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RESUMO

Sinais de espectroscopia por ressonância magnética nuclear são utilizados no diag-
nóstico de doenças importantes tais como Alzheimer, câncer, entre outras. Isso é possí-
vel através da quantificação dos metabólitos presentes nos órgãos sujeitos ao exame de
espectroscopia. Porém, a presença de ruído e a sobreposição dos sinais emitidos por al-
guns metabólitos podem tornar o resultado da quantificação impreciso. Neste trabalho,
nós implementamos e testamos diversas arquiteturas de redes neurais convolucionais para
quantificar sinais de espectroscopia, e comparamos elas com o QUEST, que é a técnica
estado-da-arte nessa área, utilizando o erro relativo como medida. Nossos resultados mos-
tram que o erro das redes neurais é aproximadamente 3 vezes menor que o QUEST para
sinais contaminados com ruído gaussiano e sinal de fundo. Esse resultado é promissor e
mostra que Deep Learning é uma abordagem para a quantificação de sinais de espectros-
copia que merece ser explorada.

Palavras-chave: Espectroscopia eletromagnética, Deep Learning, Redes neurais convo-
lucionais, QUEST.



Resumo estendido

Este é um resumo estendido em português para a Universidade Federal do Rio Grande
do Sul do trabalho original que segue. O trabalho de conclusão original, em inglês, foi
apresentado no Institut Polytechnique de Grenoble através do programa de dupla diplo-
mação Brafitec entre as duas universidades.
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1 INTRODUÇÃO

Ressonância Magnética (RM) é uma técnica não-invasiva usada para detectar doenças
importantes, tais como tumores cerebrais, distúrbios convulsivos do cérebro, ou mal de
Alzheimer. Ela funciona através da exposição do órgão examinado a um campo magnético
e captura das frequências emitidas pelos diferentes metabólitos presentes no órgão. A
RM é subdividida de acordo com o tipo de informação que é usada para extrair: imagem,
espectroscopia e imagem por espectroscopia. Neste trabalho, focamos nas informações
de espectroscopia.

Diversos metabólitos podem ser encontrados no corpo humano em quantidades di-
ferentes. Um dos principais problemas da espectroscopia por ressonância magnética é
quantificar esses metabólitos corretamente para utilizar essa informação em diagnósticos
e estudos, pois essas quantidades são um indicador importante de doenças metabólicas.
Porém, essa tarefa é dificultada pelas imperfeições no modelo do sinal. Existem compo-
nentes adicionais presentes no sinal, como sinal de background e ruído que podem levar
a resultados incorretos.

Os sinais obtidos da espectroscopia por RM são divididos em duas categorias: sinais
com tempo de trânsito longo e sinais com tempo de trânsito curto. O primeiro caracte-
risa a captura de poucos metabólitos, enquanto o segundo captura sinal de background e
diversos metabólitos adicionais.

2 QUANTIFICAÇÃO DE SINAIS DE ESPECTROSCOPIA
DE RESSONÂNCIA MAGNÉTICA

O sinal de espectroscopia é composto pela soma dos sinais emitidos por cada substân-
cia presente no órgão examinado pela ressonância magnética. Dentre essas substâncias,
encontramos algumas que são produzidas por reações metabólicas, chamadas metabóli-
tos. Os metabólitos são importantes pois seus níveis de concentração funcionam como
indicadores de diversas doenças. Assim, o principal objetivo da quantificação dos sinais
de espectroscopia é identificar essas concentrações corretamente.

Além dos metabólitos, a espectroscopia também captura um sinal proveniente de al-
guma macromolécula presente no local do exame, também chamado de sinal de back-

ground. Esse sinal não representa nenhuma informação importante e dificulta a identifi-
cação dos metabólitos pois possui correlação com os sinais de alguns deles. Somado a
isso ainda temos um ruído gaussiano que torna a quantificação ainda mais complicada.

Os sinais provenientes dos metabólitos podem ser modelados utilizando uma equação
matemática com parâmetros representando a variação de frequência, atenuação e ampli-
tude dos sinais. Por conhecermos esse modelo, chamamos a parte dos metabólitos de
parte paramétrica do sinal de espectroscopia. A abordagem comum para o problema da
quantificação é estimar esses parâmetros utilizando otimização por mínimos quadráticos,
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e é utilizada por diversos algorítmos do estado da arte.
Os sinais são subdivididos em duas categorias: tempo de trânsito longo (LE) e tempo

de transito curto (SE). A primeira inclui sinais que capturam poucos metabólitos. O sinal
com tempo de trânsito curto, por sua vez, é coposto por diversos metabólitos e também
sinal de background e, portanto, é mais difícil de quantificar.

Estado da Arte

A aplicação estado da arte para resolver o problema da quantificação de sinais de es-
pectroscopia é chamada QUEST e foi considerado um dos melhores métodos no desafio
de quantificação do ISMRM de 2016. Ela se baseia na otimização por mínimos quadráti-
cos para estimar a parte paramétrica do sinal e remove o sinal de background através de
uma etapa de pré-processamento, na qual alguns pontos do sinal são truncados.

Existem também outras variações do QUEST que utilizam um sinal de background

adquirido durante a quantificação, sem precisar da truncagem. Outra abordagem simula
o sinal de background como uma mistura de gaussianas. Chamamos essas abordagens
de semi-paramétricas, pois utilizam um modelo paramétrico para o sinal de background.
Neste trabalho, vamos comparar essas abordagens com o QUEST original e com nossa
solução baseada em Deep Learning.

3 ABORDAGEM COM DEEP LEARNING AO PROBLEMA
DA QUANTIFICAÇÃO

Deep Learning é uma técnica de aprendizado de máquinha supervisionado, ou seja,
que necessita da uma base de dados de treino, onde cada exemplo deve estar anotado
corretamente. Ela consiste em treinar uma rede neural com diversas camadas através do
algorítmo de backpropagation. Para o aprendizado funcionar, esse método requer uma
quantidade grande de dados que, no caso da espectroscopia, é inviável de se obter. Por
isso, nesse trabalho nós simulamos os sinais necessários para treinar e testar os modelos.

Simulação dos Sinais de Espectroscopia

A simulação dos sinais é feita em duas etapas: a simulação da parte dos metabóli-
tos (parte paramétrica) e a simulação do sinal de background (parte não-paramétrica).
Para simular a parte paramétrica, nós primeiro geramos os parâmetros do modelo alea-
tóriamente, dentro de um intervalo físicamente realístico, e em seguida aplicamos eles
ao modelo. O sinal de background é simulado de forma semi-paramétrica, gerando uma
mistura de gaussianas que aproxima um sinal de background adquirido. Aplicamos então
pequenas variações aos parâmetros da mistura para produzir novos sinais de fundo. Por
fim, geramos um ruído gaussiano e somamos todas as partes e obtemos o sinal simulado.

Neste trabalho, além de simular o sinal, também utilizamos representações alternativas
dele para encontrar aquela que funcione de forma mais eficiente com as redes neurais. As
representações utilizadas são: sinal no domínio tempo (t), sinal no domínio frequência
(f ), ambas as formas concatenadas (TF), o sinal concatenado com subamostras (subT), o
espectrograma do sinal (g) e, por fim, o sinal com um indicador de sua posição no domínio
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tempo (TP).

Adaptando a Rede Neural à Representação do Sinal

Como cada representação que utilizamos possuem diferenças quanto ao número de
dimenções e canais, o modelo de rede neural para cada uma delas precisa de adaptações.
Para os sinais no domínio tempo ou no domínio frequência, que possuem apenas um
canal de uma dimenção, utilizamos uma rede neural simples com convoluções de uma
dimenção. Para representações com mais de um canal, como é o caso de TF, TP e subT,
temos que criar uma rede com o número de canais correspondendente com a entrada.

A representação de espectrograma é a única com duas dimenções e, portanto, requer
que a rede neural tenha convoluções bidimensionais. As demais representações utilizam
apenas convoluções uniimensionais.

4 IMPLEMENTAÇÃO

Para testar as redes neurais utilizamos o framework Caffe e para simular os dados
utilizamos MATLAB juntamente com o pacote jMRUI, que implementa funções específi-
cas para esse tipo de simulação. A simulação dos sinais de tempo de trânsito longo utiliza
apenas 3 metabólitos, equanto 20 metabólitos são usados nas simulações de trânsito curto.
Os sinais de base aplicados na simulação são os mesmos disponibilizados no desafio de
quantificação do ISMRM de 2016.

A implementação das redes neurais foi feita programaticamente através da API do
Caffe para a linguagem Python. Com ela, é possível criar uma descrição de cada camada
e parâmtros em alto nível para que o Caffe possa interpretar e executar a rede neural. Além
disso, esse framework executa em GPU’s, o que permitiu treinar de maneira eficiente todas
as topologias testadas.

5 EXPERIMENTOS

Para treinar as redes neurais e validar sua performance, simulamos uma base de dados
de 200.000 exemplos de treino e outra de 20.000 exemplos de validação, todos esses si-
nais simulados possuem um nível de ruído variando entre 0%, e 30% da maior amplitude
dentre os sinais de base. Para cada um dos 6 tipos de entrada que mostramos no capítulo
3 testamos cerca de 20 topologias diferentes para encontrar aquelas com melhor perfor-
mance com cada entrada, totalizando 120 topologias. Esse teste foi feito tanto para os
sinais com tempo de trânsito longo quanto para os sinais com tempo de trânsito curto.

Para testar as topologias, foram simulados 6 conjuntos de 1000 sinais cada, cada um
com um nível de ruído diferente: 30%, 20%, 10%, 5%, 1% e 0%. Com eles, testamos as
redes neurais e comparamos seus resultados com o algorítmo QUEST e suas variações.
Os conjuntos de teste também foram usados para selecionar as melhores topologias para
cada tipo de entrada. A medida usada para a comparação foi o erro quadrático médio
entre a amplitude estimada e a utilizada para gerar cada sinal.
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No teste usando sinais com tempo de trânsito longo, a comparação mostrou que o
QUEST possui uma performance melhor que as redes neurais para quantificar os três
metabólitos. Em contrapartida, na comparação com sinais de tempo de trânsito curto as
redes neurais tiveram um desempenho até 10 vezes melhor para alguns metabólitos em
relação ao QUEST. As redes neurais também se mostraram mais eficientes em tempo de
execução: para cada exemplo, o tempo gasto para quantificar com as redes é na ordem
dos microssegundos e, com o QUEST, é na ordem dos segundos.

6 DISCUSSÃO

Analisando os resultados, vemos que o QUEST é mais eficiente para quantifcar sinais
com tempo de trânsito longo, pois como não há sinal de fundo, a aproximação por míni-
mos quadráticos tem a vantagem de conhecer o modelo do sinal. Além disso, o QUEST
também se mostrou mais tolerante ao ruído nessa categoria de sinal.

Por outro lado, Deep Learning mostrou uma performance muito boa para quantificar
os sinais com tempo de trânsito curto, bem como um tempo de execução melhor do que
o de QUEST. O erro das redes neurais foi bem abaixo do erro apresentado pelo QUEST
para sinais com todos os níveis de ruído, e para todos os metabólitos, incluindo aqueles
cujos sinais se sobrepõem ou que possuem correlação com o sinal de background.

7 CONCLUSÃO

Neste trabalho, foi feita uma comparação de algorítmos de Deep Learning para quan-
tificar sinais de espectroscopia de ressonância eletromagnética com um algorítmo estado
da arte nessa área, o QUEST. Para isso, experimentamos cerca de 100 topologias dife-
rentes, incluindo combinações de topologias com adaptações do sinal de entrada. Os
resultados motraram que as redes neurais são capazes de aproximar as amplitudes dos
sinais de cada metabólito com uma precisão maior que o QUEST para sinais com tempo
de trânsito curto, onde a quantificação é mais difícil. Com isso, concluímos que o Deep

Learning tem potencial para se tornar uma ferramenta interessante na quantificação de
sinais de espectroscopia.

