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ABSTRACT

Dysfunctional clock signaling is observed in a variety of pathological conditions. 
Many members of the clock gene family are upregulated in tumor cells. Here, we 
explored the consequences of a commonly disrupted signaling pathway in head and 
neck cancer on the regulation of circadian clock genes. PTEN is a key molecular 
controller of the PI3K signaling, and loss of PTEN function is often observed in a 
variety of cancers. Our main goal was to determine whether PTEN regulates circadian 
clock signaling. We found that oxidation-driven loss of PTEN function resulted in the 
activation of mTOR signaling and activation of the core clock protein BMAL1 (also 
known as ARNTL). The PTEN-induced BMAL1 upregulation was further confirmed using 
small interference RNA targeting PTEN, and in vivo conditional depletion of PTEN from 
the epidermis. We observed that PTEN-driven accumulation of BMAL1 was mTOR-
mediated and that administration of Rapamycin, a specific mTOR inhibitor, resulted 
in in vivo rescue of normal levels of BMAL1. Accumulation of BMAL1 by deletion of 
PER2, a Period family gene, was also rescued upon in vivo administration of mTOR 
inhibitor. Notably, BMAL1 regulation requires mTOR regulatory protein Raptor and 
Rictor. These findings indicate that mTORC1 and mTORC2 complex plays a critical 
role in controlling BMAL1, establishing a connection between PI3K signaling and the 
regulation of circadian rhythm, ultimately resulting in deregulated BMAL1 in tumor 
cells with disrupted PI3K signaling.

INTRODUCTION

Head and Neck Squamous Cell Carcinoma 
(HNSCC) is one of the most common solid tumors 
worldwide. The risk factors for HNSCC are well known 
and include consumption of alcohol and tobacco and 

infection by HPV. Recent technological advances in large-
scale sequencing resulted in the identification of common 
genetic alterations in HNSCC, including mutations 
occurring in genes of the phosphoinositide 3-kinase 
(PI3K) pathway [1-5], as PIK3CA, GRB1, PIP5K3, AKT2, 
TSC1, TSC2, mTOR, Rictor, Raptor among others. Loss 
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of function and mutations of key molecular regulators of 
PI3K signaling, including PTEN, are associated with the 
formation of various solid tumors, such as head and neck 
cancer [1, 6-8]. PTEN is a tumor suppressor gene that 
negatively regulates PI3K signaling and downstream PI3K 
family members, including AKT and mammalian target 
of Rapamycin (mTOR). Interestingly, PTEN mutations 
and protein loss are common events in the carcinogenesis 
and progression of HNSCC and other cancers such as 
glioblastomas and cancers of the breast, endometrium, and 
prostate [1, 9-12]. In HNSCC, PTEN protein loss is close 
to 31% and may reach 50% in advanced cases [2, 6, 7, 13, 
14] (Wagner and Squarize, under submission).

Although clinically relevant [7, 13], the mechanisms 
associated with loss of PTEN function are largely 
unknown. Epigenetic events are likely the primary cause of 
PTEN loss of function in solid tumors, such as malignant 
melanomas, sporadic breast cancer, hepatocellular 
carcinoma, and thyroid cancer [15-18]. Inactivation of 
PTEN protein also occurs following oxidative inactivation 
that is induced by H2O2. The H2O2 targets the redox active 
Cys124 residue of PTEN, resulting in the formation of a 
disulfide bond between Cys71 and Cys124, as described in 
cervix tumor cell lines and fibroblasts [19]. However, little 
is known about how oxidation affects PTEN signaling in 
HNSCC.

