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A relativistic quantum-hydrodynamic plasma model is proposed, to model the propagation of

electrostatic waves in an ultradense quantum electron-ion plasma in the presence of an ion beam. A

dispersion relation is derived for harmonic waves, and the stability of electrostatic wavepackets is

investigated. Three types of waves are shown to exist, representing a modified electron plasma

(Langmuir-type) mode, a low-frequency ion acoustic mode, and an ion-beam driven mode, respec-

tively. Stability analysis reveals the occurrence of an imaginary frequency part in three regions.

The dependence of the instability growth rate on the ion beam parameters (concentration and

speed) has been investigated. Published by AIP Publishing. https://doi.org/10.1063/1.4989777

I. INTRODUCTION

Beam-plasma interaction is an area of fundamental

importance in the physics of charged matter,1–3 and also rele-

vant in many real applications, such as heavy ion inertial

fusion,4–6 intense laser-produced proton beams for laser

based fast ignition (inertial confinement fusion) schemes,7–10

beam permeated semiconductor lasers,11–13 and electron

cooling of ion beams.14,15 The excitation of electrostatic

(ES) nonlinear localized waves16,17 via ion beam injection

into plasma has been studied theoretically, via small-ampli-

tude18,19 or large-amplitude nonlinear wave phenomenol-

ogy20 and also numerically, e.g., via particle-in-cell (PIC)

simulations.21–25

In ultra-high density and low temperature conditions,

electrons obey Fermi-Dirac statistics; hence, the quantum

pressure due to degeneracy effects largely dominates classi-

cal thermal pressure. Quantum degeneracy is relevant in a

plasma when it is cooled to an extremely low temperature,

so that the de Broglie wavelength associated with charge car-

riers becomes comparable in order of magnitude to intrinsic

length scales, such as the mean interparticle distance and the

Debye (screen) length. Quantum effects are arguably more

relevant for electrons rather than ions, because of their lower

mass. Degenerate plasmas are effectively studied via

quantum-hydrodynamic models, incorporating an electron

momentum equation which consistently takes into account

the equation of the state of the Fermi (degenerate) electron

gas.26–28

In this Letter, we investigate the existence of different

propagating modes due to pumping positive ion beam into

relativistic electron–ion plasma. The relativistic multifluid

plasma model is introduced in Sec. II. The dispersion charac-

teristics of linear (harmonic) waves are described in Sec. III,

and their dependence on the beam ion fluid features (number

density and beam-fluid speed) is discussed. The stability

analysis for different cases is investigated in Sec. IV. Our

findings are summarized in Sec. V.

II. A RELATIVISTIC MULTIFLUID PLASMA MODEL

We consider a three-component plasma consisting of a

dominant ion population (mass mi, positive charge qi ¼ þZie),

a secondary ion species, representing a tenuous beam (mass

mb, charge qb ¼ þZbe) and electrons (mass me, charge –e); e
denotes the elementary (absolute) charge, as usual. Spatial var-

iation of the plasma state variables is assumed to occur only in

the longitudinal direction; hence, the plasma dynamics can be

described by a one-dimensional (1D) geometry for simplicity.

Our study relies on a multifluid approach, to be introduced in

the following paragraph. It is assumed from the outset that the

magnetic field generation may be neglected within the electro-

static approximation, implying that the total current is negligi-

ble (quiescent plasma). Our description follows closely the

electrostatic relativistic model proposed in Refs. 29 and 30,

thus extending the analytical framework proposed therein to

take into account the ion beam.

The dominant (positive) ion population will be treated

as a cold (classical) fluid, for simplicity: a plausible assump-

tion, given their high mass (compared to the electrons). The

continuity and momentum equations of motion for the ion

fluid read

@ðciniÞ
@t

þ @

@x
ðciniuiÞ ¼ 0; (1)

@ðciuiÞ
@t

þ ui
@ðciuiÞ
@x

¼ � eZi

mi

@/
@x

; (2)

respectively, where e is the electron charge, Zi is the ion

charge state, mi is the ion mass, ni is the ion fluid density,

and ui is the ion fluid speed. One recognizes the electrostatic

force eZiE on the right-hand side (RHS) of the momentum
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equation, where E ¼ �@/=@x is the electric field deriving

from an electrostatic potential function /.