Para o futuro, novos testes ainda podem ser feitos para validar melhor a performance
das redes neurais, como usar um conjunto de sinais de teste gerados com sinais de fundo
provenientes de macromoléculas diferentes. Outro teste interessante seria usar o Deep

Learning para quantificar os demais parâmetros dos sinais (variação de frequência e ate-
nuação) e utilizar o seu output para inicializar o algorítmo de mínimos quadráticos do
QUEST.
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Abstract

Magnetic Resonance (MR) spectroscopy signals are used in the diagnosis of

important diseases such as Alzheimer’s, cancer, and others. This is achieved by

quantifying the metabolites present in the signal. However, the presence of back-

ground and noise, and the overlap of some of the metabolites, can make the quan-

tification result inaccurate. In this work, we implement and test several convolu-

tional neural network architectures to quantify spectroscopy signals, and we com-

pare them with QUEST, the state-of-the-art approach, using the relative error as

measure. Our results show that CNNs achieve an error about 3 times smaller than

QUEST for signals containing noise and background. This result is promising

and show that Deep Learning is an approach to spectroscopy signal quantification

worth to be explored.

Résumé

Les signaux de spectroscopie de Résonance Magnétique Nucléaire sont utili-

sés dans le diagnostic de plusieurs maladies importantes tels comme l’Alzheimer,

cancer, entre autres. Cependant, la présence des signaux de macromolécule et du

bruit, et le chevauchement de métabolites peut dégrader la qualité du résultat de la

quantification. Dans ce travail, on met en oeuvre et test plusieurs architectures de

réseaux neuronaux convolutionnels pour quantifier des signaux de spectroscopie,

et on les compare avec QUEST, l’état de l’art pour la quantification, en utilisant

la mésure d’erreur relative. Nos résultats montrent que les CNNs atteignent une

erreur environ 3 fois inférieure à celui de QUEST pour les signaux qui contiennent

bruit et signal de fond. Ce résultat est prometteur et montre que Deep Learning est

une nouvelle approche à ce problème qui mérite une étude plus approfondie.
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Introduction

1.1 Magnetic Resonance and MR Spectroscopy

Magnetic Resonance (MR) is a non-invasive technique used in the detection of important dis-

eases such as brain tumors, brain seizure disorders, Alzheimer’s, among others. It works by

exposing the examination subject to a magnetic field, and by capturing the resonance frequen-

cies emitted by the different metabolites in the subject. MR is subdivided according to the

type of information it is used to extract: there is imaging (MRI), spectroscopy (MRS) and

spectroscopy imaging (MRSI). In this work, we focus on the spectroscopy information.

Different metabolites are present in the human body in varying quantities. One of the main

problems of MR spectroscopy is to quantify these metabolites accurately to use this information

in medical diagnosis and studies, since their quantities are an important indicator of metabolic

diseases. However, this task is complicated by an imperfect modelling of the signal. There

are additional components present in the signal, such as background, noise and acquisition

artifacts, that can lead to incorrect results.

The signals obtained from MR spectroscopy are divided in two categories: the long echo-

time signals and short echo-time signals. The first is composed only by a few metabolites,

while the last one includes background and several additional metabolites.

1.2 MR Spectroscopy Signal Quantification

In the quantification problem, the metabolite part is modeled as a parametric function of time,

whose parameters represent the extra damping, frequency shift and amplitude of the signal

of each metabolite. These parameters vary from subject to subject, and from metabolite to

metabolite, and the quantification objective is to estimate them. Finding the three parameters

correctly allows us to rebuild the original signal, but only the amplitudes are important to

measure the relative amount of a metabolite in the examination subject.

The best existing approaches to this problem, such as QUEST [10], are based on a non-

linear least squares fit of the signal model to estimate the three parameters. This technique is

shown empirically to be very accurate when applied to long echo-time signals. However, it is

not as effective to quantify short echo-time signals. This happens because there isn’t a well

defined model for the background, so it have to be removed by other techniques before the

quantification. Also, the additional metabolites and the background overlap each-other in the

signal, making it more difficult to fit correctly with the least squares technique.



The quantification of spectroscopy signals can be seen as a regression problem, where we

try to learn a relation between the numerical values of the signal and the amplitudes used to

generate the metabolites it contains. For this end, we explore a new approach using Deep

Learning and the simulation of the signals.

1.3 Quantification Using Deep Learning

In this work, we experiment with Deep Learning, a supervised machine learning technique, to

quantify spectroscopy signals. This technique consists of training a model to return a target

value when given the corresponding input example. In our case, the signal is given and the

output are the amplitudes of the metabolites it contains. In order to the model to learn the cor-

relation between signal and amplitudes, a large amount of examples and their real amplitudes

are necessary. However, in vivo spectroscopy signals are difficult to acquire and their correct

amplitudes are unknown, making them unsuitable for the training, so we have to simulate the

signals.

The simulation of the parametric part of the spectroscopy data is based on the model used

for the non-linear least-squares quantification. It requires to randomly generate the three pa-

rameters of each metabolite and scale them according to the real expected proportions. The

background, on the other hand, doesn’t have any known model, so we first estimate a mixture

of gaussians to model an acquired background signal, and then we can randomly vary the Gaus-

sian peaks’ parameters to produce different signals. We simulate three independent datasets

using this method: one for training of the Deep Learning models, another for validation and a

third one for testing.

Deep Learning models are composed of different kinds of layers that succeed each other,

passing their outputs forward, from the first input until the last layer’s output. These layers

represent different operations that are applied to the input, such as convolutions, dot products,

dimension reduction, concatenation, normalization, etc. The parameters of all the layers are

learned via stochastic gradient descent applied to an objective function that aims to minimize

the Euclidean distance between the network output and the target. More specifically, the gradi-

ent of this function is calculated for each parameter of the model through an algorithm called

Backpropagation.

The layers can be disposed in almost arbitrary topologies and combinations of parameters.

To find out the ones that work better, we generate several of these combinations. We also ex-

periment with different input types by converting the signal into its spectrum, spectrogram, and

by combining these types, resulting in 6 different input types. In the end, all the combinations

of topologies and input types result in over 100 different networks.

Once the topologies are defined, we train them using a training dataset, and, simultaneously,

we test them with the validation dataset. This test helps do identify if the network is overfitting

with the training data and to find the optimal combination of topology and parameters for each

input type. The final test, used to compare the results with QUEST, is done with the test dataset,

which is independent from the validation one, in order to avoid networks with hyperparameters

overfitting the validation data, thus, keeping a fair comparison.

We evaluate trained networks using the test datasets simulated with different noise levels to

assess the noise tolerance of the models. To compare Deep Learning with the state of the art,

we use the mean and standard deviation of the relative error over the test datasets. We also use
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this measure to select the best networks (one of each input type) based on tests with validation

datasets.

For the comparison between QUEST and Deep Learning, we divide the tests according

to the signal type: long and short echo-time, because of the differences in the composition

of both. The long echo-time tests show that QUEST is more efficient to quantify this type

of signal, being around 2 times better for signals with noise up to 100 times more accurate

when there is no noise. However, Deep Learning show good improvements for short echo-time

signals, in the quantification of all the metabolites present. It is able to reduce the relative error

of some metabolites by about 3 times, and gives consistent results even when there is noise and

overlapping peaks.

1.4 Contents of this Report

This section summarizes the contents of the next chapters of this report, each section being

dedicated to one of them. In short, we present the problem, our solution, the experiments and

their results. In the end, we also discuss the outcome of the tests.

1.4.1 MR Spectroscopy Signal Quantification

In the chapter 2, we define in details the MR spectroscopy signal quantification problem. The

composition of the signal is explained: its mathematical model, its parameters, the basis set that

composes it, and the nature of the noise and background that are added to it. The spectroscopy

signals as divided in long and short echo-time, according to the presence of background and

number of metabolites. Then, in section 2.2, we show how the existing works approach this

problem, by using the non-linear least squares fit of the parametric part of the signal.

Next, section 2.3 presents QUEST [10], the state of the art approach and explains its method

of background removal by truncating the signal. We also explain other variants that are used to

evaluate the Deep Learning approach later in chapter 5. These variants use a semi-parametric

model of the background and include it in the non-linear least squares fit. One of them uses

the macromolecule signal in the basis set [9], and the other uses the individual peaks estimated

from the background signal [8]. In the section 2.4, there is a comparison with another work

which uses artificial neural networks for quantification [1].

1.4.2 Deep Learning Approach to the Quantification Problem

Chapter 3 brings more details about how Deep Learning can be applied to quantify spectroscopy

signals. In section 3.1, we explain the process of simulating the parametric part and the back-

ground of the signal. The parametric part is simulated by generating the parameters randomly

and applying them to the model. The background, in turn, requires first to fit a mixture of

Gaussians to a macromolecule signal, and then it is used as a parametric model. In the end,

random Gaussian noise is scaled according to the noise level and added to the simulation. In

section 3.1.2, we explain the 6 input types used in this work: time domain signal, frequency

domain, TF, TP, spectrogram and subT.

In the section 3.2, the different types of layers used in the tests are presented. We also

explain the choice of parameters, the minimization algorithm (stochastic gradient descent), and

the loss function used, which is the Euclidean loss. Summarizing, the layers presented in this



chapter are: convolutional, fully connected, max pooling, and batch normalization. In general,

we use convolutional layers before the fully connected ones, and we apply batch normalization

to all the short echo-time trained networks, and some of the long echo-time topologies. The

most used activation is ReLU, but we also experiment with leaky ReLU, PReLU and sigmoid.

For regularization, we use dropout in some networks, and L2 is also added to the objective

function. We also experiment with inception modules, an architecture model from the Deep

Learning literature [14].

Section 3.3 explains the topology choices made to build the tests. Finally, in section 3.3.1

we show the adaptations required to use some of the input types with the CNNs, such as splitting

the convolutional part of the network and concatenating outputs before passing them to the fully

connected layers.

1.4.3 Practical Implementation

This chapter describes the data simulation and how the CNNs were implemented. Section

4.1 explains in details the parameters used in the simulation of the signals. The MATLAB

framework was used to this end, since the simulation of the parametric part is implemented

in this language, and because of its functionalities for random number generation and matrix

manipulation. It is also used for the non-linear least square fit of the Gaussian mixture for the

macromolecule estimation.

The section 4.2 introduces the methods used to implement the CNNs, which are the pro-

gramming language Python and the library Caffe. In the end, we list the parameters used to set

up the Caffe solver during the training of the networks.

1.4.4 Experiments

Chapter 5 brings the details about the tests made, the datasets used, topologies tested, as well

as the results. The section 5.1 shows how the long and short echo-time datasets are composed,

the first are simulated with three metabolites (NAA, Choline and Creatine), while the last ones

have 20 metabolites and background added. There are 6 test datasets for both signal categories,

each dataset has a different noise level, to assess the noise tolerance of the approaches.

Next, section 5.3 explains the relative error, which we use to measure the accuracy of

the quantification methods in the tests, and how it is calculated. To compare the error in the

datasets, we use the mean and square root of this measure.

Section 5.4 lists all the topologies used in the tests in this chapter, showing diagrams for

each one of them and explaining their details. There is one topology chosen for each one the 6

input types, for long and short echo-time signals, resulting in 12 topologies in total.

The following section shows the results obtained with QUEST on long echo-time signals

and with the 5 QUEST variations of background estimation on short echo-time signals. The

results appear through plots comparing the mean of the relative error on the 6 noise level test

datasets, comparing the error increase with the noise level increase. There are also tables

showing the mean and the standard deviation of the relative error for all the short echo-time

metabolites. Additional tables and plots with the standard deviation of the error can be found

in the appendix A. The same plots and tables were made to compare the CNNs and choose the

most accurate ones.
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In the section 5.6, the results of QUEST and Deep Learning are compared for long and

short echo-time signals. Here we use the same measures and plots of the previous section, but

with emphasis in the comparison between both approaches.
In the long echo-time tests, QUEST showed better results for all the metabolites and noise

levels, and specially in the tests without noise, where it is about 100 times more accurate than

the CNNs. The tests with short echo-time, on the other hand, showed that the CNNs are better

at dealing with the background and noise. In these tests, the CNNs using spectrogram and

frequency domain data showed the best results, giving results 2 to 3 times better than QUEST

for most of the metabolites. They also give consistent results even with addition of noise.
In the last section, we compare both approaches with regard to the time spent during the

short echo-time tests. While QUEST takes seconds to quantify one signal, the CNNs take only

milliseconds.

