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Abstract 

Adipose tissue-derived mesenchymal stem cells (hAMSC) are promisor 

therapeutic tool for regenerative medicine and chronic inflammatory 

diseases treatment due to its multipotency and immunomodulatory 

properties. However, to achieve the maximum potential of hAMSC in clinical 

trials, is necessary to understand the interplay of these cells with the 

environmental elements, such as the oxygen. Oxygen is a factor that 

participates in the regulation of metabolism and cell biology; however, how 

oxygen can affect hAMSC is not completely understood. In this work, a 

transcriptional analysis and a systems biology approaches was applied to 

evaluate the effects of atmospheric oxygen in hAMSC during 14 days of 

exposure, by comparing the initial time (21% [O2] 0 d) and the final time 

(21% [O2] 14d). Likewise, hAMSC were evaluated considering others 

oxygen concentrations, such as 5% (5% [O2]) and 1% (1% [O2]), which were 

compared to 21% [O2] at final time (14d). Our data suggest that minor 

alterations in biological processes occur comparing between 21% [O2] 14d 

and 21% [O2] 0d, in term of differential expression. Genes related to 

cytokines and prostaglandins synthesis were upregulated suggesting an 

increased immunomodulatory effect over time. When was compared 21% 

[O2] vs 1% [O2] 14d, the normoxic condition showed downregulation of 

genes related to glycolysis and proliferation, as well as increased expression 

of genes associated with leucine catabolism, cholesterol synthesis, 

glutaminolysis, serine synthesis, oxidative stress, intrinsic apoptosis 

response and proliferation. The comparison with 5% [O2] demonstrated that 

normoxic hASMC is under oxidative stress condition and activation of DNA 
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damage response. In conclusion, oxygen may have major effects in hAMSC 

at low concentration by shifting metabolism and the synthesis of molecules 

that coordinate alterations in regulation of hAMSC biology. 

1. Introduction 

Adipose tissue-derived mesenchymal stem cells (hAMSC) were first 

isolated and characterized as multipotent stromal cells found in white adipose 

tissue in 2002 (Zuk 2010). Since then, it was shown as a promising tool for 

regenerative medicine and against chronicle inflammatory diseases. These 

therapeutics applications are mostly due to the fact that hAMSC may 

differentiate mainly in osteogenic, chondrogenic, adipogenic lineages, although 

previous studies have shown wider differentiation potential (Wang et al. 2012, 

Pérez-Campo & Riancho 2015, Montzka et al. 2009). Another characteristic of 

hAMSC is this ability to secret of immunomodulatory molecules, such as 

interleukins, chemokines and prostaglandins (Wang et al. 2012). Furthermore, 

hAMSC are abundant cells, showing a concentration 500 fold greater than the 

bone marrow mesenchymal stem cells (BMMSC) and easily obtained through a 

simple puncture procedure (Fotia et al. 2015, Franco Lambert et al. 2009). 

In order to exploit the maximum potential of immunomodulation and to 

optimize the differentiation capacity of hAMSC, is necessary to understand the 

mechanisms that regulate its molecular biology and biochemistry, and what are 

the best in vitro conditions to maintain them (Liu & Ma 2015).  

A factor that influences stem cells is the oxygen concentration (Mohyeldin 

et al. 2010). In a physiological environment, hAMSC reside in a hypoxic niche 

with 2-8% oxygen concentration, which depends on the individual body mass 
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(Trayhurn 2013). The environmental hypoxic profile of hAMSC, similar to other 

stem cell types, makes them rely on anaerobic glycolysis, as well is maintained 

the multipotency and low proliferative capacity, in a quiescent state (Wang et al. 

2005, Fotia et al. 2015). Nevertheless, oxidative phosphorylation and 

mitochondrial activity may increase depending oxygen availability, carrying 

metabolic alterations that contribute to differentiation, senescence and surviving 

of hAMSC (Atashi et al. 2015, Shyh-Chang et al. 2013). 

An increase in mitochondria activity may lead to the production of reactive 

oxygen species (ROS), which are highly reactive and interfere in cells 

homeostasis (Atashi et al. 2015). Usually, the cells counteract high levels of 

ROS by producing antioxidants molecules and activating protective 

pathways;however, low levels of ROS have physiological implications in stem 

cells, specially by fine-tuning differentiation, proliferation and migration (Atashi 

et al. 2015, Maraldi et al. 2015).  

Considering that hAMSC are routinely cultured in 21% [O2], the major 

question is how different oxygen concentrations may interfere in hAMSC 

biochemistry and molecular biology. To address this question, transcriptome 

data and systems biology tools were employed to evaluate the influence of 

oxygen concentration in hAMSC. 