The electron fluid equations read29

@ðceneÞ
@t

þ @

@x
ðceneueÞ ¼ 0; (3)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

q
@ðceueÞ
@t

þ ue
@ðceneÞ
@x

� �

¼ e

me

@/
@x
� ce

neme

@Pe

@x
þ ue

c2

@Pe

@t

� �
; (4)

where me is the rest mass of the electron, ne is the electron

fluid (number) density, and ue is the electron fluid speed.

In ultrahigh density conditions, electron degeneracy

effects become significant, and in fact, far exceed the ther-

mal pressure, and in very high densities, quantum pressure

(expressed via a Bohm term27) too, except for ultra-small

wavelengths. The electrons then obey a Fermi-Dirac distri-

bution, associated with an appropriate equation of state,

which is incorporated in the model via the effective degen-

eracy pressure term in the highly relativistic limit, i.e., the

last term in Eq. (4). Within our model, the quantum relativ-

istic pressure term derives from the (1D) equation of

state29,31

Pe ¼
2m2

ec3

h
nð1þ n2Þ1=2 � sinh�1n
h i

; (5)

where the parameter n ¼ pFe=mec ¼ hne=ð4mecÞ is related to

the (high) electron density (note that the classical limit is

recovered for h! 0). One also distinguishes in the RHS of

(4) the electrostatic force term, which relates the momentum

equation to the electrostatic potential /.

The equations of motion for the ion beam read

@ðcbnbÞ
@t

þ @

@x
ðcbnbubÞ ¼ 0; (6)

@ðcbubÞ
@t

þ ub
@ðcbubÞ
@x

¼ � eZb

mb

@/
@x

; (7)

where mb is the beam ion mass, nb is the beam ion fluid den-

sity, and ub is the beam ion fluid speed. The relativistic factor

cj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

j =c2
q

(for j ¼ i; e; b) appears in the fluid-

dynamical equations, as a result of Lorentz transformations

and resulting relations among different state variables

between inertial frames. The equilibrium state (denoted

by subscript “0”) is defined as fni; ui; nb; ub; ne; uegj0
¼ fni0; 0; nb;0; ub0; ne0; 0g, where ub0 is the unperturbed

beam fluid speed.

The system is closed by Poisson’s equation

@2/
@x2
¼ e

�0

ðcene � ciZini � cbZbnbÞ : (8)

In the above relations, c is the speed of light in vacuo, h is

Planck’s constant, �0 is the permittivity of free space, and e
is the fundamental unit of electric charge. The quasineutral-

ity condition in this system can be written as follows:

ne0 � Zini0 � cb0Zbnb0 ¼ 0, where cb0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

b0=c2

q
;

ne0; ni0 and nb0 are the unperturbed densities of the electron,

ion, and beam ion population(s), respectively.

The fluid model can be cast in a dimensionless form, by

adopting a set of characteristic scales: t! xpit; x! xpix=cs;
nj ! nj=nj0; uj ! uj=cs and /! e/=2EFe, for j ¼ i; e; b,

where xpi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zie2ne0=�0mi

p
is the unperturbed ion plasma

frequency (i.e., in a beam-free e-i plasma). Note that the

potential scale (2EFe=e) and the characteristic speed scale

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ZiEFe=mi

p
are determined as functions of the non rel-

ativistic electron Fermi energy EFe ¼ p2
Fe=2me and the Fermi

momentum pFe ¼ hne0=4; this, in turn, prescribes the length

scale as cs=xpi.

The fluid equations take the form

@ðciniÞ
@t

þ @

@x
ðciniuiÞ ¼ 0; (9)

@ðciuiÞ
@t

þ ui
@ðciuiÞ
@x

¼ � @/
@x

; (10)

@ðceneÞ
@t

þ @

@x
ðceneueÞ ¼ 0; (11)

H
@ðceueÞ
@t

þ ue
@ðceneÞ
@x

� �
¼ 1

le

@/
@x
� nece

Hle

@ne

@x
þ aue

@ne

@t

� �
;

(12)

@ðcbnbÞ
@t

þ @

@x
ðcbnbubÞ ¼ 0; (13)

@ðcbubÞ
@t

þ ub
@ðcbubÞ
@x

¼ � 1

lb

@/
@x

; (14)

@2/
@x2
¼ cene � bcini � dcbnb; (15)

