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The dispersion relation for ion-cyclotron waves propagating along the direction of the ambient

magnetic field is investigated numerically by considering different forms of kappa functions as

velocity distributions of ions and electrons. General forms of kappa distributions, isotropic and

anisotropic, are defined and used to obtain the dispersion relations for ion-cyclotron waves. With

suitable choice of parameters, the general forms reduce to anisotropic versions of the kappa distri-

butions most frequently employed in the literature. The analysis is focused in cases with a small

value of the kappa index, for which the non thermal character of the kappa distributions is

enhanced. The results show the effects of the superthermal tails of the velocity distributions of both

particle species (ions and electrons) on the growth rate of the ion-cyclotron instability. It is seen

that different forms of anisotropic kappa distributions, which are used in the current literature, can

have a significantly different effect on the growth rates of the instability. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.5002136]

I. INTRODUCTION

The space environment of the solar system has begun to

be explored by satellites in the 1960s, and already in the

early years of exploration evidence started to pile up, show-

ing that the plasma particles frequently have non thermal

velocity distributions featuring power-law tails.1–3 As a

mathematical model for description of the observed non ther-

mal features of velocity distributions in space, mathematical

functions which are known as kappa distributions have been

introduced and widely used.4–10 However, it has been also

observed that velocity distributions in space, in addition of

being non thermal, frequently are also anisotropic.11–15 For

the mathematical description of the observed distributions,

anisotropic kappa distributions have also been introduced.

These anisotropic distributions may be classified either as bi-
kappa distributions (BK), which are characterized by a sin-

gle kappa index and anisotropic temperature parameters, or

as product-bi-kappa distributions (PBKs), which are charac-

terized by different kappa indexes along parallel and perpen-

dicular directions, and also by anisotropic temperature

parameters. Anisotropic kappa distributions can have impor-

tant role on the analysis and understanding of space plasma

phenomena.16,17

The anisotropies, and other non thermal features, usually

displayed by the observed distribution functions in space

plasmas often serve as a source of free energy that excites

several distinct instabilities. One of the instabilities which

may occur is the so-called ion-cyclotron (IC) instability,

which is associated to dispersion of ion velocities along the

perpendicular directions (relative to the ambient magnetic

field) greater than the dispersion along the parallel direction.

The IC instability has been subject to continued interest from

the community of space plasma physicists along the recent

decades, as seen in studies developed considering the case of

bi-Maxwellian distributions,18–20 and also as seen in several

papers which have considered the occurrence of kappa

distributions.21–24

The work of Shaaban et al. has dedicated special atten-

tion to the study of the influence of the electron population

on the IC instability, and investigate the potential relevance

of their findings for the explanation of the instability thresh-

olds observed in the proton temperature anisotropy in the

solar wind.20 Ions and electrons are described by aniso-

tropic Maxwellian distributions, and the influence of elec-

trons on the growth rates of the instability is investigated

considering situations where Te?=Tek > 1, and situations

with Te?=Tek < 1.

In the sequence of the results obtained in Ref. 20, the

influence of non thermal features in the electron distribution

has been investigated in Ref. 24. Ions are described by aniso-

tropic Maxwellian distributions, and electrons are described

by BK distributions. The results obtained show that the non

thermal features of the BK distribution contribute to enhance

the effect of the electron population, in comparison with the

case of bi-Maxwellian electrons.

Other instances of use of kappa distributions can be

mentioned and briefly discussed. In Ref. 21, for instance, the

IC instability was studied considering plasma particles (ions

and electrons) with BK distributions, and the instability

growth rate and instability thresholds were obtained for dif-

ferent values of parameters such as the plasma b, the ion

temperature anisotropy, and the j index. In Ref. 22, a similar

study was made considering both BK and PBK distributions

for both ions and electrons, with the electron temperature

assumed to be isotropic.

Another look on the effect due to non thermal distribu-

tions on electromagnetic instabilities in the ion cyclotron
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range appears in a recent paper by Shaaban et al.25 which

contains an investigation about the growth rates of the elec-

tromagnetic ion-cyclotron instability (EMIC), obtained con-

sidering a combination of a bi-Maxwellian distribution for

the core ions, and a BK distribution for the halo population

of ions.25 The analysis has assumed that the electron distri-

bution is isotropic and Maxwellian, so that the influence of

non thermal features in the electron distribution was not a

part of the investigation. Regarding the influence of the non

thermal features of the ion distribution, the results obtained

have shown that the decrease of the kappa index of the halo

distribution enhances the growth rate of the instability.25

Distributions with power-law velocity tails have also

been employed in the studies of instabilities outside of the

ion-cyclotron range. For instance, bi-kappa distributions

were also considered in the analysis of the electromagnetic

electron-cyclotron instability (EMEC), which is due to

anisotropy in the electron temperature.26 For the investiga-

tion of the EMEC instability, growth rates obtained consider-

ing bi-Maxwellian distribution functions were compared

with growth rates obtained considering bi-kappa distribution

functions, considering two different situations.26 In one of

the situations, denoted as case A in Ref. 26, the growth rates

obtained in the Maxwellian case were compared with growth

rates obtained considering BK distributions with the same

temperature as the Maxwellian distribution. The results

obtained in this case have shown that, for most of the param-

eters considered, the EMEC growth rates obtained with the

BK distributions are smaller than those of the Maxwellian

case, except for very small wave numbers.26 Another situa-

tion considered, denoted as case B in Ref. 26, considered BK

distributions having the same thermal velocity as the

Maxwellian distribution, but larger temperature. That is, in

case B the temperatures of the BK distribution were depen-

dent on the j index. In case B, it was obtained that the BK

distribution leads to larger growth rates than those obtained

in the Maxwellian case.26

The two different models of BK distributions which

were considered in Ref. 26 were also discussed in a paper by

Lazar, Fichtner, and Yoon,27 from a different point of view.