The aim of the study was to investigate the effects of 
compromised PTEN function mediated by the reduction/
oxidation mechanism in the regulation of core clock genes. 
We found that oxidation of PTEN in HNSCC resulted in 
the accumulation of the core circadian molecule BMAL1 
(i.e., ARNTL - Aryl hydrocarbon receptor nuclear 
translocator-like protein 1, Homo sapiens [Human], 
UniProtKB - O00327), which aligns to our studies in the 
epidermis of PTEN conditional knockout mice (Zagni et 
al., submitted). Surprisingly, accumulation of BMAL1 
was associated with upregulation of the mTOR pathway. 
In vivo inhibition of mTOR by Rapamycin causes reduced 
expression of BMAL1 in PTEN and Per2 knockout mice, 
two mouse models that constitutively express high levels 
of BMAL1 in the epidermis. Interfering with the mTOR 
pathway through siRNA technology aiming at Raptor and 
Rictor further strengthen our findings that mTOR plays a 
novel role in the control of the core clock gene BMAL1. 
These results suggest that pathological conditions leading 
to disruption of the PI3K/PTEN/mTOR axis are likely to 
deregulate the circadian clock in normal and epithelial-
derived tumor cells.

RESULTS

PTEN oxidation in HNSCC activates mTOR 
signaling

Administration of hydrogen peroxidase caused 
oxidation of PTEN in HNSCC (Figure 1A and 1B; 

oxPTEN *p<0.05, **p<0.01, ***p<0.001), as previously 
described in HeLa and NIH 3T3 cells [19]. Interestingly, 
oxidation-mediated deactivation of PTEN resulted in 
time-dependent pS6 activation (Figure 1A and 1B; pS6 
*p<0.05, **p<0.01, ***p<0.001), a molecular marker for 
mTOR activity and pharmacological inhibition efficacy 
[20]. Activation of pS6 becomes statistically significant 
after PTEN oxidation (Figure 1A and 1B). Used as a 
positive control or readout of oxidation, reactive oxygen 
species (ROS) was observed to build up on tumor cells 
along with the pS6 activation (Figure 1C, ***p<0.001) 
and the increased proliferation (Figure 1D, **p<0.01, 
***p<0.001).

Increased oxidation leads to the accumulation of 
the core clock protein BMAL1

In the typical process, the cells in the body follow 
a circadian rhythm. The circadian rhythm oscillations 
orchestrate several biological processes intimately involved 
in the maintenance of tissue homeostasis and stem cell 
heterogeneity [21], and it may be dysregulated in cancer 
and aging. For example, disruption in the core clock 
protein BMAL1 results in severe premature aging [22] 
and overexpression is associated with decreased overall 
survival, particularly in colorectal cancer patients [23]. 
In cell culture, the circadian rhythm synchronizing agent 
Forskolin is a potent inducer of circadian gene expression 
including BMAL1 accumulation [24, 25]. Interesting, head 
and neck tumor cell lines present different levels of BMAL1 
upon administration of forskolin. BMAL1 expression 
ranged from highly expressed protein observed in HN6 cells 
to extremely low levels as observed, for example, in HN13 
cells (Figure 2A). We next examined whether exposure of 
HNSCC cells to H2O2 interferes with levels of BMAL1 in 
HNSCC cells. We found that administration of H2O2 resulted 
in the nuclear accumulation of BMAL1 in both HNSCC cell 
lines compared to vehicle, along with the accumulation of 
ROS (Figure 2B). Interestingly, HN13 cells, which had low 
levels of BMAL1 (Figure 2A), showed high accumulation 
of nuclear BMAL1 in response to oxidation (Figure 2B right 
panel). Accumulation of BMAL1 was also time dependent 
(Figure 2C and 2D)(*p<0.05, **p<0.01). Accumulation 
of BMAL1 in HN6 cells was statistically evident after 15 
minutes of administration of H2O2 (Figure 2C) while HN13 
cells showed statistical significance after 8 minutes of H2O2 
administration (*p<0.05) (Figure 2D).