1.4.5 Discussion of Results

In the chapter 6 we make observations about the tests of chapter 5, and summarize the results.

In short, QUEST shows a much better precision than CNNs for long echo-time signals, while

for short echo-time signals the opposite happens. The Deep Learning models are also tolerant

to noise and can quantify correctly even overlapping metabolites.
In this chapter we also add some observations about some of the topologies trained. The

network trained with time domain data was less noise tolerant than the one trained with TP,

suggesting that adding the time position to the signal may be an improvement. Also, by com-

paring the topologies trained with spectrogram data, we see that the short echo-time version,

which uses batch normalization, performed relatively better than the long echo-time version,

which may suggest that a normalization is required in the latter.

1.4.6 Conclusion

Finally, chapter 7 summarizes the MR spectroscopy quantification problem, the Deep Learning

approach and the evaluation method used in this work. It also includes future works suggestions

for the Deep Learning Approach, such as using it to estimate the other parameters of the signal,

or combining all the parameters in the training. The output of the CNNs could also be used

as initialization parameters for QUEST. In the data simulation side, the approach could be

extended to generate signals with acquisition artifacts.





2

MR Spectroscopy Signal Quantification

In this chapter, we explain the MR spectroscopy signal quantification problem, its difficulties,

and how the signal is composed. Finally, the state of the art approach, QUEST, is presented

along with some of its variants that are also compared to the Deep Learning approach in the

next chapters.

2.1 Composition of the Spectroscopy Signal

The spectroscopy signal is obtained through a magnetic resonance exam of a subject (e.g. hu-

man brain). The subject of this examination contains certain metabolites that are captured in

the signal. In addition to them, the signal is composed of the response of macromolecules,

noise and acquisition artifacts.

The metabolites’ part is the parametric part of the signal, and its mathematical model is

defined in equation 2.1. For each metabolite, there is a basis signal (xm(t)), which is known

before the quantification, and the parameters to be estimated: the amplitude (am), the damping

factor (∆αm), the frequency shift (∆ fm), and the overall phase (φ0). The amplitudes give the

concentration of the metabolites, so they are the parameter of real interest in the quantification

and can be used to study the biochemical modification of patients.

x̂(t) =
M

∑
m=1

amxm(t)exp(∆αmt +2iπ∆ fmt)exp(iφ0) (2.1)

The non-parametric part, or the background, is a macromolecule present in the subject,

whose model is unknown, although, in some cases, it can be estimated. This signal can be

acquired during the exam, but at the cost of a prohibitive acquisition time for clinical routine.

Usually, the background signal has smooth and smaller peaks than the metabolites (figure 2.1).

However, this characteristic can change, depending if the resonance uses a high or low magnetic

field. In the end, we can formulate the signal as the equation 2.2, with the background b(t) and

the random Gaussian noise e.

ŷ(t) = x̂(t)+b(t)+ e (2.2)

We can subdivide the spectroscopy signals in two distinct classes: long echo-time and short

echo-time. The first regards the signals that are composed only of a few metabolites, and there

is no background, thus being easier to quantify. The short echo-time signals, on the other hand,
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Figure 2.1: Example of signal with three metabolites, noise and background.

contain several metabolites and also have the addition of background, so the quantification of

this type of signal is more difficult.

2.2 The Quantification Process

The quantification process consists of finding the parameters (amplitude, damping factor and

frequency shift) for each metabolite in a way that the result fits better the input signal. In other

words, we want to obtain the values of the parameters given the spectroscopy signal. For this

reason, we say that the quantification is a regression problem. If we consider just the parametric

part of the signal, the parameters can be easily estimated by doing a non-linear least squares

fit (equation 2.3) of the model using the known basis set. However, when the signal contains

noise and background, this approach is no longer accurate because this extra information is

difficult to model. In addition, the peaks of the background and metabolites can overlap each

other (as in the example of figure 2.1), making it harder for the minimization process to find

an accurate approximation of the parameters. To deal with this problem, there are different

proposed approaches which try to estimate the background.

min‖x(t)− x̂(t)‖2 (2.3)
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2.3 State of the Art

In this section, we present the current state of the art approaches to spectroscopy signal quantifi-

cation. We also discuss the similar works that are related to our solution using Deep Learning.

2.3.1 QUEST

A well known approach to the quantification problem is QUEST [10], which ranked between

the best methods in the 2016 ISMRM quantification challenge. It uses the assumption that

the background signal has a larger damping factor than the metabolites, so it is essentially

concentrated in the first points of the signal. Using this prior knowledge, QUEST truncates

the first points, producing a residual that contains only the metabolites signal and noise. With

this residual, the metabolites can be estimated, and the estimation result is then removed from

the original signal. This new residual now contains only background and noise, and from it

QUEST estimates the macromolecule signal using singular value decomposition to obtain a

parametric version of the background. Finally, this estimated background is removed from the

original signal, and the metabolites’ parameters can be recalculated with another non-linear

least squares fit.

Background in the Basis Set

In addition to the truncation method, QUEST can also be adapted to the case when we have

some information about the background. If the macromolecule signal is known, for example,

the truncation process can be avoided simply by using this signal in the basis set, allowing

QUEST to estimate its parameters the same way it does to the metabolites [9].
Another variant, considering that the background is not known, but is estimated by a para-

metric model, is to use each peak of the background individually as part of the basis set. For

example, the background can be modeled by a Gaussian mixture estimated from a real acquired

background signal, where each Gaussian approximates a peak. Also, it is possible to constrain

the Gaussian mixture parameters during the quantification process to introduce more physically

realistic priors, as is done in [8]. The estimation of the Gaussian mixture for the background

will be explained in the section 3.1 as part of the background signal simulation process.

2.4 Related work

There is a previous work which uses neural networks to quantify spectroscopy signals [1].

However, this approach considers only signals with 3 metabolites, and the background have to

be removed in a preprocessing step. The only input type used is the spectrum of the signal.

In addition, the input of the network should be restricted to the region where the metabolite

peak is located, assuming that this is known a priori. This choice disregards the frequency shift

parameter from the signal model.





3

Deep Learning Approach to the Quantification

Problem

Deep learning is a supervised machine learning technique broadly applied in classification and

regression problems and with successful results in many fields such as computer vision and

speech recognition. It consists of training a neural network with arbitrary number of parameters

and hidden layers using a loss function through the backpropagation algorithm and using a

dataset of labeled examples. In this chapter we explain how deep learning can be used to

quantify magnetic resonance spectroscopy signals and all the required procedures to build the

network and generate the datasets.

3.1 Spectroscopy Signal Simulation

As any supervised learning technique, deep learning requires a relatively large amount of data

to be trained and give reasonable results. However, real MR spectroscopy signals are difficult to

acquire, since they require a patient to undergo the examination, and he also have to volunteer

the collected data for the experiments. Furthermore, the ground truth parameters of interest

are not available with in vivo MRS signals. So, to have enough data to train correctly a deep

learning model, we choose to simulate the signals.

The MR spectroscopy signal simulation works differently for the parametric and non-

parametric parts. To generate the parametric part, we use the same model from equation 2.1 and

choose randomly a different set of parameters for each new signal. The amplitudes are either

values from the interval [0,1], or around 30% of the expected amplitude of each metabolite.

The later choice is important when the signal contains background, so that the proportion of

each metabolite is realistic compared with the background peaks. The metabolites present in

the signal are defined by choosing which basis are used in the model. Finally, with the signals

and the parameters, we have the inputs and the ground truth to be compared in the model’s

objective function.

Since we also want the method to have a certain tolerance to noise, we add random Gaussian

values to the signals. To generate data sets with different noise levels, the Gaussian values are

scaled by some factor, which have to be proportional to the size of the metabolites in the basis

set. We call this factor the noise level (σ ), and it is scaled by the largest value in the basis set

and the largest value among all the expected amplitudes to have the correct proportion.
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Figure 3.1: Simulation as the reverse of the quantification process, with a being the set of

parameters of the signal.

3.1.1 Background Signal Simulation

Differently from the parametric part, in a real spectroscopy signal, the background is composed

of a macromolecule signal of unknown model. To simulate it in the most accurate way, we

approximate this signal with a Gaussian mixture model, so that we can have a separate Gaussian

curve for each peak of the signal (figure 3.2). With this approximation, it is possible to vary the

parameters of each Gaussian separately and produce distinct background signals.

Figure 3.2: Example of the peaks produced by the simulation, with the original background as

the dashed line.

b(t) =
M

∑
m=1

amexp
(

−(αmt)2 +2iπ fmt
)

(3.1)

The model used to approximate the background signal is the equation 3.1. It represents

M Gaussians, with am, αm and fm being, respectively, the amplitude, damping factor and fre-

quency shift of the signal, and t representing the position in time. In this model, the damping

factor is squared to make the signal decrease faster than the metabolites, resulting in a signal

that can be estimated by QUEST via the truncation method.

Finally, after simulating the background, noise and metabolites’ signals, all this parts are

summed to form a new signal. In the next sections, we explain how to set up a Deep Learning

model to work with the simulations.
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3.1.2 Alternative Signal Conversions

The versatility of Deep Learning models allows us to use almost any input format for training

and testing. In addition to the standard time domain signal, there are experiments with different

adaptations of the signal in the frequency domain (or spectrum). We also use the spectrogram

of the signal, which is a 2-dimensional vector composed of Fourier Transforms of several over-

lapping portions of the signal. Each row represents the frequency domain while the columns

represent a portion of the original signal subject to the transform. Figure 3.3 shows an example

of spectrogram, with the signal peaks concentrated in the bottom-left corner.

Figure 3.3: Spectrogram of a short echo-time spectroscopy signal.

Other variations tested with the time domain signal include subsamples (subT), time and

frequency (TF) domains together and time domain with a time position indicator (TP). The

subT input is produced by subsampling the original signal twice, one with half the number of

points and another with one fourth (e.g. a signal with 2048 points will have 1024 and 512

points as subsamples), both are inputted together with the original signal. The TP input has

an additional channel that indicates explicitly the position in time of the points, as is shown

by figure 3.4. The TF input is the concatenation of the time domain and frequency domain

Figure 3.4: Diagram exemplifying the TP input. s(n) refers to the time-domain signal at time

position n.

versions of the same signal as two separate channels of the input. In the next sections, we

explain how to adapt the Deep Learning model to work with these inputs.

3.2 Deep Learning and Convolutional Neural

Networks

Deep learning algorithms are based on artificial neural networks, but they can include an ar-

bitrary number of hidden layers, each one followed by a non-linear activation function. In



the class of Deep Learning algorithms, there are the Convolutional Neural Networks (CNNs),

which includes the use of convolutional layers. The basic building blocks of convolutional

neural networks are the fully connected (and/or convolutional) layers, activation functions and

a loss function required for training. There are also the max pooling layers, which help to re-

duce the size of the input and introduce non-linearity to the learned model. Other components

commonly found in CNNs are the dropout, that helps to regularize the model during the train-

ing, and the batch normalization layers, used to normalize the outputs and improve the model’s

efficiency.

Neural networks are trained through the backpropagation algorithm in two phases, the for-

ward step and the backward step. During the forward step, examples are given to the network,

and it calculates the output of each layer, from the first to the last one, to finally obtain the loss

value. Then, during the backward step, this value is used to compute the gradient of the loss

function with respect to each layer parameter, from the last layer to the first, using the chain

rule. The next sections explain how each layer of the model is picked and how to set up the

parameters.