 

2. Materials and methods  

2.1 Differentially expressed genes selection 

The transcriptome profile of hAMSC cultured in different oxygen 

concentrations was downloaded from the Gene Expression Omnibus database 
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using the package GEOquery implemented into R software (Sean & Meltzer 

2007). The microarray matrix series GSE12884 held data of five different 

humans female donors derived hAMSC, aged between 22 and 44. As indicated 

by Pilgaard and colegues, the hAMSC were selected, seeded and after 24 

hours of cultivation, were maintained at different oxygen concentrations for 14 

days and medium was changed twice a week. Then, data was gathered at the 

beginning of conditioning (0d), and after it (14d) (Pilgaard et al. 2009).  

The microarray quality was verified with the arrayQualityMetrics package, 

leaving four hAMSC donors-associated microarray data samples to further 

analysis (Kauffmann et al. 2009). In this study, the experimental group was 

considered the samples exposed to atmospheric oxygen at 14 days (21% [O2] 

14 d). The experimental group was compared with mild (5% [O2] 14d), severe 

hypoxia (1% [O2] 14d), and with the initial time (21% [O2] 0d). This comparison 

was made using limma package (Ritchie et al. 2015) from R software, 

considering as parameters to cut-off Log2FC ≥ |1|, and false discovery rate 

(FDR) ≤ 0.05 to generate a list of differentially expressed genes (DEG). A table 

with all genes from each comparison, and every mentioned DEG in this 

manuscript is available in supplementary material (Supplementary Material 1). 

2.2 Network interatomic data mining and visualization 

The DEG lists were used as initial input for protein-protein interaction data 

mining at online software String 10.0 (Szklarczyk et al. 2015).  

The parameters set were confidence degree 0.400, search options used 

were “database” and “experiments”, and maximum of 50 interactors shown in 

first shell. 
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After downloading the interatomic data, the networks were visualized, 

edited and further evaluated in software Cytoscape 2.8.3 (Shannon et al. 2003). 

Nodes were colored according to their Log2FC. All nodes representing 

overexpressed DEG were colored with warm colors, whereas the nodes 

representing underexpressed DEG were colored with cold colors. Nodes that do 

not represent DEG were colored with gray (Fig.1, Fig. 2, Fig. 3A and C, Fig. 4A, 

C and E, Fig. 5A). 

2.3 Cluster analysis 

To assess the presence and number of clusters in the interatomic 

networks, the Cytoscape plugin AllegroMCODE was employed (Bader & Hogue 

2003). Pre-processing parameters were the default settings, and post-

processing parameters were fluffy node density equal to 0.1, and haircut 

enable. Only cluster with score ≥ 3 were selected for further gene ontology (GO) 

analysis (Fig. 3A and C, Fig. 4A, C and E, Fig. 5A). Clusters with similar GO 

results were merged. 

2.4 Centrality analysis 

To evaluate the most topological important nodes in the interatomic 

networks (nodes centrality), the Cytoscape plugin CentiScaPe 1.21 was used 

(Scardoni et al. 2009). The centralities analyzed were node and betweenness 

degree. Node degree evaluates the number of connections that each node 

have, whereas betweenness evaluates how many shortest paths between two 

different nodes in the network, passes through a referential node. The average 

scores were calculated, and the node with node degree and betweenness 

degree above the centrality score were selected as hub-bottlenecks (HB) (Fig. 
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2).HB nodes regulates many biological processes directly or indirectly by 

interacting with many nodes or connecting clusters (Scardoni & Laudanna 

2012).  

2.5 GO analysis 

A GO analysis was performed in each identified clusters, using Cytoscape 

plugin BinGO 2.44 (Maere et al. 2005). The overrepresented GOs were 

evaluated by hypergeometric statistical test for quantitatively functional 

enrichment of GO according to whole annotations as a reference set. For 

multiple correction, the FDR was applied an adjusted p-value ≤ 0.05 as set. Just 

“biological processes” were selected to be analyzed (Fig. 3B and D, Fig. 4B, D 

and F, Fig. 5B). The lists with all genes, ontologies and corrected p-values are 

available as supplementary material (Supplementary Material 2, 3 and 4). 

 

3. Results and Discussion 

3.1 Comparison between hAMSC cultured in 21% [O2]14d and in 21% 

[O2] 0d 

Comparing the transcriptome microarray data between 21% [O2] 14 d and 

21% [O2] 0d, it was obtained 21 downregulated genes and 75 upregulated 

genes, and 13 genes only had statistical significance (Supplementary Material 

1). From this DEG analysis, it was prospected interatomic data and generated a 

network with 222 nodes and 1112 edges. From all 66 DEG, 12 are 

underexpressed and 51 are overexpressed (Fig. 1A). Therewith, two clusters 

were further evaluated. Cluster 1 (Fig. 3A), with 667 edges, 18 overexpressed, 

5 underexpressed and 115 non-differentially expressed genes, is mostly 
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associated with processes such as apoptosis, differentiation, proliferation and 

response to stress (Fig. 3B, Supplementary Material 2). Besides, the cluster 2, 

with 138 edges and 37 nodes of those being six overexpressed genes (Fig. 3C), 

is related to the response and cytokine production, inflammation and response 

to stress (Fig. 3D, Supplementary Material 2). In centrality analysis, 47 HB were 

observed, which only six were DEG, three overexpressed and three 

underexpressed (Fig. 2A). 