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
represents the dimensionless enthalpy

of the system,29 where n ¼ hne

4mec; the relativistic factor is rede-

fined as cj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� au2

j

q
, where a ¼ c2

s=c2 ¼ len
2
0 and

n0 ¼ pFe=ðmecÞ ¼ hne0=ð4mecÞ. We have also introduced

the ion-to-electron charge ratio b ¼ Zini0

ne0
¼ 1� cb0d, where

cb0 is redefined as cb0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aU2

b0

q
; Ub0 ¼ ub0

cs
is the nor-

malized equilibrium velocity of the beam, the beam-to-elec-

tron charge density ratio d ¼ Zbnb0

ne0
, the electron-to-ion mass

ratio le ¼ me

mi
(’ 1=1836 � 0:0005� 1), and the mass ratio

lb ¼ mb

mi
. Note that overall charge neutrality is assumed at

equilibrium, imposing b ¼ 1� cb0d. As a representative

“textbook” situation, we shall henceforth consider a hydro-

gen plasma (Zi¼ 1) and a tenuous beam, i.e., cb0d� 1, with

lb � 1 throughout.

III. LINEAR DISPERSION RELATION

Assuming small-amplitude harmonic variations around

equilibrium, we shall set ni;e;b ¼ 1þ ~ni;e;b eiðkx�xtÞ; ui;e

¼ ~ui;e eiðkx�xtÞ; ub ¼ Ub0 þ ~ub eiðkx�xtÞ, and / ¼ ~/ eiðkx�xtÞ

(þ complex conjugate, understood everywhere), with the

understanding that the tilde’d quantities are very small (com-

pared to the corresponding characteristic scales, e.g., ~ne � 1
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and so forth). Thus, one obtains a linear (Cramer) system for

the amplitudes, in the form

�x ~ni þ k ~ui ¼ 0;

�x ~ui þ k ~/ ¼ 0;

�x ~ne þ k ~ue ¼ 0;

�H0 x ~ue �
k

le

~/ þ k

H0le

~ne ¼ 0;

�x cb0~nb þ cb1ð Þ þ k cb0 ~ub þ cb0Ub0~nb þ Ub0cb1ð Þ ¼ 0;

�x cb0 ~ub þ Ub0cb1ð Þ þ kUb0 cb0~ub þ Ub0cb1ð Þ þ k

lb

~/ ¼ 0;

�k2 ~/ þ b ~ni � ~ne þ dðcb0~nb þ cb1Þ ¼ 0; (16)

where cb1 ¼ aUb0c3
b0~ub. We have defined the equilibrium

value of the enthalpy as H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q
.

From the above equations, we get the perturbed density

of the plasma species

~ni ¼
k2

x2
~/; ~ne ¼ �

1

leH0

k2

x2 � 1

leH2
0

� �
k2

~/;

cb0~nb ¼
k2

c2
b0lbðx� kUb0Þ2

 !
~/ � cb1:

(17)

Thus, the compatibility (vanishing determinant) condition

leads to the requirement �ðx; kÞ ¼ 0, where the plasma

dielectric function reads

�ðx; kÞ ¼ 1þ viðx; kÞ þ veðx; kÞ þ vbðx; kÞ;

¼ 1� 1� d
x2
� 1

leH0

1

x2 � 1

leH2
0

� �
k2

� d

c2
b0lbðx� kUb0Þ2

: (18)

The definition of the dielectric susceptibility vjðx; kÞ of the

three plasma components (j ¼ i; e; b) is evident in the RHS.

For arbitrary values of Ub0, the exact general expression

(18) must be taken into account. However, it may be argued,

physically, that for ub0 � c (viz., Ub0 � 1� c=cs), the

beam ions may be treated classically, hence (18) reduces to

�ðx;kÞ¼ 1�1�d
x2
� 1

leH0

1

x2� 1

leH2
0

� �
k2

� d

lbðx� kUb0Þ2
:

(19)

Recovering dimensions, the general dispersion relation

(18) reads

x2
pi

x2
þ

x2
pe;rel

x2 � cno

H0

� �2

k2

þ
x2

pb

c2
b0ðx� kub0Þ2

�
x2

pi

x2
þ

x2
pe;rel

x2 � cno

H0

� �2

k2

þ
x2

pb

ðx� kub0Þ2
¼ 1; (20)

where we have used the (classical) definition of the plasma

frequency xpj ¼ ½e2Zjn0j=ð�0mjÞ�1=2
(for ions, electrons, or

ions beam, respectively, for j ¼ i; e; b); we have also defined

the relativistic electron plasma frequency as xpe;rel ¼ xpe=ffiffiffiffiffiffi
H0

p
. (The non-relativistic limit cb0 � 1 was evoked in the

last step.)