3.2.1 Fully Connected and Convolutional Layers

A fully connected layer (or FC layer) works like a hidden layer from a multi-layer perceptron.

It is composed of M sets of weights (for an output of size M), called neurons, and each set

has the same size as the input vector, so it is possible to do a dot product between them. The

input of this kind of layer is always in form of vector, and, because of the nature of the dot

product, the spatial information in the input is lost in the output, this means that, if the input

information is shifted during test, it will can give a bad result. In CNNs, these layers learn a

linear transformation of the outputs of the convolutions to obtain the probability of the input

to belong to each class, in the case of classification, or the estimation of a value, in the case of

regression.

Convolutional layers can receive either matrices or vectors as input, and they can also have

multiple channels. For example, we can have an input with dimensions MxNxD, where MxN is

the matrix dimension and D is the number of channels. The weights of this layer are the kernels

used during the convolution, and they can have an arbitrary shape MxN, but must have the same

number of channels as the input, so each kernel multiply and sum all the channels of the input

and map them to a new channel in the output. The convolution also has a stride parameter

S, meaning that each multiplication of the kernel is spaced by S positions from the previous

one. In order to control the size of the output, there is a padding parameter P, which inserts an

extra contour of zeros around the input. The output of this layer have as many channels as the

number of kernels, and its shape is of size in each dimension is (W −K +2P)/S+1, where W

is the size of the input and K is the size of the convolution kernels.

Different from the fully connected layer, the convolutional layer keeps the spatial informa-

tion of its input in the output. This means that a kernel that learns to respond to a particular

pattern in the input will always give the same output, and it will have a position relative to the

input. For example, if the input is a spectroscopy signal with a background peak shifted, a

convolutional layer will detect this peak and give an output with a similar shift, so the spatial

information is propagated to the next layers. For this reason, it is more interesting to keep this

kind of layer before the fully connected layers.

14



The Bias Term

Both fully connected and convolutional layers include a bias term which is learned like every

other parameter. This term is summed to the final result of the layer without being multiplied

by the input, so, in the trained model, it represents a constant shift in the output values (red

term in equation 3.2).

z = ∑(wiyi)+w0 (3.2)

However, during the quantification of the amplitudes, this shift is undesired because, when the

input signal is scaled compared to the training set, the outputs of the network should also be

scaled. In this case, the bias term will shift the output, resulting in incorrect quantification. For

this reason, this term is removed in every layer of the networks trained for the quantification of

the amplitudes.
The shifting behaviour can be observed in a test made with two neural networks with same

number of layers and neurons, but one of them using the bias term. Both were trained with the

same dataset of time domain examples, and the test in the figure 3.5 was made using another

dataset with the amplitudes scaled by 5, using 1000 examples. The figure illustrates how the

histogram of errors has its center moved when the bias term is used, reflecting a shift in the

correct output.
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Figure 3.5: Two histograms comparing one network without bias (left) and another with bias

(right). Each color represents the amplitude of a different metabolite. The y-axis tells the

number of examples and the x-axis, the relative error.

3.2.2 Max Pooling

In convolutional neural networks, the input has to pass through several layers, until the final

layer can process an output, such as a class probability or, in the case of quantification, the

proportion of a metabolite. Generally, there is a large difference between the dimension size

of the input and the output, and the layers have to gradually reduce the size of the input until

it reaches the output. To have a good result, it is recommended that this dimension reduction

process be as smooth as possible [14]. Smaller inputs are also better for the efficiency of the

model, since it will take less time to convolve a smaller input. In such cases, it is useful to

insert max pooling layers in the network. This kind of layer works in a way similar to the

convolutional layers, having a kernel size and stride parameters, but instead of multiplying, it



returns only the largest value of the input region under the kernel. Other main difference is that

it pools values channel-wise, so its output always keeps the number of channels of the input.

3.2.3 Inception Module

Convolutional neural networks are the current state of the art technique for image classification

problems, and this field is constantly producing new advances to improve the topologies. One

of them is the inception model, developed in the GoogLeNet [13] architecture.

On a recent work [14], the inception technique is redesigned to increase the efficiency and

the quality of the neural networks. Its main idea is to smoothly reduce the size of the layer

outputs and increase the number of dimensions, making the network deeper and losing less

information in the middle of the computations. In its examples, the work suggests to process the

input in three parallel subnetworks, as is shown by figure 3.6. In practice, it uses convolutions

with 1×1 kernels to reduce the input dimensions by half without reducing the input size (and

preserving part of this information). Afterwards, it uses a convolution with stride 2 to reduce the

the input size by half, preserving the number of channels. This is done in two branches of the

module, and the third one does a max-pool to the input, and the three outputs are concatenated

channel-wise to produce a new output with the double of channels and half the size of the input.

Figure 3.6: Inception module example for 1-dimensional inputs. M is the input size and N is

the number of dimensions

3.2.4 Rectifier Linear Unit (ReLU)

The activation function is an operation applied point-wise to the output of the fully connected

or convolutional layers. It is used to restrict the output of the previous layer to a range of

values, defining which outputs will be passed on to the next layer. There are several activation

functions such as tanh, or sigmoid, that restrict the output to (−1,1) and (0,1), respectively,

but this kind of activation can let the output saturate close to its limits, resulting in very small

gradient value and, therefore, making training slower.

To avoid this behaviour, a common practice in deep neural networks is to use he rectifier

linear unit (ReLU) [2], defined as in equation 3.3. Unlike sigmoid and hyperbolic tangent

functions, this activation has no upper bound, so it can forward larger values without saturating.

On the other hand, it can "die" when the neuron output is zero, and in this case the gradient

would also be zero, so then neuron can not change.
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f (x) =

{

x, x ≥ 0

0, x < 0
(3.3)

The ReLU is the activation used in most of the tests in this work because of its success

in many previous deep learning works, and due to its relation with proofs of the universal

approximation property of neural networks [11]. Nevertheless, we still use sigmoid in some of

the topologies implemented, and it also gives interesting results, as is shown in the chapter 5.

PReLU and Leaky ReLU

There are other variations of the ReLU that aim to solve the problem of the dying gradient when

it reaches the zero value, such as the PReLU [3] and Leaky ReLU. The leaky ReLU modifies

the negative part of the original ReLU function by returning the same input value scaled by a

small constant (e.g. 0.1). This way, no matter how small the input is, it will not be set to zero

and the gradient will be passed back through the activation. The PReLU, on the other hand, is a

generalization of the leaky ReLU which allows the model to learn a parameter instead of using

a constant for the negative part, is shown by equation 3.4.

f (x) =

{

x, x ≥ 0

αx, x < 0
(3.4)

3.2.5 Euclidean Loss Function and Stochastic Gradient Descent

The loss function chosen in this work is the Euclidean loss (or mean squared error), defined as

in equation 3.5. In the equation, N represents the number of examples, ŷ is the prediction given

by the network and y is the ground truth we try to approximate.

E =
1

2N

N

∑
n=1

‖ŷn − yn‖
2
2 (3.5)

The Euclidean loss is appropriate to train neural networks to regression tasks, as is the case

of the quantification of spectroscopy signals. Therefore, we use this loss function to train the

neural networks in this work.

Once the loss function is defined, the training occurs through a gradient descent algorithm.

On each step of this algorithm, a batch of examples is inputted in the network, their resulting

loss is calculated and the gradient is computed for every weight of the model using the back-

propagation algorithm. The gradient is multiplied by a learning rate, and then subtracted from

its respective parameter. This process, called Stochastic Gradient Descent (SGD), goes on until

all the parameters converge or until a maximum number of iterations is reached.

During the execution of SGD algorithm, the minimization of the objective function usually

oscillates in different directions before it reaches a minimum, making the process to require

more iterations to finish. To accelerate the learning, a common technique is to add to the

gradient some portion of the gradient from the last iteration (equation 3.6).

vt = βvt−1 + γ∇θ E(x)

θ = θ − vt

(3.6)



This extra value is called momentum, and it was already shown how effectively it increases the

speed of the SGD algorithm [7].

At some point during the descent, it is a common issue that the gradient gets stuck in a

couple of values, unable to continue decreasing until the minimum, or that the loss function

start to increase. This may happen when the gradient value is increasing and the network is

being updated with bigger values. A straight forward solution to this problem is to divide the

learning rate by some value as the training advances, so that the updates slowly decrease, and

the minimization can continue without getting stuck. In the section 4.2 we give the details

about the parameters used during the training of the implemented CNNs.

Overfitting and Regularization

A recurrent problem in many learning algorithms is when the model fits so well the training

data that its generalization error starts to increase. This problem is called overfitting, and for

Deep Neural networks, and there are special changes to the topology and to the solver that

help to cope with it. One of them is to add a regularization term to be minimized with the loss

function. In this work, we use the L2 regularization, which penalizes the model by summing

the L2 norm of the model parameters to the objective function (equation 3.7).

E =
1

2N

N

∑
n=1

‖ŷn − yn‖
2
2 + γ‖W‖2

2 (3.7)

The parameter γ is tuned to increase or decrease the influence of the regularization term to the

training

3.2.6 Batch Normalization

In neural networks with several layers and unbounded activation functions, it can happen that

the outputs reach very large values, resulting in errors during the calculation. Other problem is

the variation of the distribution of the inputs of each layer, which can slow down the learning

process, and requires the tuning of other parameters of the solver. Batch normalization [4] is a

layer created to approach these issues by normalizing the output of each layer. It is also shown

that batch normalization helps to reduce the model overfitting [4].

During the training phase, the batch normalization layer takes the mean and the variance

of current input batch and then normalize its examples, so the output batch has zero mean and

unit variance. Then, the output examples are scaled by a parameters learned during the training,

so the model is able to regulate how much of the normalization will be passed to the output.

After the training phase, when the network is being tested, the layer uses an estimation of the

mean and variance of the training set batches. This is done to keep the outputs of the network

deterministic.

3.2.7 Dropout

The Dropout layer [12] is another approach to the overfitting problem. It is used during training,

and it "turns off" randomly a given amount of parameters of a layer, so that only part of them

will participate in the forward and backward phases of the training. The removed outputs are

changed during each iteration, so the layer has different parameters updated by the gradient
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descent. This way, in every iteration, we are training a slightly different model, and the number

of these models increase exponentially with the number of parameters we have. In theory, the

chance that each of these models learns the same parameters is very low, resulting in a low

chance of the final model to overfit.

3.3 Quantifying Spectroscopy Signals with Deep

Learning

It has been proven that Deep Learning is capable of approaching arbitrary functions, given

enough data and the right network design [11], and, based on this idea, we want it to quantify

spectroscopy signals. To do this, the first step is to produce a training and a validation data

sets via simulation, as was shown in the previous sections, and, for each example, we keep

its metabolites’ amplitudes as the labels to be used in the training. Differently from the non-

linear least squares fit approach, which have to approximate all the parameters of the signal, the

neural network can be trained to approximate only the amplitudes, which are the parameters of

interest.

Once we have a training dataset, we choose the topology of the network, the amount of con-

volutional and fully connected layers and their configuration. All the convolutional layers are

kept before the fully connected ones to preserve spatial information through the convolutions.

The activation functions are placed after every layer, except by the last FC layer, which should

give the quantification result as output.

The number of channels of each convolutional layer increases gradually from the first to

the last layer, and the number of outputs of the fully connected layers decrease in the same

direction. We also choose the number of neurons of the first FC layer proportional to the

number of channels of the output of the last convolution, while the last FC layer always has as

many neurons as the amount of metabolites to quantify.

In between the convolutions and before the activations, max pool layers can be eventually

placed to reduce the size of the outputs and make the training faster. Batch normalizations

are inserted right after convolutional or FC layers, or before the first convolution, to normalize

the input directly. Oftentimes they bring considerable improvements when placed after and/or

before the first FC layer, since it usually has the largest input of the network, and so its output

is also large. This is required specially in the case of short echo-time signals, when several

metabolites are summed together with the background, and the amplitude values are larger.