3.1.1 Immunomodulatory genes expression increased in hAMSC at 14 

d than at 0 d. 

Upregulated genes related to immunomodulatory signaling were observed 

in cluster 2 (Fig. 2C), showing increased expression in hAMSC at 14 d. In 

addition,  interleukin 6 (IL6) and interleukin 1 alpha (IL1A) were overexpressed, 

being these cytokines responsible for immunoregulatory processes, including 

immunosuppressive stimuli (Wang et al. 2014). Among other 

immunomodulatory molecules, there were upregulated chemokine genes C-C 

motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 13 (CCL13)). 

These chemokines are chemoattractants, promoting dendritic cells migration, 

and both CCL2 and CCL13 expression may be induced by IL6 (Crop et al. 

2010). Additionally, chemokine-binding protein 2 (CCBP2), a decoy receptor 

that sequestrate chemokines, inhibiting and preventing it action, is 

overexpressed (Lazennec & Richmond 2010).This suggests that CCL2 and 

CCL13 may participate in paracrine signaling in hAMSC, not autocrine.  

In the main network (Fig. 1A), the prostaglandins metabolism was also 

found linked to immune systems. Genes related to arachidonic acid metabolism 

were overexpressed (phospholipase A2 group II A, (PLA2G2A), prostaglandin 
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synthase 1 (PTGS1) and prostaglandin I 2 synthase (PTGIS)) (Fig. 1A). 

Prostaglandins and prostacyclin are inflammatory agents that regulate 

vasodilatation and leukocyte adhesion (Ricciotti & Fitzgerald 2011). 

Furthermore, prostaglandins may have other functions than promote 

inflammation. Prostaglandins interact with other cells in adipose tissue. They 

promote development and maturation of pre-adipocytes and mature adipocytes, 

and this process may be a response to high levels of oxygen, since tissue 

oxygenation diminishes upon more developed adipose development, seen in 

obese people (Massiera 2003, Trayhurn 2013). 

This data suggest that cell culture time and passage may induce an 

immunomodulatory transcriptomic profile, which may potentiate cytokines, 

chemokines and prostaglandins action (Wang et al. 2014, Lazennec & 

Richmond 2010).  

3.1.2 Minor transcriptional changes occurs in hAMSC through time 

Although immunomodulatory alterations have been seen, other biological 

processes are mostly represented by non-differentially expressed gene, or few 

DEG (Fig.1, Fig. 2A and B) that act in different pathways, playing roles in 

different processes, becoming difficult to stipulate alteration based on 

transcriptomic data.  

The HB have central role in networks, and in this comparison, only six 

DEG were HB (Fig. 2A). Among the upregulated HB were Erb-B2 receptor 

tyrosine kinase 3 (ERBB3), a non-catalytic subunit of ERBb-Her receptors. It 

was observed that ERBB3 upregulation promoted glial-like differentiation of 

mesenchymal stem cells (MSC) (Mahay et al. 2008). But this was synergistically 
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achieved with other neurogenic factors that are not differentially expressed in 

this work. Another DEG HB upregulated is creatine kinase brain (CKB) which its 

expression was assessed in a comparison between primate adipose-tissue 

stem cells with and without telomerase, and CKB was upregulated in the non-

transfected group, which had less osteogenic and proliferative capacity (Kang et 

al. 2004). The last upregulated HB is CCL2, and its participation in hAMSC was 

discussed in the previous topic.  

Further, there were three underexpressed HB DEG, fibroblast growth 

factor receptor 3 (FGFR3), endothelin 1 (EDN1) e microtubule associated 

protein 1B (MAP1B) (Fig. 2B). The FGFR3 is a known promoter of 

chondrogenesis, but the lack of other genes expression to promote this action, 

especially fibroblast growth factor 18 (FGF18), do not contribute to the idea of 

reduction o chondrogenesis through cell culture time (Davidson et al. 2005). 

The EDN1 is described as a cytoprotector to MSC, promoting migration, cell 

viability and angiogenesis (Pourjafar et al. 2016). And MAP1B, a gene that 

encodes for a protein which regulates dynamically the cytoskeleton, and may 

exert a neurogenic-like effect in BMMSC (Montzka et al. 2009). Nevertheless, 

MAP1B activity depends on genes that do not exhibit differential expression. 

Additionally, the data between time comparison don’t agree with the promotion 

of differentiation since there was no differential expression of MSC markers 

(Calloni et al. 2013). 