One sees on the left-hand side (LHS) of (20) that the

first term represents the background cold-ion plasma contri-

bution which, in the absence of electrons and beam, would

represent simple, non-propagating ion plasma oscillations,

say, xi ¼ xpi. The second term is the electron contribution,

incorporating the relativistic electron plasma frequency

xpe;rel (representing quantum-relativistic Langmuir waves,

viz., x2
e ¼

x2
pe

H0
þ ðcno

H0
Þ2k2,30 should the other two species be

neglected). Finally, the third term represents the beam, involv-

ing the beam plasma frequency xpb and the beam velocity

Ub0: neglecting the other two components, this term would

lead to a beam-driven beam mode, xb ¼ kUb06xpb.21,22,32

Qualitatively speaking, the above dispersion relation, therefore,

represents a mixing between the three latter frequencies xe;i;b,

which are modified due to interactions among them. The

expected (electron-ion plasma) dispersion relation29—cf. (8) in

Ref. 30—is recovered exactly in the absence of the beam, i.e.,

upon setting d¼ 0 in Eq. (20)

x4 �
x2

pe

H0

þ x2
pi þ

n2
0

H2
0

c2k2

 !
x2 þ x2

pi

c2k2 n2
0

H2
0

¼ 0 : (21)

We have presented the dimensional form of the disper-

sion relation, in the above, for the sake of physical clarity

and for future reference. Let us now revert to the dimension-

less form of the dispersion relation, for the ease of algebraic

manipulation. The full dispersion relation resulting from

Eq. (20) is a sixth-order polynomial in x, and thus, may not

be solved analytically. In order to gain some insight, one

notices that Eq. (20) has six poles (singularities) at x¼ 0

(double root), x ¼ 6ðcn0=H0Þk and x ¼ Ub0k (double root).

Expanding the dispersion relation for linear electrostatic

waves, one finds the polynomial form

x6 þ c5x
5 þ c4x

4 þ c3x
3 þ c2x

2 þ c1xþ c0 ¼ 0; (22)

where

c0 ¼
k4U2

b0b

H2
0le

; c1 ¼ �
2k3Ub0b

H2
0le

;

c2 ¼
k2

H2
0lelb

�H2
0U2

b0blble þ dþ lb b� U2
b0ðH0 þ k2Þ

� �	 

;

c3 ¼ 2kUb0 bþ 1

leH2
0

ðH0 þ k2Þ
� �

;

c4 ¼ �
dþ blb

lb

þ 1

leH2
0

ðH0 þ k2Þ � k2U2
b0

� �
;

c5 ¼ �2kUb0: (23)

(Recall that b ¼ 1� d.)

First of all, upon setting k¼ 0, we find the relation
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x4 ðx2 � x2
0;dÞ ¼ 0; (24)

where

x2
0;d ¼ 1� dþ d

lb

� �
þ 1

le

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q : (25)

A modification of the relativistic cutoff frequency30 is evi-

dent, due to the beam (via d), but is practically negligible.

For an indicative value of, say, n0 ¼ 1011m�1, one finds

n2
0 ’ 0:0036, and hence

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q
’ 1:0018. Therefore,

assuming, say, d ¼ 0:1; lb ¼ 1, and Ub0 ¼ 0:2, we find that

x2
0;d ’ 1831 (in the presence of the beam), while x2

0;d¼0 ’
1832 in the absence of the beam. According to the latter rela-

tion (valid at k¼ 0), we anticipate six (6) modes (solutions

of the dispersion relation), four of which will pass from the

origin, while the remaining two will satisfy x ¼ 6x0;d (as

above), representing (a) modified electron plasma

(Langmuir) branch(es).

We proceed by introducing x ¼ xr þ ixi into Eq. (22),

separating real from imaginary parts and then solving the

resulting equations numerically, where xr and xi represent

the real part and the imaginary part (growth rate) of the fre-

quency x, respectively. The procedure reveals the existence

of six dispersion curves, which are arranged in pairs. Starting

with the real parts xj;r, a numerical investigation shows

that these six curves are approximately symmetric around

the k�axis. In particular, we obtain

• An electron plasma (Langmuir) mode, x1;rðkÞ, depicted in

Figs. 1(c) and 1(d), accompanied by a negative mirror

mode, say, x6;rðkÞ � �x1;rðkÞ (actually, with a relative

numerical difference of �10�6).
• An ion-acoustic mode, x2;rðkÞ, depicted in Figs. 1(a) and

1(b), along with a negative mirror mode, say, x5;rðkÞ
� �x2ðkÞ (actually, with a relative numerical difference

of �10�6).
• A beam-driven acoustic mode, x3;rðkÞ, depicted in Figs.