The emphasis of Ref. 27 has been on the physical mecha-

nisms which could lead to these different velocity distribu-

tions, either the model A, which features an increased

population of electrons at small velocities, or model B, with

a comparatively higher population at the large velocity tail.

Other recent example of use of kappa distributions in

the analysis of electromagnetic instabilities can be found in

Ref. 28, which considered plasmas with electrons and ions

described by either bi-Maxwellian or bi-kappa distributions,

both with a drifting velocity along the magnetic field. These

types of distributions have been utilized in Ref. 28 for the

study of the spectral power of whistler and firehose fluctua-

tions, and their dependence on the electron parallel tempera-

ture and the electron thermal anisotropy. The general

conclusion has been that the spectrum of fluctuations is

enhanced in the presence of suprathermal particles, and that

the enhancement is more noticeable with the decrease of the

kappa index.28

Another relatively recent analysis which is of interest

for the present study appeared in a paper by dos Santos

et al..23 That work contains an investigation of the IC insta-

bility considering kappa distributions for the ions, and

emphasizing the role played by non thermal electron distri-

butions. Most of the analysis is made considering PBK ion

distributions, and different forms of electron distribution,

with isotropic electron temperatures. A limited number of

cases also discuss the comparison between results obtained

considering PBK or BK ion distributions.23

The results obtained in Ref. 23 indicate that when both

ions and electrons are described by PBK distributions, the

decrease in the kappa index of the electron distribution leads

to decrease in the growth rate of the IC instability and on the

range of unstable wave-numbers. However, for BK electron

distributions, the characteristics of the instability appear to

be quite insensitive to the electron kappa index.23 The results

which compare PBK and BK distributions for the ions indi-

cate that the growth rates of the IC instability are decreased

if the ion distribution is changed from PBK to BK, regardless

of the shape of the electron distribution.23

In the present paper, we develop further the analysis of

the IC instability in the case of plasma particles with kappa

distributions. We consider extended definitions of BK and

PBK distributions, therefore enhancing the range of shapes

of kappa distributions, in comparison with the analysis made

in dos Santos et al.,23 and also with the analyses made in

Refs. 20 and 24.

By suitable choices of two convenient parameters, the

extended definitions of BK and PBK distributions used in

this paper may correspond to either one or another of two

familiar forms of kappa distributions. One of these particular

cases considers anisotropic versions of kappa distributions

with kinetic temperature independent of the kappa

index.4–6,26 The other limiting case corresponds to aniso-

tropic kappa distributions with the kinetic temperatures

dependent on the kappa index, a formulation of kappa distri-

bution which is also familiar in the literature.9,10,26 In addi-

tion to considering different forms of anisotropic kappa

distributions for the ions, which are the driving force for the

IC instability, the present paper also investigates the effect

of temperature anisotropy on the electron distribution, which

has not been discussed in Ref. 23.

The analysis is made considering the dispersion relation

for low frequency electromagnetic waves with parallel prop-

agation, and is concentrated on the dependence of the growth

rate of the IC instability on the shape of ion and electron dis-

tributions. Several combinations of velocity distributions for

ions and electrons are considered, for a range of parameters

which are of interest for space plasmas. The motivation for

the work is the observation that the study of instabilities in

plasmas described by velocity distributions with power-law

tails, and particularly the study of the influence of non ther-

mal features of the electron distribution on the growth rates

of instabilities driven by anisotropy in the ion distribution, is

presently of great interest for the plasma physics community.

The literature contains several examples of recent studies on

this subject, and the present paper aims to fill in unexplored

gaps of previous analysis.
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The paper is organized as follows: In Sec. II we briefly

describe the theoretical formulation and the dispersion rela-

tion for electromagnetic waves propagating parallel to the

ambient magnetic field, and introduce the generalized forms

of BK and PBK distributions. For completicity, we also write

in Sec. II the expressions obtained after evaluation of the

velocity integrals which appear in the dispersion relation,

one for each of the different forms of velocity distribution

considered in the analysis. In Sec. III we present and discuss

results obtained by the numerical solution of the dispersion

relation, for several combinations of distribution functions.

Final remarks and a discussion on future perspectives appear

in Sec. IV.

II. THEORETICAL FORMULATION

For parallel propagation, and in the case of velocity dis-

tributions which are even along the parallel direction, the

dispersion relation is obtained from the following

determinant:

det

exx � N2
k exy 0

�e12 exx � N2
k 0

0 0 ezz

0
BB@

1
CCA ¼ 0; (1)

where we have taken into account that for k? ! 0; eyy ¼ exx

and exz ¼ eyz ¼ 0, and where Nk is the parallel component of

the refraction vector, N ¼ ck=x. The symbols k and x rep-

resent the wave vector and the angular wave frequency,

respectively.

The determinant given by Eq. (1) can be separated into

two minor determinants, and the dispersion relation for par-

allel propagating electromagnetic waves is given by the

following:

N2
k ¼ exx6iexy; (2)

where the eij are the components of the dielectric tensor.

