
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FREDERICO SCHARDONG

Taming NFV Orchestration using
Decentralised Cognitive Components

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Ingrid Oliveira de Nunes
Coadvisor: Prof. Dr. Alberto Egon
Schaeffer-Filho

Porto Alegre
November 2018

CIP — CATALOGING-IN-PUBLICATION

Schardong, Frederico

Taming NFV Orchestration using Decentralised Cogni-
tive Components / Frederico Schardong. – Porto Alegre:
PPGC da UFRGS, 2018.

81 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Ingrid Oliveira de Nunes; Coadvisor: Alberto
Egon Schaeffer-Filho.

1. Network Functions Virtualisation. 2. Multi-agent Systems.
3. BDI Architecture. I. Nunes, Ingrid Oliveira de. II. Schaeffer-
Filho, Alberto Egon. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“There are others which are likely to startle us out of our complacency, and

perhaps ultimately to drive us out of all the hypotheses in which we have hitherto

found refuge into that state of thoroughly conscious ignorance which is the

prelude to every real advance in knowledge.”

— JAMES CLERK MAXWELL

ACKNOWLEDGMENTS

I would like to especially thank Professors Ingrid Oliveira de Nunes and Alberto

Egon Schaeffer-Filho for their guidance and patience. Through their encouragement and

professionalism, I have learned numerous lessons about academia and science.

I would like to thanks the members of the examining committee, Marcelo Caggiani

Luizelli, Felipe Meneguzzi and Weverton Cordeiro for their time reading my dissertation

and giving valuable feedback. Also, I thank my colleagues and friends João, Vanius,

Jhonny and Fernando of the Prosoft research group from Universidade Federal do Rio

Grande do Sul (UFRGS) for the immeasurably valuable conversations, discussions and

guidance. I thank my fried Matheus F. Fröhlich for sharing ideas, time and the path of

pursuing a master degree. Thanks to all the staff from UFRGS, especially from Instituto

de Informática (INF). Also, thanks to CNPq and CAPES for financially supporting this

research.

Finally, I want to thank my parents Valnir and Vera, brothers Gustavo and Marcelo,

and girlfriend Geovana, whose unconditional support, understanding and encouragement

were of paramount importance for the conclusion of this dissertation.

ABSTRACT

Network Functions Virtualisation (NFV) decouples network functions from physical de-

vices, simplifying the deployment of new services. Typical network functions, like fire-

walls, traffic accelerators, intrusion detection systems and intrusion prevention systems,

are traditionally performed by proprietary physical appliances, which must be manually

installed by network operators. Their deployment is challenging because they have spe-

cific chaining requirements. As opposed to traditional physical appliances, virtual net-

work functions (VNFs) can be dynamically deployed and reconfigured on demand, pos-

ing strict management challenges to networked systems. The selection of the most ap-

propriate VNFs to achieve a particular objective, the decision on where to deploy these

VNFs and through which paths they will communicate are the responsibilities of an NFV

orchestrator. In this dissertation, we propose to orchestrate VNFs using interacting cogni-

tive components structured with the belief-desire-intention (BDI) architecture, leading to

emergent solutions to address network challenges. The BDI architecture includes a rea-

soning cycle, which provides agents with rational behaviour, allowing agents to deal with

different scenarios in which flexible and intelligent behaviour is needed. We extend the

NFV architecture, replacing its centralised orchestrator with BDI agents. Our proposal in-

cludes a reverse auction protocol and a novel bidding heuristic that allow agents to make

decisions regarding the orchestration tasks. Finally, we provide a testbed that integrates a

platform for developing BDI agents with a network emulator, allowing agents to control

VNFs and perceive the network. This testbed is used to implement VNFs and empirically

evaluate our theoretical model in a distributed denial-of-service (DDoS) attack. The eval-

uation results show that a solution to the DDoS attack emerges through the negotiation of

agents, successfully mitigating the attack.

Keywords: Network Functions Virtualisation. Multi-agent Systems. BDI Architecture.

Orquestrador NFV descentralizado baseado em raciocínio BDI

RESUMO

Network Functions Virtualisation (NFV) separa as funções de rede dos dispositivos físi-

cos, simplificando a implantação de novos serviços. As típicas funções de rede, como

firewalls, aceleradores de tráfego, sistemas de detecção de intrusão e sistemas de preven-

ção de intrusões, são tradicionalmente realizadas por equipamentos físicos proprietários,

que devem ser instalados manualmente pelos operadores de rede. A implantação de equi-

pamentos físicos é desafiadora porque eles têm requisitos específicos de encadeamento e

ordenação. Ao contrário dos equipamentos físicos tradicionais, as funções de rede vir-

tuais (VNFs) podem ser dinamicamente implementadas e reconfiguradas sob demanda,

colocando desafios de gerenciamento rigorosos aos sistemas em rede. A seleção das

VNFs mais apropriadas para atingir um objetivo específico e a decisão sobre onde im-

plantar essas VNFs e por quais caminhos elas se comunicarão são responsabilidades de

um orquestrador de NFV. Nesta dissertação, propomos orquestrar VNFs usando compo-

nentes cognitivos interativos estruturados com a arquitetura belief-desire-intention (BDI),

levando a soluções emergentes para enfrentar os desafios da rede. A arquitetura BDI inclui

um ciclo de raciocínio que fornece aos agentes um comportamento racional, permitindo

que lidem com diferentes cenários nos quais o comportamento flexível e inteligente é ne-

cessário. Estendemos a arquitetura NFV substituindo seu orquestrador centralizado por

agentes BDI. Nossa proposta inclui um protocolo de leilão reverso e uma nova heurística

de licitação que permite que os agentes tomem decisões sobre as tarefas de orquestração.

Por fim, nós fornecemos uma plataforma de testes que integra uma plataforma para o

desenvolvimento de agentes BDI com um emulador de rede, permitindo que os agentes

controlem as VNFs e percebam a rede. Essa plataforma de testes é usada para imple-

mentar VNFs e avaliar empiricamente nosso modelo teórico em um ataque de negação de

serviço distribuído. Os resultados da avaliação mostram que uma solução para o ataque

DDoS surge através da negociação de agentes, mitigando com sucesso o ataque.

Palavras-chave: Network Functions Virtualisation, Sistemas Multi-Agente, Arquitetura

BDI.

LIST OF ABBREVIATIONS AND ACRONYMS

IaaS Infrastructure as a Service

NaaS Network as a Service

CAPEX CAPital EXpenditure

OPEX OPerating EXpenditure

NFV Network Functions Virtualisation

NS Network Services

IDS Intrusion Detection System

IPS Intrusion Prevention System

NAT Network Address Translation

VNF Virtual Network Function

SLA Service-Level Agreement

BDI Belief-Desire-Intention

ETSI European Telecommunications Standards Institute

DDoS Distributed Denial-of-Service

NFVI-PoP Network Functions Virtualisation Infrastructure Point of Presence

FIPA Foundation of Intelligent Physical Agents

ACL Agent Communication Language

NOS Network Operating System

REST REpresentational State Transfer

API Application Programming Interface

IP Internet Protocol

TSP Telecommunications Service Provider

ETSI ISG NFV ETSI Industry Specification Group for NFV

MANO MANagement and Orchestration

NFVI Network Functions Virtualisation Infrastructure

NF Network Function

DHCP Dynamic Host Configuration Protocol

PNF Physical Network Function

OSS Operations Support System

BSS Business Support Systems

FCAPS Fault, Configuration, Accounting, Performance, Security

VNFM VNF Manager

NFVO NFV Orchestrator

VIM Virtualised Infrastructure Manager

VNFD Virtualised Network Function Descriptor

VNF-FG VNF Forwarding Graph

SDN Software-Defined Networking

SFC Service Function Chain

CDN Content Delivery Network

QoS Quality of Service

KQML Knowledge Query and Manipulation Language

CDPS Cooperative Distributed Problem Solving

CNET Contract Net

DPI Deep Packet Inspector

CFP Call For Proposal

LIST OF FIGURES

Figure 2.1 NFV architectural framework (ETSI ISG NFV, 2014a)................................18
Figure 2.2 Forwarding graph and its supporting infrastructure (ETSI ISG NFV, 2013) 23
Figure 2.3 Overview of the BDI architecture (WOOLDRIDGE; JENNINGS, 1995)....25
Figure 2.4 The FIPA Contract Net (LANGERMAN, 2005) ...28

Figure 3.1 Extended NFV architecture ...31
Figure 3.2 Overview of the auction process..35
Figure 3.3 An NFV architecture based on BDI agents. ..37

Figure 5.1 DDoS resilience strategy..48
Figure 5.2 Network topology implemented in our testbed. ..54
Figure 5.3 Emergent selection and resource allocation. ...56
Figure 5.4 Traffic from the switch towards the HTTP and video server.57
Figure 5.5 Time taken by the Rate Limiter to apply the throttling strategy.62
Figure 5.6 Memory consumption and number of messages exchanged.63

LIST OF TABLES

Table 4.1 Notation for resources and network measurements.39
Table 4.2 Definition of mathematical functions and logic predicates.44

Table 5.1 Plans of the Rate Limiter capability. ...49
Table 5.2 Belief revision and goal generation functions of the Link Monitor capability.50
Table 5.3 Plan of the Anomaly Detector capability...51
Table 5.4 Plan of the Classifier capability...51
Table 5.5 Plan of the Load Balancer capability. ...52
Table 5.6 VNF requirements and supported workloads..55
Table 5.7 Preference values and latency constraints of goals. ..55
Table 5.8 Costs of achieving the auctioned goals and bid utility.59

Table 6.1 Comparison of related work. ...66

CONTENTS

1 INTRODUCTION...12
1.1 Problem Statement and Limitations of Related Work ..13
1.2 Proposed Solution and Overview of Contributions ...15
2 BACKGROUND..17
2.1 Network Functions Virtualisation ...17
2.1.1 Benefits of the NFV architecture ...17
2.1.2 Architectural Framework ...18
2.1.3 NFV Orchestration...21
2.2 Autonomous Agents and Multi-agent Systems...22
2.2.1 Key Concepts and Definitions..23
2.2.2 BDI Architecture..24
2.2.3 Negotiation in Multi-agent Systems ..26
2.3 Final Remarks ...30
3 NFV ORCHESTRATION BASED ON BDI REASONING....................................31
3.1 Extended NFV Architecture ..31
3.2 BDI Agent Formalisation ...32
3.3 BDI Agent Interaction ..34
3.3.1 Auction Process: the NFV-A Protocol...34
3.3.2 Bid Evaluation ...37
3.4 Final Remarks ...38
4 BIDDING HEURISTIC ...39
4.1 Notation and Definitions...39
4.2 Bidding Heuristic ..40
4.2.1 Evaluation of Computational Requirements ..41
4.2.2 Bid Components ..41
4.3 Final Remarks ...45
5 TESTBED AND EVALUATION ...47
5.1 Scenario: DDoS Resilience Strategy ...47
5.2 Prototype Implementation ...53
5.3 Simulation Settings ...54
5.4 Evaluation Results ..55
5.4.1 Emergent Behaviour ..56
5.4.2 Auctions ...58
5.4.3 Scalability Analysis ...61
5.5 Final Remarks ...63
6 RELATED WORK ...64
6.1 Existing Solutions to the Automation of the Orchestration of VNFs64
6.2 Discussion ..65
6.3 Final Remarks ...66
7 CONCLUSION AND FUTURE WORK ..67
7.1 Contributions...67
7.2 Future Work ..68
REFERENCES...70
APPENDIX A — RESUMO ESTENDIDO...76

12

1 INTRODUCTION

Over the years, the complexity and size of networks have drastically increased and

so did the requirement for more flexible management. Physical appliances (also known

as middleboxes) are proprietary highly specialised products that require specific chain-

ing, physical installation, and their functionality cannot be easily changed. Moreover,

the increasing demand for more diverse and short-lived networks to handle high data

rates, such as in infrastructure as a service (IaaS) and network as a service (NaaS) (MI-

JUMBI et al., 2016), requires network operators to deploy rapidly and operate complex

network equipments, leading to high capital expenditure (CAPEX) and operating expen-

diture (OPEX) (VERBRUGGE et al., 2006).

To address these issues, network functions virtualisation (NFV) has been pro-

posed as a way to decouple network services (NS) from physical devices through vir-

tualisation (ETSI ISG NFV, 2013; HERRERA; BOTERO, 2016). There is a broad set of

services that has been traditionally performed by middleboxes—e.g., firewalls, intrusion

detection systems (IDS), intrusion prevention systems (IPS), traffic shaping, network ad-

dress translation (NAT), traffic accelerators, caches and proxies—that can be virtualised

into cheap and easily deployable virtual network functions (VNFs) (MARTINS et al.,

2014). Differently from middleboxes, multiple virtualised network functions can share a

single physical machine, enabling the use of computational power that would be other-

wise lost in proprietary middleboxes (LUIZELLI et al., 2017). The evolution of networks

into software-based functions and services are concrete steps towards future networks.

However, VNFs need to be managed and composed in meaningful ways such that

the desired functionalities are achieved. This process is called NFV orchestration. NFV

orchestration can be decomposed into three core problems: (i) automatic selection of

VNFs; (ii) VNF placement in the virtualised network; and (iii) chaining of VNFs (MI-

JUMBI et al., 2016). Typically, humans design a network forwarding graph (ETSI ISG

NFV, 2014b) of VNFs, that is, decide how VNFs are chained. However, as network

complexity increases and service-level agreement (SLA) requirements over on-demand

networks become more strict, guaranteeing the orchestration of virtual nodes in real-time

becomes vital for carriers and service providers. Nonetheless, NFV orchestration schemes

proposed so far do not explore the benefits of autonomous components, therefore re-

lying on humans to enforce the SLAs, which is often impractical (HUIN; JAUMARD;

GIROIRE, 2017; YASREBI et al., 2015; CLAYMAN et al., 2014).

13

This dissertation explores the orchestration problem from the perspective of au-

tonomous components. Our proposal includes extensions to the NFV architecture (ETSI

ISG NFV, 2014b) to use the belief-desire-intention (BDI) architecture (RAO; GEORGEFF

et al., 1995) to perform NFV orchestration. The BDI architecture provides intelligent

agents with a robust and flexible behaviour while simplifies their development by sepa-

rating agents’ actions in the environment from their internal reasoning. A decentralised

orchestrator composed of autonomous BDI agents can arguably improve the orchestra-

tion of virtualised resources as their emergent behaviour allow them to adapt to unfore-

seen scenarios at run time. Furthermore, we introduce an auction heuristic used by these

autonomous agents to collectively attack the selection, placement and chaining problems.

The remainder of this chapter is organised as follows. Section 1.1 presents the

research question addressed in this work and limitations of existing approaches and Sec-

tion 1.2 gives an overview of our proposed solution and a list of the contributions of this

dissertation.

1.1 Problem Statement and Limitations of Related Work

Centralised solutions to the selection, placement and chaining problems have been

proposed. Nonetheless, they have natural drawbacks, for instance, inherited fault intoler-

ance as a single component controls the allocation of resources in the network and might

require to halt completely due to hardware or configuration changes. In a decentralised

solution, if a component of the system fails, then others perceive and assume its functions,

thus maintaining overall availability. One of the consequences of this characteristic is that

the different parts that compose a decentralised system can be updated/changed without

affecting the system. In addition, decentralised systems can easily scale to accommodate

changes in the size of what they are trying to solve. Based on these issues, we state our

research question below.

Research Question: How to address the selection, placement, and chaining problems

using a decentralised approach solution?

Different solutions to the orchestration core problems have been proposed, ranging

from the use of policies to machine learning techniques. We list the limitations of existing

work next.

14

Existing approaches are limited to centralised orchestrators. By centralising

the orchestrator, one has to guarantee it has global knowledge and capacity to solve the

orchestration problems altogether. Moreover, a system made of a single component is

not resilient. If it fails, there will be no other component to assume its functions. A

decentralised solution, in contrast, address such limitations and can flexibly reorganise

itself to handle failure.

Most of existing the approaches do not consider all the problems involved

in orchestrating VNFs. Most of the existing approaches do not consider the selection,

placement and chaining problems jointly. Some approaches focus on the placement of

VNFs, while others propose methods to automate VNF chaining. More complete solu-

tions introduce techniques to solve both the placement and selection problems. These

research efforts have the selection of VNFs already made as part of the input, which

prevents the orchestration of VNFs in real-time to handle new scenarios. Furthermore,

lifecycle management of VNFs is poorly explored. As such, most efforts to automate the

orchestration of VNFs consider only the initial deployment of VNFs. The automation

of placement and chaining is a major step towards the creation of robust orchestrators.

Nonetheless, it is crucial to have orchestrators that are capable of selecting VNFs to be

deployed, dealing with dynamic changes in the network, and with the deployment, con-

figuration, monitoring and displacement of VNFs. Combining the solution of all these

problems into a centralised application might be unfeasible, one would have to ensure

the solutions of these problems do not conflict and coordinate them at design time. Em-

bedding the solution of those problems into autonomous software components that com-

municate and share information would naturally inherit the benefits of a decentralised

architecture.

There is a lack of solutions that address the orchestration problems from a

multi-agent perspective. Agent technology is a promising approach to provide a de-

centralised solution to the three core problems, which has not been explored yet in this

context. The dynamicity and adaptiveness provided by decentralised autonomous agents

can significantly benefit the management and orchestration of VNFs. The emergent be-

haviour of agents enables the system to solve issues not predicted at design time.

15

1.2 Proposed Solution and Overview of Contributions

As discussed in the previous section, there are many issues that must be addressed

with the adoption of a centralised solution to solve NFV core problems, such as the com-

putation of all the required information from VNFs in order to solve such orchestration

problems. Thus, considering the research question presented in the previous section and

the potential of decentralised NFV orchestrators, this dissertation proposes a decentralised

approach to NFV orchestration using belief-desire-intention (BDI) reasoning, address-

ing the selection, placement and chaining problems through the interaction among au-

tonomous software agents. In our model, each Network Functions Virtualisation Infras-

tructure Point of Presence (NFVI-PoP), i.e., each location where a VNF can be deployed,

is represented by a BDI agent, which posses human-like rationale provided by a reason-

ing cycle, is aware of its needs and can perceive its environment. Agents communicate

and through an auction protocol attack the selection, placement and chaining problems

collectively, enabling VNFs to deal with unforeseen situations, providing resilience and

robustness to the orchestrated resources.

Finally, we evaluate our proposed solution in a DDoS attack scenario. Consider-

ing the adaptive nature of BDI agents, they shall be able to address unforeseen issues.

Moreover, we propose the development of a decentralised NFV orchestrator composed of

BDI agents, whose interactions allow them to attack the selection, placement and chaining

problems. In summary, the main contributions of this dissertation are:

• A decentralised NFV orchestrator, which aggregates multiple autonomous agents

in a multi-agent system where they interact, negotiate and make decisions, emerging

into a decentralised NFV orchestrator.

• A formal model that describes both the physical and virtual networks as well as

the BDI agents.

• A bidding heuristic that allow agents to attack the selection, placement and chain-

ing problems.

• An integrated testbed, allowing agents in the BDI4JADE framework to perceive

and control VNFs in Mininet.

• An implementation of the proposed NFV orchestrator and reverse-auction

heuristic to empirically test and validate the proposed techniques.