1(e) and 1(f); this practically overlaps with a sister mode,

say, x4;rðkÞ � x3;rðkÞ.

A set of typical values (ne0 ¼ 1011m�1 or n0 ¼ 0:0604),

and lb ¼ 1, on account of a hydrogen ion beam) has been

adopted in all of the plots.

Now, considering the imaginary parts, one finds that

only the latter (beam-driven) mode possesses a finite imagi-

nary part, with x4;i ¼ �x3;i. From Figs. 1(g) and 1(h), it is

obvious that the growth rate (imaginary part) occurs in a

finite window (in the wavenumber k) which extends to

larger values as the beam velocity Ub0 increases; the associ-

ated growth rate reaches a maximum value which remains

practically constant, although it shifts to larger k values, for

higher Ub0: see Fig. 1(g). However, as shown in Fig. 1(h),

the maximum growth rate increases with an increase in the

beam density d. Considering, for rigor, the beam-free case

(d¼ 0), one finds that the beam-driven modes x3;4 disap-

pear, as expected, while the Langmuir and acoustic modes

survive.

IV. COMPARISON WITH KINETIC THEORY

To validate our results presented earlier, based on the fluid

model, it would be interesting to compare with the results from

the 1D relativistic Vlasov-Poisson system, which reads

@fs

@t
þ p

Csms

@fs
@x
þ qsE

@fs
@p
¼ 0; (26)

@E

@x
¼ 1

e0

X
s

ð
qsfsdp; (27)

where s ¼ e; i; b and fs ¼ fsðx; p; tÞ denote the phase space

electron, ion, and beam probability distribution functions

and Ce;i;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=ðm2

e;i;bc2Þ
q

. Assuming that the plasma is

in equilibrium state with no electric field E¼ 0 and each spe-

cies has a distribution function

fs ¼ fs0 þ fs1; (28)

where fs0 ¼ fs0ðpÞ is the equilibrium distribution function,

and fs1 ¼ fs1ðx; p; tÞ is a small perturbation associated with

the small amplitude wave. As above, we neglect ion temper-

ature effects, so that the equilibrium ion distribution function

will be fi0 ¼ ni0dðpÞ. Also, the beam distribution will be

fb0 ¼ Cb0nb0dðp� p0Þ, where p0 ¼ Cb0mbUb0 and Cb0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

0=ðm2
bc2Þ

q
. Denoting fe0 ¼ ne0=ð2pFeÞ for jpj < pFe;

fe0 ¼ 0 for jpj > pFe as the equilibrium electron distribution

function, where pFe ¼ CFmeVFe and VFe is the electron

Fermi speed, where CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

0

q
. For each species

Ð
dp

fs0ðpÞ ¼ ns0, where ns0 is the unperturbed number density of

each species. By linearizing the above system and looking

for plane wave solution exp ðiðkx� xtÞÞ, following the usual

procedure,33 we get

fs1ðx; p; tÞ ¼
�iqsE

x� kp

Csms

@fs0ðpÞ
@p

: (29)

By inserting Eq. (29) into Eq. (27) and eliminating E from

both sides, we get

1� e2

e0k

ð
dp
X

s

@fs0ðpÞ
@p

x� kp

Csms

¼ 0: (30)

Upon integration by parts we get

1�
ð

dp
x2

pifi0ðpÞ

ni0C
3
i x� kp

Cimi

� �2
þ

x2
pbfb0ðpÞ

nb0C
3
b x� kp

Cbmb

� �2

2
64

þ
x2

pefe0ðpÞ

ne0C
3
e x� kp

Ceme

� �2

3
75 ¼ 0: (31)

Using the equilibrium distribution function fs0ðpÞ and

evaluating the real part of the integral, we get
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(a) (b)

(c) (d)

(e) (f)

(g) (f)

FIG. 1. We have depicted the frequency x versus the wave number k, for different values of the beam velocity Ub0 (left column) and of the beam concentration

d (right column). The real part of the frequency xr is shown for: [panels (a) and (b)] the ion-acoustic branch; [panels (c) and (d)] the electron-plasma

