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Abstract. The goal of this work is to analyze incompressible Newtonian and non-
Newtonian flows through channels with sudden expansion. The governing equations
are solved using the finite-differences explicit Runge-Kutta time-stepping scheme in
nondimensionalized form in which continuity and momentum are solved simultane-
ously along the grid points. The power-law model is applied to predict pseudoplastic
(shear-thinning) and dilatant (shear-thickening) behavior in such expansions. The
critical Reynolds number, in which the solution becomes asymmetric, is analyzed.
Numerical results for a 3 : 1 expansion show good agreement with other numerical
tests found in the literature for Reynolds numbers ranging from 40 to 140 for New-
tonian flow. For the non-Newtonian case, a comparison with an analytical solution
is presented.

1. Introduction

In the recent years, it has been of great interest to study systems experiencing
transition; the flow in a symmetric sudden expansion is an example. It has been
observed experimentally that, below a certain critical Reynolds number, the flow
is symmetric. This symmetric flow becomes unstable once the Reynolds number
exceeds the critical value, and a pair of steady asymmetric vortices is observed as
one recirculation region grows at the expense of the other; a symmetric-breaking
bifurcation takes place. As the Reynolds number increases further, the flow may
become three-dimensional and oscillatory [2].

Expansions have important applications in engineering processes like in refrige-
ration, extrusion and free jets. The study of Newtonian fluid flows through a sud-
den expansion of various ratios and conditions is a classical problem which has been
analyzed by many workers. Much information about this flow are known, like the
critical Reynolds and bifurcation phenomena. For non-Newtonian flows, such inves-
tigation is recent and there isn’t much information about it. A better understanding
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of non-Newtonian flow through sudden expansions should lead to both the design
and development of hydrodynamically more efficient processes and to an improved
quality control of the final products.

Non-Newtonian fluids are usually considered to be those when the relation con-
necting shear stress and shear rate is not linear; that is, the ’viscosity’ of a non-
Newtonian fluid is not constant at a given temperature and pressure, but depends
on the rate of shear or on the previous kinematic history of the fluid [7]. In this way,
there isn’t a constitutive relation able to predict all non-Newtonian behavior that
can occur. So, a lot of models were developed for predicting non-Newtonian effects
like the Maxwell, the generalized Newtonian liquid (GNL) [8] [1] and the models
based on differential and integral constitutive equations. The power-law model [4],
which is a special case of the GNL, is applied to predict pseudoplastic and dilatant
behavior.

The typical curve relating stress-deformation rate for pseudoplastic fluids indi-
cates that the viscosity falls progressively with shear rate and the flow curve becomes
linear only at very high shear rates. This behavior is characteristic of high poly-
mers, polymer solutions and many suspensions. For dilatant fluids, the viscosity
increases when the rate of shear is increased [3].

In the following, the governing equations, solution technique, and numerical
results are presented.

2. Governing Equations and Solution Technique

The governing equations for a two-dimensional, laminar, incompressible flow in
nondimensionalized form are written as follows
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where u and v are the velocity vector components in x and y directions, p the
pressure (coming from a Poisson equation), t the time, τij the viscous part of stress
tensor, and Re the generalized Reynolds number, which is given by

Re =
ρV 2−nHn

K
,

with ρ the fluid density, V the characteristic velocity, H the height of the inlet
cross-section and K the consistency index.

For the power-law model the ’extra’ stress tensor is written as

τ = 2µefD,
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where D is the rate of strain tensor given by D = [∇u+(∇u)T ] and µef the effective
viscosity which comes from

µef =
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)(n−1)/2

,

where n is the power-law index and DII the second invariant of the strain rate given
by
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For solving this set of governing equations, methods such as finite elements, fi-
nite volume and finite differences are usually employed. All of them have their own
advantages and disadvantages and are successfully used by known researchers all
over the world. Here, the node-centered central finite differences scheme is employed
for solving the governing equations, as shown in figure 1; such method is preferred
because of its simplicity.

Figure 1: Node-centered arrangement

Convective and diffusive terms of these equations are in finite differences ap-
proximated according to, for example,
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Now, the grid and boundary conditions are presented. Figure 2 shows an am-
plification of the structured grid of 112x95 points, for a 3:1 expansion, where the
refinement at the expansion zone is shown. The domain is 30 dimensionless units
long and 3 dimensionless units wide. A grid stretching at corners is recommended,
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because of the pressure and velocity gradients, which can be a serious drawback
to the convergence of the numerical procedure. It is important to note that the
boundary has corners in the expansion zone and some care need to be taken when
the boundary conditions are applied.

Figure 2: Grid amplification - 112x95 points and boundary conditions

The boundary conditions are defined as follows: at the inlet parabolic condition
for velocity and extrapolation for pressure, at the walls no-slip conditions for veloc-
ity and extrapolation for pressure and at the output extrapolation for velocity and
a fixed pressure p0, which is its initial value. These conditions seem to be good for
convergence.