The remaining of this dissertation is organised as follows. In Chapter 2, we present

16

the background and review related work. We introduce basic concepts related to NFV, au-

tonomous agents and multi-agent systems as well as the BDI architecture and negotiation

in multi-agent systems. In Chapter 3, we formalise the agent-related concepts and present

our extensions to the NFV architecture, which has its centralised orchestrator replaced by

autonomous agents. Chapter 4 details the auction heuristic used by the autonomous agents

to negotiate and attack the selection, placement and chaining problems. From these defi-

nitions, Chapter 5 presents the implementation of a testbed where the theoretical concepts

are evaluated in a DDoS scenario. VNFs are implemented to perform specific network

functions that interact to mitigate the attack. Additionally, we review some important

related work where automation to the orchestration of VNFs have been proposed, dis-

cussing their limitations in Chapter 6. Finally, conclusion and future work directions are

presented in Chapter 7.

17

2 BACKGROUND

In this chapter, we present the fundamental concepts for understanding this re-

search. It is divided into two topics: network infrastructure and autonomous agents.

Firstly, we introduce the network infrastructure concepts of NFV. Secondly, we detail

autonomous agents and multi-agent systems concepts as well as the BDI architecture and

multi-agent negotiations.

2.1 Network Functions Virtualisation

In this section, we detail the NFV architecture, describing its components and pro-

viding an overview of their relationship. We begin by introducing the motivation behind

NFV and its benefits. Then we detail the architectural components and describe the or-

chestration of physical and virtual infrastructure as well as the orchestration of network

services (NS).

2.1.1 Benefits of the NFV architecture

Network Functions Virtualisation (NFV) has been proposed as an alternative to

traditional service provisioning in the telecommunications industry (GUERZONI et al.,

2012). Traditional service provisioning has been based on the deployment of physical

proprietary devices, which have specific chaining requirements that must be reflected in

the network topology (MIJUMBI et al., 2016). In addition, the lack of skilled profession-

als and the cost of offering the required space and energy have led to low service agility

and high dependency on specialised hardware (HAN et al., 2015).

NFV decouples software from hardware, enabling software elements to advance

independently from hardware. This brings flexibility to the network as it allows the net-

work function software to be virtually deployed anywhere in the network topology on-

demand. Therefore, NFV gives network operators finer granularity so they can provide

resources according to the actual traffic (ETSI ISG NFV, 2013).

The NFV concept was coined in October 2012 when leading telecommunications

service providers (TSPs) authored a white paper asking for industrial and academic atten-

tion towards NFV (GUERZONI et al., 2012). In November 2012, the European Telecom-

18

Figure 2.1: NFV architectural framework (ETSI ISG NFV, 2014a)

ETSI

ETSI GS NFV 002 V1.2.1 (2014-12) 14

Figure 4 shows the NFV architectural framework depicting the functional blocks and reference points in the NFV
framework. The main (named) reference points and execution reference points are shown by solid lines and are in the
scope of NFV. These are potential targets for standardization. The dotted reference points are available in present
deployments but might need extensions for handling network function virtualisation. However, the dotted reference
points are not the main focus of NFV at present. The architectural framework shown focuses on the functionalities
necessary for the virtualisation and the consequent operation of an operator's network. It does not specify which
network functions should be virtualised, as that is solely a decision of the owner of the network.

Computing
Hardware

Storage
Hardware

Network
Hardware

Hardware resources

Virtualisation Layer
Virtualised

Infrastructure
Manager(s)

VNF
Manager(s)

NFV
Orchestrator

OSS/BSS

NFVI

VNF 3VNF 1

Execution reference points Main NFV reference pointsOther reference points

Virtual
Computing

Virtual
Storage

Virtual
Network

NFV Management and Orchestration

EM 2 EM 3EM 1

Or-Vi

Or-Vnfm

Vi-Vnfm

Os-Ma

Ve-Vnfm

Nf-Vi

Vn-Nf

Vl-Ha

Service, VNF and
Infrastructure
Description

VNF 2

Figure 4: NFV reference architectural framework

The following clauses give an overview of the functional blocks in the architectural framework.

7.2.2 Virtualised Network Function (VNF)

A VNF is a virtualisation of a network function in a legacy non-virtualised network. Examples of NFs are 3GPP™
Evolved Packet Core (EPC) [i.2] network elements, e.g. Mobility Management Entity (MME), Serving Gateway
(SGW), Packet Data Network Gateway (PGW); elements in a home network, e.g. Residential Gateway (RGW); and
conventional network functions, e.g. Dynamic Host Configuration Protocol (DHCP) servers, firewalls, etc.
ETSI GS NFV 001 [3] provides a list of use cases and examples of target network functions (NFs) for virtualisation.

Functional behaviour and state of a NF are largely independent of whether the NF is virtualised or not. The functional
behaviour and the external operational interfaces of a Physical Network Function (PNF) and a VNF are expected to be
the same.

A VNF can be composed of multiple internal components. For example, one VNF can be deployed over multiple VMs,
where each VM hosts a single component of the VNF. However, in other cases, the whole VNF can be deployed in a
single VM as well. Detailed implementation methods are outside the scope of the present document.

7.2.3 Element Management (EM)

The Element Management performs the typical management functionality for one or several VNFs.

munications Standards Institute (ETSI) was chosen as the entity to host the Industry Spec-

ification Group for NFV (ETSI ISG NFV), which is responsible for developing NFV stan-

dards. ETSI has released multiple documents1 specifying different aspects of the NFV

architecture, which include an infrastructure overview, architectural framework, manage-

ment and orchestration (MANO), security and trust, resilience and documents regarding

the hypervisor and network domains of the infrastructure (MIJUMBI et al., 2016).

2.1.2 Architectural Framework

ETSI defines three main components to the NFV architecture (ETSI ISG NFV,

2013; ETSI ISG NFV, 2014a): (i) Network Functions Virtualisation Infrastructure

(NFVI); (ii) Virtualised Network Functions (VNFs); and (iii) Management and Orches-

tration (MANO). These are further broken down into functional elements and connection

points (also called reference points), comprising the NFV architectural framework, as

shown in Figure 2.1. Implementation references of these blocks and their connections are

publicly available.1

1http://www.etsi.org/standards-search#search=nfv

19

• The Network Functions Virtualisation Infrastructure (NFVI) represents all the hard-

ware and software, which comprise the infrastructure where VNFs are deployed.

The NFVI can span over different locations (e.g., different servers or data cen-

tres), each represented as a different NFVI-PoP where a VNF can be deployed.

The physical resources include computing power, storage and network, provided

by commercial-off-the-shelf (COTS) equipment. The virtual computing, storage

and network elements are abstractions allowed by the virtualisation layer (hyper-

visor). The virtualisation layer decouples the virtual elements from the underlying

physical resources (ETSI ISG NFV, 2014a).

• A Virtualised Network Function (VNF) is the virtualisation of a network function

(NF), which is a functional block of a network infrastructure that has well-defined

behaviour and external interfaces. Examples of NFs are elements in a home net-

work, such as dynamic host configuration protocol (DHCP) servers, firewalls, etc.

The functional behaviour of an NF is usually independent of whether it is virtu-

alised or not. Hence, the functional behaviour and external interfaces of a physical

network function (PNF) and of a VNF are expected to be the same (ETSI ISG NFV,

2014a). It is fundamental that VNFs present near identical performance when com-

pared to PNFs such that the migration from traditional network architectures to

NFV does not impact on the overall service performance. However, current solu-

tions have not reached this performance milestone yet (HAN et al., 2015).

• The Management and Orchestration (MANO) entity is responsible for the orches-

tration and lifecycle management of physical and virtualised resources that support

the infrastructure virtualisation, and for the lifecycle management of VNFs. The

NFV-MANO specification defines interfaces that allow the communication with

the components that make up MANO as well as with other entities of the NFV ar-

chitecture, i.e., traditional network management systems such as operations support

system (OSS) and business support systems (BSS). Moreover, it includes databases

that describe how VNFs work, their resources, lifecycle properties and information

regarding the required instantiation and configuration to allow groups of VNFs to

work together (ETSI ISG NFV, 2014a; ETSI ISG NFV, 2014b).

The main NFV reference points (bold lines in Figure 2.1) are highly important

to the NFV architecture, each having a model specification document providing detailed

information on operations that must be supported, their inputs and outputs as well as their

parameters.

20

One of the entities that is part of the NFV architectural framework is the Element

Management (EM). The EM is responsible for fault, configuration, accounting, perfor-

mance and security (FCAPS) management of a VNF. EM configures, monitors and col-

lects measurements from the VNF and exchanges information with the VNF Manager

(VNFM), enabling MANO to make decisions and take actions to guarantee security, re-

silience and SLA requirements (ETSI ISG NFV, 2014b).

The OSS/BSS block represents traditional network management functions and busi-

ness support functions that are not explicitly captured in the NFV architectural framework

but are expected to have information exchanges with other components of this architec-

ture. The interfaces between OSS/BSS and the other elements is yet to be fully defined.

Each VNF instance is assumed to have an associated VNF Manager (VNFM). A

VNFM can manage one or more VNFs. As pointed out by ETSI, most VNFM functions

are assumed to be generic to any VNF. This entity is directly responsible for the following

VNF operations: instantiation (including applying any configuration required for the in-

stantiation); software upgrade; instance modification; instance scaling up/down; instance

termination; management of the integrity of the VNF instance through its lifecycle and

more. All the information regarding these operations is captured in a template called vir-

tualised network function descriptor (VNFD) (ETSI ISG NFV, 2016b), which supports

the provision of virtual resources for the instantiation of VNFs, which is done by the VIM.

The Virtualised Infrastructure Manager is responsible for managing the interac-

tion of a VNF with computing, storage and network resources under its authority. The

NFV orchestrator might use multiple VIMs as a VIM might be specialised in a certain type

of NFVI resource, or if resources in an NFVI-PoP are not handled by a single VIM. This

entity is responsible for orchestrating the allocation/upgrade/release of NFVI resources

and managing the association of the virtualised resources to the physical resources.

The Service, VNF and Infrastructure Description is an aggregation of catalogues

and repositories that provide key information to the NFV-MANO components (NFV Or-

chestrator, VNFM and VIM). We detail bellow the repositories and catalogues represented

by this component.

• VNF Descriptor: guarantees the flexibility and portability of VNF instances on

multi-vendor NFVI environments, e.g., compute resources from different vendors,

diverse virtual network technologies, etc. Hardware resources have to be properly

abstracted, and the VNF requirements have to be specified using such abstractions.

The VNFD repository might contain specifications of different versions of an NF.

21

An NF might be described by various VNFD, each containing details regarding

different execution environments (e.g., different hypervisors).

• VNF Catalogue: repository of all the available VNFs. This catalogue is composed

of VNFD, software images, manifest files, etc. Both NFVO and VNFM can query

the VNF Catalogue to retrieve a VNFD.

• NFVI Resource: repository that tracks all the available and reserved/allocated re-

sources of the virtualised infrastructure. It plays an important role in supporting the

NFVO operations.

• NFV Instances: repository that holds information of all VNF instances. Records in

this repository are updated during the lifecycle of the respective VNFs, reflecting

lifecycle management operations.

The NFV Orchestrator has two responsibilities: (i) the orchestration of NFVI re-

sources through multiple VIMs; and (ii) the orchestration and lifecycle management of

network services, which are detailed next.

2.1.3 NFV Orchestration

There are three main problems associated with NFV orchestration: (i) selection;

(ii) placement; and (iii) chaining. The selection problem consists of logically selecting

and connecting virtual network functions (VNFs) in an ordered manner to provide some

service (MEDHAT et al., 2015). The solution to the selection problem is a virtualised net-

work function forwarding graph (VNF-FG), which is an ordered set of VNFs and their in-

terconnections represented as a graph, namely a VNF forwarding graph (VNF-FG) (ETSI

ISG NFV, 2013). Most NFV orchestration approaches assume that the VNF-FG is pro-

vided as an input to their solutions (LUIZELLI et al., 2015; SUN et al., 2016)

The orchestrator component centralises all the VNF-related management opera-

tions, from the instantiation of the VNFM to the allocation of virtual resources for the

instantiation of VNFs (in cooperation with the VNF’s respective VNFM). The alloca-

tion of the VNFs into the physical network is known as the placement problem. It has

drawn significant attention from researchers, as correctly provisioning resources and de-

ciding where a VNF should be located in the infrastructure is critical to the realisation of

NFV (XIA et al., 2015; BOUET et al., 2015; MOENS; TURCK, 2014).

According to ETSI, “a network service (NS) is a forwarding graph of network

22

functions (NFs) interconnected supported by the network infrastructure” (ETSI ISG NFV,

2013). NSs can be viewed as high-level NFs that represent end-to-end services.2 Hence,

NSs can be composed of not only NFs but also of other NF forwarding graphs. Nodes

(NFs and end-points) in an NS are connected by virtual links, which can be unidirec-

tional, bidirectional, multicast or broadcast. A simple example of an NS is a chain of

network functions such as firewall, load balancer and a set of content delivery network

(CDN) servers. Guaranteeing the correct interconnection of NFs is known as the chain-

ing problem, which is often tackled together with the placement problem as placing VNFs

many hops away could potentially compromise the performance and throughput of the

NS. The correct configuration, deployment and management of NSs are the culminat-

ing point towards an effective orchestrator. The chaining problem has attracted attention

from researchers, being tackled either alone (JIAO et al., 2017; THAI; LIN; LAI, 2016;

ALAMEDDINE; QU; ASSI, 2017) or along with the placement problem (CHI; HUANG;

LEI, 2015; ZHANG et al., 2016; KONG et al., 2017).

ETSI published a document (ETSI ISG NFV, 2016a) specifying the description

of NSs in the form of metadata, allowing the specification of NFs that compose an NS

and their connections. Moreover, it enables the description of more specific information

such as minimal quality of service (QoS) requirement of links that connect NFs. Fig-

ure 2.2 shows an end-to-end NS and the different layers involved. It includes a nested

VNF forwarding graph (VNF-FG). A VNF-FG is a forwarding graph composed entirely

of virtualised NFs. The nested VNF-FG (VNF-FG-2) could be composed of virtualised

resources managed by a different VIM or entirely managed by an orchestrator from an-

other vendor. Nevertheless, due to the mutually accepted standardised interface they work

together seamlessly (ETSI ISG NFV, 2013).

2.2 Autonomous Agents and Multi-agent Systems

In this section, we present the theoretical background of autonomous agents and

multi-agent systems required to understand our proposed solution, which is based on the

agent technology. In Section 2.2.1, we present key concepts and definitions. In Sec-

tion 2.2.2, we detail the components of the BDI architecture, which is used to structure

agents in our work. Finally, Section 2.2.3 describes negotiation in multi-agent systems,

2In the context of software-defined networking (SDN), an ordered set of service functions that compose
an end-to-end service is called a service function chain (SFC) (HALPERN; PIGNATARO, 2015).

23

Figure 2.2: Forwarding graph and its supporting infrastructure (ETSI ISG NFV, 2013)

End
Point

VNF-1
VNF-

2C

VNF-3

VNF-
2A

VNF-
2B

Virtualisation Layer

VNF-FG-2

End-to-end network service

Physical link
Logical link
Virtualisation

End
Point

NFVI-PoP

Hardware
Resources
in Physical
Locations

Legend

given that our solution involves negotiation among agents in order to allocate tasks to be

accomplished.

2.2.1 Key Concepts and Definitions

An agent is an autonomous computer system, i.e., it is capable of taking indepen-

dent actions in order to satisfy its design objectives, rather than being told explicitly what

to do at any given time. A collection of agents that interact with each other comprise

a multi-agent system. Interactions usually take place through the exchange of messages

over some media, i.e., a computer network. Similarly to people, agents must cooperate,

coordinate and negotiate in order to successfully interact. An agent is defined as follows.

Definition 1 (Agent) An agent is a computer system that is situated in some environment,

and that is capable of autonomous action in this environment in order to meet its delegated

objectives (WOOLDRIDGE, 2009).

Although this definition is broad, according to Wooldridge (2009) there is much

debate and controversy on the definition of the term agent. An agent may be provided with

some form of intelligence, being in this case referred to as intelligent agent, which is a

computational entity with autonomous, reactive, proactive and social characteristics. An

autonomous agent functions without external intervention. A reactive agent can perceive

24

environmental changes and interact with its surroundings, through sensors and actuators,

respectively, while a proactive agent is able to take the initiative, i.e., take actions, towards

satisfying its design objectives. Furthermore, since a single agent might not be enough

to attack complex problems, an intelligent agent must have social ability to interact with

other agents to achieve its goals.

An agent interacts with its environment through actuators. In most domains, an

agent will not have complete control over its environment, at best it will have partial

control. Sensors are responsible for perceiving the environment. They allow an agent to

have a perspective of the environment it is embedded. In most cases, agents do not know

their surroundings entirely as sensors provide only a partial view. The knowledge agents

have about the environment are called beliefs. These do not represent the environment

as is, but rather how the agent believes it is. This is because sensors might not precisely

measure the environment or they can simply malfunction.

2.2.2 BDI Architecture

Belief-desire-intention (BDI) (RAO; GEORGEFF et al., 1995) is an architecture

that includes a reasoning cycle, which provides agents with rational behaviour. Imple-

menting Bratman (1987)’s model of practical reasoning, this architecture allows agents

to deal with different scenarios in which flexible and intelligent behaviour is needed. In

this section, we introduce the main components that comprise this architecture and briefly

explain its limitations.

The BDI architecture has three main components. The first is beliefs, which rep-

resent the information that an agent has about itself and its environment. A set of beliefs,

or belief base, can be implemented as a database, a set of logical expressions or other data

structure. Beliefs are not static, they can be added, removed or changed over time.

The second component corresponds to objectives to be achieved by an agent,

named desires or goals, representing the motivational state of an agent. They can be ex-

plicitly added to an agent by the designer or generated by the agent through interactions

with its surroundings or as result of agent actions.

The deliberative state of an agent is called intentions, the third main BDI compo-

nent. An intention is a goal that an agent is committed to achieve by the execution of a

sequence of actions (or plan), in a structured manner intending to achieve one or more

goals. That is, an agent is committed to achieve only what it believes that is feasible.

25

Figure 2.3: Overview of the BDI architecture (WOOLDRIDGE; JENNINGS, 1995).

For instance, an agent might have the belief ipAddressMalicious(ip), which identi-

fies an IP address that it considers ill-intentioned. This belief could result in the generation

of goal(ipBlock(ip)) to block the traffic that originates from this address. This desire can

be fulfilled by configuring a firewall application to drop any packet from the IP address

believed to be malicious.

These BDI components are connected through a reasoning cycle that is illustrated

in Figure 2.3 (WOOLDRIDGE; JENNINGS, 1995). A BDI agent, through sensors, per-

ceives events from its environment and updates its belief base using a belief revision func-

tion. Such beliefs, together with agent intentions, are used to update agent goals. This is

performed by the option generation function. The selection of goals to be achieved, i.e.,

those that will become intentions, is made by a filtering function. Finally, an action selec-

tion function chooses an appropriate sequence of actions, or plan, to achieve intentions.

