perform well. However, empirical and online tests (see Sections 5.4.3 and 5.4.2)

using the learned CF model with real users provided much better results.

Calculating offline metrics poses a problem for CF algorithms that produce ranked
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Figure 5.2: Dependence plot for category_count feature. Vertical dispersion shows the
interaction between features, in this case how category_count relates to reward_count

recommendations. Given a user and a list of projects of size N , our model maps each

project in the list to a real number and returns another list of size N with these numbers,

which can later be sorted to show the most relevant recommendations in order. These

numbers can assume arbitrary values which have no relation to the backing probability;

they are used for ranking purposes only. Therefore it is impossible to compute an error

metric since we do not have two sets of comparable values to test for equality. How-

ever, our hybrid approach requires that we have pairs of comparable numbers in order

to compute the weighted average between CF and CB results. To make the CF model

output comparable to our CB model output, which returns backing probability in the 0–

1 range, we normalize the CF model output so it also stays in the 0–1 range. We then

consider any normalized value greater than 0.5 to be in the positive class, and negative

otherwise. These classes derived from the normalized values can then be used to compute

offline metrics for our CF model. This gives us an accuracy of approximately 93%, or

equivalently an error of 7%.

Table 5.2: Collaborative Filtering Offline metrics
Recall@5 Recall@10 Precision@5 Precision@10

0.06500372900657606 0.0925860086205232 0.015118373 0.010974493
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5.3 A Hybrid RS for Catarse

Hybrid ratings were (as discussed before) computed by taking the weighted aver-

age of the ratings obtained by the CB method and the normalized CF ratings. By doing

this, we hope to compensate for any weaknesses in the original techniques and leverage

its strengths. For example, a project highly rated by our CB algorithm but rated lowly

by the CF algorithm could show that, although its features seem to indicate a good match

for the user, similar users are not backing it in practice. By averaging both ratings such

a project would rank much lower on the recommendation list, allowing better matching

projects to appear in higher positions. The weights for this work were arbitrarily chosen

as 0.5 for each approach, that is, we give an equal weight to both methods. Obviously,

these weights can be optimized with further experiments in the future. Hybrid results are

presented on Tables 5.3 and 5.4.

5.4 Discussion of Results

In this section, we summarize and provide a comparative discussion of the perfor-

mance of the different implemented algorithms according to each evaluation metric used:

offline, online, and empiric, giving special attention to our main metric of Conversion

Rate.

5.4.1 System Performance According to Offline Metrics

Table 5.3 summarizes offline results for our three tested approaches. We can see

that CB metrics provided much better results than the CF results, while the combined

Hybrid approach resulted in slightly worse performance than the CB approach, however

still presenting very good numbers. However, as noted on Section 5.2, it is hard to com-

pare offline metrics for systems that provide backing probability as is the case of our CB

implementation with systems that simply provide an ordered list of recommendations, as

is the case of the CF algorithm that we implemented. Therefore, these results should be

taken with care and we should not assume that an algorithm with a better offline metric

will result in better online metrics.
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Table 5.3: Offline metrics of different RS approaches
Method Recall Accuracy Precision

Content-Based 0.990450 0.986260 0.982813
Collaborative Filtering 0.089330 0.932910 0.010246

Hybrid 0.942722 0.964293 0.928434

5.4.2 System Performance According to Online Metrics

Online results were obtained by randomly assigning a recommendation algorithm

for each user that visited the Explore Projects page. The existing popularity metric (i.e.,

the metric already implemented in the current Catarse system) was also added as a base-

line for comparison, thus resulting in 4 test groups: CB, CF, Hybrid, and popular. For

each group, CTR and CR measurements were obtained. The experiment was run for 1

week on a live production environment with more than 20 thousand unique visitors per

day.

It is known that the chance of obtaining a false positive increases with the number

of variations tested. This probability is given by the formula 1− (1− a)m, with m being

the total number of variations tested and a being the significance level, which gives us

a false positive probability of 18% when m = 4 and a = 0.05. To correct for this, we

compute a new required confidence level by applying the Bonferroni correction, which

calculates the confidence level for a test with more than one variation. This correction

simply divides our desired significance level by the number of variations, thus giving us

a new required significance of 0.05
4

= 0.0125, or, equivalently, a required confidence level

of 98.75%.