Targeted disruption of PTEN in HNSCC results 
in activation of mTOR and accumulation of 
BMAL1

We next examined whether loss of PTEN function 
caused accumulation of BMAL1. PTEN-targeted siRNA 
(Figure 3A) (Figure 3B) resulted in a reduction of 
PTEN protein. PTEN suppression was accompanied 
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Figure 1: Oxidation of PTEN results in upregulation of mTOR signaling. Oxidation of PTEN and pS6 activation is observed 
after of oxidative stress (H2O2 ) in HN6 (A) and HN13 (B) (*p<0.05, **p<0.01, ***p<0.001). C. Oxidative stress induces abrupt nuclear 
accumulation of reactive oxygen species (ROS) in head and neck cancer cell lines (green channel). Note that accumulation of ROS is 
accompanied by pS6 activation (red channel) (***p<0.001). D. Tumor cells oxidation leads to increased proliferation (Ki-67, red channel) 
and simultaneous accumulation of ROS (green channel)(**p<0.01, ***p<0.001).
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Figure 2: Oxidation causes accumulation of BMAL1. A. Head and neck cancer cells have different expression levels of the core 
clock protein BMAL1. B. Immunofluorescence assay depicts accumulation of ROS (green channel) and BMAL1 (red channel) upon 
oxidation. C. and D. Western blot assay demonstrates time-dependent accumulation of BMAL1 upon oxidative stress in HNSCC cells 
(*p<0.05, **p<0.01).
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Figure 3: Targeted disruption of PTEN in vitro and in vivo induces activation of pS6 and BMAL1. A. and B. Targeted 
inhibition of PTEN using siRNA results in concentration-dependent inhibition of PTEN protein in HNSCC cells. HNSCC cells show 
accumulation of BMAL1 and pS6 in response to PTEN inhibition. C. Immunofluorescence assay to detect BMAL1 in PTEN conditional 
knockout mice (K14cre PtenF/F) and control littermates. Immunofluorescences and graphic show high accumulation of nuclear BMAL1 
in K14cre PtenF/F mice compared to control mice (K14cre). Scale bars represent 50 μm. Black and white images depict cells positive for 
BMAL1 in K14cre PtenF/F mice (arrows) compared to few BMAL-positive cells in control mice (arrowhead). Scale bars represent 10 μm. 
(**p<0.01).
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by accumulation of BMAL1 in a siRNA concentration-
dependent manner. Similarly, downregulation of PTEN 
resulted in the activation of mTOR signaling, as detected 
by the increase in pS6 (Figure 3A and 3B). The correlation 
between PTEN loss and activation of mTOR signaling 
is well documented by our group and others [20, 26-
28]; however, concurrent inactivation of PTEN protein 
and upregulation of clock genes, such as BMAL1, is 
a novel discovery. It is unclear whether compromised 
PTEN function that leads to accumulation of BMAL1 is 
specific to head and neck cancer or is a normal regulatory 
mechanism found in epithelial cells. To address this 
question, we excised PTEN from epithelial cells in vivo 
using epithelial-specific Pten conditional knockout mice 
generated by crossing mice that harbor a floxed Pten 
allele containing two loxP sites (Ptentm1Hwu or PtenF/F) 
with mice that express the Cre recombinase under the 
control of the K14 promoter (K14Cre)[20]. Through 
immunolocalization, we found that control mice present 
a mean of 61% of epithelial cells positive for nuclear 
BMAL1 localized in the interfollicular component of the 
epidermis (Figure 3C_Control arrowhead). Interestingly, 
deletion of PTEN from the basal layer of the epidermis 
resulted in in vivo accumulation of nuclear BMAL1 
(mean 79%) in epithelial cells (Figure 3C_K14Cre PtenF/F, 
arrow). Of note, cornified layer of the epidermis (absent of 
nuclear structures) present typical unspecific staining for 
the secondary antibody. Collectively, our data suggest that 
PTEN-deficient HNSCC cells showing deregulated clock 
gene machinery can also be observed in normal epithelial 
cells presenting genetic excision of PTEN. These results 
suggest that PTEN/PI3K signaling pathway may play an 
unexpected role in the regulation of the core clock gene 
BMAL1 in epithelial cells.