The BDI architecture is a theoretical model associated with issues to be addressed

when it is instantiated. Besides implementation issues, the BDI reasoning cycle includes

many gaps to be fulfilled during the development of concrete BDI agents. An example

of such a gap is the action selection function (often referred to as plan selection), which

is responsible for selecting a suitable plan to achieve a goal. Often agents have multiple

plans that are appropriate for achieving a goal; however, selecting one of them might be

a challenging task due to unknown plan outcomes. Different approaches have tackled

this problem from various perspectives. For example, Singh et al. (SINGH et al., 2010)

focused on learning when a plan might fail, Baitiche et al. (BAITICHE; BOUZENADA;

SAÏDOUNI, 2017) focused on calculating the probability of plans to succeed, and Faccin

and Nunes (FACCIN; NUNES, 2015a) select the best plan in a given context considering

agent preferences over secondary goals.

Another limitation of the original BDI architecture is the absence of abstractions

26

to promote modular design and software reuse, which is important when considering the

development of real world applications. The capability concept was introduced by Busetta

et al. (1999) as a way to build modular structures, promoting reuse of agent components.

Capabilities include a subset of beliefs, goals and plans, which combined form an agent

building block. Capabilities and other extensions of the BDI architecture make it suitable

for modelling complex agents that together can address complex problems.

2.2.3 Negotiation in Multi-agent Systems

One of the key characteristics of an agent is its ability to communicate and be-

come social. Genesereth and Ketchpel (1994) suggest that an entity is a software agent

if and only if it communicates correctly in an agent communication language (FININ

et al., 1994). Similarly to communication in other areas of computer science, the com-

munication among agents has received significant attention (WOOLDRIDGE, 2009). In

this section, we detail the interaction among agents and how mechanism designs, such as

auction, are used to coordinate multi-agent systems.

Agent-to-Agent Interaction. Agent communication differs from traditional system-

to-system communication. In multi-agent systems, one cannot guarantee that some re-

quest from an agent will result in some response or action by the agent receiving such

request. Agents are autonomous software components that have their own will. As such,

one cannot assume that agents can send orders or somehow manipulate the internal affairs

of other agents (WOOLDRIDGE, 2009).

Different agent communication languages (ACL) have been proposed to support

and standardise the communication among agents. ACLs are languages designed to sup-

port collaboration, negotiation and information exchange. They run in a logical layer

on top of transport protocols such as TCP/IP and XML-RPC. These deal with commu-

nication issues on the transport level, while ACLs address communication issues on the

intentional and social level (CHAIB-DRAA; DIGNUM, 2002).

Much research has been done to support agent communication (FININ et al., 1994;

LABROU; FININ, 1997). One of the well-known message-based protocols for agent

communication is the knowledge query and manipulation language (KQML) (FININ et

al., 1994). This ACL defines a broad range of performatives, i.e., communication prim-

itives. These allow agents to, for example, send unicast and broadcast messages asking

other agents to perform a certain task or recommend agents who can. This language

27

does not specify the message content format, it creates a container in which messages are

embedded in.

Similarly to KQML, the FIPA Agent Communication Language (ACL)3 specifies

standards associated with message exchange. This specification is implemented in many

of the existing agent and BDI platforms (WOOLDRIDGE, 2009). The main difference

between this language and KQML resides in its comprehensive formal semantics based

on Cohen and Levesque’s theory of speech acts as rational action (COHEN; LEVESQUE,

1988). This semantics was named SL and provides BDI-style primitives, allowing the

representation of beliefs, uncertain beliefs, desires and actions (WOOLDRIDGE, 2009;

CHAIB-DRAA; DIGNUM, 2002).

Effective communication allows agents to work together. The cooperation and

coordination of intelligent software agents are made possible by ACLs. Furthermore,

intelligent software agents act autonomously, that is, they decide about what to do at run-

time rather than having their courses of actions defined at design time. Differently from

traditional distributed and concurrent systems, in which all decisions are made at design

time, agents have to cooperate with one another and coordinate their activities at run-time

in order to work together.

Cooperative distributed problem solving (CDPS) studies how individual problem

solvers such as agents, with little or no knowledge about others can work together to solve

problems beyond their capacities. They have to cooperate as no single agent has sufficient

resources or information to solve a problem, but others might be capable of solving dif-

ferent parts of the problem (DURFEE; LESSER; CORKILL, 1989). CDPS addresses

the division of a problem into smaller tasks, the process of synthesising the solution of

subproblems into a problem solution and the coordination of agents to maximise the ef-

fectiveness of the solution, e.g., reducing unnecessary message exchange and avoiding

destructive interactions (DAVIS; SMITH, 1983).

The Contract Net (CNET) (SMITH, 1980; SMITH; DAVIS, 1981) is a protocol

for achieving cooperation through task sharing. An agent makes a call for proposals and

then manages the task through its lifecycle. It can (i) send a message to all agents if it does

not know which agents can perform such task; or (ii) send a message only to the agents

it knows that are capable of achieving what it needs; or (iii) send announcements to those

agents it knows that are appropriate for such task. Agents who receive an announcement

assess their abilities in order to find out if they can achieve what is being asked. If they

3http://www.fipa.org/repository/aclspecs.html

28

Figure 2.4: The FIPA Contract Net (LANGERMAN, 2005)

can, then a bid is proposed informing that it wants to perform the task, otherwise a refuse

message is sent. The manager sends an accept-proposal message to each agent that wins

the bidding and a reject-proposal to those that lose. The winning agents become contrac-

tors of the auctioned task. Finally, contractors send a report message to the manager of

the task once it has been completed. This process is depicted in Figure 2.4.

Auctions and Mechanism Design. Reaching agreements in a society of self-

interested agents is a problem related to the issue of cooperation introduced previously.

The ability to reach agreements upon unforeseen scenarios is fundamental for a multi-

agent system to succeed in reaching its objectives. A negotiation mechanism must be

commonly known such that negotiations are governed by previously established rules.

Auctions are simple and well-known mechanism design algorithms used to reach

agreements on the allocation of scarce resources, where “resource” is a general concept.

The resource could be, for example, the right to explore some good or simply to know

some information. Auctions allow to allocate resources efficiently as they are assigned

to the agents that give the highest bid value for them. Auctions take place between the

auctioneer agent and the bidder agents. The auctioneer’s objective is to allocate the “re-

source” to one or more of the bidders (WOOLDRIDGE, 2009).

There are different auction formats, the most common is the English auction. In

this auction, a single item is offered by an auctioneer agent and bidding agents place

29

bids specifying the value they are willing to pay for the auctioned good. Bids are open,

i.e., agents are aware of how much other agents are offering for what is being auctioned.

Finally, the auction is finished once no agent is willing to raise its bid, then the resource

is allocated to the agent that made the highest bid. English auctions are classified as

first-price (winner pays the price it bid), open cry (non-sealed bids), ascending auctions

(highest bid wins).

Dutch auctions, in turn, are first-price, open cry descending auctions. In this type

of auction, the auctioneer starts by dictating the good’s value and lowers the price by a

small amount until some agent accepts to pay the current price. In this case, the bidder

sends the current value, then the auctioneer allocates the good for the winning agent.

Another common type of auction is the first-price sealed-bid auction. In this for-

mat, only one bid is placed by the bidders. There are no subsequent rounds of bids, and

the auctioned good is awarded to the agent that made the highest bid.

Combinatorial auctions, in turn, are used when multiple resources are offered

in groups. Let Z = {z1, ..., zn} be a set of items to be auctioned. Agents can place

bids for every subset Z such as Z ⊆ Z . Let Ag be a set of agents, the outcome of a

combinatorial auction is a list of sets {Z1, ..., Zn}, one for each agent i ∈ Ag, such that

Zi ⊆ Z , and for all i, j ∈ Ag such that i 6= j, we have Zi ∩ Zj = ∅, i.e., no resource is

allocated to more than one agent (WOOLDRIDGE, 2009). Frequently, one would like to

maximise the allocation of resources given some preference agents have over allocations.

This combinatorial optimization problem is called the winner determination problem and

it is NP-hard (LEHMANN; MÜLLER; SANDHOLM, 2006).

Finally, reverse auctions take place when an auctioneer wants to buy a resource

rather than sell. For example, suppose an agent wants to fulfil a goal but does not know

how to do that. An alternative is to start a reverse auction, where other agents will offer

bids informing their price for achieving the auctioned goal. In this case, the lowest bid

will win as the selling agent is interested in paying the lowest possible price. The winning

bidder then receives the task to be performed.

Agents of the solution presented in the next chapter are embedded with auction

ability. These agents negotiate through auctions in order to choose which services they

are responsible for, and consequently to compose the VNF-FG.

30

2.3 Final Remarks

Network function virtualisation (NFV) decouples network functions from the un-

derlying hardware by means of virtualisation, thus enabling the replacement of proprietary

middleboxes by software components that can be dynamically deployed and configured

on demand. The selection of the most appropriate virtual network functions (VNFs) to

achieve a particular objective, and the decision on where to deploy VNFs and through

which paths they will communicate, are the responsibilities of an NFV orchestrator.

Autonomous agents organised in a multi-agent system can be used to implement

an NFV orchestrator. The BDI architecture is a robust architecture that enables the cre-

ation of intelligent agents that together can solve complex and dynamic problems. Fur-

thermore, communication and negotiation allow agents to exchange information and or-

ganise the allocation of resources.

In this chapter, we provided the required background to understand this research.

Next, we detail how the BDI architecture was used to create a decentralised NFV orches-

trator.

31

3 NFV ORCHESTRATION BASED ON BDI REASONING

In this chapter, we begin by describing our extended NFV architecture. Next, we

formalise the components of our orchestrator. Then, we detail how agents communicate

and negotiate through auctions, outlining how our decentralised orchestrator attacks the

selection, placement and chaining problems.

3.1 Extended NFV Architecture

To develop a decentralised orchestrator, we rely on the behaviour that emerges

from the interaction of autonomous BDI agents. We use the BDI architecture because it

allows the creation of flexible and robust decentralised systems, able to act reactively and

proactively in order to solve dynamic and complex problems.

Our extended NFV architecture is summarised in Figure 3.1, showing our exten-

sion to the ETSI’s NFV architecture (ETSI ISG NFV, 2014c). We replaced the original

centralised orchestrator and VNF manager, with BDI agents. Components in grey corre-

spond to the ETSI’s framework, while those in white are our NFV orchestrator.

Figure 3.1: Extended NFV architecture
OSS/BSS

Hardware Resources

Virtualization Layer
Vl-Ha

Vn-Nf

BDI Agent

Distributed Orchestrator

Virtualised
Infrastructure
Manager(s)

NFV Management

Or-Vi

Nf-Vi

Os-Ma

NFV Infrastructure

Virtual Computing Virtual Storage Virtual Network

Computing Hardware Storage Hardware Network Hardware

Cap.

Bid Function

Auction
Capability

Orchestrator
Capability

Cap. ... Cap.

VNF VNF VNF

BDI Agent

Cap.

Bid Function

Auction
Capability

Orchestrator
Capability

Cap. ... Cap.

VNF VNF VNF

BDI Agent

Cap.

Bid Function

Auction
Capability

Orchestrator
Capability

Cap. ... Cap.

VNF VNF VNF

FIPA Contract Net Protocol

Capability Repository

Capability
VNF

Beliefs

Goals

Plans

Reasoning Cycle Reasoning Cycle Reasoning Cycle

In our decentralised orchestrator, each agent controls an NFVI-PoP and is in

charge of managing VNFs. Moreover, agents are capable of monitoring the resources

of their NFVI-PoP and the network to make management decisions. Each agent is aware

32

of the connections of its NFVI-PoP as well as the hardware specifications through the

Vn-Nf connection. In order to modularise an agent and allow VNFs to be dynamically

instantiated, we structure agents in terms of capabilities. Capabilities are reusable com-

ponents that contain the elements required to coordinate VNFs. Therefore, each VNF is

associated with a capability. As result, an agent is a component that aggregates a set of

capabilities.

Agents negotiate in order to choose which services they are responsible for. Ne-

gotiation is performed by means of auctions. In our solution, we have two built-in ca-

pabilities, auction and orchestrator, which are added to every agent, allowing them to,

respectively, participate in auctions, deciding whether to activate other capabilities (i.e.,

VNFs) and manage already instantiated VNFs. Part of the auction process consists of

evaluating an agent’s bid. This is performed by the bid function, which uses the capability

repository to select a suitable capability (and, consequently, its VNF) to work on what is

being auctioned.

3.2 BDI Agent Formalisation

Given the informal description of our extended NFV architecture above, we pro-

ceed to detail how this decentralised architecture attacks the selection, placement and

chaining problems. Next, we provide formal definitions of the concepts described earlier.

Definition 2 (Capability) A capability is a tuple 〈v,B,G, P,B,O,F ,P〉, where v is a

VNF,B is set beliefs, G is a set of goals, P is a set of plans, B is a belief revision function,

O is an option generation function, F is a filtering function and P is a plan selection

function.

Definition 3 (Bid Function) U : A×℘(B)→ R≥0×R≥0×R≥0 — the bid function is a

function that takes into account a capability (which is associated with a VNF) and the cur-

rent set of beliefs (which contains the agent’s knowledge about its physical resources and

the network) and produces three real numbers, the bid components used in our auction

protocol.

Definition 4 (Agent) An agent is a tuple 〈G, I, T,U〉, where G is a set of current agent

goals, I is a set of plans that correspond to agent intentions, T is a set capabilities, and

U is a bid function.

33

Definition 5 (Multiagent System) A multiagent system is a tuple 〈A,Prot〉, where A is

a set of agents, and Prot is a message protocol that each a ∈ A is able to understand.

According to these definitions, it can be seen that capabilities specify parts of an

agent. Each capability has a set of beliefs B, which collectively represent the agent belief

base, i.e., an agent’s belief base is
⋃
t∈T Bt. Goals of a capability consist of declarations

of the goals that a capability can achieve (they represent the capability interface (NUNES,

2014)), and plans consist of a sequence of actions to achieve goals. As said above, capa-

bilities command VNFs, which is achieved by four functions, which we detail next.

• B : ℘(E)×℘(B)→ ℘(B) — the belief revision function takes into account events

E perceived by an agent, e.g., messages received from other agents, and the current

set of beliefs, and produces an updated set of beliefs.

• O : ℘(B) × ℘(G) → ℘(G) — the option generation function takes into account

the current set of beliefs and goals, and produces an updated set of goals, i.e., goals

may be generated or dropped.

• F : ℘(G) → ℘(G) — the filtering function takes into account a set of goals and

produces a subset of goals, those that the agent will be committed to achieve.

• P : ℘(B)×℘(P)→ P — the plan selection function takes into account the current

set of beliefs, i.e., current context, and a set of plans that are candidates to achieve

a goal, and selects one, among the candidates, to be executed.

Each capability is thus a part of an agent, and an agent has a set of capabilities. In

addition, agents at runtime have a set of goals, which drives their behaviour. These are

added as result of the functions described above or execution of plans. An agent may be

committed to achieve not all of its goals, but a subset. Goals that an agent is committed

to achieve are referred to as intentions, and the agent must have a plan to achieve them.

Therefore, agent intentions are a set of plans, which are those that the agent is executing

at the moment.

Example 1 A firewall in this system is represented as a capability and associated to a

VNF with the specific network function implementation, which performs changes to the

traffic and consequently to the network, i.e. the environment in which the agent is in. This

capability might believe a specific IP address or an entire IP block is malicious, which

could be generated after recurrently blocking port scanning requests. The act of blocking

port scanning requests is a plan that achieves a goal added to this capability a priori.

34

Finally, the set of agents, with their capabilities that are responsible for coordi-

nating all VNFs, comprise a multiagent system. This system is our decentralised NFV

orchestrator. Given that all agents must communicate, message protocols are specified in

this multiagent system, and all agents must be able to understand them.

3.3 BDI Agent Interaction

Given that our proposal consists of a decentralised orchestrator, in which indepen-

dent and autonomous agents must collectively attack the selection, chaining and place-

ment problems, we must provide means for agents to communicate and negotiate. Much

research has been done to support agent communication (FININ et al., 1994; LABROU;

FININ, 1997). Therefore, we adopt ACL, which specifies standards associated with mes-

sage exchange. This specification is implemented in many agent and BDI platforms.

In this section, we detail how auctions are used in our system to attack the selec-

tion, placement and chaining problems, and explain how the auctioneer evaluates bids.

3.3.1 Auction Process: the NFV-A Protocol

Auction algorithms are simple and well-known mechanisms used to reach agree-

ments on the allocation of scarce resources, where “resource” is a general concept. In

the orchestrator problems, we use a first-price, sealed-bid, reverse auction to negotiate the

placement of VNFs and to make decisions regarding the routes of network forwarding

graphs. In our reverse auction, agents secretly respond to the auctioneer agent, i.e. agents

do not know each other’s bids, with their cost to accomplish the auctioned goal. Given

that we use a reverse auction, agents look for the lowest price to accomplish a certain task.

Therefore, the lowest bidder wins the auction.

We use the FIPA ACL specification for supporting agent communication. For

the auction process, we adopt the FIPA Contract Net interaction protocol (introduced in

Chapter 2) to build the NFV-A protocol. In this protocol, an initiator agent sends a call

for proposal (CFP), and each participant agent either replies with a proposal— i.e., a bid

—or refuses to participate. Based on the replies, the initiator agent selects a bid (the

lowest price wins the auction), and informs all participants of the result (accept proposal

or reject proposal). The participant who had its proposal accepted, after performing what

35

Figure 3.2: Overview of the auction process.

was requested, informs the result to the initiator.

In our model, when an agent is unable to accomplish a particular service (or

achieve a particular goal), it initiates an auction by sending CFPs to candidate agents,

i.e., auction participants. Candidate agents are those that meet the requirements of the

VNF to be allocated. They must evaluate whether they have the required capabilities to

accomplish the service; if not, whether the capability should be added to the agent; and

the associated price. The price is the combination of deploying the VNF (if needed) and

consuming computational and network resources. The agent that placed the lowest bid

wins the auction and will be responsible for achieving the goal. When an agent has its

proposal accepted, it is said that this agent plays a role in the multiagent system, and there

is commitment between the initiator and participant agents.

An overview of this process is presented in Figure 3.2, in which Agent 1 starts an

auction by sending CFPs to candidate agents, including itself. Although Agent 1 cannot

achieve the goal considering its currently deployed VNFs, it might conclude, as result

of the auction process, that it is the most suitable NFVI-PoP to deploy a new VNF to

achieve this goal. Bids are composed of three components (shown in Figure 3.2), which

are returned from the bid function U . They provide the auctioneer with information to

reason, considering its preferences, about the most adequate agent to delegate a goal. We

formally define constrained goal, the NFV-A protocol and preferences as follows.

Definition 6 (Constrained Goal) A constrained goal gCi is a tuple 〈gi, C〉, where gi is

a goal to be achieved and C is a set of constraints that must be satisfied to achieve this

goal. Each c ∈ C is a tuple 〈n, op, val〉, where n ∈ RN ∪ NM is a network resource or

measurement, op is a comparison operator (e.g., > or ≤) and val is a value.

Example 2 Consider the goal isTrafficMalicious to be achieved, generated as a conse-

quence of an unusual spike of 500 MB/s on the incoming traffic of an agent. Consequently,

a constraint to achieve this goal is to have bandwidth higher than or equal to 500 MB/s.