The data of this work shown lesser evidences of transcriptional changes in 

the regulation of biological processes of the cells, during the exposure of 14 

days of the cells. This indicates that response to oxygen exposure may have a 

slow response, and 14 days is not enough, or that transcriptional response to 
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oxygen was effected during the period of 24 hours, when the cells were plated, 

before the gathering of transcriptional data (Pilgaard et al. 2009). 

 

3.2 Comparison between hAMSC in 21% [O2] and in 1% [O2] 

The microarray comparison between 21% [O2] 14 d and 1% [O2] 14 d 

resulted in a total of 1075 overexpressed genes, 991 underexpressed genes, 

and 2015 genes that were not differentially expressed. After interatomic data 

mining using DEG as input, a network with the total number of 1822 node, of 

those 366 are downregulated and 302 are upregulated DEG (Fig. 4A) was 

achieved. 

A total of three clusters were found, after cluster analysis (Fig. 4A, C and 

E). The cluster 1 (Fig. 4A) that had 1477 nodes, which are 227 overexpressed 

genes and 279 were underexpressed, all connected through 34225 edges. This 

cluster is predominantly related to programmed cell death, cell cycle, response 

to oxidative stress, lipid metabolism and DNA damage stimulus (Fig 4B). 

Meanwhile, cluster 2 (Fig. 4C), with 12544 edges, had 1097 nodes, which 238 

were downregulated and 175 were up, is more associated with proliferation, 

differentiation, apoptosis and chromatin organization (Fig. 4D). On the other 

hand, cluster 3 (Fig. 4E) was mainly associated with metabolism, such as 

glycolysis, aerobic respiration, tricarboxylic acid (TCA) cycle (Fig. 4F), and it 

had 165 upregulated and 164 downregulated DEG from a total of 953 nodes 

and 7152 edges.  It was selected 371 node as HB, and 43 were downregulated 

just as 47 were upregulated (Fig. 2B). 
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3.2.1 Transcription data shown that TCA cycle activity is increased, 

while glycolysis is decreased hAMSC in 21% [O2] compared to 1% [O2] 

The data related to hAMSC metabolism (Fig 4E and F) shown decreased 

expression of genes related to glycolysis and glucose transport, such as solute 

carrier family 2 member 14 (SLC2A14), solute carrier family 2 member 1 

(SLC2A1), aldolase C (ALDOC),enolase 2 (ENO2),hexokinase 2 (HK2), 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), 

phosphofructokinase, platelet (PFKP), phosphoglycerate mutase 2 (PGAM2) 

and pyruvate dehydrogenase kinase 3, PDK3) (Ochocki & Simon 2013). 

Meanwhile, the only genes that were upregulated are involved in 

gluconeogenesis. The phosphoenolpyruvate carboxykinase 2 (PCK2), which 

converts oxaloacetate to phosphoenolpyruvate (Mao et al. 2013), and glucose-

6-phosphatase catalytic subunit 3 (G6PC3), that converts glucose-6-phosphate 

to glucose (Supplementary Material 1).  

The results  indicate an increased oxidative phosphorylation (Fig. 4E and 

F), because the PDK3 underexpression, an inhibitor of the conversion of 

pyruvate to acetyl-coA (De Miguel et al. 2015). Besides, upregulation in TCA 

cycle is mostly represented by overexpression of isocitrate desidrogenase 1, 3A 

e 3G (IDH1 (Fig. 2), IDH3A e IDH3G, respectively), that are responsible to 

perform the isocitrate conversion to alfa-ketoglutarate (αKG)(Ito & Suda 2014).  

Other clues, such as metabolism of TCA intermediates (Fig. 4E and F) 

pointed an increased glutamonolysis in hAMSC in 21% [O2] by overexpressing 
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glutamine channels (solute carrier family 38 member 1 (SLC38A1)) and 

glutaminase (GLS) and asparagine synthetase (ASNS). These genes encode 

for enzymes responsible for glutamine deamination, forming glutamate as 

product (Iwamoto & Mihara 2007, Ito & Suda 2014). In addition, a transaminase 

that performs the glutamate to oxaloacetate conversion, called glutamic-

oxaloacetic transaminase 1 (GOT1) is upregulated. As consequence, 

oxaloacetate is pivotal to generates substrates to maintenance of the TCA cycle 

(Ito & Suda 2014).  

It is known that hAMSC, as other stem cells, has low mitochondrial activity 

and relies on anaerobic glycolysis as an energy source in physiological 

concentrations. This metabolic status of stem cells helps the cells to regulate 

the proliferation, differentiation, self-renewal and surviving due to low exposure 

to stressors such ROS (Shyh-Chang & Ng 2017). Thus, hAMSC in 21% [O2] 

show transcriptional differences that alter optimal stem cells metabolism, 

suggesting changes from its naïve characteristics at 21% [O2] (Shyh-Chang & 

Ng 2017). 