3.3.1 Adapting the Model to the Input Type

In section 3.1.2, different adaptations of the spectroscopy signal were presented. The original

time domain signal, as well as its frequency domain version can be inputted directly into the

first convolution of the model without any changes. The TP type, which is just the time domain

signal with an additional channel, also does not require modifications of the neural network.

All these inputs are composed of 1-dimensional vectors, so they are convolved with kernels

of a single dimension, the only exception is the spectrogram of the signal. In this case, it is

necessary to change the kernel of the convolutions to a 2-dimensional format, but the network

topology does not need to be changed. TF and subT, on the other hand, need special alterations

in the model.



For the TF input, the convolutional layers of the network have to be split in two parallel

subnetworks, one for the time domain and other for the frequency domain. The outputs of both

subnetworks are concatenated together and used as input for the fully connected layers, as is

shown by figure 3.7.

Figure 3.7: Convolutional network split into time and spectrum part.

To process the subT input, we used three parallel subnetworks, one for the whole signal,

and two others for the subsamples. The first and the second are merged when the outputs of

both match the same feature map size, and this new output is then concatenated with the result

of the third subnet (figure 3.8). After the last concatenation, the final result is passed to the FC

layers. It is also possible to merge the three outputs in a single concatenation before the last FC

layer.

Figure 3.8: The subT input is processed in three separate subnetworks.
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4

Practical Implementation

To put the Deep Learning approach in practice and compare it with QUEST, we implement

several convolutional neural network topologies, and also simulate the training, validation and

testing datasets. We use the MATLAB® (2016a, The MathWorks, Natick, MA) framework

to simulate the data, and the Caffe library [6] to train and test the network topologies with the

different input types. In the next sections, we discuss how these technologies are put in practice

to this end.

4.1 Data Simulation with MATLAB

Section 3.1 shows how the parametric part and the background of spectroscopy signals can

be simulated. In addition, the signal can be converted to other representations that are used

as other input types to the CNNs. To simplify these tasks, we use the MATLAB framework,

which contains all the mathematical tools required to run the models previously seen. Existing

MATLAB code was used to simulate the parametric part, while the background simulation was

implemented, also in the same language.

The long echo-time signals were simulated using a normalized basis set, where each signal

was divided by its maximum value. On the other hand, the short echo-time signals were used

without any normalization to keep the proportions of the metabolites and background closer to

the realistic values. This is important, so QUEST can produce reasonable results by quatifying

these signals.

The basis set signals are all stored into a file format that can be read from MATLAB. These

files were taken from the 15th MR spectroscopy quantification challenge, from the ISMRM

workshop of 2016 [5]. The model of the metabolite signal is given to the software straight-

forwardly, then the random parameters are generated to produce the parametric part. The

ranges of the parameters of long echo-time signals are [−10,10]Hz for the frequency shift,

[−10,10]Hz for the extra damping and amplitudes ranging between [0,1]. For short echo-time

simulation, we use the extra damping between [0,20]Hz to avoid a positive damping, since

this basis set have a smaller damping than the long echo-time basis set. To keep a realistic

proportion between the metabolites and the background, generate the metabolites’ amplitudes

between ±30% of the values in table A.1 for short echo-time.

To produce the background peaks, we use a macromolecule signal stored in a file by the

same way as the basis set. With this signal and the model shown in the previous chapter, MAT-

LAB can make a non-linear least squares fit to learn the parameters of the peaks, which are



stored. Later, during the background simulation, the new signals are generated by multiplying

these parameters by randomly generated values. The ranges of the simulated background pa-

rameters, relative to the original peaks, are: ±30% for the amplitudes, ±5Hz for the frequency

shift and ±10Hz for the damping factor.
The random Gaussian noise is drawn from a normal distribution and then scaled by a pa-

rameter σ , as was explained in section 3.1. For the training and validation datasets, σ varies

between [0,0.3] for each example. In the test datasets, this parameter is fixed to generate the

same noise level for all the examples.
Once the time domain signal is ready, we use the built-in functions of MATLAB to calculate

its spectrum, spectrogram and subsamples. TF data have time a and spectrum data stored as

separate channels. The same is done for the subsamples of subT data. The real and imaginary

parts of the signal are kept in independent channels as well. All this information is stored using

the HDF5 file format [15], which facilitates the data access by Caffe.

4.2 Implemention of the Convolutional Neural

Networks

The framework chosen to implement the convolutional neural networks is Caffe [6]. It is an

open source library implemented in C++ aiming efficiency and modularity. The software sup-

ports training and testing on multiple GPUs, exploring the parallelism of vector multiplications

and convolutions, which are frequent operations in CNNs. It also implements all the required

layers and features cited in chapter 3, such as dropout, batch normalization, ReLU and the

Euclidean loss function. In addition, it has a Python API which allows to programmatically

generate new network topologies and choose the training and validation datasets. This can be

used, for example, to test the same network topology with different datasets automatically, al-

lowing to find out which topology works better with which input type. Caffe also gives several

useful informations about the training, such as the value of the loss function for the training

and validation datasets, and the learning rate at every iteration, which can be used to draw

conclusions about the network overfitting.
To prepare a CNN model to be used by Caffe, we simply have to write the layers, their

parameters, the loss function and the location of the train and validation datasets in a configu-

ration file. The layers can be specified in any order that does not conflict with their input and

output sizes, and without producing cycles in the topology.
Once the model is ready, then it is necessary to prepare a configuration file with the pa-

rameters of the solver. In this work, we set it to use the SGD algorithm for optimization, with

starting learning rate of 0.01, momentum of 0.9, and 5×10−4 for the L2 regularization term.

The learning rate is divided by 10 every 20.000 iterations, and the algorithm runs for 100.000

iterations. The size of the batch used for each iteration is 100 examples.

22



5

Experiments

To evaluate the Deep Learning approach and compare it with QUEST, we prepared tests with

different kinds of datasets. In all tests, we assess how accurately the approach can quantify

the metabolites’ amplitudes by using the relative error metric. We also verify how tolerant it

is to noise, by using datasets with different noise levels. In the rest of this chapter, we discuss

the metrics and datasets used in the tests. Finally, we present the results obtained with each

approach.

5.1 Datasets Used

In order to the CNNs to work properly, the training datasets have to contain a relatively large

amount of examples. We find the size of 200.000 training examples gives reasonable results,

and using more than this did not bring greater improvements. For validation, we use 10% of

the training set size, or 20.000 examples. Both training and validation sets contain examples

with varying noise levels: the noise parameter σ ranges from 0 to 0.3, to ensure that the learned

model is tolerant to noise.

There are 6 test datasets, each one with 1000 examples and a different noise level (σ ): 0,

0.01, 0.05, 0.1, 0.2 and 0.3. All the datasets are simulated with the same parameters, the only

difference from one to the other is the noise scale. These datasets are used to compare Deep

Learning and QUEST approaches in both accuracy and noise tolerance.

5.1.1 Long Echo-Time Datasets

The datasets of long echo-time signals are simulated using three metabolites in the basis set:

NAA, Choline and Creatine. These basis are normalized before simulation to have the largest

value equal to one. In practice, they are composed of 1024 complex-valued data points.

The amplitudes values are limited between 0 and 1. Since the basis are normalized and the

maximum amplitude is 1, then the noise for this type of signal is scaled by the exact value of

σ .

5.1.2 Short Echo-Time Datasets

Short echo-time datasets are composed of 20 metabolites (see table A.1) and also have a back-

ground signal added. The basis signals are not normalized, and their maximum value from all



the metabolites is around 10. This value, and the maximum value among the expected ampli-

tudes, are used to scale the noise level σ , so it is proportional to the scale of the signal. The

basis are signals of 2048 complex data points, as well as the simulated examples.

5.2 Relative Error Measure

The relative error is the metric used to calculate the accuracy of the models. It is described in

equation 5.1, with a being the estimated amplitude and â being the ground truth value.

En =
an − ân

ân

(5.1)

Since the difference is normalized by the ground truth, it gives a value that can be compared

between the amplitudes of all metabolites, even if they have different expected values, as is the

case of short echo-time signals.
With the relative error it is possible to measure the precision of the prediction in one ex-

ample. To extend this to the whole dataset, we calculate the mean and the standard deviation

(equation 5.2) of the relative error over all the examples.

ME =
1

N

N

∑
n=1

|En|

SE =

√

1

N

N

∑
n=1

|En −ME |2

(5.2)

Finally, using these measures, we have a standard way of comparing the accuracy of the tested

CNNs in the validation set, and the best CNNs with QUEST in the test datasets.

5.3 Correlated Metabolites

In the case of short echo-time signals, there are pairs of metabolites whose peaks happen to

overlap each other, making it more difficult to quantify their amplitudes. When this happens,

the quantification usually is more accurate for the peak formed by the sum of both metabolites

than the their individual peaks. For this reason, we also calculate the error using the sum of the

amplitudes of the correlated metabolites. This way, it is possible to measure the accuracy of

the estimation of the peak formed by the overlap.

5.4 CNN Topologies Tested

In this section we explain in details the different CNN topologies tested, for each input type. We

subdivide them according to the type of signal used during training: long and short echo-time,

because of the difference in the number of metabolites and presence of background. Also, not

all the networks that worked well in the first case were as effective in the second case, and vice-

versa. For both cases, there are tests with all the 6 input types. Several different networks were

tested for each input type and the most accurate ones were picked to compare with QUEST.
The best topologies are chosen based on the mean relative error they have over the validation

dataset to avoid the chance of using a network that overfits the test data.
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Long Echo-time Topologies

We tested around 20 different network topologies with time domain, frequency domain, TF and

TP input types and 5 topologies with spectrogram and subT. Each test varies from the other,

in topology aspects, such as number and order of layers, number of parameters, or by using

additional layers such as batch normalization, dropout, etc. The networks picked for each input

type are referred as the following: LE-t (time domain), LE-f (frequency domain), LE-TP (TP),

LE-TF (time and spectrum), LE-g (spectrogram), and LE-subT (subT).
For both time and frequency domain input types, the best topology is the same, the only

difference is the activation function: PReLU for spectrum data and ReLU for the original signal.

A particularity of this topology is the absence of activation after the last convolution layer. The

disposition of the layers is shown by figure 5.1.

Figure 5.1: Best network topology used for time domain and frequency domain inputs. For

time domain it uses ReLU as activation, while for frequency domain it uses PReLU.

The topology of LE-TF is illustrated in figure 5.2. The convolutional part (from the first

convolution until the max-pool layer) is repeated twice, one for the time signal and other for

the spectrum, as is described in chapter 3. The outputs from both parts are concatenated and

this result is passed to the two following fully connected layers.

Figure 5.2: Topology trained with TF input type. The convolutional part is above, and the fully

connected, below.

The LE-TP topology contains 11 convolutions, 4 max-pooling layers and two fully con-

nected layers in the end (figure 5.3. Instead of traditional ReLU activations, this topology uses

leaky ReLU activations, with 0.01 as parameter for the negative part. In addition, it has batch

normalization layers after every convolution and fully connected layers, except by the last one.

There is also a batch normalization layer before the first convolution.
The spectrogram topology LE-g uses three inception modules (as described in section

3.2.3), and has a total of 18 convolutions (figure 5.4). All the convoltions are 2-dimensional

with 3×3 kernels, except by the first convolution, which has a 1-dimensional kernel and stride

2 to reduce the size of the largest input dimension (64). Padding is used in some inception

layers to correct the size of the outputs before concatenation. Since this topology has more

neurons than the others, we also dropout in the FC layers with 50% chance of dropping each

parameter.



Figure 5.3: Most performant topology trained with TP input type.

Figure 5.4: Best topology for the spectrogram of the signal.

The best topology for the subT input contains 6 convolutions split in three branches, one

for the input and two for the subsamples. It differs from the other topologies tested for the

same input type, where branches are merged between the convolutions (see section 3.3.1), this

network reduces all the inputs inputs to vectors of same size with a fully connected layer before

concatenating them.

Figure 5.5: Network trained with subT input type.