36

This is complemented by a design-time-specified constraint regarding packet loss, which

should be lower than 20%. The constrained goal is, therefore, 〈isTrafficMalicious , {〈B,≥

, 500〉, 〈P,<, 20%〉}〉.

Definition 7 (NFV-A) Let G = {gC1 , ..., gCn } be a set of constrained goals to be auc-

tioned, an atomic bid β is a tuple 〈gCi , T , C,D〉 where gCi ∈ G, T is the time to download

a VNF to be deployed, C is the computational and network cost to achieve the goal, and

D is a metric capturing the network decentralisation if gCi is achieved by the agent that

placed the bid. Agents calculate T , C and D using the bid function U . The agent offering

the best combination of T , C, and D considering the auctioneer’s preferences wins the

auction and is assigned to achieve gCi .

Definition 8 (Preferences) A preference pf is a real number R in [0, 1] corresponding to

the importance of a bid component to achieve a particular constrained goal, where 0 is

the lowest importance and 1 the highest. Let preferences pf T , pf C and pf D represent the

preferences of, respectively, T , C and D for an auctioned goal. Moreover, pf T + pf C +

pf D = 1.

Because a goal can be achieved by different VNFs, the auction is a means of

selecting which VNF will achieve a goal (selection problem). Furthermore, given that

bids can be placed by agents representing different NFVI-PoPs using the same VNF, the

auction is also a means of selecting the location of a VNF (placement problem). Finally,

our solution assumes that bidders assess the path between them and the auctioneer when

placing a bid (chaining problem).

We illustrate this agent-based solution in Figure 3.3. In this example, we have

two VNF-FGs (blue and green dotted lines) that traverse multiple VNFs. In addition, this

figure illustrates the creation of a new VNF-FG as the result of a finalised auction. The

red line (bottom most dotted line) represents the network flow that will go through the

VNF being downloaded from the VNF repository into the NFVI-PoP of agent 2, which

won the auction and is now instantiating the new VNF (grey background). This new VNF

is being downloaded through the physical link that connects the NFVI-PoP of agent 2 to

the NFVI-PoP controlled by agent three, which is connected to the VNF repository.

37

Figure 3.3: An NFV architecture based on BDI agents.

3.3.2 Bid Evaluation

To choose a winner, auctioneers receive from each bidder the three bid compo-

nents introduced above. The values of these components are used to calculate a utility

value considering the auctioneer’s preferences pf T , pf C and pf D over the auctioned goal.

Currently, preferences are inputted at design time by a network operator for all constrained

goals in the system.

Example 3 Assume that an auctioneer has preferences 0.5, 0, and 0.5 associated with

T , C and D, respectively, to achieve the isTrafficMalicious goal. This means that the

amount of the network infrastructure usage is irrelevant (as long as it meets the computa-

tional and network constraints), and the time to start analysing suspicious traffic and the

decentralisation of VNFs are equally important to achieve this goal.

Preferences are used as weights for each bid component, when they are combined

in a weighted sum. Given that each bid component is in a different unit, we normalise

them to a value in [0, 1] considering the minimum and maximum values of received bids,

for each component—note that the auctioneer receives bids only from agents that meet all

hard constraints. Normalised values are denoted by β̂T , β̂C , and β̂D. As result, the agent

that placed the bid associated with the highest utility is the winner, that is, the lowest price

considering the auctioneer’s preferences, as shown in the equation below.

argmin
β∈Bid

pf T × β̂T + pf C × β̂C + pf D × (1− β̂D) (3.1)

In this equation, we use the complement of β̂D because, as opposed to other com-

ponents, the higher its value, the better.

38

3.4 Final Remarks

In this chapter, we introduced our extension to the NFV architecture proposed by

ETSI (ETSI ISG NFV, 2013) that uses BDI agents to promote orchestration through ne-

gotiation using auctions. This system allows network operators to input their preferences

despite three distinct characteristics: (i) time to achieve the goal; (ii) allocation of com-

putational and network resources; and (iii) decentralisation. Finally, we detailed how an

auctioneer evaluates auctions in our NFV-A protocol.

In the next chapter, we complete our decentralised architecture by introducing our

bidding heuristic that together with the NFV-A protocol, provides agents with the capacity

of attacking the selection, placement and chaining problems.

39

4 BIDDING HEURISTIC

We detailed above how our decentralised orchestrator works. In this chapter, we

specify how agents calculate their bids through our bidding heuristic. Before detailing

our bidding heuristic, we first formalise, in the next section, key concepts that are used in

later sections. Next, we describe the algorithm used by bidder agents to place bids.

4.1 Notation and Definitions

In a computer network, nodes and links have a set of their available resources,

ri ∈ R. Each ri can be either a computational resource in RC or a network resource in

RN . Therefore, R = RC ∪ RN and RC ∩ RN = ∅. Each type of computational resource

and network resource are represented by RC and RN , respectively. In this work, we as-

sume that there are four types of resources, from which three are computational resources

and one is a network resource. The amount of these resources are represented using the

notation introduced in Table 4.1 (first four rows), which also indicates to which set they

belong. Moreover, there are measurements that can be collected from the network. The

last rows of Table 4.1 correspond to the network measurements, nm ∈ NM , associated

either with a network link or a path.

In the context of NFV, a node corresponds to a point-of-presence that has NFV-

enabled infrastructure (NFVI-PoP), i.e., hardware infrastructure that can host VNFs. For

simplicity, we assume that their hardware resources are homogeneous in specification

(e.g., processor frequency and memory latency) but not in size (e.g., amount of CPU and

memory). Each NFVI-PoP p is characterised by a set of functions that give its specifi-

cation and current state, detailed below, where NGBp is the set of NFVI-PoP that are

neighbours of p.

Table 4.1: Notation for resources and network measurements.

Symbol Set Description

U RC Number of CPU cores.
M RC Amount of RAM memory in GB.
D RC Amount of disk memory in GB.
B RN Bandwidth of a link in MB/s.
L NM Latency of a link in ms.
P NM Percentage of packet loss of a link.
H NM Number of hops in a path.

40

• totalp : RC → R>0: gives the total amount of a particular computational resource

of p.

• freep : RC → R≥0: gives the current available amount of a particular computational

resource of p.

• valuep : NPoP × RN ∪ NM 9 R>0: gives the value of a particular network

resource or measurement of a link between p and a given NFVI-PoP p′ ∈ NPoP ,

neighbour of p, that is, dom valuep = NGBp ×RN .

NFVI-PoPs provide different amounts of resources, which are allocated and con-

sumed by VNFs when instantiated. While NFVI-PoPs have an specification of available

resources, VNFs are associated with required resources. The requirements of a VNF v

are given by the following function.

• reqv : R→ R>0: gives the amount of a particular resource required by v.

We use p, p′, p′′, ... to denote NFVI-PoPs and v, v′, v′′, ... to denote VNFs. Using

this introduced notation we proceed to the description of our NFV auction protocol. Next,

we use the introduced formalisation to explain how agents calculate their bids.

4.2 Bidding Heuristic

When an agent receives a CFP, it first evaluates if it has a plan (executed by a

capability) that can achieve the auctioned goal. If multiple plans can achieve the goal, the

agent uses a plan selection function, e.g., Faccin and Nunes (2015b). A simple approach

is to prioritise plans that demand less time to execute the VNF, as implemented in our

evaluation. Then, the bidder performs the following tasks: (i) evaluation if the NFVI-PoP

meets computational requirements of the VNF that will execute the plan; and (ii) calcu-

lation of each bid component. Network hard constraints—in the VNF requirements and

specified in the goal constraints—are evaluated while calculating the computational and

network cost. If any hard constraint is unsatisfied, the agent informs the auctioneer that

it refuses to participate in the auction. Otherwise, it sends its bid. Currently, we assume

that agents belong to the same provider. Therefore, there is no need for incentivization

for them to participate in auctions because they always evaluate CFPs and send a bid if

constraints are satisfied. If there are other candidate plans available in case of failure in

meeting VNF requirements and goal constraints, these other plans are evaluated before

sending a refusal to the auctioneer. We describe the tasks of calculating a bid as follows.

41

4.2.1 Evaluation of Computational Requirements

Computational requirements are related to the instantiation of a VNF. In order to

instantiate a VNF v in an NFVI-PoP p controlled by a bidder agent, p must have avail-

able computational resources that meet v’s requirements. Formally, v’s requirements are

satisfied when sat req(p, v) holds, as shown below.

sat req(p, v) := ∀rC ∈ RC , reqv(rC) ≤ freep(rC) (4.1)

For instance, suppose an NFVI-PoP p has the following resources available: (i)

8 CPU cores: freep(U) = 8; (ii) 16 GB of RAM: freep(M) = 16; and (iii) 500 GB

of disk: freep(D) = 500. Consider the requirements of VNF v to be instantiated: (i)

2 CPU cores: reqv(U) = 2; (ii) 4 GB of RAM: reqv(M) = 4; and (iii) 50 GB of disk:

reqv(D) = 50. Since all required resources to instantiate VNF v are available in NFVI-

PoP p, then sat req(p, v) holds.

4.2.2 Bid Components

As introduced earlier, each bid has three components T , C, and D, which cor-

respond to the VNF download time, the computational and network cost, and network

decentralisation, respectively. Their evaluation represent the implementation of the bid

function U defined in Chapter 3. We next detail how each component is calculated.

VNF Download Time. In our solution, we currently assume that a VNF associated

with an agent cannot be responsible for achieving multiple goals in parallel. Therefore, if

a VNF is executing, another VNF must be deployed. However, after achieving a delegated

goal, the VNF becomes idle and, consequently, becomes eligible to achieve another goal.

VNFs are made available to agents through the VNF repository, a server that provides the

service of making VNFs available for download, which is known to all agents.

The VNF download time is: (i) 0, if the VNF is already deployed and does not

need to be downloaded; or (ii) the estimated time to download, from the VNF repository,

the VNF that can execute the plan selected to achieve the auctioned goal. The estimated

time considers the path with the highest available throughput to download the VNF in the

shortest amount of time and the size of the VNF to be downloaded.

Computational and Network Cost. The computational and network cost is our

42

main bidding component. It assesses the amount of computational and network resources

employed to instantiate a VNF and achieve a goal as well as evaluates if the instantiation

of a VNF in a particular NFVI-PoP would leave resources unusable, thus preventing the

instantiation of other VNFs. Moreover, while calculating this bidding component we: (i)

verify whether goal constraints are met; and (ii) choose the path between the auctioneer

and bidder agent to be used, if the bidder wins the auction (chaining problem).

The main idea is to find the path with the lowest cost between the auctioneer and

the bidder. In order to do so, we represent the network as a graph, in which nodes are

connected by links with weights capturing the amount of resources being consumed due

to the use of this link. The identification of the path with the lowest cost is done using

a customised version of the widely known Dijkstra’s algorithm, which finds the shortest

path in a graph in polynomial time. The key issue is thus to specify meaningful weights

to the network links.

In Algorithm 1, we show the Dijkstra’s algorithm, customised to calculate ac-

cumulated network measurements to verify goal constraints and the link weights. Our

customisations correspond to the highlighted lines in the algorithm. It receives as input a

graph representing the network, a source (bidder) and a destination (auctioneer) nodes, a

constrained goal and the VNF to be deployed.

We first detail how we evaluate whether goal constraints are met. In the vari-

ables initialised in lines 4–6, we store accumulated latency, packet loss and hops in paths.

Therefore, when evaluating the use of a particular link in a path, we update these vari-

ables. This is done in lines 21–23 in Algorithm 1. Then, in line 24, we check if goal

constraints, associated with network resources (bandwidth) and measurements (latency,

packet loss and hops), are satisfied. This is done using the satcst(var , value, C) function,

shown below.

satcst(var , value, C) := ∀c ∈ C|var = c[n], c[op](value, c[val]) (4.2)

where var is the network resource or measurement to be evaluated, value is its current

value and C is the set of goal constraints. This given value is then checked against the

value informed in goal constraints using the specified comparison operator. If any con-

straint is unsatisfied, the link is discarded.

We now focus on the link weight calculation. In order to evaluate consumed re-

sources, we consider both the link and its source node and assess the utility of compu-

tational resources that remain left by going throught a node (NFVI-PoP) of the network.

43

Algorithm 1 lowestCostPath(G, s, d, gCi , vnf)

Require: Graph G
Require: Source node s
Require: Destination node d
Require: Constrained goal gCi
Require: VNF to be deployed vnf

1: for all v ∈ V [G] do
2: dist[v]← +∞
3: prev[v]← 0
4: latency[v]← 0
5: pktLoss[v]← 0
6: hops[v]← 0
7: end for
8: dist[s]← 0
9: Q← V [G]

10: while Q is not an empty set do
11: u← ExtractMin(Q)
12: if u is d then
13: S ← empty set
14: while prev[u] is not undefined do
15: S ← S ∪ {(prev[u], u)}
16: u← prev[u]
17: end while
18: return S
19: end if
20: for all edge (u, v) outgoing from u do
21: latency[v]← valueu(v, L) + latency[u]
22: pktLoss[v]← pktLoss[u] + ((1− pktLoss[u])× valueu(v, P))
23: hops[v]← 1 + hops[u]
24: if satcst(L, latency[v], C) ∧ satcst(P, pktLoss[v], C) ∧ satcst(H, hops[v], C) ∧

satcst(B, valueu(v,B), C) then
25: rscEvalu ← rscEvalhop(u)
26: if u = s then
27: rscEvalu ← rscEval(u, vnf)
28: end if
29: weight← valueu(v,B)× (rscEvalu + rscEvalhop(v))
30: if dist[u] + weight < dist[v] then
31: dist[v]← dist[u] + weight
32: prev[v]← u
33: end if
34: end if
35: end for
36: end while
37: return undefined

44

Table 4.2: Definition of mathematical functions and logic predicates.

Function/Predicate Expression Description

freeRscUtil(p)
|RC |∑

rC∈RC

(
freep(rC)

totalp(rC)

)−1 Harmonic mean of the ratio of avail-
able computational resources of an
NFVI-PoP p.

consRscUtil(p, v)
|RC |∑

rC∈RC

(
reqv(rC)
totalp(rC)

)−1 Harmonic mean of the ratio of the
computational resources required by
VNF v from an NFVI-PoP p.

full(p)
∀v∃rC ∈ RC ,

reqv(rC) > freep(rC)

full(p) is true when there is no VNF
that can be deployed in the NFVI-PoP
p, that is, there is at least one VNF re-
quirement unsatisfied, for all VNFs.

canDeploy(p, v)

∃v ′∀rC ∈ RC ,

reqv′(rC) ≤
freep(rC)− reqv(rC)

canDeploy(p, v) is true when there is a
VNF that can be deployed in an NFVI-
PoP p after the deployment of the VNF
v in p.

Typically, to instantiate a VNF in the future we need to use part of all computational re-

sources. Consequently, if there is only a subset of resources available, the instantiation of

new VNFs may be problematic. Our heuristic thus aims to incentivise the balanced use

of resources. This balance in the use of resources is captured by calculating the harmonic

mean of the ratio of available computational resources of an NFVI-PoP. This is calcu-

lated by the functions freeRscUtil(p) and consRscUtil(p, v), shown in Table 4.2, which

calculate the utility of an NFVI-PoP’s free resources—current resources and resources

consumed by a VNF instantiation, respectively.

These introduced functions are used to evaluate a link weight in the following way.

We first assess the cost of using the source and target nodes of the link. If the node is a

hop, no computational resource is used, only network resources (links). Hence, if VNFs

can be instantiated in the node due to available resources, the cost is higher because links

surrounding this node should preferably remain less used. The cost is then given by

freeRscUtil(p). If no VNF can be instantiated (i.e., the node is full), the cost is 0, because

the link can be used without compromising the instantiation of VNFs in the future in that

node. This is formalised in the equation below, which uses the full(p) logic predicate

introduced in Table 4.2.

rscEvalhop(p) =

0 , if full(p)

freeRscUtil(p) , otherwise
(4.3)

45

The evaluation of the source node (bidder) is different, because it requires con-

suming resources for instantiating the VNF. The idea is also to consider the instantiation

of VNFs in the future. If, after instantiating the VNF, no other VNF can be instantiated

in that node, the consumed resources are not only those consumed by the VNF but all

resources (freeRscUtil(p)), as those remaining become useless. In the opposite case, the

cost is lower, corresponding only to the consumed resources. This is also the case if, al-

though no new VNFs can be deployed, there is no alternative VNF that can be instantiated

in that node allowing the instantiation of other new VNFs, meaning that only one VNF can

be deployed in the node anyway. This is formalised as follows, using the canDeploy(p, v)

predicate, also defined in Table 4.2.

rscEval(p, v) =


consRscUtil(p, v) , if canDeploy(p, v)∨

¬∃v ′canDeploy(p, v′)

freeRscUtil(p) , otherwise

(4.4)

Finally, the link weight is its bandwidth (the higher the bandwidth, the higher the

cost) multiplied by the sum of the cost evaluation of the nodes connected to the link, as

shown in line 29 of Algorithm 1. Lines 25–28 check if the link source is the path source

to treat it in a distinguished way. This completes the explanation regarding this bidding

component and we then proceed to the last component.

Decentralisation. The decentralisation component corresponds to how much phys-

ically distant the auctioneer and the bidder are. Given that our input information does not

capture geographic information about NFVI-PoPs, we use latency to estimate decentrali-

sation, assuming that geographically distant NFVI-PoPs tend to have higher latency than

NFVI-PoPs that are geographically closer. This component is thus the accumulated la-

tency of the path that links the auctioneer and the bidder, obtained from the algorithm

presented above.

4.3 Final Remarks

In our system, when an agent participates in a negotiation, it evaluates its resources

to find out the price of achieving another agent’s goal. There are hard constraints that

have to be met, such as having enough CPU cores or memory to instantiate a new VNF.

Dijkstra’s algorithm was adapted to calculate the cost of allocating a VNF in an NFVI-PoP

46

and using the bandwidth of available links to connect it with another VNF. This process

was implemented in a novel testbed, which was used to evaluate the NFV-A protocol and

the bidding heuristic, which is described next.

47

5 TESTBED AND EVALUATION

Now that we have presented our NFV-A protocol and the bidding heuristic that

together promote the selection, placement and chaining of VNFs, we proceed to describe

our implementation and evaluation. In this chapter, we begin detailing a DDoS resilience

strategy used to evaluate our auction-based approach for NFV orchestration. Next, we

describe a prototype implementation, an experimental evaluation and a scalability analysis

of our system.

5.1 Scenario: DDoS Resilience Strategy

Network resilience can be defined as the ability that a network has to recover

from an incident (STERBENZ et al., 2010). Different types of incidents can affect the

operation level of a network, such as malicious attacks, equipment breakdown, and poor

administration. We evaluate our model on a DDoS attack scenario, because it is a common

issue, with a broad variety of solutions. In this section, we detail the network functions

used in our scenario and how they are combined into a network resiliency strategy.