The performance results of the different algorithms according to the online met-

rics are described in Table 5.4. We can see from these results that Click-Through rates

only improved for the CF algorithm in comparison to our popular control group baseline

approach, while every other algorithm performed worse than the baseline. One possible

cause for this is the intrinsic recommendation diversity provided by the CF approach; both

CB and Hybrid recommendations are more likely to show projects similar to those already

backed by the user; for example, a user that usually backs comic book projects would be

shown mostly projects about comic books. However, such a user probably has already

seen most available comic books projects and is, therefore, less likely to click on them

again. On the other hand, diverse recommendations provided by the CF approach will

present novel projects which are more likely to be clicked on. Nonetheless, simply im-

proving CTR does not necessarily increase Conversion Rate, which is our real objective;
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in fact, our CR results show a quite different picture: not only did every recommendation

approach performed significantly better than the baseline in this metric, but CF showed

the least improvement while the Hybrid algorithm exhibited the best results, as expected.

In fact, almost half of project views from the Hybrid ranking resulted in pledges to the

project, a particularly impressive result. The high amount of traffic that occurred dur-

ing these experiments (approximately 20 thousand unique visitors per day) gives us the

required confidence level thus validating the results.

Table 5.4: Online results of differente RS approaches
CF CB Hybrid Popular

CTR % 42 34 33 38
CR % 12 13 15 10

As discussed in Section 1.1, our two main goals from the business perspective

were to increase the amount of money pledged to projects and to increase the percentage

of successful projects. The first goal seems to have been achieved when looking at the

conversion rates resulting from different RS systems: our hybrid approach resulted in 50%

more pledges than the existing popularity ranking. Our second goal, however, cannot be

measured directly on such a short experiment, and an indirect metric is therefore required

for our comparison. In particular, it is reasonable to assume that more projects would be

successful if pledges were distributed evenly among many projects instead of concentrat-

ing on just the most popular ones (many successful projects achieve significantly over a

100% of their goal mainly due to their exposure in the existing popularity ranking, creat-

ing a snowball effect; spreading this exposure to other high quality but unpopular projects

should increase the number of successful projects); for this reason, we will measure the

success of our second objective by looking at the project distribution of the pledges. The

approach with the highest number of distinct projects pledged to will most likely meet our

second goal. Table 5.5 shows this analysis. We can see that every implemented algorithm

increased this metric in comparison to our baseline, with the CF approach being the clear

winner. Again, this can be explained by the diversity of results that is inherent to the CF

approach.

From these results, it is clear that the CF and Hybrid approaches maximize differ-

ent objectives, at least when evaluated via an online metric; in particular, CF approaches

seem to maximize contribution spread, while Hybrid approaches seem to maximize CR.

Balancing these possibly conflicting objectives corresponds to an optimization problem

that is business-specific and beyond the scope of this work, but it is easy to see that this
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can be optimized by simply adjusting the weights in our Hybrid algorithm, giving more

(or less) emphasis to the CF model.

Table 5.5: Number of distinct projects which received pledges
CF CB Hybrid Popular

Number of projects 45 29 26 24

5.4.3 System Performance According to Empirical Evaluation

The results on Table 5.6 were obtained by sending a survey to each member

of Catarse’s team. Respondents were asked to evaluate each available algorithm while

logged in with their accounts in a production environment and answer several questions

about each of them. To avoid bias, respondents were not given any details about the

algorithms, which were labeled simply as 1, 2 and 3 to avoid identification. Five ratings

were available for each question, from very unsatisfied to very satisfied. These rating were

mapped to a 1-5 scale in order to obtain an average rating for each proposed question. It

must be noted that, although this survey was aimed at people with vast knowledge and

experience about crowdfunding projects, their recommendation results do not necessarily

match those of a regular user. This is due to the fact that most site admins have backed

hundreds of projects in order to test new features or while trying to reproduce bugs, which

could greatly skew results since those projects are not necessarily the kind of projects they

would normally back. To remove these outliers, only survey results of users with less than

a 100 contributions were considered.

Table 5.6: Survey Results of different RS approaches
CF CB Hybrid

What is your level of satisfaction with this algorithm? 3.8± 0.4 3.3± 0.5 4.0± 0.5
This algorithm showed me projects I would back 4.4± 0.5 3.6± 0.5 3.7± 1.3
This algorithm showed me projects I didn’t know about 4.1± 1.0 3.5± 1.2 4.7± 0.2
This algorithm positively surprised me 3.4± 1.1 3.5± 0.6 4.0± 1.7

As expected, Hybrid recommendation results were the highest rated on average.

Again as expected, the Collaborative Filtering approach gave more diversified results

compared to the content-based approach, although, interestingly, Hybrid recommenda-

tions gave even more serendipitous recommendations.