Using textbook expressions for these components, Eq. (2)

can be written as follows:

N2
k ¼ 1þ 1

2

X
b

x2
pb

x2
x
ð

d3v
v?LðfbÞ

x� sXb � kkvk
; (3)

where s ¼ 61; Xb and xpb are, respectively, the angular

cyclotron frequency and the angular plasma frequency of

particles of species b, and where

L ¼ 1�
kkvk
x

� �
@

@v?
þ

kkv?
x

@

@vk
:

The dispersion relation (2) depends on the equilibrium

velocity distributions of the plasma particles, which we

denote as fb. For convenience, we introduce a symbol for the

integral quantity appearing in the dispersion relation

Jðs; fbÞ ¼ x
ð

d3v
v?LðfbÞ

x� sXb � kkvk
: (4)

It is seen that the contribution of each type of par-

ticle for the dispersion relation requires only the

evaluation of the quantity Jðs; fbÞ, which depends on

the distribution function fb. Let us then introduce the

different forms of velocity distributions, of interest for

the present work.

We start with the definition of an isotropic kappa distri-

bution, characterized by the index jb and by parameters ab

and wb;j
29

fb;KðvÞ ¼
1

p3=2j3=2

b w3
b;j

Cðjb þ abÞ
Cðjb þ ab � 3=2Þ

� 1þ v2

jbw2
b;j

 !�ðjbþabÞ

: (5)

The distribution function (5) is normalized such thatÐ
d3v fb;K ¼ 1. The parameter wb;j has the same physical

dimension as the particle thermal velocity vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tb=mb

p
,

where mb and Tb are, respectively, the mass and the tempera-

ture of particles of species b, written in units of energy. The

parameter wb;j must reduce to the thermal velocity in the

limit jb !1.

Important limiting cases are as follows. If the parameter

ab is taken as ab ¼ 1 and w2
b;j ¼ ½ðjb � 3=2Þ=jb�v2

b, the dis-

tribution function (5) becomes the kappa distribution as

defined in the paper by Summers and Thorne.4–6 We will

call this distribution as the kappa distribution of type I, or KI

distribution. For KI distributions, the value of the second

moment is hv2i ¼ 3v2
b=2, and is therefore independent of the

parameter jb.

If one takes ab ¼ 0 and w2
b;j ¼ v2

b, the distribution func-

tion (5) becomes the kappa distribution as defined in the

paper by Leubner,9,10 which we will identify as the kappa

distribution of type II, or KII distribution. For KII distribu-

tions, the value of the second moment is dependent on jb,

and is given by

hv2i ¼ 3

2

jb

jb � 5=2
v2
b:

An anisotropic kappa distribution with isotropic kappa

parameters, also depending on parameters ab and wb;j, may

be defined as follows:

fb;BKðvÞ ¼
1

p3=2j3=2

b w2
b;j;?wb;j;k

Cðjb þ abÞ
Cðjb þ ab � 3=2Þ

� 1þ
v2
k

jbw2
b;j;k
þ v2

?
jbw2

b;j;?

 !�ðjbþabÞ

(6)

with the same normalization of distribution (5).

This distribution can be considered as a generalized bi-
kappa distribution (BK). Similar to what was done in the

case of isotropic kappa distributions, if the parameter ab is

taken as ab ¼ 1 and w2
b;j;? ¼ ½ðjb � 3=2Þ=jb�v2

b?,

w2
b;j;k ¼ ½ðjb � 3=2Þ=jb�v2

bk, with vb? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tb?=mb

p
and

vbk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tbk=mb

p
, one obtains the bi-kappa distribution of

type I, or BKI distribution. For the BKI distribution, the

average values of v2
k and v2

? are as follows:
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hv2
ki ¼

1

2
v2
bk; hv2

?i ¼ v2
b?:

These results show that the parallel and perpendicular

kinetic temperatures of a BKI distribution are independent of

the j index of the distribution. This type of distribution corre-

sponds to that characterizing the so-called “case A” of Ref. 27.

The bi-kappa distribution of type II, or BKII distribu-

tion, is obtained by assuming ab ¼ 0; w2
b;j;? ¼ v2

b?, and

w2
b;j;k ¼ v2

bk. In the case of the BKII distribution, the average

values of v2
k and v2

? are given by

hv2
ki ¼

1

2

jb

jb � 5=2
v2
bk; hv2

?i ¼
jb

jb � 5=2
v2
b?

which means that the kinetic temperatures of BKII distribu-

tions are dependent on the kappa index. The BKII distribution,

obtained from Eq. (6) with use of ab ¼ 0; w2
b;j;? ¼ v2

b?, and

w2
b;j;k ¼ v2

bk, is similar to the distribution considered in “case

B” of Ref. 27. However, there is a difference. The high-

velocity limit of the BKII distribution used here contains

terms which are proportional to v
�jb

k and v
�jb

? , while the high-

velocity limit of the distribution of case B in Ref. 27 contains

terms which are proportional to v
�ðjbþ1Þ
k and v

�ðjbþ1Þ
? .

Anisotropic kappa distributions with anisotropic kappa

indexes, which are known as product-bi-kappa distributions
(PBK), can be defined in similar way30

fb;PBKðvÞ ¼
1

p3=2jb?j
1=2

bk w2
b;j;?wb;j;k

�
Cðjb? þ abÞCðjbk þ abÞ

Cðjb? þ ab � 1ÞCðjbk þ ab � 1=2Þ

� 1þ
v2
k

jbkw
2
b;j;k

 !�ðjbkþabÞ

� 1þ v2
?

jb?w2
b;j;?

 !�ðjb?þabÞ

(7)

with the same normalization of distribution (5).