PTEN-mediated accumulation of BMAL1 
requires activation of mTOR signaling

The progressive accumulation of BMAL1 and pS6 
in HNSCC with compromised PTEN function suggests 
crosstalk between mTOR and clock signaling. We next 
examined the effect of mTOR on the accumulation 
of BMAL1. Our work and the work of others have 
previously shown that disruption of PTEN results in 
activation of mTOR signaling [20, 26, 29, 30]. We 
used Rapamycin, a well-known specific inhibitor of 
mTOR [31], to examine a potential role for mTOR in 
the accumulation of BMAL1 in K14Cre PtenF/F mice. 
We found that vehicle-treated K14Cre PtenF/F mice had 
an abrupt accumulation of nuclear BMAL1 compared 
to control littermates (Figure 4, *** p<0.001). 
Remarkably, administration of Rapamycin rescued 
BMAL1 accumulation by significantly diminishing the 
amount of BMAL1-positive cells in K14Cre PtenF/F 
(Figure 4)(*** p<0.001). Furthermore, rapamycin 
reduced BMAL1 expression in K14Cre PtenF/F mice to 

levels comparable to control littermates (Figure 4) (ns 
p>0.05).

Nuclear BMAL1 increase requires mTOR 
signaling in vivo

The circadian rhythm molecule Period2 (Per2) 
plays a critical role as a tumor suppressor by controlling 
levels of BMAL1. To confirm that BMAL1 nuclear 
accumulation depends on mTOR activity, we test 
whether mTOR inhibition interferes with PER2-driven 
BMAL1 accumulation. For this, we used Per2 core 
negative transcriptional inhibitor of the circadian clock 
knockout mice that harbor constitutively active BMAL1 
[32-34]. Accumulation of BMAL1 in mPer2 knockout 
mice occurs in the epidermis (Figure 5A). BMAL1 levels 
were more than three-fold higher in mPer2 knockout 
mice than wild-type littermate controls (*** p<0.001) 
(Figure 5A). We showed that mPer2 knockout mice 
treated with Rapamycin had a significant reduction in 
BMAL1 expression in the epidermis compared to mPer2 
mice treated with vehicle (** p<0.01), resulting in 
BMAL1 levels similar to WT control mice (ns p>0.05)
(Figure 5A). Our data suggests that mTOR plays a 
critical role in the control of BMAL1.

mTORC1 and mTORC2 are involved in 
regulating BMAL1 in HNSCC

We have shown that downregulation of the tumor 
suppressor gene PTEN in HNSCC results in activation 
of the mTOR signaling pathway [7] and accumulation of 
BMAL1 (Figure 3A and 3B). Using genetically defined 
animal models; we also showed here that inhibition of 
mTOR reestablished the normal expression levels of 
BMAL1 protein in K14Cre PtenF/F and mPer2 knockout 
mice, suggesting a critical role for mTOR in controlling 
and maintaining BMAL1. We next examined whether 
HNSCC requires mTORC1 and mTORC2 signaling to 
drive BMAL1 activation. Using siRNA technology, we 
interfered with the mTORC1 and mTORC2 complexes 
by disrupting their scaffold proteins, Raptor [35, 36] and 
Rictor [37, 38] (Figure 6A–6D). Silencing Raptor and 
Rictor resulted in reduced BMAL1 expression. Overall, 
Raptor knockdown led to augmented downregulation of 
BMAL1 levels (Figure 6A and 6B) when compared to 
Rictor (Figure 6C and 6D). Nonetheless, small interference 
RNAs against Raptor and Rictor efficiently downregulated 
BMAL1. Collectively, our findings suggest that loss 
of function of PTEN in HNSCC results in constitutive 
accumulation of BMAL1 in an mTOR-dependent manner. 
Similarly, we also observed that accumulation of BMAL1 
resulting from disruption of PER2 requires mTOR 
signaling. Our findings suggest that mTOR can act as a 
master regulatory mechanism of BMAL1 in normal and 
malignant epithelial cells (Figure 6E).
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DISCUSSION

Dysfunction in circadian rhythm is associated with 
an increased incidence of solid tumors. Working the night 
shift was linked with high prostate-specific antigen (PSA) 
levels and increased risk of developing prostate, as well 
as, breast cancers [39-43]. Indeed, increased incidence 
of prostate cancer was also found in individuals living 
in countries with high light exposure at night [44] and 
those who sleep less [45-47]. Breast cancer patients who 
experience altered sleep-wake cycles or work night shifts 

also have acquired resistance to Tamoxifen therapy [48]. 
Although the circadian rhythm clearly influences the 
behavior of solid tumors, a better understanding of the 
molecular events that control clock gene expression in 
cancer is needed.