Initially, an analyst designs agents, capabilities and their VNFs, and indicates the

initial state of the network, i.e., which services should be provided and how. The VNFs as-

sociated with capabilities are stored in a VNF repository. We took inspiration from the ca-

pabilities built by Nunes et al. (NUNES; SCHARDONG; SCHAEFFER-FILHO, 2017),

where they follow the resilience strategy created by Schaeffer-Filho et al. (SCHAEFFER-

FILHO et al., 2012). We designed five capabilities that represent commonly used net-

work functionality, and observed their collective behaviour emerging into a meaning-

ful resilience strategy (NUNES; SCHARDONG; SCHAEFFER-FILHO, 2017): (i) Link

Monitor: responsible for detecting any link overused in the network; (ii) Rate Limiter:

performs traffic throttling to a specific link, to a specific IP address, and to specific flows

(where both source and destination are known); (iii) Anomaly Detector: detects the target

of a DDoS attack; (iv) Classifier: analyses and identifies malicious flows, among all traf-

fic to a specific host; and (v) Load Balancer: enables agents to split traffic into two flows.

As result of the interaction between agents, the emerged behaviour that can be observed

in our multiagent system is shown in Figure 5.1. Differently from Nunes et al. (NUNES;

SCHARDONG; SCHAEFFER-FILHO, 2017), in which a Classifier requires a Flow Ex-

porter to perform its activities, our Classifier is embedded with the capacity of recording

48

Figure 5.1: DDoS resilience strategy.
:Anomaly
Detection

detectIntrusion(link)

:Load
Balancer

splitTrafficIP(ip, parts)

:Rate
Limiter

limitLink(link, rate)

limitIP(link, rate)

limitFlow(flow, rate)

:Link
Monitor

event(overUsage(link))

goal(linkRateLimited(link))

goal(?anomalousUsage(link))

goal(ipRateLimited(ip))

goal(splitTrafficTowardsIp(ip))

:Classifier

classifyFlows(ip)

classifyFlows(ip)

goal(flowRecord(ip))

goal(flowRecord(ip))

goal(flowRateLimited(flow))

goal(splitTrafficLink(link))

splitTrafficLinks(link, parts)

detectIntrusion(link)

goal(?anomalousUsage(link))

flows. Furthermore, we add the Load Balancer capability to increase the chance that

large flows can be dealt with. Given this brief overview of the capabilities used in our

evaluation, we next detail them along with the Auction and Orchestrator capabilities.

Rate Limiter. Preventing a DDoS attack requires limiting network traffic in differ-

ent granularities and under specific circumstances. This is achieved by the Rate Limiter

capability, where three different plans limit the network traffic at different levels. The

plans of the Rate Limiter capability are detailed in Table 5.1. Plans are named and char-

acterised by: (i) the goal it can achieve; (ii) the required preconditions for the plan to be

executed; and (iii) actions it performs. Belief actions, belief(b), indicate that a belief b

is being added (belief(b) or belief(¬b)) or removed (belief(not b)) from the belief base.

Primitive actions, action(param), are implemented by the capability’s VNF, which

can be seen as agent actuators.

The actions taken by plans change the belief base, adding preconditions required

by other plans. For instance, plan LL achieves the goal of having linkRateLimited(link)

49

Table 5.1: Plans of the Rate Limiter capability.
Plan: LimitLink (LL) Plan: UnlimitLink (UL)
Goal: linkRateLimited(link) Goal: ¬linkRateLimited(link)
Precondition: - Precondition: linkRateLimited(link)
Actions: Actions:
limitLink(link,RATE) unlimitLink(link)
belief(linkRateLimited(link)) belief(¬linkRateLimited(link))
Plan: LimitIP (LIP) Plan: UnlimitIP (UIP)
Goal: ipRateLimited(ip) Goal: ¬ipRateLimited(ip)
Precondition: - Precondition: ipRateLimited(ip)
Actions: Actions:
limitIP(ip, RATE) unlimitIP(ip)
belief(ipRateLimited(ip)) belief(¬ipRateLimited(ip))
∀link.(linkRateLimited(link)∧
linkIP(link, ip)→
goal(¬linkRateLimited(link)))

Plan: LimitFlow (LF)
Goal: flowRateLimited(flow)
Precondition: -
Actions:
blockFlow(flow)
belief(flowRateLimited(flow))
∀ip.(ipRateLimited(flow)∧
ipFlow(ip, f low)→
goal(¬ipRateLimited(ip)))

in the belief base by triggering the operation limitLink(link,RATE), where RATE

is fixed and defined at design time, then adding linkRateLimited(link) to the belief base.

Consequently, the UL plan, which removes the limit of a given link, can now be selected

by the plan selection function if the goal ¬linkRateLimited(link) is added, as all its pre-

conditions are met. This happens when the plan LIP is executed.

Link Monitor. Network links connect and transport traffic between hosts. Under

normal circumstances, their bandwidth is partially used, remaining below a threshold.

Our Link Monitor capability has two goals: (i) monitor a link to detect anomalous usage;

and (ii) guarantee that the bandwidth of the monitored link remains below a threshold.

We show the belief revision and goal generation functions of the Link Monitor

capability in Table 5.2. When the Link Monitor detects a link being overused, the event

event(overUsage(link)) is triggered, adding the beliefs overUsage(link) and not anoma-

lousUsage(link) to the beliefs base in the belief revision step. An overused link is due

to either a peak in legitimate traffic or an ongoing attack. Two goals are generated be-

cause the belief overUsage(link) is present: (i) goal(linkRateLimited(link)) is responsible

50

Table 5.2: Belief revision and goal generation functions of the Link Monitor capability.
Belief Revision
event(overUsage(link))→ belief(overUsage(link))∧
belief(not anomalousUsage(link))

event(¬overUsage(link))→ belief(not overUsage(link))
Goal Generation
overUsage(link) ∧ not anomalousUsage(link)→
goal(?anomalousUsage(link))

for restricting the traffic in the overused link; and (ii) goal(?anomalousUsage(link)) to

determine if it is a malicious attack or not. Those goals are generated together in order to

guarantee that the network remains functional while overcoming a challenge. Note that

goal(b) adds the goal of having the predicate b as part of the agent belief base (b may also

be ¬b, while goal(?b) adds the goal of having b or ¬b as part of the agent belief base, i.e.,

the agent must find out whether b or ¬b is true.

Note that goals goal(linkRateLimited(link)) and goal(?anomalousUsage(link)) are

generated together. However, considering that the ultimate objective is to guarantee that

the network remains operational when confronted with a challenge, it is important to

protect the network before finding out if an anomalous behaviour is due to a malicious

attack. This prioritisation between the two goals is performed in the goal deliberation

step. Both the goals goal(linkRateLimited(link)) and goal(?anomalousUsage(link)) have

no plans that achieve them within the Link Monitor capability. The first can be achieved by

the Rate Limiter capability, while the second by the Anomaly Detector capability, which

is detailed next.

Anomaly Detector. To achieve the goal of discovering if the traffic is anoma-

lous or not, i.e. goal(?anomalousUsage(link)), the Anomaly Detector uses the plan

described in Table 5.3. The ALS plan analyses the traffic that flows in a link using

detectIntrusion(link), which is implemented and performed by its VNF. If there

is traffic destined to an IP address that is an outlier, it is considered anomalous, and con-

sequently the link usage is considered anomalous, i.e. belief(anomalousUsage(link)).

Contrarily, if there are no outliers, then the link is considered to be normal, i.e.

belief(¬anomalousUsage(link)). Once this belief is set, it is shared with the Link Monitor

capability, whether it is part of the same agent or not. In the latter case, a message is sent,

and the agent updates its belief base.

Two goals are generated for each outlier: (i) goal(ipRateLimited(ip)) is responsible

for restricting the traffic destined to an IP address; and (ii) goal(flowRecord(ip)) to further

51

Table 5.3: Plan of the Anomaly Detector capability.
Plan: AnalyseLinkStatistics (ALS)
Goal: ?anomalousUsage(link)
Precondition: -
Actions:
detectIntrusion(link)
∀ip.(outlier(ip)→ belief(anomalous(ip))∧
goal(ipRateLimited(ip) ∧ goal(flowRecord(ip)))

∃ip.(anomalous(ip)→ belief(anomalousUsage(link)))
@ip.(anomalous(ip)→ belief(¬anomalousUsage(link)))

Table 5.4: Plan of the Classifier capability.
Plan: AnalyseIPFlows (AIPF)
Goal: flowRecord(ip)
Precondition: -
Actions:
classifyFlows(ip)
∀flow.(malicious(flow)→ belief(threat(flow)))
∃flow.(threat(flow) ∧ dstIP (flow) = ip→
goal(flowRateLimited(flow)))

analyse the outlier to find the source IP address(es) of the malicious host(s). Note that

there are no plans in this capability to achieve these goals. They are achieved by the Rate

Limiter and Classifier capabilities, respectively. Next, we detail the Classifier capability.

Classifier. Flows that are destined to an ip are recorded and classified by the

AIPF through the classifyFlows(ip) actuator, which identifies all the flows that

are threats. Each malicious flow triggers a goal flowRateLimited(flow), which can be

achieved by the Rate Limiter capability.

Load Balancer. Since detectIntrusion(link) and classifyFlows(ip)

are CPU intensive actions, the VNFs that perform them have limitations despite the

amount of traffic that can be analysed in a single CPU core. In our system, the amount

of traffic a VNF can process given the resources required for its instantiation is informed

by an operator at design time. In scenarios with heavy traffic and short-resourced NFVI-

PoPs or network links, often no Anomaly Detector and Classifier can be used because no

NFVI-PoP can host their VNFs. In such cases, heavy traffic can be divided into lighter

flows, which might allow VNFs to be instantiated. Thus, the Load Balancer capability

implements two plans to divide traffic in such scenarios, which are shown in Table 5.5.

Both plans divide the traffic into lighter flows. The number of divisions is inputted into

the simulation a priori.

The Load Balancer’s plans should only be used in the scenarios described above,

52

Table 5.5: Plan of the Load Balancer capability.
Plan: LoadBalanceLink (LBL)
Goal: splitT rafficLink(link)
Precondition: ?anomalousUsage(link)
Actions:
splitTrafficLink(link, PARTS)
∀virtualLink.(goal(?anomalousUsage(virtualLink)))
Plan: LoadBalanceIP (LBIP)
Goal: splitT rafficTowardsIp(ip)
Precondition: flowRecord(ip)
Actions:
splitTrafficIP(ip, PARTS)
∀flow.(goal(flowRecord(ip)))

as it is not interesting to divide traffic when a single Anomaly Detector or Classifier is

enough. To achieve that, agents only add the goals splitTrafficLink(link) or splitTrafficTo-

wardsIp(ip) if the goals ?anomalousUsage(link) or flowRecord(ip) were not achieved, i.e.

if the auction to instantiate an Anomaly Detector or a Classifier has failed.

Orchestrator and Auction. These capabilities are added to all agents as part of

our decentralised orchestrator. The Orchestrator capability has the plan InstantiateVNF,

which is used to instantiate new VNFs in an agent when new capabilities are activated.

It downloads the VNF from the VNF Repository, starts it and creates the virtual path

between the NFVI-PoP controlled by the agent and the NFVI-PoP controlled by the auc-

tioneer. The Auction capability has two plans (i) GoalRequest plan, which can be used to

request other agents to achieve a goal; and (ii) GoalResponse plan, which handles mes-

sages with goal requests. The GoalRequest and GoalResponse plans follow the NFV-A

protocol described in Chapter 3. Auctions are triggered when the GoalRequest plan is

selected. Agents send replies either accepting or refusing to participate in an auction. If

an agent accepts, the three bid components are calculated in the GoalResponse plan using

the bidding heuristic presented in Chapter 4. In our system, multiple auctions do not exist

simultaneously. If an agent wants to trigger an auction, it waits for an ongoing negotiation

to end. Moreover, it waits an additional random time, which helps prevent agents from

starting auctions at the same time. Next, we describe how we implemented the VNFs

used in our agents and the testbed that connects them to their VNFs.

53

5.2 Prototype Implementation

To evaluate the proposed framework and bidding heuristic, we developed an NFV

testbed that integrates a BDI agent platform, namely BDI4JADE (NUNES; LUCENA;

LUCK, 2011), with containernet (PEUSTER; KARL; ROSSEM, 2016), a fork of

Mininet (LANTZ; HELLER; MCKEOWN, 2010) that implements Mininet hosts as

Docker containers (MERKEL, 2014). We selected containernet because it provides

operational system-level virtualisation and allows to fine tune the maximum resource us-

age of hosts (e.g., memory, network and CPU). Differently from most BDI platforms,

BDI4JADE is a multi-agent platform that implements agents in pure Java, which facili-

tates the integration with other applications. In our system, each VNF deployed to the vir-

tualised network is represented by a host in Mininet (i.e., a Docker container). Further-

more, the agent-to-VNF communication is implemented using RESTful (RICHARD-

SON; RUBY, 2008) calls. We provide VNFs with a light Python script that sends and

receives RESTful calls, allowing agents to easily obtain VNF-specific information. Our

prototype integrating BDI4JADE and containernet is publicly available.1

At the beginning of the simulation, a configuration file specifying the network

topology (resource specification of NFVI-PoPs as well as their links and VNF reposi-

tory location) is read by the BDI4JADE platform, which launches the BDI agents and

a Python application responsible for starting Mininet. They exchange information

through RESTful calls and coordinate network configuration and agent-to-PoP assign-

ment. As result, agents are in control of NFVI-PoPs and pre-configured VNFs, which are

those present in the initial state of the network, are deployed to specified agents according

to the topology configuration file.

The VNFs in our system were implemented as follows: (i) Link Monitor uses

ifstat to monitor incoming and outgoing traffic; (ii) Rate Limiter communicates with

the OpenVSwitch (PFAFF et al., 2009) controller v. 2.5.0 to apply and remove queue-

based rate limiting rules to network interfaces and specific source/destination IPs; (iii)

Anomaly Detector and (iv) Classifier use Snort (ROESCH et al., 1999) v. 2.9.2.2 to

detect suspicious traffic; and (v) Load Balancer communicates with OpenVSwitch and

the POX controller to set load balancing rules. The OpenVSwitch switches are con-

nected to a POX controller (GUDE et al., 2008).

1https://sourceforge.net/projects/nfvauction/

54

5.3 Simulation Settings

To evaluate our solution, we created a server that answers HTTP requests through

Python’s SimpleHTTPServer module2 version 2.7.14 and provides video streamming

through VLC (MÜLLER; TIMMERER, 2011) version 2.2.2. Figure 5.2 illustrates our

network topology, which is composed of six NFVI-PoPs. Also, the VNF repository is

connected to the fifth NFVI-PoP. The HTTP and video streaming provider server and

NFVI-PoP 6 are directly connected to the same switch, and a Link Monitor VNF is in-

stalled on NFVI-PoP 6, monitoring the link that connects the switch to the server.

The background traffic of our simulation consisted of 50 hosts requesting to watch

the video streaming in a time frame, then they stop and make HTTP requests. As in Silva

et al. (2016), for each host requesting video streaming traffic, there are other five hosts re-

questing HTTP traffic. We used scapy (SCAPY, 2007) to generate realistic background

as well as anomalous traffic. The attack consisted of 8 malicious hosts performing a SYN

flood attack, in which packets targeted the two ports of the service server (8000 for HTTP

and 8080 for video stream).

Figure 5.2: Network topology implemented in our testbed.

Bandwidth: 10 MB/s
Latency: 6 ms

Packet loss: 0%

Bandwidth: 5 MB/s
Latency: 2 ms
Packet loss: 0%

Bandwidth: 5 MB/s
Latency: 5 ms
Packet loss: 2%

Bandwidth: 9 MB/s
Latency: 2 ms

Packet loss: 0%

Bandwidth: 7 MB/s
Latency: 12 ms
Packet loss: 0%

Bandwidth: 8 MB/s
Latency: 9 ms
Packet loss: 2%

Internet

VNF Repository

Bandwidth: 5 MB/s
Latency: 3 ms
Packet loss: 0%

HTTP and Video

NFVI-PoP 1
CPUs: 6

Memory: 6 GB
Disk: 700 GB

NFVI-PoP 6
CPUs: 1/2

Memory: 3/4 GB
Disk: 498/500 GB

NFVI-PoP 4
CPUs: 2

Memory: 6 GB
Disk: 1000 GB

NFVI-PoP 2
CPUs: 4

Memory: 6 GB
Disk: 400 GB

NFVI-PoP 3
CPUs: 4

Memory: 4 GB
Disk: 1000 GB

NFVI-PoP 5
CPUs: 4

Memory: 6 GB
Disk: 400 GB

Link Monitor
CPUs: 1

Memory: 1 GB
Disk: 2 GB

2Simple HTTP request handler: https://docs.python.org/2/library/simplehttpserver.html

55

Table 5.6: VNF requirements and supported workloads.

VNF CPU Memory Disk Bandwidth

Link Monitor 1 core 1 GB 2 GB -
Rate Limiter 1 core 1 GB 2 GB -
Anomaly Detector 1 core 2 GB 10 GB 2 MB/s
Classifier 2 core 4 GB 10 GB 1 MB/s
Load Balancer 1 core 1 GB 2 GB -

Table 5.7: Preference values and latency constraints of goals.

Goal pf T pf C pf D Latency Constraint

linkRateLimited(link) 0.8 0.1 0.1 100 ms
?anomalousUsage(link) 0.5 0.5 0.0 -
flowRecord(ip) 0.0 0.2 0.8 -
ipRateLimited(ip) 0.8 0.1 0.1 100 ms
splitTrafficLink(link) 0.3 0.7 0.0 -
splitTrafficTowardsIp(ip) 0.3 0.7 0.0 -
flowRateLimited(flow) 0.8 0.1 0.1 100 ms

The requirements of the VNFs used in our simulation are listed in Table 5.6. All

VNFs have a download size of 500 MB, which is the amount of data transferred from the

VNF repository to instantiate them.

Preferences in our system are tailored to goals. In our simulation, we used max-

imum packet loss of 8% for all goals, and maximum latency constraint of 100 ms for

the goals linkRateLimited(link), ipRateLimited(ip) and flowRateLimited(flow). The pref-

erences and latency constraint associated with all goals are listed in Table 5.7.

5.4 Evaluation Results

In this section, we describe our observations after executing the DDoS resilience

strategy implemented in our testbed. First, the emergent solution to the selection, place-

ment and chaining problems devised by agents to mitigate the DDoS attack is presented.

Next, we detail the major auctions of our simulation to explain the decisions collectively

made by agents. Finally, we provide a scalability analysis of our system.

56

5.4.1 Emergent Behaviour

By simulating the scenario described above, we obtained the configuration shown

in Figure 5.3. The squares in grey show where VNFs have been allocated (selection

and placement) and dotted lines represent the chaining of VNFs throughout the adopted

mitigation strategy. They are numbered according to the time order that auctions occurred.

Figure 5.3: Emergent selection and resource allocation.