If the parameter ab is taken as ab ¼ 1 and w2
b;j;k

¼ ½ðjbk�3=2Þ=jbk�v2
bk; w2

b;j;?¼½ðjb?�3=2Þ=jb?�v2
b?, one

obtains the product-bi-kappa distribution of type I, or PBKI

distribution.17 For the PBKI distribution, the average values

of v2
k and v2

? are the same as those obtained in the case of

BKI distributions, namely

hv2
ki ¼

1

2
v2
bk; hv2

?i ¼ v2
b?:

The product-bi-kappa distribution of type II, or PBKII

distribution, is obtained by assuming ab ¼ 0 and

w2
b;j;k ¼ v2

bk, w2
b;j;? ¼ v2

b?. The average values of v2
k and v2

?,

in the case of the PBKII distribution, are as follows:

hv2
kib ¼

1

2

jbk
jbk � 3=2

v2
bk; hv2

?ib ¼
jb?

jb? � 2
v2
b?:

A PBK distribution has two sources of anisotropy along

parallel and perpendicular directions, the temperature varia-

bles Tb? and Tbk, and the kappa indexes jb? and jbk.

Using the distribution given by Eq. (6), the integral J
appearing in the dispersion relation, given by Eq. (3),

becomes as follows:31

Jðs;fb;BKÞ¼2
Cðjb�1=2Þ

Cðjbþa�3=2Þ

� �Cðjbþa�3=2Þ
Cðjb�1=2Þ 1�

w2
b;j;?

w2
b;j;k

 !(

þCðjbþa�1Þ
CðjbÞ

f0
b� 1�

w2
b;j;?

w2
b;j;k

 !
fs
b

" #
Zða�1Þ

jb
ðfs

bÞ
)
;

(8)

where

f0
b ¼

x
kkwb;j;k

; fs
b ¼

x� sXb

kkwb;j;k
(9)

and where we have used the definition of the plasma disper-

sion function for j distributions, of order m

ZðmÞj ðfÞ ¼
1

p1=2

CðjÞ
j1=2Cðj� 1=2Þ

�
ð1
�1

ds

ðs� fÞð1þ s2=jÞjþm (10)

which reduces to the distribution defined by Summers and

Thorne5,6 in the case m¼ 1. The plasma dispersion function

can be written in terms of the Gauss hypergeometric function

2F1ða; b; c; zÞ, as follows:

ZðmÞj ðfÞ¼
iCðjÞCðjþmþ1=2Þ

j1=2Cðj�1=2ÞCðjþmþ1Þ

� 2F1 1;2jþ2m;jþmþ1;
1

2
1þ if

j1=2

� �� �
(11)

for j > �m� 1=2. In the limit j!1, the function Z
ðmÞ
j

becomes the well known Z function32

ZðfÞ ¼ 1ffiffiffi
p
p
ðþ1
�1

dt
e�t2

t� f
: (12)

Using the distribution given by Eq. (7), the integral J
appearing in the dispersion relation, given by Eq. (3),

becomes as follows:31

Jðs;fb;PBKÞ¼ 2
jb?

jb?þab�2

�
(
�jb?þab�2

jb?
þ

jbkþab�1=2

jbk

w2
b;j;?

w2
b;j;k

þ
Cðjbk�1=2Þ

Cðjbkþab�1=2Þ
CðjbkþabÞ

CðjbkÞ

�
"
jb?þab�2

jb?
ðf0

b�fs
bÞZðaÞjk

ðfs
bÞ

þ
jbkþab

jbk

w2
b;j;?

w2
b;j;k
ðfs

bÞZðaþ1Þ
jk
ðfs

bÞ
#)

; (13)

where
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f0
b ¼

x
kkwb;j;k

; fs
b ¼

x� sXb

kkwb;j;k
: (14)

Let us also introduce the well known bi-Maxwellian

velocity distribution

fb;M ¼
1

p3=2v2
b?vbk

e�v2
?=v

2
b?e
�v2
k=v

2
bk (15)

normalized such that
Ð

d3v fb;M ¼ 1.

With use of the bi-Maxwellian distribution function, the

J integral becomes

Jðs; fb;MÞ ¼ 2 f0
bZðfs

bÞ� 1�
u2

b?
u2

bk

 !
1þ fn

bZðfs
bÞ

� �( )
: (16)

Equation (16) is the limiting form of Eq. (8) for

jb !1, and also the limiting form of Eq. (13) in the limit

jbk ! 1 and jb? ! 1. Another comment which is perti-

nent here is that Eq. (8), in the isotropic limit given by

wb;j;? ¼ wb;j;k, provides the form of the integral J to be

used in the case of isotropic kappa distribution given by

Eq. (5).

III. NUMERICAL ANALYSIS

For the numerical analysis of the effect of the shape of

the particle velocity distributions on the dispersion relation

of ion-cyclotron waves, we start by considering the case of

bik ¼ 2:0 and vA=c ¼ 1:0� 10�4, with vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pni0mi

p

and bik ¼ v2
ik=v

2
A. We also consider Tek ¼ Tik, and the ion

mass equal to the mass of a proton, mi¼mp.

Using these parameters, we solve the dispersion relation

considering some combinations of the different forms of

velocity distribution functions for ions and electrons, those

which have been introduced in Sec. II. The use of these dif-

ferent forms of velocity distributions is widespread in the lit-

erature, and has been the motivation for a number of recent

theoretical analyses.27,33–36 In the ensuing figures we plot the

quantity zi ¼ xi=Xi, the imaginary part of the frequency (xi)

obtained from the dispersion relation for ion-cyclotron

waves, divided by the ion-cyclotron angular frequency (Xi),

versus the normalized wave number, q ¼ kvA=Xi, where vA

is the Alfv�en velocity. Figure 1 shows zi versus the normal-

ized wave number, for different values of the temperature

ratio, by assuming the cases of Tb?=Tbk ¼ 1:0, 2.0, 3.0, 4.0,

5.0, 6.0, and 7.0, with b ¼ e; i. That is, for Fig. 1 we assume

that ions and electrons have anisotropic distribution func-

tions, with the same temperature anisotropy.