The circadian rhythm is a complex molecular 
circuitry comprised of transcriptional activators and 
negative regulators with expression levels that oscillate 
in a day/night fashion. Positive signaling of the clock 
machinery is mediated largely by CLOCK and BMAL1, 
which induce clock-controlled genes. Other members of 

Figure 4: Inhibition of mTOR signaling with Rapamycin rescues PTEN-driven accumulation of BMAL1. A. Tissue 
samples and graphic show BMAL1 in K14cre PtenF/F mice and control (arrows). Note a significant amount of BMAL1 expression in PTEN 
mutant mice. K14cre PtenF/F mice and control littermates received Rapamycin or vehicle every other day for 15 days. Rapamycin treatment 
reduces the expression of nuclear BMAL1 in K14cre PtenF/F mice (arrowhead) (*** p<0.001) to similar levels found in control mice (ns: 
p>0.05). Scale bars -30 μm.
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the clock regulatory machinery are negative feedback 
regulators, which are activated when CLOCK and 
BMAL1 are downregulated. PER2 is a member of the 
cryptochrome and period negative feedback regulators of 
the clock machinery. PER2 downregulation is present in 
leukemia, glioma, breast cancer [49-52]; and its deletion 
results in the development of lymphomas [34]. These 
findings suggest that PER2 is a tumor suppressor gene, 
a role that has been demonstrated in mice [34]. Notably, 
PER2 downregulation leads to BMAL1 activation. Indeed, 
we observed this activation in the epidermis of mPer2 
knockout mice. Likewise, excision of PTEN, a tumor 

suppressor gene, unexpectedly led to the accumulation 
of BMAL1 in the epidermis of mice. The PTEN tumor 
suppressor is the major negative regulator of the PI3K/
mTOR pathway, which is one of the most frequently active 
pathways in human cancers, including HNSCC [53-55].

We have previously demonstrated that pharmacological 
inhibition of the mTOR signaling using Rapamycin results 
in rescue of the skin phenotype observed in PTEN deficient 
mice [20]. Based on our previous findings, we asked 
whether Rapamycin would inhibit BMAL1 accumulation 
in PTEN conditional knockout and PER2 knockout mice. 
Remarkably, administration of Rapamycin blocked BMAL1 

Figure 5: Rapamycin reduces the accumulation of BMAL1 in Per2 knockout mice. A. As shown in the left panel, tissue 
samples from Per2 knockout mice (mPER-/-) depict robust accumulation of nuclear BMAL1 (arrow) compared to control littermates 
(arrowhead)(*** p<0.001). Administration of Rapamycin reduces the accumulation of BMAL1 in the epidermis of mPer-/- mice (arrowhead) 
compared to mPer-/- mice receiving vehicle alone (** p<0.01) to levels comparable to wild-type mice receiving vehicle alone (ns: p>0.05).
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Figure 6: Small interference RNA targeting Raptor and Rictor disrupts BMAL1 accumulation in HNSCC. Targeted 
disruption of Raptor (A-B) and Rictor (C-D) using siRNA results in a dose-dependent downregulation of BMAL1 in HNSCC cells. E. 
Disruption of PTEN by protein oxidation causes activation of mTOR signaling, resulting in accumulation of BMAL1. Notably, inhibition 
of mTOR signaling, particularly mTORC1 and mTORC2, results in restoration of normal BMAL1 levels in the epidermis of mice and 
head and neck cancer cells. These results demonstrate a novel role for mTOR in regulating nuclear levels of the core clock gene BMAL1.
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accumulation in both animal models, suggesting that mTOR 
serves as a key regulatory mechanism underlying epithelial 
circadian rhythm. Indeed, our results aligned with mTOR 
being directly associated with the control of organismal 
metabolism, similar to CLOCK and BMAL1 (reviewed in 
[56, 57]). Accumulation of pS6, readout of mTOR activation, 
in the frontal cortex, heart, and liver was also observed in 
Bmal1 knockout mice [58]. BMAL1-dependent regulation 
of the mTOR signaling pathway also affects aging and 
cellular senescence [58]. We also showed that accumulation 
of BMAL1 requires mTOR activity in vitro and in vivo. 
Our findings indicate BMAL1 as a readout of compromised 
PTEN and PER2 function and suggest that BMAL1 is 
involved in the progression of cancer. Likewise, if BMALl is 
removed, it leads to activation of senescence [58].