3.2.2 Transcriptional alterations shown relationship between 

metabolism and increased replicative stress in hAMSC in 21% [O2] 

compared to those in 1% [O2] 

  Gene ontology and DEG in cluster 1 and 2 (Fig. 4A, B, C and D) shown 

that hAMSC in 21% [O2] may proliferate less vigorously than in 1% [O2]. Firstly, 

there is overexpression of a negative regulator of proliferation promyelocytic 

leukemia (PML), which promoted cell cycle arrest in BMMSC (Jie Sun, Shan Fu, 

Weijun Zhong 2013). Another fact is the downregulation of WNT1 inducible 
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signaling pathway protein 2 (WISP2), an adipokine that was shown to augment 

proliferation in precursor mesenchymal cells in vivo (Grünberg et al. 2017). 

 In this sense, transcriptional data represented in cluster 2 (Fig. 4C) where 

related to chromatin organization were present (Fig. 4D).  Related to this, the 

DEG HB were upregulated, and they were represented by enhancer of zeste 2 

Polycomb repressive complex 2 subunit (EZH2), a methyltrasferase catalytic 

subunit, and the histone chaperone anti-silencing function 1 homolog A 

(ASF1A) (Fig. 2B). Both DEG were mentioned in previous studies by their role 

in replicative stress response, preventing hematopoietic stem cells (HSC) from 

exhaustion when proliferation occurs in stressing conditions by regulating the 

chromatin state, leading to condensation (Kamminga et al. 2006, Khurana & 

Oberdoerffer 2015). Likewise, the overexpression of methionine 

adenosyltransferase 2A  (MAT2A), which encodes the enzyme that performs 

conversion of methionine to S-adenosylmethionine (SAM), the main methyl 

donor to methylation reactions (Pérez-Campo & Riancho 2015). SAM is 

necessary to histones methyltransferase activity of EZH2 and may collaborate 

with replicative stress response (Kamminga et al. 2006).  

Moreover, upregulated genes as phosphoserine aminotransferase 1 

(PSAT1), phosphoglycerate dehydrogenase (PHGDH) and phosphoserine 

phosphatase (PSPH) propose higher serine synthesis. The serine metabolism 

present other roles than generated TCA cycle substrates, such as glycine and 

one carbon pathway substrates synthesis. At this point, the results suggest this 

alternative role of serine are represented by DEG upregulated 

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), that converts 5,10-

methenyltetrahydrofolate to 5,10-methylenetetrahydrofolate, and serine 
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hydroxymethyltransferase 2 (SHMT2), which converts glycine and  5,10- 

methylenetetrahydrofolate to serine and tetrahydrofolate, although the Log2FC 

for this gene was 0.68 (Supplementary Material 1). In both participation in glycine 

and one carbon pathway, serine metabolism may contribute indirectly the de 

novo synthesis of SAM, although this process is wider studied at cancer cells 

and embryoid bodies (Tedeschi et al. 2013). 

The decreased proliferation, replicative stress, SAM generation and serine 

metabolism shown evidence of epigenetic changes. The epigenetic alterations, 

such as chromatin condensation, may contribute to loss of stemness of stem 

cells as consequence to 21% [O2] exposure, as it changes expression of genes 

involved in stem state maintenance and differentiation (Shyh-Chang & Ng 

2017).  

 

3.2.3 Differentiation of hAMSC seems to be transcriptionally 

downregulated in 21% [O2], than in 1% [O2] 

   Although previous studies have shown differentiation occurring in an 

oxidative stress-dependent manner, this work did not have the same result 

(Zhou et al. 2015). In fact, some DEG related to cell differentiation were 

downregulated, such as peroxisome proliferator-activated receptor gamma 

(PPARG) and leptin (LEP), runt-related transcription factor 2 (RUNX2), proto-

oncogene c-Kit (KIT) and chordin-like 2 (CHRDL2) which are involved in 

adipogenesis, osteogenesis and chondrogenesis, respectively. Furthermore, 

similarly to the comparison between 21% [O]2 14d and 21% [O]2 0 d, there was 

no difference in MSC markers expression (Calloni et al. 2013). This would 

means that neither in 21% [O2] nor 1% [O2] the hASMC developed greater 
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phenotypical changes or promoted cellular fate commitment in terms of 

transcription. 