The set of approximated governing equations is solved using the low-storage
simplified Runge-Kutta time-stepping scheme to solve for velocities as follow
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where
−→
W = (u, v)T is the vector of convective variables, ∆t the time step,

−→
R ij

residual vector, and αk the time coefficients, which for the 3 stage second order
case are α1 = 1/2, α2 = 1/2, and α3 = 1. The simplified Runge-Kutta method is
characterized by its low operation count and low storage requirements; more than
two stages are employed to extend the stability region. For pressure the Relaxed
Gauss-Seidel approach (SUR) is applied with w = 0.9.
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3. Numerical Results

Tests are carried out for a 3 : 1 expansion for Reynolds numbers ranging from 40
to 140. Figure 3 shows the steady solution for the Newtonian case. The results for
Re = 40 (3.a) and Re = 50 (3.b) compare very well with those obtained by Luo [5].
The results for Re = 80 (3.c) and Re = 140 (3.d) compare with those obtained by
Fearn et al. [2]; they found that for Re > 140 the flow becomes unsteady. As can be
seen, the recirculations for Re = 40 are symmetric and for Re = 50 an asymmetry
appears. It is evident that there is a critical Reynolds (Rec) in which the solution
becomes asymmetric.

Figure 3: Streamlines for newtonian flow; a) Re = 40, b) Re = 50, c) Re = 80, d)
Re = 140 and e) Re = 140 (symmetric solution)

In the work of Fearn et al. [2], an expansion with the same conditions was
analyzed. They made both numerical simulations and experiments and obtained
Rec = 40.45 and 47.3, respectively. Luo [5] found Rec = 46.19. So, the results
presented in this work are in agreement with those works.

According to Fearn et al. [2], above the Rec the equations have three solutions,
of which one of them is unstable. As a consequence of the geometry symmetry, the
two stable solutions above Rec are a pair of asymmetric solutions of opposite senses
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with respect to the line of symmetry. Figure (3.e) presents the symmetric solution
for Re = 140; when a perturbation occurs, the flow turns unstable.

Pak et al. [6] made experimental tests using a Newtonian fluid, a purely viscous
non-Newtonian fluid (pseudoplastic) and a viscoelastic non-Newtonian fluid. They
found out that for the purely viscous non-Newtonian fluid the reattachment length
and the size of the vortex are almost the same that for a Newtonian fluid in the
laminar situation. Otherwise, the flow becomes turbulent earlier with a decrease of
the power-law exponent n. For the viscoelastic flow, the reattachment lengths for
the laminar flow are shorter than those for Newtonian flow for the same Reynolds
Number.

Figure 4 shows a comparison using Re = 40 for a pseudoplastic with n = 0.5,
a Newtonian (n = 1), and a dilatant fluid with n = 2. As the flow is symmetric,
only the upper part is shown. The recirculations present differences in size: for
the pseudoplastic case the vortex is rounder than for the Newtonian, and for the
dilatant it is thinner. Nevertheless, the Rec for these cases does not have significant
changes compared to the Newtonian case.

Figure 4: Streamlines and corresponding velocity profiles (at line x-x) comparison
for Re = 40; a) pseudoplastic (n = 0.5), b) Newtonian (n = 1) and c) dilatant
(n = 2)

Tanner [7] presented an adimensionalized analytical solution for the velocity
profiles for a channel. The output profiles obtained for the solutions shown in figure
4 are compared with analytical profiles indicated in figure 5, and a good agreement
is noticed. These results prove that the code can well represent power-law flows in
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channels. The analytical solution is given by
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where p′ is the magnitude of the pressure drop per unit length in the axial direction
and H the channel width. Dimensionless velocity profiles u(y)/ū for n=0.5, 1. and
1.5 are plotted, where the mean velocity is ū = Q/πH2. The rate of discharge is
given by
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Figure 5: Comparison of numerical and analytical velocity profiles

4. Conclusions

Numerical results show that the method used here is able to well represent incom-
pressible Newtonian as well as non-Newtonian (power-law) flows in expansions at
low Reynolds numbers. When increasing the Reynolds number, there will appear
more instabilities and the problem probably becomes tridimensional and time de-
pendent (with oscillating behavior).

The power-law model is simple to be employed and represents well some non-
Newtonian behavior. Otherwise, for more complex non-Newtonian flow the Herschel-
Bulkley or Maxwell models can be employed; it is the goal of our future works.
Besides, there is a notable lack of experimental data about this non-Newtonian
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problem.
It is the opinion of the authors that the obtained results are encouraging. How-

ever, much work still remains to compare such complex non-Newtonian flow behav-
ior, where the investigations are still recent and there isn’t much available informa-
tion in the literature.

Resumo. O objetivo deste trabalho é analisar fluxos de fluidos newtonianos e
não newtonianos em canais com expansão brusca. As equações governantes são re-
solvidas em diferenças finitas usando o esquema expĺıcito de Runge-Kutta na forma
adimensionalizada onde a continuidade e a quantidade de movimento são resolvidas
simultaneamente ao logo dos pontos da malha. O modelo power-law é aplicado para
prever comportamentos pseudoplásticos e dilatantes em tais expansões. O Reynolds
cŕıtico, em que o fluxo se torna assimétrico, é analisado. Resultados numéricos para
uma razão de expansão de 3 : 1 apresentam boa concordância com dados numéricos
encontrados na literatura para números de Reynolds variando entre 40 e 140 para
fluxo newtoniano. Para o caso não newtoniano, uma comparação com a solução
anaĺıtica é apresentada.
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