Short Echo-time Topologies

The short echo-time signal contains 20 metabolites and also have a background signal, which

increase the difficulty of the quantification. In addition, the basis used to simulate these exam-

ples are not normalized, so signals resulted from the simulation contain large numerical values.
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Thus, to avoid an exaggerated increase of the output values, we use batch normalization in most

of the layers of the topologies tested. We label the networks tested as: SE-t (time domain), SE-f

(frequency domain), SE-TP (TP), SE-TF (time and frequency domain), SE-g (spectrogram),

and SE-subT (subT).

The topology of SE-t has the same setting of convolutional and fully connected layers as is

shown by figure 5.2, but it does not have the split convolutions as LE-TF, and has 80 neurons

in the second-to-last fully connected layer. This network has sigmoids as activations and batch

normalizations after every convolutional and FC layer, except the last one, and after the input.

Here, the batch normalization helps the sigmoid function by forcing the outputs to the range

[−1,1] and avoiding the saturation of the activation.

Figure 5.6: SE-t topology.

SE-f topology uses 20 convolution layers, 15 of them distributed in 3 inception modules. It

uses a batch normalization layer after the first FC layer, adaptation required to short echo-time

signals to avoid overflowing values during the training. The model with the output sizes is in

figure 5.7.

Figure 5.7: SE-f topology.

The network of SE-TF is composed of 22 convolutions and 8 max-pooling layers split in

frequency and time domain subnetworks. Both have the layers distributed as in figure 5.8. It

uses batch normalization in all layers and the input.

The SE-TP network has the same architecture as LE-t (figure 5.1). The only difference is

the addition of a batch normalization layer after the second-to-last fully connected layer.

SE-g and LE-g share the same topology with the same inception modules (figure 5.4). SE-g

requires a short echo-time adaptation: a batch normalization after the penultimate FC layer.

SE-subT and LE-subT also have the same ordering of layers, as is shown by figure 5.5. As

all the other short echo-time networks, SE-subT is altered by including a batch normalization

after the FC layers of each branch.



Figure 5.8: SE-TF topology.

5.5 Results

In this section, we list the results obtained using QUEST and the networks previously cited.

We first show the isolated results of each approach, and in the end we compare both.

5.5.1 Results Obtained with QUEST

We tested QUEST with long and short echo-time signals and calculated the relative error be-

tween the amplitudes it quantified and the ground truth used in the simulation. For short-echo

time, there are tests with the 5 variations of background estimation, while there is a single test

for long echo-time because the background is not present. All approaches are tested with the 6

noise level test sets.

The long echo-time test result is shown by figure 5.9 with a plot for each metabolite of the

signal. In this test, we use only a simple version of QUEST, without truncation. singular value

decomposition or additional basis signals for background estimation. The plots show Choline

in red, Creatine in green and NAA in blue. By this plot we can see that Choline is more affected

by the raise of the noise level.

The short echo-time test regards 20 metabolites and 5 different variations of QUEST, echo

one with a different approach to the estimation of the background. We refer to the QUEST

variations as: trunc, basis, peaks, const and const t25. trunc truncates the first 25 points of the

signal to remove the background before the quantification, as is explained in section 2.3.1. basis

uses the background signal in the basis set during quantification (first part of section 2.3.1).

peaks uses the background Gaussian peaks in the basis set, while const also uses constraints

in the parameters of the Gaussians (see section 2.3.1). Finally, const t25 is based on const and

also uses the truncation of the first 25 points, like trunc.

The tables 5.1 A.2 show the mean and standard deviation obtained in the tests with 0 noise

and 0.3 noise, respectively. Among all the metabolites of the signals, there are 6 pairs which

are strongly correlated. Thus, we also calculate the error regarding the sum of the amplitudes

of these pairs.

By comparing the error obtained for each metabolite in the table with their respective ex-

pected amplitudes (table A.1 in the appendix), we can verify that the error is larger for the

components with lower amplitude values. These metabolites are usually more difficult to quan-

tify and sometimes can be occluded by the noise.
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Figure 5.9: Mean relative error of QUEST running with the long echo-time datasets. Cho

stands for Choline and Cre for Creatine

From the values presented by table 5.1, we can see that const and peaks give more accurate

quantifications for most of the metabolites, compared to the other tested techniques. trunc,

which is the only QUEST variation that does not use the background as a parametric part of

the signal, is behind in almost every test. Nonetheless, it is still close the the other approaches

regarding the metabolites with larger amplitudes.

The effect of noise in QUEST results is shown by the plots in figure 5.10, where all the

5 variations are tested with 4 different metabolites. The metabolites chosen are Ins, NAA, Cr

and GPC, the first three having large amplitudes and are, thus, more reliable for quantification,

while GPC has a slightly smaller expected amplitude. For all the 4 metabolites, basis and const

have the best accuracy, while peaks and const t25 are slightly less accurate. trunc has similar

accuracy to them when quantifying Ins and GPC, but is relatively inaccurate for the other two

metabolites.

The const variation performed very well on all the datasets, except the one with 0.01 noise

level. In this test, QUEST failed during the quantification of 442 out of 1000 examples. The

mean relative error shown by the plots for this case takes into account only the signals quantified

correctly, without failures. Of all the QUEST variations and noise level tests, this is the only

case where such result was observed.

5.5.2 Results Obtained with Deep Learning

In this section we expose the results obtained using the Deep Learning models previously cited

with the same test datasets used to evaluate QUEST. Again, we start with the long echo-time

results and then we add the background and extra metabolites to the tests.

By the plots in figure 5.11 we see that the topology trained with spectrogram data is the least

effective in all the 3 metabolite tests. After it, LE-subT present higher error rates for Creatine

and NAA, and Choline when the noise level is low. Time, spectrum, TP and TF present similar

error rates in most of the tests, with LE-t being the worse in the NAA tests. In most cases, LE-f

and LE-TP have the best results.

To compare the short echo-time results, as there are too many metabolites, we draw plots

with the noise level and mean relative error for NAA, Ins, Cr and GPC (figure 5.12), as was done



Metabolite trunc basis peaksMM constr constr t25

Ala 1.89±1.47 1.51±1.35 0.62±0.43 0.61±0.46 0.70±0.48

Asc 1.79±1.70 0.63±0.50 0.58±0.59 0.55±0.51 0.74±0.77

Asp 2.50±1.87 0.98±0.78 1.50±1.59 0.90±0.93 1.14±1.21

Cr 0.58±0.52 0.36±0.35 0.47±0.45 0.38±0.41 0.41±0.42

GABA 2.34±2.44 1.41±1.50 0.84±0.87 1.01±1.22 1.22±1.47

GPC 0.49±0.34 0.47±0.32 0.52±0.32 0.47±0.32 0.48±0.32

GSH 1.30±0.94 0.55±0.39 0.55±0.40 0.50±0.39 0.59±0.45

Glc 2.69±2.63 2.03±1.96 1.19±1.26 1.35±1.55 1.53±1.70

Gln 6.72±5.82 2.84±3.32 1.59±2.15 1.79±2.49 2.02±2.81

Glu 0.54±0.35 0.27±0.23 0.51±0.33 0.32±0.26 0.38±0.29

Gly 0.94±0.91 0.74±0.78 0.65±0.70 0.61±0.69 0.68±0.72

Ins 0.29±0.24 0.25±0.22 0.31±0.31 0.27±0.29 0.31±0.29

Lac 18.45±17.32 13.01±15.11 7.58±10.51 5.57±8.26 6.58±9.37

NAA 0.25±0.20 0.14±0.13 0.13±0.20 0.11±0.16 0.14±0.19

NAAG 3.17±2.47 1.10±1.12 0.96±1.83 0.83±1.35 1.04±1.77

PCho 0.97±0.86 0.86±0.76 0.86±0.76 0.97±0.83 1.04±0.98

PCr 0.43±0.38 0.28±0.28 0.38±0.36 0.29±0.31 0.30±0.30

PE 2.69±2.23 1.40±1.35 1.68±2.01 1.70±1.84 1.76±1.82

Tau 0.74±0.50 0.61±0.41 0.66±0.47 0.59±0.42 0.99±0.93

sIns 0.70±0.56 0.79±0.81 0.73±0.68 0.71±0.62 0.86±0.78

Cr+PCr 0.30±0.19 0.11±8.76e-02 0.23±0.23 0.13±0.14 0.15±0.14

GPC+PCho 0.34±0.26 0.30±0.23 0.38±0.27 0.30±0.23 0.34±0.27

Glc+Tau 0.74±0.69 0.51±0.47 0.53±0.47 0.50±0.48 0.90±0.88

Glu+Gln 0.88±0.40 0.21±0.17 0.39±0.27 0.22±0.19 0.32±0.25

Ins+Gly 0.23±0.18 0.15±0.12 0.22±0.21 0.18±0.17 0.20±0.19

NAA+NAAG 0.38±0.20 0.12±9.62e-02 0.10±0.11 9.52e-02±9.06e-02 0.11±0.10

Table 5.1: Table with the mean and variance of the relative error obtained from the short echo-

time tests with 0 noise dataset. The metabolites are represented in the lines and the QUEST

variations are in the columns. The last 6 lines contain the error the the correlated metabolite

pairs.

before with the QUEST results. From the plots, it is pointed out that SE-TF and SE-TP have

the poorest result when the noise level increases. The network trained with time domain signals

also has a relativlely higher mean error for examples with noise. Based on these metabolites,

we can define SE-f and SE-g as the most stable approaches in all noise conditions, and the most

accurate in general. This is confirmed for all metabolites in tables A.5 and A.3.

5.6 Comparing Approaches

In this section we put QUEST and Deep Learning side by side using the approaches that pre-

sented the best results in the tests comparison of the previous sections. Again, we start with

the long echo-time signals and then advance to the short echo-time datasets. In the last section,

we also draw a comparison between the execution time of both approaches for short echo-time
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Figure 5.10: Plots comparing the raise of the error on NAA, Ins, GPC and Cr when the noise

increases for all short echo-time QUEST variations.

quantification.

5.6.1 Long Echo-Time Comparison

From the Deep Learning models, we pick LE-f and LE-TP, since they had the best results for

long echo-time data, to compare with QUEST. In figures 5.13 and A.1, QUEST has a better

accuracy in quantifying all the three metabolites, even in the presence of noise. Without noise,

the results are far more accurate than the CNNs. For the NAA metabolite, QUEST achieves an

error about 100 times smaller than the CNNs. This can be explained by the fact that the long

echo-time signals have few metabolites, there aren’t any overlapping metabolites, and there is

no background, so the non-linear least squares fit becomes much simpler than it is in the case

of short echo-time signals.

5.6.2 Short Echo-Time Comparison

For the short echo-time comparison, we select SE-t, SE-f and SE-g from the CNN models and

basis and const from QUEST variations. We use the mean of the relative error (figure 5.14) as

well as the standard deviation (figure A.2) to plot the accuracy of these approaches.



Figure 5.11: Mean relative error of the CNNs tested with the long echo-time test datasets.

Differently from what is observed in the long echo-time comparison, the neural networks

improve significantly the quantification accuracy of most of the metabolites. Also, the results

of SE-f and SE-g are very tolerant to the addition of noise, showing only a small increase

between 0 (table 5.2) and 0.3 (table A.4) noise datasets, for most of the metabolites. SE-t also

shows improvements for several metabolites, mainly when there is no noise, but its error starts

to increase already at the 0.01 noise test, as is shown by 5.14.

The statistics in table 5.2 show that the CNNs can quantify correctly even the metabo-

lites with overlapping peaks, such as NAA and NAAG. In addition, they give better results to

metabolites which are difficult for QUEST to quantify, such as Glc, Gln and Lac.

5.6.3 Time Efficiency Comparison

In addition to the quantification accuracy, we also compared the execution time of both ap-

proaches during the tests. All QUEST variations were executed in a Intel Xeon E3-1246 v3

CPU with 3.50GHz of clock, using a single core, while the CNNs were trained with a NVIDIA

Tesla K80 GPU and tested with the same CPU.