B: 10 MB/s

Link Monitor
CPUs: 1

Memory: 1 GB
Disk: 2 GB

Rate Limiter
CPUs: 1

Memory: 1 GB
Disk: 2 GB

B: 4/5 MB/s
B: 5 MB/s

B: 9 MB/s

B: 5/7 MB/s
B: 2/8 MB/s

Internet

VNF Repository

B: 5 MB/s

HTTP and Video

3

4
Anomaly Detector

CPUs: 2
Memory: 4 GB
Disk: 20 GB

Classifier
CPUs: 2

Memory: 4 GB
Disk: 10 GB

6

Classifier
CPUs: 2

Memory: 4 GB
Disk: 10 GB

1

2

NFVI-PoP 1
CPUs: 6

Memory: 6 GB
Disk: 700 GB

NFVI-PoP 6
CPUs: 1/2

Memory: 3/4 GB
Disk: 498/500 GB

5 a

5 b

Load Balancer
CPUs: 1

Memory: 1 GB
Disk: 2 GB

NFVI-PoP 4
CPUs: 0/2

Memory: 2/6 GB
Disk: 990/1000 GB

NFVI-PoP 2
CPUs: 4

Memory: 6 GB
Disk: 400 GB

7

NFVI-PoP 3
CPUs: 2/4

Memory: 0/4 GB
Disk: 990/1000 GB

NFVI-PoP 5
CPUs: 0/4

Memory: 0/6 GB
Disk: 376/400 GB

Figure 5.4 shows the amount of traffic from the switch connected to NFVI-PoP 6 to

the HTTP and video server throughout the simulation. After a few seconds of simulation,

the attack started and the outgoing traffic to the server reached 6 MB/s. Immediately, the

Link Monitor detected the peak, triggering the auction to achieve the linkRateLimited(link)

goal and agents selected the LL plan from the Rate Limiter capability to achieve this goal.

Next, agents executed our bidding heuristic to place bids. Agent 5 won the auction and

deployed the VNF to achieve the goal linkRateLimited(link), which reduced the traffic by

50%, dropping to 4 MB/s at 45 seconds of the simulation.

After the Link Monitor have auctioned the linkRateLimited(link) goal, it started

a new auction to have the ?anomalousUsage(link) goal accomplished. Agents selected

the Anomaly Detector capability and its VNF, then calculated and submitted their bids.

57

Figure 5.4: Traffic from the switch towards the HTTP and video server.

Note that the Anomaly Detector VNF requires 1 CPU core, 2 GB of memory and 10 GB

of disk to work with 2 MB/s of traffic, as shown in Table 5.6. However, this auction

requires a VNF to handle 4 MB/s. In this case, agents scaled up the requirements, so that

2 CPU cores, 4 GB of memory and 20 GB of disk were needed to instantiate this VNF,

allowing it to handle 4 MB/s of traffic. Agent controlling NFVI-PoP 5 won this auction

and immediately downloaded the VNF from the VNF repository and executed the plan to

achieve the auctioned goal, reducing the capacity of the link connecting NFVI-PoPs 5 and

6 from 8 MB/s to 4 MB/s. It found the target IP of the DDoS attack and performed two

auctions sequentially, i.e. starting the second only after the first is finished. First was the

auction to fulfil goal ipRateLimited(ip), which Agent 5 also won, because it had the VNF

of the Rate Limiter capability already instantiated. The Rate Limiter capability executed

the LIP plan, which reduced the traffic by 50% (from 4 MB/s to 2 MB/s) at 90 seconds of

the simulation. After reducing the malicious traffic, the link limit previously established is

removed, allowing legitimate traffic while the attack is mitigated. Next, a flowRecord(IP)

goal was auctioned to deal with 2 MB/s of traffic, requiring a Classifier with capacity to

process 2 MB/s of bandwidth. Following the requirements listed in Table 5.6, a Classifier

could be scaled up to use 4 CPU cores, 8 GB of memory and 20 GB of disk to handle 2

MB/s of traffic. However, no NFVI-PoP had enough resources to host this scaled VNF.

Since it was not possible to achieve Classifier’s plans due to the bandwidth con-

straint of this goal, agents refused to participate in this auction as no agent was able to

instantiate the Classifier’s VNF, i.e. sat req(p, v) did not hold. Next, this agent triggered

and won the auction to have goal splitTrafficTowardsIp(ip) achieved, resulting in the in-

stantiation of a Load Balancer. The traffic was separated into two flows, consequently

triggering two auctions for flowRecord(IP), each with 1 MB/s, which led to the allocation

of two Classifiers in the network (Agents 3 and 4). They recorded and found the source

58

address of the attackers, triggering flowRateLimited(flow) for each malicious host dis-

covered. The already instantiated Rate Limiter won all these auctions, which took place

between 150 and 180 seconds of the simulation, reducing the traffic to operational levels.

Once the Rate Limiter started limiting specific malicious flows, then legitimate traffic to

the IPs being attacked was allowed without restrictions. Next, we detail the auctions that

occurred in this simulation.

5.4.2 Auctions

In our system, decision making occurs through auctions, and the preferences in-

putted at design time play an important role in choosing the winning bidder. Table 5.8

summarises the main auctions that happened in our simulation. It shows the values of the

bid components (T , C and D) sent by agents, along with the final bid utility evaluated

by the auctioneer using Equation 3.1. We exclude an auction that had no bids, which

is detailed below, and the eight auctions to achieve goal flowRateLimited(flow) because

Agent 5 had a Rate Limiter instantiated to fulfil goal linkRateLimited(link), consequently

winning the auctions for goals ipRateLimited(ip) and flowRateLimited(flow).

The first auction of the simulation was started by the Link Monitor to achieve goal

linkRateLimited(link), which is associated with the following preferences: pf T = 0.8,

pf C = 0.1, and pf D = 0.1. These preferences mean that a network operator decided,

at design time, that quickly limiting the traffic on a potentially anomalous link is more

important than saving computational and network resources as well as decentralising this

job. Agent 5 won this auction because it sent the lowest bid. Note that for this agent, the

bid component T is 0 as its NFVI-PoP and the VNF repository share the same switch.

In our simulation, we only accounted for the bandwidth between switches for simplicity.

As the preference of the bid component T associated with this goal is high (pf T = 0.8),

the bid utility of Agent 5 was consequently the lowest. Moreover, observe that the bid

components C and D of Agent 6 are 0. This is because no bandwidth of the network

infrastructure would be used if it won the auction.

Next, the goal ?anomalousUsage(link) was auctioned by the Link Monitor. The

objective of this goal is to find whether the traffic on a given link is anomalous or not.

Differently from the previous auction, saving computational and network resources as

well as downloading and doing the job quickly have the same preference (pf T = pf C =

0.5), while decentralising has no importance (pf D = 0.0). Agent 6 refused to participate

59

Table 5.8: Costs of achieving the auctioned goals and bid utility.

linkRateLimited(link) ?anomalousUsage(link)

Agent T C D Bid Agent T C D Bid

1 50.00 16.88 25.84 0.50 1 50.00 17.22 26.43 0.50
2 55.56 26.91 39.63 0.54 2 55.56 27.48 41.94 0.78
3 100.00 16.87 33.12 0.88 3 100.00 21.84 34.92 0.87
4 100.00 4.88 18.01 0.87 4 100.00 11.84 17.48 0.63
5 0.00 5.65 13.22 0.09 5 0.00 6.55 12.64 0.00
6 62.50 0.00 0.00 0.60 6 - - - -

ipRateLimited(ip) splitTrafficTowardsIp(ip)

Agent T C D Bid Agent T C D Bid

1 50.00 2.80 8.44 0.49 1 50.00 2.80 9.07 0.24
2 55.56 21.84 12.34 0.62 2 55.56 21.84 18.06 0.87
3 100.00 20.72 43.10 0.89 3 100.00 20.72 49.21 0.96
4 100.00 8.73 31.03 0.87 4 100.00 8.73 33.38 0.58
5 0.00 0.00 0.00 0.10 5 0.00 0.00 0.00 0.00
6 62.5 1.09 12.34 0.58 6 62.5 1.09 14.52 0.22

First flowRecord(ip) Second flowRecord(ip)

Agent T C D Bid Agent T C D Bid

1 50.00 0.40 11.04 0.80 1 50.00 0.40 13.65 0.80
2 55.56 19.62 13.06 0.92 2 55.56 19.62 19.14 0.85
3 100.00 24.61 52.69 0.20 3 - - - -
4 100.00 14.61 39.15 0.38 4 100.00 12.23 42.57 0.15
5 - - - - 5 - - - -
6 - - - - 6 - - - -

in this auction, because its NFVI-PoP did not have enough resources to host an Anomaly

Detector with 2 CPU cores, 4 GB of memory and 20 GB of disk.

After finding the IP address targeted by the attackers, the Anomaly Detector trig-

gered to have the goal ipRateLimited(ip) fulfilled. Agent 5 had a Rate Limiter idle at

that time, which was used to calculate the bid components. Since no VNF needed to be

downloaded, and no network link would be required (Anomaly Detector VNF was hosted

at the same NFVI-PoP), it sent the bid components T = C = D = 0.00. Agent 5 won the

auction, and the malicious traffic was reduced by 50%, reaching 2 MB/s.

The fourth negotiation in our simulation was to have goal flowRecord(ip) satisfied,

triggered by the Anomaly Detector. Since the amount of traffic to be analysed was 2 MB/s,

a Classifier with 4 CPUs, 8 GB of memory and 20 GB of disk is needed. However, agents

refused to send bids as no NFVI-PoP had 8 GB of memory. Then, the Anomaly Detector

added the goal splitTrafficTowardsIp(ip) to have a Load Balancer dividing the traffic into

60

two flows of 1 MB/s. Agent 5 also won this auction, completely exhausting its CPU

cores and memory, and therefore preventing it from participating in future negotiations.

Note that the bid component C is equal to the previous auction for all agents. This is

because two reasons: (i) the VNFs selected for this and the previous auction have the same

instantiation requirements; and (ii) both auctions were triggered by the same auctioneer.

Therefore, the bidding heuristic was executed by participants using the same parameters

in these auctions.

Next, the Load Balancer started two flowRecord(ip) auctions, one for each flow of

1 MB/s. Since in our system multiple auctions cannot coexist, the second flowRecord(ip)

auction happened after the first was finished. Agent 1 bid in both auctions, sending the

lowest value for the C component in the simulation, which is a consequence of its proxim-

ity to Agent 5. Nonetheless, it lost the auctions because the preference for decentralisation

is high and the preference for saving computational and network resources is low (pf D =

0.8 and pf C = 0.2).

The high preference for decentralisation awarded Agent 3 with the first auction

and Agent 4 with the second. Agent 3 refused to participate in the second auction be-

cause it did not have enough resources to host another Classifier. During the bidding

heuristic execution of Agents 3 and 4, they evaluated that predicate canDeploy(p, v) ∨

¬∃v ′canDeploy(p, v′) from Equation 4.4 was false. This means that no other VNF could

be instantiated after the allocation of the Classifier VNF. Therefore, the result of Equa-

tion 4.4 was 1, which is the harmonic mean of the ratio of available computational re-

sources of their NFVI-PoP (function freeRscUtil(p)). Although allocating this VNF in-

curred in high computational and network cost, given the high preference of this goal for

decentralisation, the bid utility evaluated by the auctioneer selected Agents 3 and 4 as the

winners. The importance of the preferences inputted by a specialist is prominent in these

auctions. Although the C component from Agents 2 and 3 was manyfold greater than

Agent 1, considering the preferences, their bid utility was almost the same.

Finally, eight auctions were triggered to have goal flowRateLimited(flow) achieved,

one for each malicious host found by one of the two Classifiers deployed in the network.

As shown in Table 5.7, the preference for the time component is high (pf T = 0.8). Con-

sequently, Agent 5, which had a Rate Limiter already deployed, won these auctions. Next,

we analyse how our system behaves in larger scenarios.

61

5.4.3 Scalability Analysis

After detailing our implementation and experiment, we provide evidence despite

the scalability of our decentralised orchestrator. We evaluated the scalability of our ap-

proach through two tests, whose details and results are given next.

In the first test, we evaluate the performance of the solution considering scenarios

in which agents may have a large number of goals unrelated to the resilience strategy

(i.e., agents that perform multiple tasks). To do this, we used the scenario described in

Section 5.3 and generated an increasing number of synthetic goals in the agent playing

the Rate Limiter capability, which simulate the impact of real plans by taking a random

amount of time to complete (between 0 and 100 milliseconds). We used 21 different

configurations, where the number of goals started in 0, and 5 more were added in each

new configuration so that the twenty-first had 100 synthetic goals. They were added to

the agent along with the goal linkRateLimited(link). The time measurement started right

after the goals were added and ended when the throttling strategy was applied. Each

configuration was executed 20 times.

Figure 5.5 shows how long the Rate Limiter took, on average, to apply the throt-

tling strategy to the anomalous link, considering an increasing number of unrelated goals.

The X-axis shows the increasing amount of synthetic goals, and the Y-axis represents

time. Each blue vertical line shows the standard deviation of a configuration, while the

circle point indicates the average measurement. A green line was added to connect all the

average values.

In the second test, we evaluate two aspects of our approach with an increasing

number of agents: (i) how much memory agents consume; and (ii) how many messages

agents exchange in the NFV-A protocol. To comprehend how these aspects behave, we

applied the DDoS resilience strategy described in Section 5.1 in a scenario where the

resources of NFVI-PoPs and links bandwidth are unlimited. We used a ring topology

so that we could easily automate the simulation to add more NFVI-PoPs to the loop.

As we measure agent-related characteristics, and not their devised allocation of VNFs

into NFVI-PoPs, changes in the network topology do not affect this test. An attacker

is added to trigger the resilience strategy. This scenario was executed with 16 different

configurations, where we only changed the number of agents. The first configuration

starts with 6 agents, the same amount of the simulation presented in Section 5.3. Next,

each configuration consisted of 6 more agents than the previous. Therefore, the sixteenth

62

Figure 5.5: Time taken by the Rate Limiter to apply the throttling strategy.

configuration consisted of 96 agents. Each configuration was simulated 20 times, where

we collected the messages exchanged by the NFV-A protocol and memory consumption.

Figure 5.6 shows the average memory consumption and the number of messages

exchanged in the scenario described above, using configurations with an increasing num-

ber of agents. The X-axis presents the number of agents, while the left-side Y-axis indi-

cates the memory consumption and the right-side Y axis the number of messages. The

blue line with square points shows that the number of messages exchanged in the NFV-A

protocol grew linearly with the number of agents. The dark blue lines with a circle point

represent the standard deviation of memory consumption of a given configuration. The

circle point of these lines shows the average value for each configuration and are con-

nected by a green line. Memory consumption only accounts for BDI4JADE agents, as

we do not consider the memory used by Mininet.

The linear growth in both messages exchanged, memory usage and goal achieve-

ment time indicate that our system can scale to large networks. Note that we did not use

goal filtering and prioritisation, which in a real scenario would be adopted to improve

scalability, reducing the number of plans running at the same time.

63

Figure 5.6: Memory consumption and number of messages exchanged.

5.5 Final Remarks

In this chapter, we presented our testbed and evaluation of our system through a

DDoS resilience strategy, where agents negotiated the allocation of VNFs dynamically,

considering the preferences inputted by a network operator a priori. Then, we evaluated

the emergent behaviour and auctions that occurred during the simulation. Next, we anal-

ysed the scalability of our solution by simulating agents with a large number of goals

as well as the memory consumed by agents and the number of messages exchanged in

our protocol. Finally, in next chapter, we analyse research efforts that also propose the

creation of NFV orchestrator.

64

6 RELATED WORK

Recent research efforts have indicated that NFV orchestrators can be automated,

relieving network operators from having to attack the placement and chaining problems (MI-

JUMBI et al., 2016). However, some key issues remain open, such as embedding the

orchestrator with the knowledge to select VNFs to be deployed and removed (selection

problem). In this chapter, we describe existing work that proposed NFV orchestrators.

6.1 Existing Solutions to the Automation of the Orchestration of VNFs

NFV has changed the way network functions are deployed and managed, posing

new challenges to network operators. Management systems will have to cope with short-

lived networks driven by per service demands, guaranteeing that all required functions

are instantiated in an orderly and on-demand basis. This section describes previous work

related to the automation of the orchestration of VNFs.

Giotis et al. (GIOTIS; KRYFTIS; MAGLARIS, 2015) proposed a policy-based

approach, creating a centralised orchestrator based on Ponder2 (TWIDLE et al., 2008).

They represent VNFs as an extension of Managed Objects (MO), allowing VNFs to inter-

act with management policies and provide the desired NFV Service. The orchestrator is a

collection of Event-Condition-Action (ECA) policies, authorisation and role assignment

of resources. Differently from our work, however, ECA policies in (GIOTIS; KRYFTIS;

MAGLARIS, 2015) have to be manually specified by a human operator, whereas in our

work the behaviour of VNFs emerges through an automated reasoning process.

Focusing on security, Yasrebi et al. (YASREBI et al., 2015) proposed the orches-

tration of a Deep Packet Inspector (DPI) to detect and prevent DDoS attacks in SDN. Their

approach is tested on the SAVI testbed (KANG; BANNAZADEH; LEON-GARCIA,

2013), which uses a centralised module aware of every network route. It uses this in-

formation to attach an Intrusion Detection System (IDS) where needed. Their system is

capable of detecting, blocking and also redirecting the traffic to a honeypot for further

investigation. Through the mobility provided by SDN, they are capable of implementing

layers of security for different attacks, enabling the system to block attacks based on their

severity in different parts of the network. In a different manner, we propose a decen-

tralised approach where the interaction between autonomous components orchestrate the

network behaviour.

65

With the objective of increasing energy efficiency, Donadio et al. (DONADIO et

al., 2014) proposed a PCE-based (FARREL; VASSEUR; ASH, 2006) orchestrator, which

is composed of a traffic analyser that controls computational resources and monitors log

messages to perform orchestration in real-time. Their orchestrator can be executed in

multiple physical hosts simultaneously, where each orchestrator manages its resources.

Moreover, there is a centralised alternative in which one orchestrator is responsible for

orchestrating resources in different network domains. Their work mainly focuses on min-

imising energy consumption of the IT infrastructure through the provision of orchestration

algorithms that are oriented towards energy efficiency. Although Donadio et al. (DONA-

DIO et al., 2014) proposed to use multiple orchestrators, they are still centralised com-

ponents that control part of the virtualised network, while we propose that all virtualised

components work together towards a decentralised NFV orchestrator.

Kuroki et al. (KUROKI; FUKUSHIMA; HAYASHI, 2015) focused on reducing

the time of service of lifecycle management. They implemented an orchestrator that take

as an input traditional service description (VNFs, virtual links, etc.) and an optimisation

policy for each network service request. They use a set of algorithms that provide optimal

results based on what is being optimised. Each network service request is submitted

to an allocation algorithm based on its optimisation policy. By using algorithms that

provide optimal resource allocation and open source network controllers to handle the

low-level operations (create, remove and update VNFs), they were able to execute these

operations in, on average, less than a second. Differently, instead of receiving as input the

service requests, we attack the selection problem by embedding agents with knowledge

that enables them to decide which VNFs are needed and build the VNF-FG dynamically.

Yoshida et al. (YOSHIDA et al., 2014) introduced an orchestrator that uses a

multi-objective resource scheduling algorithm. They created a genetic algorithm that

finds pareto-optimal solutions to the placement problem considering conflicting objec-

tives. Similarly, preferences are given to their system a priori and used to determine the

most suitable solutions. Although their system deals with requests dynamically, it only

solves the placement problem (statically) while we also deal with selection and chaining.

6.2 Discussion

The NFV architecture separates network functions from hardware. This architec-

ture decouples hardware from software, reducing network costs and ensuring that SLAs

66

Table 6.1: Comparison of related work.