(Langmuir) mode; [panels (e) and (f)] the ion-beam driven branch. Panels (g) and (h) show the imaginary part (growth rate) xi. We have considered ne0 ¼
1011m�1 (or n0 ¼ 0:0604) and lb ¼ 1 (hydrogen ion beam) in all of the plots.
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1 ¼
x2

pi

x2
þ

x2
pb

C2
b0 x� kUb0ð Þ2

þ
x2

pe;rel

x2 � cno

H0

� �2

k2

; (32)

which is exactly tantamount to (18) (upon restoring dimen-

sions). It is understood that the imaginary part was ignored

in evaluating the integrals. The contributions from the poles

(known to be linked to collisionless “Landau-type” damping,

as in the classical theory) may be evaluated for each of the

modes, case by case. No general theory exists in this respect.

We do not pursue this discussion further, as it goes beyond

our scope here. An interested reader may refer to the discus-

sion in Refs. 34–36.

V. STABILITY ANALYSIS

To gain some insight into the stability profile of the dis-

persion relation, we may consider the behavior of the disper-

sion relation near the three poles of (19), thus defining,

respectively, three frequency regions. The procedure we

adopt here is similar to that in Ref. 32.

A. Low frequency instability

Near x � 0, the dispersion relation �¼ 0—recall Eq.

(19)—becomes

1� d
x2
� 1þ H0

k2
� d=lb

k2U2
b0

: (33)

It is straightforward to see that the RHS is positive, if (and

only if) Ub0 >
ffiffiffiffiffiffiffiffi

d
lbH0

q
, prescribing stability. However, if Ub0

<
ffiffiffiffiffiffiffiffi

d
lbH0

q
, an instability develops at large wavelength: to see

this, note that sufficiently small wavenumber values k < k̂10

¼ ðd=lb

U2
b0

� H0Þ1=2
will make the RHS negative. Typically,

k̂10 ¼ 2:99, for n0 ¼ 0:06; d ¼ 0:1; lb ¼ 1 and Ub0 ¼ 0:1.

The instability growth rate is then given by

r1 ¼ Imx � 1� d

k̂
2

10

k2
� 1

0
B@

1
CA

1=2

: (34)

We have depicted the growth rate r1 in Fig. 2, adopting the

same values as in Fig. 1.

It may be admitted that on a critical comparison between

the analytical approximation (34) and the numerical solution

for xi in Fig. 3(b), there is a meagre agreement in order of

magnitude, and in fact, qualitative disagreement: the approx-

imate expression for the growth rate (34) was derived above

under the assumption that x � 0, and is thus, only valid for

very small values of k (long wavelengths). In reality, the

beam mode (see next paragraph) dominates in the small k
region, and indeed agrees with the numerical evaluation of

the (imaginary part of) x, as discussed below. However, for

small to moderate beam velocity, the ion-acoustic branch

never satisfies the condition x � 0, under which the above

expression (34) was obtained; therefore, however important

from a textbook analysis point of view (cf. Ref. 32), Eq. (34)

is of limited practical importance. Hence, the disagreement

observed in Figs. 2 and 3 is not surprising.

B. Beam-wave resonance

Near x � Ub0k, the wave’s phase speed x=k is near the

beam velocity Ub0. The dispersion relation �¼ 0—recalling

Eq. (19)—then becomes

ðx� kUb0Þ2 �
d=lb

1� k̂
2

20

k2

: (35)

where we have defined the quantity k̂20 ¼ ½ 1
leH0

1
U2

b0
�1=ðleH2

0
Þ

þ b
U2

b0

�1=2
. As representative value, one finds k̂20 ¼ 9:43, for

n0 ¼ 0:06; d ¼ 0:1; lb ¼ 1 and Ub0 ¼ 0:1). For large wave-

number values (short wavelength), viz., ðk2 > k̂
2

20Þ, one

obtains a (stable) modified beam mode in the form

x � kUb06
d=lb

1� k̂
2

20

k2

 !1=2
: (36)

However, if k2 < k̂
2

20, then the RHS of Eq. (35) becomes

complex, so that

(a) (b)

FIG. 2. The growth rate r1, as given by Eq. (34), is depicted versus the wavenumber k for (a) different beam velocity (Ub0) (taking nb0 ¼ 0:1ne0 i.e., d ¼ 0:1)

(b) and different beam density (nb0) (taking Ub0 ¼ 0:1) values. (Remaining parameter values as in Fig. 1.)
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x � kUb06ir2; (37)