FIG. 1. Imaginary part of the frequency of waves in the ion-cyclotron mode vs. wave number. (a) Ions and electrons with a BKI distribution, with

ji ¼ je ¼ 2:5; (b) ions and electrons with a PBKI distribution, with ji? ¼ jik ¼ je? ¼ jek ¼ 2:5; (c) ions and electrons with a BKII distribution, with

ji ¼ je ¼ 2:5; (d) ions and electrons with a PBKII distribution, with ji? ¼ jik ¼ je? ¼ jek ¼ 2:5. For all panels, the curves represent the cases of

Tb?=Tbk ¼ 1:0 (red), 2.0 (green), 3.0 (blue), 4.0 (magenta), 5.0 (cyan), 6.0 (black), and 7.0 (brown), with b ¼ e; i. Other parameters are

bik ¼ 2:0; vA=c ¼ 1:0� 10�4.
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For the case of Fig. 1(a), we assume electrons and ions

with BKI distributions, as given by Eq. (6), with

je ¼ ji ¼ 2:5. It is seen that there is instability for a range

of wave numbers which start at q ’ 0:1 for all temperature

ratios above unity, and extends up to q ’ 0:5 for

Tb?=Tbk ¼ 2:0, and up to q ’ 0:9 for Tb?=Tbk ¼ 7:0. The

instability is the ion-cyclotron instability (IC). For Fig. 1(b),

we assume electrons and ions with PBKI distributions, as

given by Eq. (7), with ji? ¼ jik ¼ je? ¼ jek ¼ 2:5. The

comparison between Figs. 1(a) and 1(b) shows that the

change from BKI to PBKI leads to enhancement of the

growth rates of the IC instability, both in the wave number

range and in the magnitude of the growth rate. One notices,

however, that for a small temperature ratio the onset of insta-

bility in the case of PBKI distributions is moved to a larger

value of wave number than seen in the case of BKI distribu-

tions. For instance, for Tb?=Tbk ¼ 2:0 the instability starts at

q ’ 0:1 in the case of BKI distributions, and at q ’ 0:3 in

the case of PBKI distributions.

Distributions of type II are considered for Figs. 1(c) and

1(d). In Fig. 1(c), electrons and ions are assumed with BKII

distributions, as also given by Eq. (6), with je ¼ ji ¼ 2:5.

The comparison between Figs. 1(c) and 1(a) shows that dis-

tributions of type BKII lead to strong reduction of the growth

rates of the IC instability, in comparison with those obtained

with the BKI distributions. One also notices a reduction of

the interval of wave numbers where the instability occurs.

For Fig. 1(d), the distributions for electrons and ions are

assumed to be PBKII distributions, as given by Eq. (7), with

ji? ¼ jik ¼ je? ¼ jek ¼ 2:5. Figure 1(d) shows that the

maximum growth rates obtained using PBKII distributions

are greater than those obtained using PBKI distributions,

which appear in Fig. 1(b), although there is some reduction

of the interval of unstable wave numbers. The difference

between the cases of PBKII and BKII, seen in panels (d) and

(c), respectively, is seen to be much more significant than the

difference between PBKI and BKI, appearing in panels (b)

and (a), respectively. In particular, Fig. 1(d) shows that the

IC instability for a PBKII plasma occurs even when

Tb? ¼ Tbk.
In Fig. 2 we consider a case which is similar to that con-

sidered in Fig. 1, except that bik ¼ 0:2 instead of 2.0. The

results shown in Fig. 2 show the same general characteristics

found in the case of Fig. 1, regarding the effect of the differ-

ent forms of the particle velocity distributions. The differ-

ence is that now the maximum growth rate attained for a

given value of the temperature ratio is smaller, and the exten-

sion of the unstable region along the wave number axis is

larger, than in the case of Fig. 1.

A case with further reduction in the value of bik is

shown in Fig. 3, which depicts results obtained considering

bik ¼ 0:05, and all the other parameters the same as in Figs.

1 and 2. The comments to be made regarding the dependence

on the velocity distributions, the magnitude of the growth

rates, and the extension of the regions featuring instability,

are similar to those made about the results obtained in Fig. 2.

FIG. 2. Plots of zi vs. q when bik ¼ 0:2. The distribution functions used in panels (a)–(d), values of the j indexes and other parameters, and the color codes, are

the same as in Fig. 1.
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The effect of changes in the electron distribution func-

tion, associated to different forms of the ion distribution

function, is studied in Figs. 4–7. In Fig. 4 we consider the

case of ions described by anisotropic BKI distributions with

ji ¼ 2:5, plotting the cases of Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0,

5.0, 6.0, and 7.0. Figure 4(a) depicts the results obtained in

the case of electrons also described by BKI anisotropic dis-

tributions with je ¼ 2:5, with the same values of the temper-

ature anisotropy as the ions, i.e., considering Te?=Tek ¼ 1:0,

2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. Figure 4(a) is the same as Fig.

1(a). In Fig. 4(b) we show results obtained considering elec-

trons described by an anisotropic Maxwellian distribution. It

is seen that the results obtained cannot be distinguished from

those appearing in Fig. 4(a). This result shows that in the

case of ions with a BKI distribution, the change of the elec-

tron distribution, from a Maxwellian to a BKI distribution

with small value of the je index, does not affect the growth

rates of the IC instability. Figure 4(c) shows results obtained

with electrons described by an isotropic BKI distribution

with Te ¼ Tik. The only difference between Figs. 4(c) and

4(a) is the anisotropy in the electron distribution, present in

Fig. 4(a). The comparison between the results shown in Figs.