Among the mechanisms that regulate stemness and differentiation, one of 

the most discussed is the HIF pathway (Fotia et al. 2015). But contrary to what 

was expected, hypoxia inducible factor 1 alpha subunit (HIF1A) was 

overexpressed in normoxia. Although, a previous study shown that there was 

detectable HIF1A expression in BMMSC cultured under normoxia, and that this 

difference may be dependent on donors age (Palomäki et al. 2013). Though, 

unlike of the cited study, our data indicate that even with overexpressed HIF1A 

and degradation promoter DEG egl-9 family hypoxia inducible factor 1(EGLN1) 

downregulation, HIF pathway possibly is not active. Many genes regulated by 

HIF pathway, such as SLC2A14, SLC2A1, ALDOC, ENO2, HK2, PFKFB2, 

PFKFB3, PFKFB4, PFKP, PGAM2, PDK3, carbonic anhydrase 9 (CA9), LEP, 

vascular endothelial growth factor A (VEGFA), insulin-like growth factor 2 

(IGF2), epidermal growth factor receptor (EGFR) were underexpressed in our 

results (Supplementary Material 1). According to our data, there might be two 

possibilities of HIF1A inactivation. Firstly the aryl hydrocarbon receptor nuclear 

translocator (ARNT), heterodimeric subunit necessary to downstream HIF 

pathways, is underexpressed (Mohyeldin et al. 2010).  Additionally, with the 

overexpression, and presumed higher activity of IDH1 and PSAT1, more 

cytosolic αKG is being generated. The cytosolic αKG is a cofactor to HIF1A 

labeling and degradation, thus promoting increased HIF inhibition (Tedeschi et 

al. 2013, Ito & Suda 2014). 

3.2.4 hAMSC shown oxidative stress, metabolism, and tumor protein 

53 (TP53) related activity in 21% [O2] 
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Some overexpressed DEG related to oxidative stress were found in cluster 

1 (Fig. 4A and B). At first, the antioxidant gene NAD(P)H- quinone 

dehydrogenase 1 (NQO1),  neutralize ROS by transferring two electrons to 

molecules such as quinones, quinoneimines and azo dyes and uses NADH or 

NADPH as hydride donors (Dinkova-Kostova & Talalay 2010). Both NADH and 

NADPH are related to DEG (IDH1, IDH3A, IDH3G, PHGDH, glucose-6-

phosphate dehydrogenase (G6PDH) e phoshpogluconate dehydrogenase 

(PGD)) that enzymes produce them. 

Additionally, the overexpressed gene 24-dehydrocholesterol reductase 

(DHCR24) is related to cholesterol and sterols synthesis, and it encoded an 

enzyme that utilize d-24 bounds of cholesterols as electron acceptor, 

performing an antioxidant activity (Kasz 2017). Interestingly, leucine catabolism 

may contribute to cholesterol synthesis products, as 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-Coa), and accordingly to our data, this process might be 

stimulated in 21% [O2] (Wortmann et al. 2012). There was overexpression of 

branched chain keto acid dehydrogenase E1 subunit beta (BCKDHB), related to 

the second and third step of all branched chain aminoacid catabolism (Zhao et 

al. 2016). Furthermore, isovaleryl-CoA dehydrogenase (IVD) and 

methylcrotonoyl-CoA carboxylase 2 (MCCC2), genes related only to leucine 

catabolism are upregulated  along with leucine transporters solute carrier family 

7 member 5 (SLC7A5) and solute carrier family 7 member 6 (SLC7A6) 

(Meierhofer et al. 2016, Chung et al. 2015). In this sense, it was proposed that 

leucine catabolism is related to the antioxidant activity of DHCR24. 

Another overexpressed gene is thioredoxin-interacting protein (TXNIP), 

that was firstly studied its pro-oxidant action, by interacting with thioredoxin and 
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impairing antioxidant protection (Jung et al. 2013). However, it was observed in 

HSC that TXNIP interacts with MDM2 proto-oncogene (MDM2), which was 

underexpressed in the network (Fig. 1B, Supplementary Material 1), inhibiting it. 

This entails to TP53 degradation inhibition, leading to nuclear accumulation and 

transcriptional regulation of the oxidative stress (Jung et al. 2013).  

In this sense, like TXNIP, NQO1 and DHCR24 positively regulates TP53 

activity by preventing its degradation (Dinkova-Kostova & Talalay 2010, Kasz 

2017). However, although TP53 was not a DEG, is a HB (Fig. 2B) with log2FC 

equal to 0.913 (Supplementary Material 1).  

3.2.5 ROS related pyroptosis is transcriptionally increased in hMSC 

21% [O2], compared to hAMSC in 1% [O2] 

The TP53 was suggested in the last topic to be stabilized by antioxidant 

enzymes. However, TP53 is related to activation of apoptosis, and as genes in 

all clusters suggest (Fig.4), apoptosis DEG as BH3 interacting domain death 

agonist (BID), cytochrome C, somatic (CYCS), are upregulated, and they 

promote intrinsic pathway (Wang & Youle 2009). Besides, caspase 1 (CASP1) 

is upregulated as well, and it promotes an alternative programmed cell death 

with inflammatory reaction called pyroptosis. A proteic complex called 

inflammasome activates the pyroptosis, and CASP1, is the effector subunit. 