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the fundamental imaginary number. An

instability thus occurs, with the growth rate

r2 ¼
d=lb

k̂
2

20

k2
� 1

0
B@

1
CA

1=2

: (38)

We have depicted the growth rate r2 in Fig. 4, for the

same set of typical values as above. From Fig. 5, we can

see that the numerical solution and the analytical approxi-

mation match well for small wavenumbers in the region

k < k̂20. Contrary to the previous case (for r1), a simple

numerical analysis of the dispersion curves in Fig. 1 shows

that the condition x � Ub0k under which Eq. (4) was

obtained is indeed satisfied in some (small k) part of the

(a) (b)

FIG. 3. Comparison between the low-frequency instability growth rate r1 given by Eq. (34) (solid curve) and xi (dashed curve) versus the wavenumber k, for

(a) different beam velocity (Ub0) (taking nb0 ¼ 0:1ne0, i.e., d ¼ 0:1) and (b) different beam density (nb0) (taking Ub0 ¼ 0:1) values. (Remaining parameter val-

ues as in Fig. 1.)

(a) (b)

FIG. 4. The growth rate r2 is depicted versus the wavenumber k for (a) different beam velocity (Ub0) (taking nb0 ¼ 0:1ne0, i.e., d ¼ 0:1) and (b) different beam

density (nb0) (taking Ub0 ¼ 0:1) values. (Remaining parameter values as in Fig. 1.)

(a) (b)

FIG. 5. Comparison between r2 (solid curve) and xi (dashed curve) versus the wavenumber k, for (a) different beam velocity Ub0 (taking nb0 ¼ 0:1ne0, i.e.,

d ¼ 0:1) and (b) different beam density (nb0) (taking Ub0 ¼ 0:1) values. (Remaining parameter values as in Fig. 1.)
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beam-driven branch (only); hence, the agreement observed

in Figs. 4 and 5 is expected.

C. High-frequency instability

In the vicinity of x �
ffiffiffiffiffiffiffiffi

1
leH2

0

q
k, the wave is in resonance

with the electron plasma (Langmuir) mode, since the phase

speed is approximately equal to x=k �
ffiffiffiffiffiffiffiffi

1
leH2

0

q
¼ limk!1

x
k ;

recall the dispersion relation for quantum–relativistic

Langmuir waves. Equation (19), thus, becomes

x2 � 1

leH2
0

k2 � leH0

k̂
2

30

k2
� 1

; (39)

where k̂30 ¼ ð1� dÞleH2
0 þ

d=lb
1

leH2
0

�U2
b0

� �1=2

. For k > k̂30, the

latter expression simply prescribes a modified Langmuir

type dispersion relation of the form x2ðkÞ ¼ x2ð0Þ þ V2k2,

where x2ð0Þ ¼ x2
pe

H0
and V ¼ cn0

H0
; for d¼ 0, Eq. (25) in Ref. 30

is recovered.

For the values of k in the range k̂40 < k < k̂30, where

k̂
2

40 ¼ ðk̂
2

30 � l2
eH3

0Þ
1=2

, the RHS of Eq. (39) becomes nega-

tive, so that

x � 6i r3; (40)

suggesting an instability growth rate in the form

(a) (b)

(c) (d)

(e) (f)

FIG. 6. We have depicted the frequency x versus the wave number k, for different values of relativistic degeneracy parameter n0. The real part of the frequency xr is

shown for: (a) the ion-acoustic branch; (b) the electron-plasma (Langmuir) mode; (c) the ion-beam driven branch; (d) the imaginary part (growth rate) xi; (e) Zoom-in

for the ion-beam driven branch for the range k ¼ 2 : 2:001; and (f) zoom-in for the imaginary part for the range k ¼ 2 : 2:001. We have considered Ub0 ¼ 0:2;
d ¼ 0:1, and lb ¼ 1 (hydrogen ion beam) in all of the plots. The values of n0 are n0 � 0:06; 0:3; 0:6; 6:0 for ne0 ¼ 1011; 5� 1011; 1012; 1013 m�1, respectively.
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r3 ¼
leH0

k̂30
2

k2
� 1

� 1

leH2
0

k2

0
B@

1
CA

1=2

: (41)

The instability window is actually very narrow; assuming

n0 ¼ 0:06; d ¼ 0:1; lb ¼ 1, and Ub0 ¼ 0:1, we find k̂30

¼ 0:023397 and k̂34 ¼ 0:023391. However, the condition

x �
ffiffiffiffiffiffiffiffi

1
leH2

0

q
k (�43k, say, for the numerical values considered

in our plots) is only satisfied for the electron plasma branch,

and exclusively for large k � 1; therefore, the latter result is

not practically important, as it predicts an instability that is

unlikely to develop for realistic beam values. We have,

therefore, chosen not to depict the growth rate, for brevity.