4(c) and 4(a) shows that, for a given value of the ion anisot-

ropy and a given value of the electron kappa index, the

occurrence of anisotropy of the electron temperatures leads

to a significant decrease of both the magnitude of the maxi-

mum growth rate of the IC instability and of the size of the

region in wave number space where the instability occurs. In

Fig. 4(d), we show results obtained considering electrons

described by an isotropic Maxwellian distribution, which are

seen to be basically the same as those of Fig. 4(c). The con-

clusion which can be drawn here is that the shape of the elec-

tron distribution, when it is isotropic, is not relevant to

modify the growth rates of the IC instability associated to

BKI distributions for the ions. The general conclusion

obtained from Fig. 4 is that in the case of ions described by

BKI distributions the shape of the electron distribution,

either isotropic or anisotropic, is not relevant for the instabil-

ity, but the increase of anisotropy of the electron distribution,

for a given shape, leads to decrease of the growth rates of the

instability.

In Fig. 5 we consider the case of ions described by

anisotropic BKII distributions with ji ¼ 2:5, plotting the

cases of Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. Figure

5(a) shows the results obtained assuming that the electrons

are also described by BKII anisotropic distributions with

je ¼ 2:5, with the same values of the temperature anisotropy

as the ions, i.e., considering Te?=Tek ¼ 1:0, 2.0, 3.0, 4.0, 5.0,

6.0, and 7.0. Figure 5(a) is the same as Fig. 1(c). In Fig. 5(b)

the results are obtained with electrons described by an aniso-

tropic Maxwellian distribution. It is seen that the magnitude

of the maximum growth rate is significantly higher than that

depicted in Fig. 5(a), and the size of the region in wave num-

ber space where there is instability is also larger. The infer-

ence is that the increase in the non thermal character in the

electron distribution, which here is associated to the change

from Maxwellian to BKII distribution, contributes to

decrease the IC instability in the case of ions described by a

FIG. 3. Plots of zi vs. q when bik ¼ 0:05. All other parameters and conventions are the same as in Figs. 1 and 2.
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BKII distribution. This result is in contrast with that obtained

in the case of BKI distributions, which appeared in Figs. 4(a)

and 4(b). Figure 5(c) shows results obtained with electrons

described by an isotropic BKII distribution, with Te ¼ Tik.
The difference between Figs. 5(c) and 5(a) is the anisotropy

in the electron distribution, present in Fig. 5(a). The results

shown in Figs. 5(c) and 5(a) show that, for a given value of

the ion temperature ratio and a given value of the electron

kappa index, the occurrence of anisotropy of electron tem-

peratures leads to significant decrease of the magnitude of

the maximum growth rate of the IC instability, and also a

significant decrease of the size of the wave number region

where occurs the instability. In this regard, the behaviour is

similar to that obtained in the case of BKI distributions,

shown in Fig. 4. In Fig. 5(d), we show results obtained with

electrons described by an isotropic Maxwellian distribution.

The results obtained are seen to be the same as those of Fig.

5(c), indicating that in the case of ions with BKII distribu-

tions, the shape of the electron distribution, when it is isotro-

pic, is not relevant for the instability. In this regard, the

result is analogous to that obtained in the case of BKI distri-

butions, shown in Fig. 4. The results obtained in Fig. 5 can

be summarized as follows: in the case of ions described by

anisotropic BKII distributions and isotropic electron distribu-

tions, the shape of the electron distribution is not relevant for

the IC instability. When the electron distribution becomes

anisotropic, the IC instability becomes greatly reduced, and

the reductive effect is much more pronounced in the case of

anisotropic BKII distributions for electrons than in the case

of bi-Maxwellian distributions.

In Fig. 6, we consider the case of ions described by

anisotropic PBKI distributions with jik ¼ ji? ¼ 2:5, plotting

the cases of Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0.

The four panels of Fig. 6 show that, for the case of ions with

PBKI distribution, the growth rates obtained for the IC insta-

bility have a dependence on the electron distribution function

which is analogous to that obtained in the case of BKI distri-

bution, shown in Fig. 4. Figure 6(a) shows the results

obtained assuming that the electrons are also described by

PBKI anisotropic distributions, with jek ¼ je? ¼ 2:5, with

the same values of temperature anisotropy considered for the

ions, i.e., considering Te?=Tek ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0,

and 7.0. Figure 6(a) is the same as Fig. 1(b). In Fig. 6(b) we

show results obtained with electrons described by an aniso-

tropic Maxwellian distribution. The results obtained cannot

be distinguished from those appearing in Fig. 6(a). Figure

6(c) displays the results obtained with electrons described by

a PBKI distribution with isotropic temperatures, with

Te ¼ Tik. The comparison between the results shown in Fig.