One common complaint about the recommendation results was that "dead" projects,

that is, projects which have not received any contributions for a long time, were being
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highly recommended in some cases. Indeed, since our dataset only includes data that

is available in the first 3 days of the project’s lifetime, it is possible that a project that

received many contributions in its launch but flattened out later would be highly recom-

mended. This is especially a problem for flexible projects, which can stay online for up

to a year. The Content-Based algorithm was also criticized for prioritizing highly popular

projects over a list more tailored for the user. This is to be expected since the pledged

amount was one of the most significant features in our ensemble model.

Collaborative Filtering results were much better than expected given the general

characteristics of the dataset, but we must take into account the fact that most team mem-

bers have backed on average much more projects than the average user, thus making them

great targets for CF.

The last two questions, which were intended to measure novelty and serendipity

respectively, showed the highest variation in the survey. This can be attributed to differ-

ences in familiarity with current projects amongst different team members. Members of

the support team, for example, were more likely to be aware of the recommended projects

than members of the financial team.

An additional question was added to the survey letting participants inform, in free

form, general observations that they wished to make about each proposed algorithm. By

reading these comments it was possible to notice that, even though users did not know

which algorithm they were evaluating, their comments matched exactly the expected char-

acteristics of each approach, further confirming the fact that these differences in charac-

teristics are obvious even to non-technical users; that is, not necessarily programmers or

personnel directly involved in designing the actual Catarse system, but people who might

work, e.g., in the Human Resources office of the company. This ensures that the dif-

ferent subjective relevance metrics involved in this evaluation will be provided by users

with a wider perspective than that provided by developers directly connected with the

implementation details of the system.
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6 CONCLUSION

6.1 Summary and Discussions

After evaluating three selected state-of-the-art RS approaches (namely, CF, CB,

and Hybrid) according to three different metrics, it is clear that personalized recommen-

dations do provide better results than non-personalized in all measured metrics. This is

to be expected since every user has distinct interests and a single list of recommended

projects could not possibly interest every user. We can also see that offline metrics are

indeed not good indicators as to how well a particular algorithm will behave in a produc-

tions environment in terms of CTR and CR; although CB showed almost perfect results

according to our offline evaluation, it did not fare much better than other approaches in

these online metrics. The CF approach presented surprisingly good online results consid-

ering the characteristics of our dataset, although it still could not beat other approaches

when considering conversion rates. As expected from empirical results involving other

commercial applications—such as Kickstarter’s system—Hybrid recommendations per-

formed best according to our main objective of maximizing Conversion Rate. We can

conclude that, based on our objectives (as described in Chapter 1), a Hybrid RS sys-

tem would best serve our interests and should be the default recommender used in our

production server. If the trends described in Chapter 5 continue to hold, we expect that

by replacing the currently implemented popular recommendation strategy with a Hybrid

RS, Catarse’s Conversion Rate can improve by as much as 50% and the percentage of

successful projects can increase as well.

The particular algorithms that we selected for representing each of the three types

of evaluated RS approaches proved to be successful and a good match for our dataset.

In particular, all of them performed better than the currently-deployed baseline algorithm

according to the Conversion Rate metric. The different evaluated CF algorithms mainly

differed in computational performance and further experimenting would not provide dif-

ferent recommendation results. As for CB approaches, we expect different sets of features

and hyperparameters to produce quite different recommendations and they are therefore

good targets for further experimenting, but these experiments are beyond the scope of this

work. The transient nature of our projects turned out to be a quite manageable problem,

even for the CF approach. The main difficulties observed in our implementation was re-

lated to choosing appropriate features for the CB model. We discovered that even small
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modifications in our training dataset could result in wildly different prediction perfor-

mance; special care was taken, therefore, to make sure that every feature was meaningful

and independent in order for our model to work properly.

6.2 Future Work

A number of improvements can be made to the current implementation. First, for

the Content-Based algorithm, new features can be added to improve its prediction power.

More specifically, instead of only considering the length of the project’s description we

can analyze its content by using techniques such as Latent Dirichlet Allocation (LDA)

or TF-IDF and use the results from this analysis as features for our model. Secondly,

time-aware features can be used to alleviate problems such as abandoned projects ranking

highly, which was described in Section 5.4.3. Additionally, further rating information

can be obtained by analyzing project visits and social media interactions to refine our

models further. It is also worthwhile to investigate new approaches for creating negative

instances in our CB algorithm, instead of simply randomly matching users to projects they

have not backed we can find new ways to reduce the bias in this process. Finally, Hybrid

recommendations can be further tuned, either manually or in an automated manner, by

giving different weights to each algorithm, thus placing a higher emphasis on one of

them.
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