D. Quantum (electron degeneracy) effect

The effect of electron degeneracy, intertwined with the

relativistic nature of our model, is reflected in the parameter

n0ðne0Þ, that appears throughout the algebraic procedure

presented earlier. In particular, the quantum character of our

model is, thus, actually “hidden” in the dimensionless

parameter n ¼ pFe=mec ¼ hne=ð4mecÞ appearing in Eq. (12)

(via H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
therein), and in fact, re-appearing as n0

and H0 (equilibrium values denoted by the index “0,” as

defined in the text) in Eq. (16), in the linear treatment.

Therefore, the “quantum” effect is manifested, quantitatively

speaking, in the value of n0 ¼ hne;0=ð4mecÞ, which is in fact

proportional to the electron density ne;0, as intuitively

expected: a higher density validates and, in fact, imposes the

use of quantum (Fermi-Dirac) statistics. (Naturally, the clas-

sical limit is recovered upon setting n0 ¼ 0, in account, say,

of the limit h! 0.)

In Fig. 6, we have depicted the dispersion relation

derived earlier for different values of the electron density

ne0. In Figs. 6(a) and 6(b), the frequency of both the ion

acoustic branch and the Langmuir mode visibly decrease(s)

with an increase in electron density ne0. The third branch

(beam-driven mode) x3 is shown in Figs. 6(c) and 6(e); as

discussed earlier, it possesses an imaginary part, also shown

in Figs. 6(d) and 6(f). Actually, the (real part) frequency x3;r

is practically not sensitive to changes in the electron density:

it does actually decrease, for higher values of ne0, but not

dramatically: see Figs. 6(c) and 6(e). Actually, the growth

rate x3;i slightly increases, for small k, with increasing ne0,

while it then reaches a lower peak at higher k: cf. Figs. 6(d)

and 6(f).

VI. CONCLUSIONS

We have presented a relativistic quantum-hydrodynamic

model for electrostatic waves propagating in an infinite

homogenous quantum plasma permeated by a positive ion

beam. From a physical point of view, relativistic effects arise

from two sources: the extreme degeneracy of electrons pro-

ducing a relativistic mass increase due to their incoherent

motion, and relativistic beam speeds. Upon linearizing the

models equations and subsequently Fourier analyzing, we

have shown that three modes are excited, namely, a modified

Langmuir-type (electron plasma) mode, a low-frequency

ion-acoustic mode, and an ion-beam driven mode.

Numerical analysis of the dispersion relation reveals the

occurrence of an imaginary part in the frequency x that

arises only in the beam-driven mode, and is entirely due to

the beam itself (i.e., it disappears in the absence of the beam,

viz., for d! 0). The standard textbook32 stability analysis

provides an approximate expression (see r2, above) for the

imaginary part, which was shown to be a satisfactory approx-

imation for small values of the wavenumber k (very large

wavelength). The dependence of the instability growth rate

on the ion beam parameters has been investigated. For com-

pleteness, let us add that the same analysis allows for two

more unstable regions; however, for small to moderate beam

velocities, these were shown to be practically irrelevant for

realistic applications.

The (quantum) effect of electron degeneracy on the

electrostatic modes enters into play through the parameter n0

(�hne;0), as discussed in Sec. V. Although the electron

degeneracy has a measurable effect on the ion-acoustic and

Langmuir branches, with respect to the classical case (recov-

ered for h! 0), the beam-driven mode is marginally sensi-

tive to changes in n0 (modified by varying the electron

density ne0Þ. In any case, the frequency of all three modes, in

fact, reduces for higher n0, i.e., for higher density, as quan-

tum effects become significant at larger density values. The

imaginary part (beam instability growth rate) of the unstable

beam-driven mode, however, increases for larger n0.

Our results are important in quantum plasmas, dense

plasmas arising from solid targets irradiated by high intensity

laser and extreme astrophysical plasmas, that is, in areas

where high-density plasma modelling is relevant.
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