6(c) and those shown in Fig. 6(a) shows that for a given

FIG. 4. Imaginary part of the frequency of waves in the ion-cyclotron mode vs. wave number. The ions are described by a BKI distribution, with ji ¼ 2:5 and

Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. (a) Electrons with a BKI distribution, with je ¼ 2:5; (b) electrons with a bi-Maxwellian distribution; for panels

(a) and (b), the curves represent the cases of Te?=Tek ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0, with the same color codes as in Fig. 1. (c) Electrons with a BKI dis-

tribution with isotropic temperatures, with je ¼ 2:5; (d) electrons with a Maxwellian distribution; other parameters are bik ¼ 2:0; vA=c ¼ 1:0� 10�4.
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value of the ion temperature ratio and given values of the

electron kappa indexes, the occurrence of temperature

anisotropy in the electron distribution leads to a significant

decrease in the prevalence of the IC instability. The influence

of the electron temperature anisotropy is seen in the decrease

of the magnitude of the maximum growth rate, and also in

the decrease in the size of the wave number region where the

instability occurs. In Fig. 6(d), we show results obtained

with electrons described by an isotropic Maxwellian distribu-

tion. It is seen that the results obtained are the same as those

appearing in Fig. 6(b). These results lead to the conclusion

that the shape of the electron distribution, when it features

isotropy of temperatures, is not relevant for the IC instability

associated to PBKI distributions for the ions. This conclusion

is similar to that which has been obtained in the case of ions

described by BKI distributions. For anisotropic electron dis-

tributions, the occurrence of the IC instability is reduced,

with a reduction which is similar in the cases of bi-

Maxwellian or PBKI distribution.

In Fig. 7, we show the normalized values of the imagi-

nary part of the wave frequency which have been obtained in

the case of ions described by anisotropic PBKII distributions

with jik ¼ ji? ¼ 2:5, plotting the cases of Ti?=Tik ¼ 1:0,

2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. In Fig. 7(a), we can see the

results obtained in the case of electrons also described by a

PBKII distribution, with jek ¼ je? ¼ 2:5, considering the

same values of temperature anisotropy which have been con-

sidered for the ions, i.e., Te?=Tek ¼ 1:0, 2.0, 3.0, 4.0, 5.0,

6.0, and 7.0. Figure 7(a) is the same as Fig. 1(d). Figure 7(b)

shows the results obtained with electrons described by an

anisotropic Maxwellian distribution, also with the same val-

ues of the temperature ratio as in the ion distribution.

Similarly to what was seen in the case of ions with BKII dis-

tribution in Fig. 5, the results appearing in Fig. 7(b) show

that the magnitude of the maximum growth rate and the size

of the region in wave number space where there is instability

are significantly larger than those obtained in the case of

electrons with PBKII distribution, seen in Fig. 7(a). The

increase in the non thermal character in the electron distribu-

tion, due to the change from a Maxwellian to a PBKII distri-

bution, contributes to decrease the prevalence of the IC

instability, in the case of ions described by a PBKII distribu-

tion. This effect due to non thermal electron distribution is

analogous to the effect observed in the case of BKII distribu-

tions. This result is in contrast with that obtained in the case

of BKI and PBKI distributions, which appeared in Figs. 4(a),

4(b), 6(a), and 6(b). Figure 7(c) shows results obtained with

electrons described by a PBKII distribution with isotropy of

temperatures, with Te ¼ Tik. Figures 7(c) and 7(a) show that

in the case of PBKII distributions for the ions the occurrence

of temperature anisotropy in the electron distribution leads

to a significant decrease in the magnitude of the growth rates

FIG. 5. Imaginary part of the frequency of waves in the ion-cyclotron mode vs. wave number. The ions are described by a BKII distribution, with ji ¼ 2:5 and

Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. (a) Electrons with a BKII distribution, with je ¼ 2:5; (b) electrons with a bi-Maxwellian distribution; (c) elec-

trons with a BKII distribution with isotropic temperatures, with je ¼ 2:5; (d) electrons with a Maxwellian distribution. All other parameters and conventions

are the same as in Fig. 4.
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of the IC instability, and to decrease in the size of the wave

number region where occurs the instability. In this regard,

the behaviour is similar to that obtained in the case of PBKI

ion distributions, shown in Fig. 6, and also similar to the

behaviour obtained considering BKI ion distributions, shown

in Fig. 4. Finally, Fig. 7(d) shows results obtained with elec-

trons described by an isotropic Maxwellian distribution. In

comparison with the results show in Fig. 7(c), relative to the

case of electrons with isotropic PBKII distribution, Fig. 7(d)

shows a sizable increase in the range of wave numbers which

present instability, as well as an increase in the magnitude of

the growth rates of the instability. This behavior differs from

that seen in the case of ions with BKI and BKII distributions,

in Figs. 4(c), 4(d), 5(c), and 5(d), respectively. The behavior

of the dispersion relation also differs from the behavior

obtained in the case of PBKI distributions, shown in Figs.

6(c) and 6(d), regarding the dependence on the shape of the

electron distribution.

IV. FINAL REMARKS

We have presented results of a numerical analysis of the

dispersion relation for ion-cyclotron waves propagating

along the ambient magnetic field. The analysis has been

made considering different forms of isotropic and anisotropic

kappa distributions for ions and electrons. We have

concentrated the analysis on small values of the kappa index,

because in this case the differences between kappa distribu-

tions and bi-Maxwellian distributions, and between different

types of kappa distributions, should be more prominent. The

focus has been on the influence of the particle distributions

on the growth rate of the ion-cyclotron instability.

For the analysis of the instability, we have introduced

generalized forms of anisotropic kappa distributions,

which can be characterized as bi-kappa distributions or as

product-bi-kappa distributions. For a suitable choice of

parameters, these general distributions correspond to

anisotropic forms of well known distributions of wide-

spread use in the literature. In the case of bi-kappa distri-

butions, these two different forms were called BKI and

BKII distributions, and in the case of product-bi-kappa

distributions the two different forms were called PBKI

and PBKII distributions.