The times recorded from the tests of the QUEST variations and the CNNs with all the 6 test

sets are listed in table 5.3. While the CNNs took seconds to run through all the 6000 examples,

the QUEST variations had to run for several hours to finish running.
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Figure 5.12: Plots comparing the raise of the error on NAA, Ins, GPC and Cr when the noise

increases for all short echo-time CNNs.



Figure 5.13: Plots comparing the mean relative error of QUEST and the CNNs LE-f and LE-TP

on the test datasets.
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Figure 5.14: Plots comparing the accuracy of QUEST approaches basis and const with the

CNNs SE-f, SE-t andSE-g using the metabolites NAA, Ins, GPC and Cr.



Metabolite basis constr SE-t SE-f SE-g

Ala 1.51±1.35 0.61±0.46 0.15±0.10 0.16±0.12 0.16±0.11

Asc 0.63±0.50 0.55±0.51 0.16±0.10 0.17±0.12 0.17±0.12

Asp 0.98±0.78 0.90±0.93 0.15±0.10 0.16±0.11 0.16±0.11

Cr 0.36±0.35 0.38±0.41 0.12±8.86e-02 0.15±0.10 0.16±0.11

GABA 1.41±1.50 1.01±1.22 0.16±9.77e-02 0.16±0.11 0.16±0.11

GPC 0.47±0.32 0.47±0.32 0.12±8.62e-02 0.16±0.11 0.16±0.12

GSH 0.55±0.39 0.50±0.39 0.15±0.11 0.16±0.11 0.16±0.11

Glc 2.03±1.96 1.35±1.55 0.16±0.10 0.16±0.12 0.16±0.11

Gln 2.84±3.32 1.79±2.49 0.15±0.10 0.16±0.11 0.16±0.11

Glu 0.27±0.23 0.32±0.26 4.87e-02±3.94e-02 0.12±9.04e-02 0.15±0.11

Gly 0.74±0.78 0.61±0.69 0.15±0.10 0.16±0.12 0.16±0.11

Ins 0.25±0.22 0.27±0.29 7.83e-02±6.38e-02 0.12±9.20e-02 0.15±0.10

Lac 13.01±15.11 5.57±8.26 0.16±0.10 0.16±0.11 0.16±0.11

NAA 0.14±0.13 0.11±0.16 2.87e-02±2.17e-02 0.11±8.80e-02 0.16±0.11

NAAG 1.10±1.12 0.83±1.35 0.15±9.97e-02 0.15±0.11 0.15±0.11

PCho 0.86±0.76 0.97±0.83 0.15±0.10 0.16±0.11 0.16±0.11

PCr 0.28±0.28 0.29±0.31 0.10±8.33e-02 0.13±9.23e-02 0.16±0.11

PE 1.40±1.35 1.70±1.84 0.15±0.10 0.16±0.12 0.16±0.11

Tau 0.61±0.41 0.59±0.42 0.14±0.10 0.17±0.12 0.17±0.11

sIns 0.79±0.81 0.71±0.62 0.15±0.10 0.16±0.12 0.16±0.11

Cr+PCr 0.11±8.76e-02 0.13±0.14 5.35e-02±4.06e-02 8.15e-02±6.20e-02 0.11±8.58e-02

GPC+PCho 0.30±0.23 0.30±0.23 8.69e-02±6.38e-02 0.12±8.70e-02 0.12±9.13e-02

Glc+Tau 0.51±0.47 0.50±0.48 0.11±7.76e-02 0.13±9.12e-02 0.13±8.99e-02

Glu+Gln 0.21±0.17 0.22±0.19 4.27e-02±3.38e-02 0.10±8.08e-02 0.14±9.82e-02

Ins+Gly 0.15±0.12 0.18±0.17 6.17e-02±4.86e-02 9.56e-02±7.41e-02 0.12±8.49e-02

NAA+NAAG 0.12±9.62e-02 9.52e-02±9.06e-02 2.65e-02±2.05e-02 0.10±8.04e-02 0.15±0.10

Table 5.2: Table comparing QUEST and Deep Learning approaches using 0 noise dataset.

3
6



CNN
Train

(hh:mm)

CPU Test

(s)

Per Example

(ms)

SE-f 6:05 60.09 10.02

ST-t 1:04 20.08 3.35

SE-TF 8:20 54.31 9.05

SE-TP 1:26 20.69 3.45

SE-g 7:38 80.04 13.34

SE-subT 3:37 19.32 3.22

QUEST
Test Time

(hh:mm)

Per Example

(s)

basis 11:09 6.69

trunc 24:09 14.49

peaks 33:15 19.95

const 49:12 29.52

const t25 51:11 30.71

Table 5.3: In the left, the train and test time of all the short echo-time CNNs, and, in the right,

the test time of all QUEST variations. The CNN test time considers the tests made on CPU.

The "Per Example" columns give an estimation of the time to quantify one single example.

The time difference shown by the tables is expected, since the non-linear least-square fit of

several parameters is time consuming, as well as the singular value decomposition. On the other

hand, convolutions and dot products are relatively fast operations. Also, the use of optimized

libraries and parallel calculation give an extra advantage to the convolutional neural networks.
Training the neural networks is what consumes more time. The time required to train each

CNN, also shown by table 5.3, is proportional to the number of layers of the network. The

test times in table 5.3 where measured by testing the CNNs with the same datasets and CPU

used by the QUEST variations. The CNNs that took more time (SE-TF, SE-g and SE-f during

training are also the ones with more convolutional layers. However, the training is required

only once to have a working CNN that can quantify an arbitrary number of examples very fast.
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Discussion of Results

The results from chapter 5 show that QUEST is more efficient to quantify long echo-time

signals, when there is no overlap of the metabolites and no background. The non-linear least-

squares fit takes full advantage of the known parametric model, and can estimate all the param-

eters much more accurately than the CNNs. QUEST is around 2 times more accurate than Deep

Learning for signals with noise, and can be about 100 times better when the signals without

noise.
On the other hand, Deep Learning performs the quantification of short echo-time signals

better than QUEST, and in much less time. It has a smaller relative error for all the metabolites,

and for some of them it can be about 3 times more accurate than QUEST. This shows that

the trained neural networks are capable of handling the non-parametric parts of the signal very

well. In addition, they also have excellent results even when there is noise and overlapping

metabolites.
However, not all the short echo-time networks tested worked as expected: the ones trained

with TF and time domain inputs showed bad quantification results, mainly with the noisy data.

This may suggest that the noise occludes more the input in the time domain than in the fre-

quency domain. The TP input, on the contrary, does not have the same issue, proposing that

the addition of the time position channel is useful to localize the parts of the signal important

for the quantification.
Among the long echo-time examples tested, the LE-g topology was less accurate than all

the other tests. The same network, when tested with a batch normalization with short echo-time

data, performed very well compared to the others. This may suggest that the outputs of LE-g

require a normalization.
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Conclusion

MR spectroscopy signal quantification consists of estimating the amplitudes of the metabolites

present in the result of the examination. The correct quantification is important for medical

diagnosis of diseases such as cancer and tumors. QUEST, the state of the art approach to this

problem, is very precise, however, the presence of background, noise, and overlap of the signal

peaks make it difficult to quantify certain metabolites.
In this work, we present a new approach to the spectroscopy signal quantification: training

deep neural networks to estimate the metabolites’ amplitudes. To do this, we simulated training

and validation datasets using the existing signal model, and we also extend this simulation to

generate background signals. The networks are implemented using Caffe, a very efficient Deep

Learning library, and we create over 20 different topologies, combined with 6 variations of the

signal as input, resulting in over 100 trained networks. The most effective networks are selected

for each input type and then compared.
We also test quest with long and short echo-time simulated signals with different noise

levels. For the short echo-time signals, we test and compare 5 variations of QUEST, each one

with a different method to treat the background. The most accurate ones are picked to compare

with the deep neural networks.
Finally, we gather the results obtained with all the tests and put QUEST and Deep Learning

side by side. By analyzing the accuracy of both approaches, we find out that long echo-time

signals are better quantified by the non-linear least squares fit of QUEST. On the other hand,

the deep neural networks excel in quantification of short echo-time signals, and is also noise

tolerant.
With these results, we expect that Deep Learning will be explored more thoroughly for

spectroscopy quantification by finding better topologies and parameters. Also, Deep Learning

could be tested to estimate the extra damping factor and frequency shift of the metabolites, and

combine this with the amplitude quantification to obtain better results. Other option is to use

the outputs of the neural networks as initialization for QUEST’s non-linear least squares fit.

Regarding the signal simulation, one could also extend it to include the acquisition artifacts,

which are another non-parametric part of the signal that could be learned by machine learning

models.
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Appendix

Metabolites Proportion

Ala 1.1

Asc 1

Asp 1.6

Cr 4.15

GABA 1.5

Glc 0.6

Gln 1.28

Glu 13.08

GPC 0.9

GSH 1.76

Gly 2.2

Ins 7.1

Lac 0.09

NAA 14.23

NAAG 1.24

PCho 0.37

PCr 5.55

PE 1.47

sIns 0.41

Tau 1.77

Macromolecule 11.7

Table A.1: Proportion (expected amplitudes) of each metabolite and the background in a short

echo-time signal.



Metabolite trunc basis peaksMM constr constr t25

Ala 12.36±6.02 3.05±3.13 2.64±2.95 2.52±2.58 2.23±2.72

Asc 2.35±2.26 2.30±1.97 2.82±2.53 2.45±2.14 3.08±2.98

Asp 4.67±3.65 2.94±2.52 6.07±4.46 3.42±2.83 4.60±5.68

Cr 0.66±0.62 0.53±0.46 0.56±0.40 0.56±0.42 0.63±0.56

GABA 11.64±7.06 3.61±3.63 2.14±2.30 2.71±2.79 3.25±4.47

GPC 0.54±0.47 0.52±0.36 0.52±0.36 0.57±0.37 0.72±0.52

GSH 1.23±1.14 0.78±0.63 0.87±0.80 0.86±0.62 1.09±0.98

Glc 4.79±4.94 2.98±3.07 3.57±3.71 3.12±3.26 4.01±5.03

Gln 7.55±6.40 4.47±4.19 4.61±4.14 4.07±3.77 3.79±4.48

Glu 0.48±0.32 0.42±0.29 0.56±0.29 0.46±0.30 0.57±0.33

Gly 2.01±1.87 1.32±1.30 1.31±1.45 1.25±1.16 1.33±1.38

Ins 0.44±0.31 0.46±0.29 0.48±0.30 0.50±0.30 0.60±0.38

Lac 105.51±59.56 35.25±29.96 29.69±24.86 28.87±26.99 30.31±42.18

NAA 0.36±0.26 0.28±0.24 0.36±0.28 0.32±0.27 0.35±0.28

NAAG 4.95±3.83 2.27±2.45 2.01±2.51 1.99±2.32 2.29±2.85

PCho 1.46±1.62 1.18±1.12 1.06±1.00 1.37±1.26 1.49±1.62

PCr 0.51±0.39 0.44±0.30 0.52±0.30 0.48±0.30 0.53±0.36

PE 2.30±2.09 1.91±1.76 2.13±1.89 2.19±1.92 2.43±2.48

Tau 1.31±1.38 1.03±0.73 1.08±0.74 1.07±0.70 1.68±1.87

sIns 1.59±1.60 1.35±1.24 1.30±1.08 1.38±1.19 1.57±1.75

Cr+PCr 0.27±0.23 0.22±0.17 0.35±0.23 0.25±0.18 0.33±0.24

GPC+PCho 0.52±0.55 0.40±0.33 0.40±0.31 0.47±0.35 0.70±0.59

Glc+Tau 1.66±1.73 1.07±0.85 1.18±0.97 1.10±0.84 1.90±2.10

Glu+Gln 0.61±0.48 0.32±0.27 0.37±0.29 0.33±0.27 0.49±0.36

Ins+Gly 0.38±0.34 0.28±0.21 0.35±0.26 0.32±0.24 0.47±0.37

NAA+NAAG 0.47±0.25 0.19±0.15 0.27±0.20 0.22±0.18 0.26±0.20

Table A.2: Table with the mean and variance of the relative error obtained from the short echo-

time tests with 0.3 noise dataset.
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Metabolite SE-f SE-t SE-TF SE-TP SE-g SE-subT