Related Work Decentralised Selection Placement Chaining

Giotis et al. x x X X
Yasrebi et al. x x X X
Donadio et al. X x X X
Kuroki et al. x x X X
Yoshida et al. x x X x

are satisfied.

This overview introduced previous work whose aim was to provide the orches-

tration of VNFs. We summarise the related work discussed in the previous section in

Table 6.1. From the literature review conducted, no work addresses the selection, place-

ment and chaining problems altogether. All the work presented assume that the solution

to the selection problem is given as an input to their orchestrators. So, there is still op-

portunities to create new approaches that, despite attacking the placement and chaining

problems, can also relieve network operators from selecting VNFs to be added to the

network in the face challenges.

Based on the analysis of existing work, we concluded that there are still oppor-

tunities to explore techniques to create intelligent NFV orchestrators. Differently from

the related work discussed in this section, we proposed a decentralised NFV orchestrator

in which the reasoning is embedded into BDI agents whose interactions and emerging

behaviour attack the orchestrator problems.

6.3 Final Remarks

In this chapter, we presented other research efforts that also introduced NFV or-

chestrator, pointing out potential limitations and how our work address them. Next, we

introduced a comparison between them, showing that there are opportunities for new

approaches as there are open issues in this research field. Finally, in next chapter we

conclude this dissertation detailing our contributions and opportunities for future work.

67

7 CONCLUSION AND FUTURE WORK

The NFV architecture provides an alternative to the cumbersome deployment, con-

figuration and management of middleboxes, relieving network operators from vendor-

specific technologies. This architecture leads to the challenges of selection, placement

and chaining of VNFs, requiring solutions that attack these problems, ideally, at runtime

and without human interference. Effectively solving these problems has the potential to

improve the usage of resources, reducing CAPEX and OPEX.

Although different approaches have been proposed to attack the orchestration

problem, previous work relies either on manual or on centralised approaches. Instead,

in this dissertation, we proposed a distributed and decentralised NFV orchestrator based

on BDI reasoning. We introduced an auction-based mechanism, in which agents bid on

the allocation of VNFs. Cognitive agents are embedded with preferences from a domain

specialist, allowing them to decide what action should be taken based on perceptions from

the environment. While placing a bid, with our bidding heuristic, agents select a VNF to

achieve a given goal and identify the path with the lowest cost to chain VNFs. The auc-

tion winner determines where to place the VNF. The emergent behaviour achieved by our

approach is arguably more robust, since it can adapt to different situations and topologies,

or in case of a component failure.

We evaluated our theoretical model through simulation in a testbed that integrates

BDI4JADE and Mininet, using Docker containers to represent five distinct VNFs that

work together to mitigate a DDoS attack. In our simulation, we explored the automatic

orchestration of VNFs on a DDoS attack scenario and demonstrated that the traditional

monolithic orchestrator can be implemented as distributed autonomous components.

7.1 Contributions

The main contributions of this dissertation are:

• A decentralised NFV architecture. In Chapter 3 we introduced our extension to

the NFV architecture, replacing the centralised orchestrator by BDI agents. Each

agent controls an NFVI-PoP, being able to perceive and make changes in the net-

work through its VNFs. The proposed decentralised NFV architecture was pub-

lished elsewhere (SCHARDONG; NUNES; SCHAEFFER-FILHO, 2017).

68

• A bidding heuristic that addresses the selection, placement and chaining prob-

lems. In Chapter 4, the NFV-A protocol, which specifies how agents start and

respond to auctions, was detailed. The main component of this auction protocol

is the bidding heuristic, which specifies how agents calculate their bids, consider-

ing the time to download a VNF from the repository, the cost of using a path to

communicate with the auctioneer and a decentralisation metric. These are balanced

through preferences, which allow network operators to fine-tune auctions based on

their desires.

• Implementation of the bidding heuristic. In Chapter 5, we introduced a DDoS

case study to evaluate the proposed decentralised orchestrator and NFV-A protocol.

We implemented five VNFs and detailed their possible interactions. The simula-

tions were conducted in our testbed, which is detailed next.

• An integrated testbed. In Chapter 5, we also detailed the integration between the

agent platform BDI4JADE and the Mininet emulator to create a testbed that inte-

grates BDI agents with our auction protocol to orchestrate VNFs. One can easily

implement new VNFs and network topologies to test the emergent behaviour of our

decentralised orchestrator. The reverse-auction heuristic, its implementation and

the testbed were published elsewhere (SCHARDONG; NUNES; SCHAEFFER-

FILHO, 2018).

7.2 Future Work

The contributions of this dissertation provide an initial step towards the consoli-

dation of decentralised solutions to the orchestration problems. However, our work has

limitations that can be explored by future work. These limitations are listed below.

• Explore the emerging behaviour of agents. In Chapter 5, we implemented five

distinctive VNFs, each with a specific action that could be activated by the agent.

However, in a DDoS attack, a network operator might have access to multiple mid-

dleboxes to classify or find anomalies in network traffic, each with its character-

istics despite resource consumption, price and effectiveness in reaching its goal.

Therefore, simulations with multiple VNFs that achieve the same objective, prompt

agents with the task of selecting a VNF among many, allowing diverse and unfore-

seen solutions to emerge.

69

• Evaluate the bidding heuristic in different network topologies and scenarios.

In Chapter 5, we tested our DDoS resiliency strategy in a small network topology

composed of six NFVI-PoPs, six switches, one VNF repository and one application

server. This topology does not reflect the complexity and size of the network of

large corporations or university campuses. Likewise, scenarios involving, for in-

stance, content delivery and telecom carriers pose different challenges. Therefore,

larger network topologies and new scenarios should be used to analyse the emergent

solution devised by agents through the bidding heuristic.

• Address scenarios involving multiple providers. Currently, we assume that agents

belong to the same service provider. However, this assumption is unrealistic in other

scenarios. For instance, in a VNF as a service (VNFaaS) market (HAWILO et al.,

2014), agents from different providers have to trust each other to collaborate and

receive rewards to perform some job from a different provider. Therefore, adding

incentivization and reputation models would be a valuable contribution to our work.

• Manage the lifecycle of VNFs. The lifecycle management of VNFs consists of en-

suring that VNFs provide their designed functionalities, allowing the instantiation,

update, query, termination and also the scaling of their underlying resources. In our

work, VNFs are scaled, instantiated and queried by their respective agents. How-

ever, agents can not terminate or update their VNFs, which limits the applicability

of our solution in real life applications, because the resources of NFVI-PoPs are not

released, thus fragmenting the network resources.

In summary, we introduce an extension to the NFV architecture, in which au-

tonomous agents replace the centralised orchestrator. Agents use our NFV-A protocol

and the bidding heuristic to address the selection, placement and chaining problems. We

also implemented a testbed that integrates agents of BDI4JADE with a virtual network

created in the Mininet emulator. Furthermore, we evaluated the emergent allocation of

VNFs to mitigate a DDoS attack. With this work, we aim to popularise both multi-agent

and NFV technologies, thus promoting the adoption of these technologies in the industry.

70

REFERENCES

ALAMEDDINE, H. A.; QU, L.; ASSI, C. Scheduling service function chains for
ultra-low latency network services. In: IEEE. 2017 13th International Conference on
Network and Service Management (CNSM). [S.l.], 2017. p. 1–9.

BAITICHE, H.; BOUZENADA, M.; SAÏDOUNI, D. E. Towards a generic predictive-
based plan selection approach for bdi agents. Procedia Computer Science, Elsevier,
v. 113, p. 41–48, 2017.

BOUET, M. et al. Cost-based placement of vdpi functions in nfv infrastructures.
International Journal of Network Management, Wiley Online Library, v. 25, n. 6, p.
490–506, 2015.

BRATMAN, M. Intention, plans, and practical reason. [S.l.]: Cambridge, Mass.,
Harvard University Press, 1987.

BUSETTA, P. et al. Structuring bdi agents in functional clusters. In: SPRINGER.
International Workshop on Agent Theories, Architectures, and Languages. [S.l.],
1999. p. 277–289.

CHAIB-DRAA, B.; DIGNUM, F. Trends in agent communication language.
Computational intelligence, Wiley Online Library, v. 18, n. 2, p. 89–101, 2002.

CHI, P.-W.; HUANG, Y.-C.; LEI, C.-L. Efficient nfv deployment in data center networks.
In: IEEE. Communications (ICC), 2015 IEEE International Conference on. [S.l.],
2015. p. 5290–5295.

CLAYMAN, S. et al. The dynamic placement of virtual network functions. In: IEEE.
Network Operations and Management Symposium (NOMS), 2014 IEEE. [S.l.],
2014. p. 1–9.

COHEN, P. R.; LEVESQUE, H. J. Rational interaction as the basis for
communication. [S.l.], 1988. 1–40 p.

DAVIS, R.; SMITH, R. G. Negotiation as a metaphor for distributed problem solving.
Artificial intelligence, Elsevier, v. 20, n. 1, p. 63–109, 1983.

DONADIO, P. et al. A pce-based architecture for the management of virtualized
infrastructures. In: IEEE. Cloud Networking (CloudNet), 2014 IEEE 3rd
International Conference on. [S.l.], 2014. p. 223–228.

DURFEE, E. H.; LESSER, V. R.; CORKILL, D. D. Trends in cooperative distributed
problem solving. IEEE Transactions on knowledge and data Engineering, IEEE, v. 1,
n. 1, p. 63–83, 1989.

ETSI ISG NFV. Network Functions Virtualisation (NFV): Architectural Framework.
2013. Available from Internet: <http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/
01.02.01_60/gs_NFV002v010201p.pdf>.

ETSI ISG NFV. ETSI GS NFV 003 V1.2.1: Network Functions Virtualisation (NFV);
Terminology for Main Concepts in NFV. 2014. Available from Internet: <http://www.
etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf>.

http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.01_60/gs_NFV002v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_NFV003v010201p.pdf

71

ETSI ISG NFV. Network Functions Virtualisation (NFV); Management and
Orchestration. 2014. Available from Internet: <https://www.etsi.org/deliver/etsi_gs/
NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf>.

ETSI ISG NFV. Network Functions Virtualisation (NFV); Management and
Orchestration. 2014. Available from Internet: <https://www.etsi.org/deliver/etsi_gs/
NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf>.

ETSI ISG NFV. Network Functions Virtualisation (NFV); Management and
Orchestration; Network Service Templates Specification. 2016. Available from
Internet: <http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_
NFV-IFA014v020101p.pdf>.

ETSI ISG NFV. Network Functions Virtualisation (NFV); Management and
Orchestration; VNF Packaging Specification. 2016. Available from Internet:
<http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/011/02.01.01_60/gs_
NFV-IFA011v020101p.pdf>.

FACCIN, J.; NUNES, I. Bdi-agent plan selection based on prediction of plan outcomes.
In: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT). [S.l.: s.n.], 2015. v. 2, p. 166–173.

FACCIN, J.; NUNES, I. Bdi-agent plan selection based on prediction of plan outcomes.
In: Proceedings of the 2015 IEEE / WIC / ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT) - Volume 01. Washington,
DC, USA: IEEE Computer Society, 2015. (WI-IAT ’15), p. 166–173. ISBN 978-1-4673-
9618-9. Available from Internet: <http://dx.doi.org/10.1109/WI-IAT.2015.58>.

FARREL, A.; VASSEUR, J.-P.; ASH, J. A path computation element (PCE)-based
architecture. 2006. <view-source:https://tools.ietf.org/html/rfc4655>. Accessed:
2017-09-28.

FININ, T. et al. Kqml as an agent communication language. In: ACM. Proceedings of
the third international conference on Information and knowledge management.
[S.l.], 1994. p. 456–463.

GENESERETH, M. R.; KETCHPEL, S. P. Software agents. Commun. ACM, v. 37,
n. 7, p. 48–53, 1994.

GIOTIS, K.; KRYFTIS, Y.; MAGLARIS, V. Policy-based orchestration of nfv services
in software-defined networks. In: IEEE. Network Softwarization (NetSoft), 2015 1st
IEEE Conference on. [S.l.], 2015. p. 1–5.

GUDE, N. et al. Nox: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review, ACM, v. 38, n. 3, p. 105–110, 2008.

GUERZONI, R. et al. Network functions virtualisation: an introduction, benefits,
enablers, challenges and call for action, introductory white paper. In: SDN and
OpenFlow World Congress. [S.l.: s.n.], 2012. v. 1, p. 5–7.

HALPERN, J.; PIGNATARO, C. Service function chaining (sfc) architecture. [S.l.],
2015. Available from Internet: <https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf>.

https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_NFV-IFA014v020101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_NFV-IFA014v020101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/011/02.01.01_60/gs_NFV-IFA011v020101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/011/02.01.01_60/gs_NFV-IFA011v020101p.pdf
http://dx.doi.org/10.1109/WI-IAT.2015.58
view-source:https://tools.ietf.org/html/rfc4655
https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf

72

HAN, B. et al. Network function virtualization: Challenges and opportunities for
innovations. IEEE Communications Magazine, IEEE, v. 53, n. 2, p. 90–97, 2015.

HAWILO, H. et al. Nfv: state of the art, challenges, and implementation in next
generation mobile networks (vepc). IEEE Network, IEEE, v. 28, n. 6, p. 18–26, 2014.

HERRERA, J. G.; BOTERO, J. F. Resource allocation in nfv: A comprehensive survey.
IEEE Transactions on Network and Service Management, IEEE, v. 13, n. 3, p.
518–532, 2016.

HUIN, N.; JAUMARD, B.; GIROIRE, F. Optimization of network service chain
provisioning. In: IEEE. Communications (ICC), 2017 IEEE International
Conference on. [S.l.], 2017. p. 1–7.

JIAO, S. et al. Joint virtual network function selection and traffic steering in telecom
networks. In: IEEE. GLOBECOM 2017-2017 IEEE Global Communications
Conference. [S.l.], 2017. p. 1–7.

KANG, J.-M.; BANNAZADEH, H.; LEON-GARCIA, A. Savi testbed: Control
and management of converged virtual ict resources. In: IEEE. Integrated Network
Management (IM 2013), 2013 IFIP/IEEE International Symposium on. [S.l.], 2013.
p. 664–667.

KONG, J. et al. Guaranteed-availability network function virtualization with network
protection and vnf replication. In: IEEE. GLOBECOM 2017-2017 IEEE Global
Communications Conference. [S.l.], 2017. p. 1–6.

KUROKI, K.; FUKUSHIMA, M.; HAYASHI, M. Framework of network service
orchestrator for responsive service lifecycle management. In: IEEE. 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM). [S.l.], 2015. p.
960–965.

LABROU, Y.; FININ, T. Semantics for an agent communication language. In:
SPRINGER. International Workshop on Agent Theories, Architectures, and
Languages. [S.l.], 1997. p. 209–214.

LANGERMAN, J. J. Agent-based models for the creation and management of airline
schedules. Thesis (PhD) — University of Johannesburg, 2005.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: rapid prototyping
for software-defined networks. In: ACM. Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. [S.l.], 2010. p. 19–25.

LEHMANN, D.; MÜLLER, R.; SANDHOLM, T. The winner determination problem.
Combinatorial auctions, p. 297–318, 2006.

LUIZELLI, M. C. et al. Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions. In: IEEE. 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM). [S.l.], 2015. p. 98–106.

LUIZELLI, M. C. et al. The actual cost of software switching for nfv chaining. In: IEEE.
Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium
on. [S.l.], 2017. p. 335–343.

73

MARTINS, J. et al. Clickos and the art of network function virtualization. In: USENIX
ASSOCIATION. Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation. [S.l.], 2014. p. 459–473.

MEDHAT, A. M. et al. Near optimal service function path instantiation in a multi-
datacenter environment. In: IEEE. Network and Service Management (CNSM), 2015
11th International Conference on. [S.l.], 2015. p. 336–341.

MERKEL, D. Docker: lightweight linux containers for consistent development and
deployment. Linux Journal, Belltown Media, v. 2014, n. 239, p. 2, 2014.

MIJUMBI, R. et al. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, IEEE, v. 18, n. 1, p. 236–262,
2016.

MOENS, H.; TURCK, F. D. Vnf-p: A model for efficient placement of virtualized
network functions. In: IEEE. 10th International Conference on Network and Service
Management (CNSM) and Workshop. [S.l.], 2014. p. 418–423.

MÜLLER, C.; TIMMERER, C. A vlc media player plugin enabling dynamic adaptive
streaming over http. In: ACM. Proceedings of the 19th ACM international conference
on Multimedia. [S.l.], 2011. p. 723–726.

NUNES, I. Improving the design and modularity of bdi agents with capability
relationships. In: SPRINGER. International Workshop on Engineering Multi-Agent
Systems. [S.l.], 2014. p. 58–80.

NUNES, I.; LUCENA, C.; LUCK, M. Bdi4jade: a bdi layer on top of jade. In: Proc. of
the Workshop on Programming Multiagent Systems. [S.l.: s.n.], 2011. p. 88–103.

NUNES, I.; SCHARDONG, F.; SCHAEFFER-FILHO, A. Bdi2dos: An application using
collaborating bdi agents to combat ddos attacks. J. Netw. Comput. Appl., Academic
Press Ltd., London, UK, UK, v. 84, n. C, p. 14–24, abr. 2017. ISSN 1084-8045. Available
from Internet: <https://doi.org/10.1016/j.jnca.2017.01.035>.

PEUSTER, M.; KARL, H.; ROSSEM, S. V. Medicine: Rapid prototyping of production-
ready network services in multi-pop environments. In: IEEE. Network Function
Virtualization and Software Defined Networks (NFV-SDN), IEEE Conference on.
[S.l.], 2016. p. 148–153.

PFAFF, B. et al. Extending networking into the virtualization layer. In: Hotnets. [S.l.:
s.n.], 2009. p. 1–6.

RAO, A. S.; GEORGEFF, M. P. et al. Bdi agents: From theory to practice. In: ICMAS.
[S.l.: s.n.], 1995. v. 95, p. 312–319.

RICHARDSON, L.; RUBY, S. RESTful web services. [S.l.]: " O’Reilly Media, Inc.",
2008.

ROESCH, M. et al. Snort: Lightweight intrusion detection for networks. In: LISA. [S.l.:
s.n.], 1999. v. 99, n. 1, p. 229–238.

SCAPY. 2007. <http://www.secdev.org/projects/scapy/>. Accessed: 2017-09-29.

https://doi.org/10.1016/j.jnca.2017.01.035
http://www.secdev.org/projects/scapy/

74

SCHAEFFER-FILHO, A. E. et al. A framework for the design and evaluation of network
resilience management. In: NOMS. [S.l.: s.n.], 2012. v. 2012, p. 401–408.

SCHARDONG, F.; NUNES, I.; SCHAEFFER-FILHO, A. A distributed nfv orchestrator
based on bdi reasoning. In: IEEE. Integrated Network Management (IM), 2017
IFIP/IEEE International Symposium on. [S.l.], 2017. p. 107–115.

SCHARDONG, F.; NUNES, I.; SCHAEFFER-FILHO, A. Providing cognitive
components with a bidding heuristic for emergent nfv orchestration. In: IEEE. Network
Operations and Management Symposium (NOMS), 2018 IEEE/IFIP. [S.l.], 2018.
p. 1–9.

SILVA, A. S. da et al. Atlantic: A framework for anomaly traffic detection, classification,
and mitigation in sdn. In: IEEE. NOMS 2016-2016 IEEE/IFIP Network Operations
and Management Symposium. [S.l.], 2016. p. 27–35.