The results obtained have shown that for small value of

the ion kappa index there is considerable effect of the form

of the ion distribution on the magnitude and range of the ion-

cyclotron instability. This significant influence of the type of

kappa distribution has been seen for a wide range of values

of the plasma beta, and is of significance for the interpreta-

tion of measurements made in the solar wind, where non

thermal distributions with extended power-law tails, isotro-

pic, and anisotropic, are commonly observed.

FIG. 6. Imaginary part of the frequency of waves in the ion-cyclotron mode vs. wave number. The ions are described by a PBKI distribution, with ji? ¼ jik ¼
2:5 and Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. (a) Electrons with a PBKI distribution, with je? ¼ jek ¼ 2:5; (b) electrons with a bi-Maxwellian distribu-

tion; (c) electrons with a PBKI distribution with isothermal temperatures, with je? ¼ jek ¼ 2:5; (d) electrons with a Maxwellian distribution; all other parame-

ters and conventions are the same as in Fig. 4.
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The effect of the shape of the electron distribution has

also been investigated. The results obtained have shown that

in the case of BKI and PBKI ion distributions the change of

the electron distribution, between the bi-Maxwellian form

and the BKI or PBKI forms, leads to negligible modification

in the growth rates of the ion-cyclotron instability.

It has also been seen that the occurrence of anisotropy in

the electron distribution, with Te? > Tek, contributes to

decrease of the magnitude of the growth rates and the range

of the IC instability, whether the electron distribution is a

BKI, or PBKI, or bi-Maxwellian distribution.

These results corroborate and extend the findings of the

previous analysis. For instance Ref. 20 discussed the effect

of the electron anisotropy in the case of ions and electrons

described by bi-Maxwellian distributions. It has been found

that in the case Te?=Tek > 1 the electrons contribute to

decrease the growth rates of the IC instability, with effect

which increases with the increase of the electron anisot-

ropy.20 Reference 20 also discussed the case of Te?=Tek < 1,

showing that in this case the anisotropy of the electron tem-

peratures contribute to increase the growth rates of the IC

instability.

Another example of previous work which is corrobo-

rated and extended by our results is that of Ref. 24, which

utilizes anisotropic Maxwellian distribution for the ions and

BK distribution for the electrons. According to the results

obtained in Ref. 24, for Te?=Tek > 1 the increase of non ther-

mal features due to the decrease of the electron kappa index

leading to smaller values of the IC growth rates. On the other

hand, in the case of Te?=Tek < 1, the decrease of the kappa

index leads to increased values of the IC growth rates.24

In the case of BKII ion distributions, the change of the

electron distribution between the bi-Maxwellian form and

the BKII form, for isotropic electron temperatures, also leads

to a negligible modification in the growth rates of the ion-

cyclotron instability. On the other hand, if there is anisotropy

in the electron temperatures, the increase in the non thermal

character of the electron distribution, from the Maxwellian

form to the BKII form, leads to very significant decrease of

the magnitude of the growth-rate of the ion-cyclotron insta-

bility, and to decrease in the range of wave numbers where

the instability occurs.

In the case of PBKII ion distributions, the pattern is dif-

ferent. For isotropic electron temperatures, we have obtained

results showing that the change of the electron distribution,

from a Maxwellian to a PBKII distribution, leads to decrease

in the magnitude of the IC growth rates and to decrease of

the region of wave number where the instability occurs.

These results are in accordance with results found in Ref. 23,

related to cases where ions and electrons were described by

FIG. 7. Imaginary part of the frequency of waves in the ion-cyclotron mode vs. wave number. The ions are described by a PBKII distribution, with ji? ¼
jik ¼ 2:5 and Ti?=Tik ¼ 1:0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0. (a) Electrons with a PBKII distribution, with je? ¼ jek ¼ 2:5; (b) electrons with a bi-Maxwellian

distribution; (c) electrons with a PBKII distribution with isothermal temperatures, with je? ¼ jek ¼ 2:5; (d) electrons with a Maxwellian distribution; all other

parameters and conventions are the same as in Fig. 4.
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PBK distributions of type II, with isotropic electron

temperatures.

In addition, in the present paper we have also considered

the case of anisotropic electron temperatures. It has been

seen that, for both forms of electron distribution, PBKII and

bi-Maxwellian, the occurrence of anisotropy in the electron

temperatures causes reduction of growth rates and of range

of the IC instability.

We may conclude that the results obtained show that the

effect of the velocity distribution of electrons on the growth

rates of the ion-cyclotron instability do not depend only on

the existence or not of a power law feature in the electron

distribution. It has been shown that the growth rates of the

instability may also depend on details of the power-law elec-

tron distribution. These results present novel features, which

have not been reported in previous analysis of the ion-

cyclotron instability. The dependence of the growth rates of

the ion-cyclotron instability on the detailed characteristics of

the electron distribution therefore should be taken into

account when kappa distributions are utilized for fitting of

observed particle distributions and for the interpretation of

observed features regarding waves and instabilities.

The results presented here can be relevant, for instance,

for the explanation of the values of temperature anisotropy

observed in the solar wind. The observed velocity distribu-

tions are affected by interactions of the particles with elec-

trostatic/electromagnetic fields also present in the

interplanetary environment. Since the intensity levels of the

waves are dependent on the growth rates of the instabilities,

and these, in turn, depend on the particle’s velocity distribu-

tions, good understanding of the dependency of the growth

rates on details of the velocity distribution is a requirement

for the analysis of the wave intensity levels.

A comprehensive study of the wave-particle interactions

in the solar wind, employing different combinations of parti-

cle distributions, can help to elucidate the observed tempera-

ture anisotropies, and the observed instability thresholds.

Despite many analysis already made on these subjects, the

situation is not yet completely understood. Study along this

line is currently under development.
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