Ala 0.16±0.11 0.20±0.14 1.26±1.02 0.31±0.27 0.16±9.53e-02 0.20±0.16

Asc 0.17±0.11 0.21±0.15 0.77±0.71 0.30±0.26 0.16±9.69e-02 0.22±0.16

Asp 0.16±0.11 0.25±0.18 1.45±1.07 0.32±0.27 0.16±9.24e-02 0.22±0.18

Cr 0.19±0.15 0.24±0.17 1.48±1.17 0.44±0.37 0.16±9.49e-02 0.26±0.21

GABA 0.16±0.10 0.23±0.16 1.64±1.22 0.31±0.26 0.16±9.52e-02 0.23±0.16

GPC 0.17±0.13 0.36±0.25 0.43±0.43 0.35±0.29 0.16±9.82e-02 0.23±0.18

GSH 0.16±0.11 0.29±0.20 0.97±0.91 0.30±0.26 0.16±9.79e-02 0.21±0.17

Glc 0.16±0.11 0.19±0.12 1.20±0.91 0.31±0.26 0.15±9.51e-02 0.20±0.16

Gln 0.16±0.11 0.22±0.14 1.48±1.21 0.31±0.26 0.16±9.76e-02 0.22±0.16

Glu 0.19±0.14 0.42±0.23 3.36±3.38 0.51±0.41 0.15±9.62e-02 0.50±0.41

Gly 0.16±0.11 0.29±0.19 1.61±1.19 0.30±0.24 0.16±9.73e-02 0.21±0.16

Ins 0.21±0.17 0.31±0.19 3.93±2.01 0.48±0.49 0.15±9.23e-02 0.47±0.43

Lac 0.16±0.11 0.19±0.11 1.26±0.83 0.30±0.27 0.16±9.65e-02 0.20±0.16

NAA 0.19±0.15 0.31±0.23 3.15±1.50 0.76±0.58 0.16±9.81e-02 0.64±0.57

NAAG 0.16±0.11 0.19±0.13 1.32±1.05 0.32±0.28 0.15±9.10e-02 0.21±0.19

PCho 0.16±0.11 0.18±0.12 1.20±0.84 0.32±0.28 0.15±9.51e-02 0.21±0.16

PCr 0.20±0.17 0.24±0.17 1.80±1.35 0.32±0.28 0.16±9.25e-02 0.35±0.30

PE 0.16±0.11 0.19±0.13 1.52±1.05 0.32±0.29 0.16±9.55e-02 0.21±0.17

Tau 0.16±0.11 0.35±0.28 1.67±1.12 0.38±0.31 0.16±9.84e-02 0.23±0.18

sIns 0.16±0.11 0.20±0.15 1.26±0.91 0.33±0.27 0.16±9.58e-02 0.21±0.16

Cr+PCr 0.16±0.13 0.20±0.13 1.62±1.20 0.32±0.27 0.11±7.85e-02 0.27±0.22

GPC+PCho 0.13±0.10 0.28±0.20 0.61±0.53 0.31±0.26 0.12±7.93e-02 0.19±0.15

Glc+Tau 0.13±8.68e-02 0.26±0.20 1.52±1.02 0.34±0.28 0.12±8.07e-02 0.20±0.16

Glu+Gln 0.17±0.13 0.39±0.22 3.17±3.15 0.48±0.39 0.14±8.67e-02 0.46±0.37

Ins+Gly 0.17±0.13 0.29±0.17 3.34±1.72 0.40±0.38 0.12±7.80e-02 0.38±0.33

NAA+NAAG 0.17±0.14 0.28±0.20 2.99±1.42 0.70±0.54 0.14±9.01e-02 0.59±0.52

Table A.3: Mean and standard deviation of the relative error of all CNN topologies using the

dataset with noise level of 0.3.



Figure A.1: Plots comparing the standard deviation of the relative error of QUEST and the

CNNs LE-f and LE-TP on the test datasets.
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Metabolite basis constr SE-t SE-f SE-g

Ala 3.05±3.13 2.52±2.58 0.20±0.14 0.16±0.11 0.16±9.53e-02

Asc 2.30±1.97 2.45±2.14 0.21±0.15 0.17±0.11 0.16±9.69e-02

Asp 2.94±2.52 3.42±2.83 0.25±0.18 0.16±0.11 0.16±9.24e-02

Cr 0.53±0.46 0.56±0.42 0.24±0.17 0.19±0.15 0.16±9.49e-02

GABA 3.61±3.63 2.71±2.79 0.23±0.16 0.16±0.10 0.16±9.52e-02

GPC 0.52±0.36 0.57±0.37 0.36±0.25 0.17±0.13 0.16±9.82e-02

GSH 0.78±0.63 0.86±0.62 0.29±0.20 0.16±0.11 0.16±9.79e-02

Glc 2.98±3.07 3.12±3.26 0.19±0.12 0.16±0.11 0.15±9.51e-02

Gln 4.47±4.19 4.07±3.77 0.22±0.14 0.16±0.11 0.16±9.76e-02

Glu 0.42±0.29 0.46±0.30 0.42±0.23 0.19±0.14 0.15±9.62e-02

Gly 1.32±1.30 1.25±1.16 0.29±0.19 0.16±0.11 0.16±9.73e-02

Ins 0.46±0.29 0.50±0.30 0.31±0.19 0.21±0.17 0.15±9.23e-02

Lac 35.25±29.96 28.87±26.99 0.19±0.11 0.16±0.11 0.16±9.65e-02

NAA 0.28±0.24 0.32±0.27 0.31±0.23 0.19±0.15 0.16±9.81e-02

NAAG 2.27±2.45 1.99±2.32 0.19±0.13 0.16±0.11 0.15±9.10e-02

PCho 1.18±1.12 1.37±1.26 0.18±0.12 0.16±0.11 0.15±9.51e-02

PCr 0.44±0.30 0.48±0.30 0.24±0.17 0.20±0.17 0.16±9.25e-02

PE 1.91±1.76 2.19±1.92 0.19±0.13 0.16±0.11 0.16±9.55e-02

Tau 1.03±0.73 1.07±0.70 0.35±0.28 0.16±0.11 0.16±9.84e-02

sIns 1.35±1.24 1.38±1.19 0.20±0.15 0.16±0.11 0.16±9.58e-02

Cr+PCr 0.22±0.17 0.25±0.18 0.20±0.13 0.16±0.13 0.11±7.85e-02

GPC+PCho 0.40±0.33 0.47±0.35 0.28±0.20 0.13±0.10 0.12±7.93e-02

Glc+Tau 1.07±0.85 1.10±0.84 0.26±0.20 0.13±8.68e-02 0.12±8.07e-02

Glu+Gln 0.32±0.27 0.33±0.27 0.39±0.22 0.17±0.13 0.14±8.67e-02

Ins+Gly 0.28±0.21 0.32±0.24 0.29±0.17 0.17±0.13 0.12±7.80e-02

NAA+NAAG 0.19±0.15 0.22±0.18 0.28±0.20 0.17±0.14 0.14±9.01e-02

Table A.4: Table comparing QUEST and Deep Learning approaches using 0.3 noise dataset.



Figure A.2: Plots comparing the standard deviation of the relative error of QUEST approaches

basis and const, and the CNNs SE-f, SE-t andSE-g using the metabolites NAA, Ins, GPC and

Cr.
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Metabolite SE-f SE-t SE-TF SE-TP SE-g SE-subT

Ala 0.16±0.12 0.15±0.10 0.15±0.10 0.15±0.10 0.16±0.11 0.16±0.11

Asc 0.17±0.12 0.16±0.10 0.16±0.10 0.16±0.11 0.17±0.12 0.17±0.11

Asp 0.16±0.11 0.15±0.10 0.15±9.86e-02 0.15±0.10 0.16±0.11 0.16±0.10

Cr 0.15±0.10 0.12±8.86e-02 0.13±9.21e-02 0.13±9.03e-02 0.16±0.11 0.13±9.16e-02

GABA 0.16±0.11 0.16±9.77e-02 0.16±9.66e-02 0.16±9.72e-02 0.16±0.11 0.16±0.10

GPC 0.16±0.11 0.12±8.62e-02 0.15±0.10 0.14±9.88e-02 0.16±0.12 0.14±9.99e-02

GSH 0.16±0.11 0.15±0.11 0.16±0.10 0.16±0.11 0.16±0.11 0.16±0.11

Glc 0.16±0.12 0.16±0.10 0.16±0.10 0.16±0.11 0.16±0.11 0.16±0.11

Gln 0.16±0.11 0.15±0.10 0.15±0.10 0.15±0.10 0.16±0.11 0.16±0.11

Glu 0.12±9.04e-02 4.87e-02±3.94e-02 4.95e-02±3.93e-02 7.01e-02±5.42e-02 0.15±0.11 7.31e-02±5.72e-02

Gly 0.16±0.12 0.15±0.10 0.15±0.10 0.15±0.10 0.16±0.11 0.16±0.10

Ins 0.12±9.20e-02 7.83e-02±6.38e-02 7.67e-02±6.23e-02 7.62e-02±5.94e-02 0.15±0.10 7.88e-02±6.19e-02

Lac 0.16±0.11 0.16±0.10 0.16±0.10 0.16±0.11 0.16±0.11 0.16±0.11

NAA 0.11±8.80e-02 2.87e-02±2.17e-02 2.85e-02±2.28e-02 3.28e-02±2.56e-02 0.16±0.11 3.49e-02±2.73e-02

NAAG 0.15±0.11 0.15±9.97e-02 0.15±9.84e-02 0.15±9.97e-02 0.15±0.11 0.15±0.10

PCho 0.16±0.11 0.15±0.10 0.15±0.10 0.15±0.10 0.16±0.11 0.15±0.11

PCr 0.13±9.23e-02 0.10±8.33e-02 0.11±8.40e-02 0.11±8.24e-02 0.16±0.11 0.11±8.50e-02

PE 0.16±0.12 0.15±0.10 0.15±0.10 0.15±0.10 0.16±0.11 0.16±0.11

Tau 0.17±0.12 0.14±0.10 0.16±0.10 0.15±0.10 0.17±0.11 0.15±0.11

sIns 0.16±0.12 0.15±0.10 0.15±0.10 0.16±0.10 0.16±0.11 0.16±0.11

Cr+PCr 8.15e-02±6.20e-02 5.35e-02±4.06e-02 5.59e-02±4.19e-02 5.71e-02±4.30e-02 0.11±8.58e-02 5.94e-02±4.38e-02

GPC+PCho 0.12±8.70e-02 8.69e-02±6.38e-02 0.11±7.87e-02 0.10±7.42e-02 0.12±9.13e-02 0.10±7.66e-02

Glc+Tau 0.13±9.12e-02 0.11±7.76e-02 0.12±8.01e-02 0.11±8.04e-02 0.13±8.99e-02 0.12±8.19e-02

Glu+Gln 0.10±8.08e-02 4.27e-02±3.38e-02 4.39e-02±3.41e-02 6.37e-02±4.81e-02 0.14±9.82e-02 6.62e-02±5.10e-02

Ins+Gly 9.56e-02±7.41e-02 6.17e-02±4.86e-02 6.30e-02±4.81e-02 6.39e-02±4.93e-02 0.12±8.49e-02 6.46e-02±5.02e-02

NAA+NAAG 0.10±8.04e-02 2.65e-02±2.05e-02 2.75e-02±2.10e-02 3.15e-02±2.41e-02 0.15±0.10 3.32e-02±2.56e-02

Table A.5: Mean and standard deviation of the relative error of all CNN topologies using a dataset with 0 noise.
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