When inflammasome is stimulated, CASP1 is released and cleaves pro-

interleukin β, promoting inflammatory response (Shao et al. 2015). Between the 

stimuli that activate inflammasome there are mitochondrial damage and ROS. If  

redox balance suffers major alterations, TXNIP must act as an activator of 

inflammasome (Shao et al. 2015, Jung et al. 2013). The gene BCL2, apoptosis 
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regulator (BCL2), which is anti-apoptotic and inibit inflamassome, is 

underexpressed (Masters et al. 2012).  

The current work suggests that hAMSC in 21% [O2] have an increased 

tendency to pyroptosis, and must be related to its augmented mitochondrial 

activity and ROS-related defenses and apoptosis. 

3.3 Comparison between hAMSC in 21% [O2] and in 5% [O2]  

 Microarray data comparison of hAMSC in 21% [O2] 14 d and 5% [O2] 14 d 

resulted in 106 upregulated genes, as just 15 were downregulated, and another 

47 were only statistically significant, not reaching the minimum Log2FC 

(Supplementary Material 1). The network generated from the prospection of the 

DEG had a total of 285 nodes connected by 1996 edges. It presented 66 of the 

DEG, separated in 11 underexpressed and 55 overexpressed genes (Fig. 1 C). 

According to gene ontology and cluster analysis, it was found one cluster (Fig. 

5A), with 228 nodes and 1561 edges, of those 41 DEG, 36 were upregulated 

and five were downregulated. It is mostly related to response to stress, 

apoptosis, proliferation, response to oxygen levels and oxoacid metabolism 

(Fig. 5B, Supplementary Material 4). The centrality analysis highlighted 72 HB, 

but only nine were DEG overexpressed and none was underexpressed (Fig. 

2C). 

3.3.1 Transcription of glutaminolysis and serine synthesis genes are 

upregulated in hAMSC in 21% [O2] 

Accordingly to the networks, the metabolic profile of hAMSC in 21% [O2] 

14 d and 5% [O2] 14 d have minor alteration, however, there are some 

similarities with the previous comparison of 1% [O2]. The gluconeogenic gene 
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PCK2 is still upregulated, indication less glycolysis in 21% [O2] (Fig. 5B, 

Supplementary Material 1). Additionally, glutaminolysis genes GOT1 and 

ASNS, as well as serine synthesis genes PHGDH, PSAT1 and PSPH are 

upregulated, which may generate more TCA cycle metabolites (Ito & Suda 

2014). Previous studies corroborate with our data. They show that glucose 

consumption is more elevated in cells under 1.5% [O2], as compared 5% [O2] 

and 21% [O2]. Glucose consumption was no different in 5% [O2] and 21% [O2]. 

Moreover, glutamate production was greater in 21% [O2] than in 1,5% [O2] and 

5% [O2] (Ejtehadifar et al. 2015).  

3.3.2 Transcriptional ROS levels response is increased in hAMSC in 

21% [O2] than 5% [O2], but it may being not extinguished  

Another similarity between the comparisons with 21% [O2], 5% [O2] and 

1% [O2] is in the response to oxidative stress, where TXNIP and NQO1 

overexpression remain. However, there was also overexpression of thioredoxin 

reductase 1 (TXNRD1), which participates in the thioredoxin cycle, reducing its 

oxidized form, thus promoting an antioxidant action. Although its activity can be 

prevented by TXNIP and this seems counterproductive, in biochemistry one has 

the idea that finely adjustment of metabolites may happen by investing energy 

in futile cycles (Quian & Beard 2006). Theoretically, this indicates that ROS 

levels are being adjusted, not only combated. 

In this respect, our data show few differences between 21% [O2] 14 d and 

5% [O2] 14 d (Fig. 5A and B), in relation to biological processes, in a similar way 

to what happened with the comparison between 21% [O2] 14 d e 21% [O2] 0 d 

(Fig. 2A and B). Nevertheless, besides to metabolic alterations, there were 

overexpression of HB growth arrest and DNA damage inducible alpha 
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(GADD45A) and DNA damage inducible transcript 3 (DDIT3) (Fig. 2C), which 

are related to cell cycle arrest and response to DNA and endoplasmic reticulum 

stress, pointing to effects of 21% [O2] exposure (Zhan 2005, Jauhiainen et al. 

2012). 

4. Conclusion 

In conclusion, oxygen plays a central role in the in vitro maintenance of 

hAMSC. It is an element of the environment that strongly is suggested to be 

controlled in the culture medium. Depending on the characteristics to be 

explored of the hAMSC, the adjustment of oxygen levels and their exposure 

time should be investigated and may enhance their proliferative, self-renewing 

or immunomodulatory abilities. It may should be considered to explore various 

levels of hypoxia since they can demonstrate a large difference in 

transcriptional response. It is possible to notice that the transcriptional response 

to oxygen level is much more delicate in hypoxic conditions when comparing 

the networks sizes and amount of DEG (Fig. 1). At that point, this work agrees 

with what other groups have already observed, demonstrating that little variation 

of oxygen concentrations is responsible for major changes (Ejtehadifar et al. 