SINGH, D. et al. Learning context conditions for bdi plan selection. In: INTERNA-
TIONAL FOUNDATION FOR AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS. Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1. [S.l.], 2010. p. 325–332.

SMITH, R. G. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on computers, IEEE, n. 12, p.
1104–1113, 1980.

SMITH, R. G.; DAVIS, R. Frameworks for cooperation in distributed problem solving.
IEEE Transactions on systems, man, and cybernetics, IEEE, v. 11, n. 1, p. 61–70,
1981.

STERBENZ, J. P. et al. Resilience and survivability in communication networks:
Strategies, principles, and survey of disciplines. Computer Networks, Elsevier, v. 54,
n. 8, p. 1245–1265, 2010.

SUN, Q. et al. Forecast-assisted nfv service chain deployment based on affiliation-aware
vnf placement. In: IEEE. Global Communications Conference (GLOBECOM), 2016
IEEE. [S.l.], 2016. p. 1–6.

THAI, M.-T.; LIN, Y.-D.; LAI, Y.-C. A joint network and server load balancing algorithm
for chaining virtualized network functions. In: IEEE. Communications (ICC), 2016
IEEE International Conference on. [S.l.], 2016. p. 1–6.

TWIDLE, K. et al. Ponder2-a policy environment for autonomous pervasive systems. In:
IEEE. Policies for Distributed Systems and Networks, 2008. POLICY 2008. IEEE
Workshop on. [S.l.], 2008. p. 245–246.

VERBRUGGE, S. et al. Methodology and input availability parameters for calculating
opex and capex costs for realistic network scenarios. Journal of Optical Networking,
Optical Society of America, v. 5, n. 6, p. 509–520, 2006.

WOOLDRIDGE, M. An introduction to multiagent systems. [S.l.]: John Wiley &
Sons, 2009.

75

WOOLDRIDGE, M.; JENNINGS, N. R. Intelligent agents: Theory and practice. The
knowledge engineering review, Cambridge Univ Press, v. 10, n. 02, p. 115–152, 1995.

XIA, M. et al. Network function placement for nfv chaining in packet/optical datacenters.
Journal of Lightwave Technology, IEEE, v. 33, n. 8, p. 1565–1570, 2015.

YASREBI, P. et al. Security function virtualization in software defined infrastructure.
In: IEEE. Integrated Network Management (IM), 2015 IFIP/IEEE International
Symposium on. [S.l.], 2015. p. 778–781.

YOSHIDA, M. et al. Morsa: A multi-objective resource scheduling algorithm for
nfv infrastructure. In: IEEE. Network Operations and Management Symposium
(APNOMS), 2014 16th Asia-Pacific. [S.l.], 2014. p. 1–6.

ZHANG, S. Q. et al. Joint nfv placement and routing for multicast service on sdn.
In: IEEE. Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP. [S.l.], 2016. p. 333–341.

76

APPENDIX A — RESUMO ESTENDIDO

Com o passar dos anos, a complexidade e o tamanho das redes aumentaram drasti-

camente, assim como a necessidade de um gerenciamento mais flexível. Os equipamentos

físicos (também conhecidos como middleboxes) são produtos altamente especializados e

proprietários que requerem encadeamento específico, instalação física e suas funcional-

idades não podem ser facilmente alteradas. Além disso, a crescente demanda por redes

mais diversificadas e de curta duração para lidar com altas taxas de dados, como infra-

estrutura-como-serviço e rede-como-serviço, exige que as operadoras de redes implantem

rapidamente e operem equipamentos de rede complexos, levando a altas despesas de cap-

ital e gastos operacionais.

Para resolver esses problemas, a virtualização de funções de rede (NFV) foi pro-

posta como uma forma de dissociar serviços de rede de dispositivos físicos através da

virtualização. Há um amplo conjunto de serviços tradicionalmente executados pelas mid-

dleboxes — como firewalls, sistemas de detecção de intrusões, sistemas de prevenção de

intrusões, modelagem de tráfego, conversão de endereços de rede, aceleradores de tráfego,

caches e proxies — que podem ser virtualizados em funções de rede virtual (VNFs)

baratas e fáceis de implementar. Diferentemente das middleboxes, múltiplas funções de

rede virtualizadas podem compartilhar uma única máquina física, permitindo o uso de

poder computacional, que de outra forma seria perdido, em middleboxes proprietárias. A

evolução das redes em funções e serviços baseados em software são passos concretos para

redes do futuro.

No entanto, as VNFs precisam ser gerenciados e compostas de maneira signi-

ficativa, de modo que as funcionalidades desejadas sejam alcançadas. Esse processo é

chamado de orquestração NFV. A orquestração NFV pode ser decomposta em três prob-

lemas principais: (i) seleção automática de VNFs; (ii) VNF colocação na rede virtual-

izada; e (iii) encadeamento de VNFs. Normalmente, os humanos projetam um grafo de

encaminhamento de rede de VNFs, isto é, decidem como as VNFs são encadeadas. No

entanto, à medida que a complexidade da rede aumenta e os requisitos de acordo de nível

de serviço sobre as redes sob demanda se tornam mais rigorosos, garantir a orquestração

de nós virtuais em tempo real torna-se vital para operadoras e provedores de serviços. No

entanto, os esquemas de orquestração da NFV propostos até o momento não exploram

os benefícios de componentes autônomos, portanto dependem de humanos para impor os

SLAs, o que geralmente é impraticável.

77

Soluções centralizadas para os problemas de seleção, colocação e encadeamento

foram propostas. No entanto, eles têm desvantagens naturais, como por exemplo, intol-

erância a falhas, pois um único componente controla a alocação de recursos na rede e pode

exigir a interrupção completa devido a alterações de hardware ou de configurações. Em

uma solução descentralizada, se um componente do sistema falhar, os outros percebem e

assumem suas funções, mantendo assim a disponibilidade geral. Uma das consequências

dessa característica é que as diferentes peças que compõem um sistema descentralizado

podem ser atualizadas/alteradas sem afetar o sistema. Além disso, os sistemas descentral-

izados podem facilmente ser redimensionados para acomodar mudanças no tamanho do

que eles estão tentando resolver. Com base nessas questões, a questão de pesquisa que

norteia essa dissertação é: Como abordar os problemas de seleção, colocação e encadea-

mento usando uma abordagem descentralizada?

Buscando responder a esta questão, estendemos a arquitetura NFV substituindo

seu orquestrador centralizado por componentes cognitivos estruturados com a arquite-

tura belief-desire-intention (BDI). A arquitetura BDI inclui um ciclo de raciocínio que

fornece aos agentes um comportamento racional, permitindo que lidem com diferentes

cenários nos quais o comportamento flexível e inteligente é necessário. Para desenvolver

um orquestrador descentralizado, contamos com o comportamento que emerge da inter-

ação de agentes BDI autônomos. Utilizamos a arquitetura BDI, pois permite a criação de

sistemas descentralizados flexíveis e robustos, capazes de atuar de forma reativa e proat-

iva, a fim de resolver problemas dinâmicos e complexos.

Em nosso orquestrador descentralizado, cada agente controla um servidor capaz

de receber VNFs (NFVI-PoP) e é responsável pelo gerenciamento de VNFs. Para isso,

os agentes são capazes de monitorar os recursos do seu NFVI-PoP e da rede para tomar

decisões de gerenciamento. Cada agente está ciente das conexões de seu NFVI-PoP, bem

como das especificações de hardware.

Os agentes negociam para escolher os serviços (VNFs) pelos quais são respon-

sáveis. A negociação é realizada por meio de leilões. Em nossa solução, os agentes geren-

ciam suas VNFs e coletivamente decidem qual agente instanciará uma nova VNF. Como

um objetivo pode ser alcançado por diferentes VNFs, o leilão é um meio de selecionar

qual VNF atingirá uma meta (problema de seleção). Além disso, dado que os lances

podem ser colocados por agentes representando diferentes NFVI-PoPs usando o mesmo

VNF, o leilão também é um meio de selecionar a localização de um VNF (problema de

colocação). Finalmente, nossa solução assume que os agentes participantes avaliam o

78

caminho entre eles e o leiloeiro ao fazer um lance (problema de encadeamento).

Parte do processo de leilão consiste em calcular o lance de um agente. Isso é

realizado pela função de lance, que seleciona uma VNF para trabalhar no que está sendo

leiloado e resulta em três valores que são enviados para o agente leiloeiro escolher o

vencedor. O leiloeiro utiliza as preferências a respeito dos três componentes, que são

informadas pelo operador da rede em tempo de design, para determinar qual é o lance de

menor custo que mais satisfaz as suas preferências.

Quando um agente recebe uma mensagem indicando o início de um leilão, ele

realiza as seguintes tarefas: (i) avalia se o NFVI-PoP atende aos requisitos computacionais

da VNF; e (ii) calcula cada componente da proposta. Durante estes passos, o agente avalia

as restrições de rede impostas pelo leiloeiro. Se qualquer restrição não for satisfeita, o

agente informa ao leiloeiro que ele se recusa a participar do leilão. Caso contrário, envia

seu lance.

Para instanciar uma VNF em um NFVI-PoP, o NFVI-PoP deve ter recursos com-

putacionais disponíveis que atendam aos requisitos da VNF. Por exemplo, suponha que

um NFVI-PoP tenha os seguintes recursos disponíveis: (i) 8 núcleos de CPU; (ii) 16 GB

de RAM; e (iii) 500 GB de disco. Considere os requisitos de uma VNF a ser instanciada:

(i) 2 núcleos de CPU; (ii) 4 GB de RAM; e (iii) 50 GB de disco. Como todos os recursos

necessários para instanciar a VNF estão disponíveis no NFVI-PoP, então ele participará

do leilão.

Cada lance tem três componentes: (i) tempo de download da VNF; (ii) ao custo

computacional e de rede; e (iii) descentralização.

O tempo de download da VNF é: (i) 0, se o VNF já estiver implantado e não

precisar ser baixado; ou (ii) o tempo estimado para baixar, do repositório VNF, a VNF

que pode executar o plano selecionado para atingir o objetivo leiloado. O tempo estimado

considera o caminho com a maior largura de banda disponível para baixar a VNF no

menor tempo possível.

O custo computacional e de rede é o principal componente do leilão. Ele avalia a

quantidade de recursos computacionais e de rede empregados para instanciar uma VNF,

bem como avalia se a instanciação de uma VNF em um determinado NFVI-PoP deixaria

os recursos inutilizáveis, evitando assim a instanciação de outras VNFs. Além disso, ao

calcular esse componente de licitação, o algoritmo: (i) verifica se as restrições de obje-

tivos foram atendidas; e (ii) escolhe o caminho entre o leiloeiro e o agente licitante a ser

utilizado, caso o licitante vença o leilão (problema de encadeamento). A ideia princi-

79

pal é encontrar o caminho com o menor custo entre o leiloeiro e o licitante. Para fazer

isso, representamos a rede como um grafo, no qual os nós são conectados por links com

pesos, capturando a quantidade de recursos que estão sendo consumidos devido ao uso

desse link. A identificação do caminho com o menor custo é feita usando uma versão

customizada do amplamente conhecido algoritmo de Dijkstra, que encontra o caminho

mais curto em um grafo em tempo polinomial.

O componente de descentralização corresponde a quão fisicamente distante o leiloeiro

e o licitante estão. Dado que nossas informações de entrada não capturam informações

geográficas sobre NFVI-PoPs, usamos a latência para estimar a descentralização, assu-

mindo que os NFVI-PoPs geograficamente distantes tendem a ter maior latência do que

os NFVI-PoPs que estão geograficamente mais próximos. Este componente é, portanto, a

latência acumulada do caminho que liga o leiloeiro e o licitante, obtido a partir do algo-

ritmo de Dijkstra modificado.

Para testar empiricamente a solução, projetamos cinco VNFs que representam

funcionalidades de rede comumente usadas e observamos seu comportamento coletivo

emergindo em uma estratégia de resiliência significativa para atenuar um ataque de ne-

gação de serviço distribuido (DDoS), são eles: (i) Link Monitor: responsável por detectar

qualquer link usado em excesso na rede; (ii) Rate Limiter: executa a limitação de tráfego

para um link específico, para um endereço IP específico e para fluxos específicos (onde a

origem e o destino são conhecidos); (iii) Anomaly Detector: detecta o alvo de um ataque

de DDoS; (iv) Classifier: analisa e identifica fluxos maliciosos, entre todo o tráfego para

um host específico; e (v) Load Balancer: permite que os agentes dividam o tráfego em

dois fluxos.

Para avaliar o sistema proposto e a heurística de cálculo de lance do leilão, desen-

volvemos um testbed que integra uma plataforma de agente BDI, chamada BDI4JADE,

com o Containernet, que é uma extensão do Mininet onde hosts Mininet são implementa-

dos como containers Docker. A comunicação agente-para-VNF é implementada usando

chamadas RESTful. Fornecemos as VNFs um script Python que envia e recebe chamadas

RESTful, permitindo que os agentes obtenham facilmente informações específicas das

VNFs.

No início da simulação, um arquivo de configuração especificando a topologia da

rede (especificação de recursos de NFVI-PoPs assim como seus links e localização do

repositório VNF) é lido pela plataforma BDI4JADE, que lança os agentes BDI e uma

aplicação Python responsável por iniciar Mininet. Eles trocam informações por meio

80

de chamadas RESTful e coordenam a configuração da rede e a atribuição do agente ao

NFVI-PoP. Como resultado, os agentes estão no controle de NFVI-PoPs e VNFs pré-

configuradas, que são aqueles presentes no estado inicial da rede, implementados em

agentes especificados de acordo com o arquivo de configuração de topologia.

Para avaliar nossa solução, criamos um servidor que responde a solicitações HTTP

por meio do módulo SimpleHTTPServer do Python versão 2.7.14 e fornece um serviço

transmissão de vídeo por meio do VLC versão 2.2.2. Nossa topologia de rede é composta

por seis NFVI-PoPs. O repositório de VNFs está conectado ao quinto NFVI-PoP. O servi-

dor HTTP e transmissão de vídeo, bem como o NFVI-PoP 6, são conectados diretamente

ao mesmo switch. Um Link Monitor é instalado no NFVI-PoP 6, monitorando o link que

conecta o switch ao servidor de HTTP e transmissão de vídeo. O tráfego da simulação

consistiu em 50 hosts que solicitavam assistir a transmissão de vídeo em um intervalo de

tempo, depois pararam e fizeram solicitações HTTP. Para cada host que solicita tráfego

de streaming de vídeo, existem outros cinco hosts que solicitam tráfego HTTP.

Após alguns segundos de simulação, o ataque começou e o tráfego de saída para

o servidor atingiu 6 MB/s. Imediatamente, o Link Monitor detectou o pico, acionando o

leilão para atingir o objetivo linkRateLimited(link), que desencadeou uma série de leilões

que mitigaram o ataque DDoS com sucesso.

Para avaliar a escalabilidade da solução multi-agente proposta, dois testes foram

executados. No primeiro teste, avaliamos o tempo para executar atingir o objetivo con-

siderando cenários nos quais os agentes podem ter um grande número de objetivos não

relacionadas a estratégia de resiliência (como agentes que executam várias tarefas). No

segundo teste, avaliamos dois aspectos de nossa abordagem com um número crescente

de agentes: (i) quanta memória RAM os agentes consomem; e (ii) quantas mensagens

os agentes trocam no protocolo de leilão. O crescimento linear em ambas as mensagens

trocadas, uso de memória e tempo de realização dos objetivos indicam que nosso sistema

pode escalar para grandes redes.

As principais contribuições desta dissertação são:

• Uma arquitetura NFV descentralizada. Introduzimos nossa extensão para a ar-

quitetura NFV, substituindo o orquestrador centralizado por agentes autônomos.

Cada agente controla um NFVI-PoP e suas conexões, sendo capaz de perceber e

fazer mudanças na rede através de VNFs.

• Uma heurística de lances que trata dos problemas de seleção, colocação e en-

cadeamento. O protocolo de leilão, que especifica como os agentes iniciam e re-

81

spondem aos leilões, foi detalhado. O principal componente deste protocolo de

leilão é a heurística de lances, que especifica como os agentes calculam seus lances,

considerando o tempo para baixar uma VNF do repositório, o custo de usar um cam-

inho para se comunicar com o leiloeiro e uma métrica de descentralização. Eles são

equilibrados por meio de preferências, que permitem que os operadores de rede

ajustem os leilões com base em seus desejos.

• Implementação da heurística de licitação. Introduzimos um estudo de caso de

DDoS para avaliar o orquestrador descentralizado proposto e o protocolo de leilão.

Implementamos cinco VNFs e detalhamos suas possíveis interações. As simulações

foram realizadas em nosso testbed, que é detalhado a seguir.

• Um testbed integrado. A integração entre a plataforma do agente BDI4JADE e o

emulador Mininet para criar um testbed que integra agentes BDI com nosso proto-

colo de leilão para orquestrar VNFs. Pode-se facilmente implementar novos VNFs

e topologias de rede para testar o comportamento emergente de nosso orquestrador

descentralizado.

Em resumo, introduzimos uma extensão à arquitetura NFV, na qual agentes autônomos

substituem o orquestrador centralizado. Os agentes usam nosso protocolo de leilão e a

heurística de lances para resolver os problemas de seleção, colocação e encadeamento.

Também implementamos um testbed que integra agentes do BDI4JADE com uma rede

virtual criada no emulador Mininet. Além disso, avaliamos a alocação emergente de

VNFs para mitigar um ataque DDoS. Com este trabalho, pretendemos popularizar as tec-

nologias multi-agente e NFV, promovendo assim a adoção dessas tecnologias na indústria.

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem Statement and Limitations of Related Work
	1.2 Proposed Solution and Overview of Contributions

	2 Background
	2.1 Network Functions Virtualisation
	2.1.1 Benefits of the NFV architecture
	2.1.2 Architectural Framework
	2.1.3 NFV Orchestration

	2.2 Autonomous Agents and Multi-agent Systems
	2.2.1 Key Concepts and Definitions
	2.2.2 BDI Architecture
	2.2.3 Negotiation in Multi-agent Systems

	2.3 Final Remarks

	3 NFV Orchestration based on BDI Reasoning
	3.1 Extended NFV Architecture
	3.2 BDI Agent Formalisation
	3.3 BDI Agent Interaction
	3.3.1 Auction Process: the NFV-A Protocol
	3.3.2 Bid Evaluation

	3.4 Final Remarks

	4 Bidding heuristic
	4.1 Notation and Definitions
	4.2 Bidding Heuristic
	4.2.1 Evaluation of Computational Requirements
	4.2.2 Bid Components

	4.3 Final Remarks

	5 Testbed and Evaluation
	5.1 Scenario: DDoS Resilience Strategy
	5.2 Prototype Implementation
	5.3 Simulation Settings
	5.4 Evaluation Results
	5.4.1 Emergent Behaviour
	5.4.2 Auctions
	5.4.3 Scalability Analysis

	5.5 Final Remarks

	6 Related Work
	6.1 Existing Solutions to the Automation of the Orchestration of VNFs
	6.2 Discussion
	6.3 Final Remarks

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Future Work

	References
	Appendix A — Resumo Estendido