2015).  

The data contribute to the relationship of metabolism and oxygen, 

especially in what it says mitochondrial activity. However, more studies are 

needed in order to better understand the function of metabolic pathways, such 

as serine, glutamate and cholesterol pathways, and this work indicates 

approaches to be taken. 
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8. Figures: 

 

Fig. 1: Whole networks generated in Cytoscape 2.8.3. (A) Network resulted 

from the 21% [O2] 14 d and 21% [O2] 0 d comparison, with 1112 edge, 222 

node. From all nodes, 12 are underexpressed DEG and 51 are overexpressed. 

(B) Network from the comparison between 21% [O2] 14d and 1% [O2] 14d, with 

44425 edge, 1822 node, with 668 were DEG, divided in 366 downregulated and 

302 upregulated. (C) Network resulted from the comparison between 21% [O2] 

14d and 5% [O2] 14d, with 1996 edge connecting a total of 285 nodes, 11 

underexpressed DEG and 55 overexpressed. 



34 
 

 

Fig. 2: Sub-network showing all HB, represented in the networks as diamond-

shaped nodes. (A) Total of 47 HB from 21% [O2] 14 d vs. 21% [O2] 0 d 

comparison, of which 6 are DEG, being three upregulated and three down. (B) 

From 21% [O2] 14 d vs. 1% [O2] comparison, 371 HB were selected, 90 are 

DEG, as 43 were downregulated and 47 were upregulated. (C) The 21% [O2] 14 

d vs. 5% [O2] 14 d comparison had a total of 72 HB, of which nine are 

overexpressed DEG. 
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Fig. 3: Clusters and gene ontologies with number of genes, from the time 

comparison network (Fig. 1 A). (A) Cluster 1, with 664 edges, 138 nodes and 24 

DEG, 18 overexpressed and five underexpressed. (C) Cluster 2, with 138 

edges, 37 nodes and 6 DEG, all overexpressed. On right side, the respective 

gene ontology associated with each cluster (B and D), with number of genes 

associated to each process. Adjusted p-value < 0.001 for all ontologies 

(Supplementary Material 2). 
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Fig. 4: Clusters and gene ontologies with number of genes, from the 21% [O2] 

and 1% [O2] comparison network (Fig. 1 B). (A) Cluster 1, with 34225 edges 

edges, 1477 nodes and 506 DEG, of which 227 are upregulated and 279 are 
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downregulated. (C) Cluster 2, with 12544 edges, 1097 nodes, 238 

downregulated DEG and 175 upregulated. (E) Cluster 3, with 7152 edges, 953 

nodes, of which 165 are overexpressed genes and 164 are underexpressed. On 

right side, the respective gene ontology associated with each cluster (B, D and 

F), and representing the number of genes involved with each process. Adjusted 

p-value < 0.001 for all ontologies (Supplementary Material 3). 

 

Fig. 5: Clusters and gene ontologies with number of genes, from the 21% [O2] 

and 5% [O2] comparison network (Fig. 1C). (A) Cluster 1, with 1561 edges, 228 

nodes and 41 DEG, of which 36 are overexpressed and five are under. (B) 

Gene ontologies associated to cluster 1, adjusted p-value < 0,001 for all 

ontologies (Supplementary Material 4). 

9. Supplementary Material 

Supplementary Material 1: Whole gene expression tables, showing genes 

names (ID), Log2FC and adjusted p-value. Each sheet contains the comparative 

data from each situation. The name of the sheet represent which comparison 
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are the data. Last sheet have separated all genes mentioned in this manuscript. 

Comparison names are above it respective table. 

Supplementary Material 2: Whole gene ontology results from the clusters in 

comparison 21% [O2] 14 d vs. 21% [O2] 0 d Gene ontology results containing 

gene ontologies, adjusted p-value, number of nodes present in the cluster that 

are involved with the specific ontology (x), total identified proteins for each 

ontology (n) and the list of set genes related to the ontology. 

Supplementary Material 3: Whole gene ontology results from the clusters in 

comparison 21% [O2] 14 d vs. 1% [O2] 14 d. Gene ontology results containing 

gene ontologies, adjusted p-value, number of nodes present in the cluster that 

are involved with the specific ontology (x), total identified proteins for each 

ontology (n) and the list of set genes related to the ontology. 

Supplementary Material 4: Whole gene ontology results from the clusters in 

comparison 21% [O2] 14 d vs. 5% [O2] 14 d. Gene ontology results containing 

gene ontologies, adjusted p-value, number of nodes present in the cluster that 

are involved with the specific ontology (x), total identified proteins for each 

ontology (n) and the list of set genes related to the ontology. 

 