The correlation between the compromised function 
of tumor suppressors and the circadian rhythm is also 
poorly understood. PTEN mutations are observed in a 
fraction of HNSCC [3, 4], whereas the vast majority of 
HNSCC have functional PTEN gene but downregulated 
protein expression [6-8]. We found that H2O2 caused 
transient inactivation of PTEN protein in HNSCC. 
Accumulation of H2O2 is commonly observed in cancer as 
a by-product of deregulated metabolism, and its effects on 
PTEN have been shown in HeLa and NIH3T3 cells [19, 
59]. Our data showed that oxidation-mediated inactivation 
of PTEN in HNSCC cells also leads to unexpected 
accumulation of the core clock protein BMAL1.

The connection between the activation of reduction/
oxidation pathways and the circadian rhythm has been 
shown in zebrafish [60], in which the light modulates 
the circadian clock in Z3 light-responsive cells through 
the production of intracellular H2O2 that acts as an ROS 
signaling molecule. Notably, our data revealed that H2O2 
induces activation of intracellular ROS and nuclear BMAL1 
in HNSCC cells. Nevertheless, PTEN, rather than H2O2 
alone, is a critical regulator of clock genes. Our results 
lead to meaningful findings. First, oxidation-driven and 
genetically defined inhibition of PTEN results in BMAL1 
accumulation in normal and malignant epithelial cells. 
Second, PTEN-induced accumulation of BMAL1 requires 
a functional mTOR signaling. Third, PTEN-independent 
and PER2-driven accumulation of BMAL1 also requires a 
functional mTOR signaling. Fourth, maintenance of levels 
of BMAL1 in cancer cells requires functional mTORC1 
and mTORC2 complexes. Although the requirements for 
mTOR signaling to induce BMAL1 expression in HNSCC 
are demonstrated in this manuscript, it’s still unknown if 
a similar mechanism would be existent during normal 
epithelial homeostasis. This study is also limited in the 
identification of different physiological mechanisms and 
conditions that could lead to a transient downregulation 
of PTEN in HNSCC tumors. Future studies are needs to 
further contribute to our knowledge on how deregulated 
molecules contribute to HNSCC.

In summary, we showed that downregulation 
of PTEN leads to activation of mTOR signaling and 
accumulation of BMAL1. Notably, inhibition of mTOR 
signaling (mTORC1 and mTORC2) results in restoration 
of normal BMAL1 levels in the epidermis in vivo, and also 
in head and neck cancer cells. In addition, these results 
suggest that BMAL1 activation in conjunction with mTOR 
is required for skin phenotype found in PER2 and PTEN 
mice. These results demonstrated a novel role for mTOR 
in regulating nuclear levels of the core clock gene BMAL1.

MATERIALS AND METHODS

Cell lineages and reagents

HNSCC cell lines (Cal27 (tongue), WSU-
HN6 (base of tongue), WSU-HN12 (lymph node/
metastasis), WSU-HN13 (tongue), UMSCC17B (lymph 
node/metastasis), and UMSCC74A (tongue) [61-65], 
HeLa cervical cells [66], and NOK-SI (spontaneously 
immortalized normal oral keratinocytes) cells [67] were 
cultured in DMEM supplemented with 10% fetal bovine 
serum, 100 units/ml penicillin, 100 μg/ml streptomycin, 
and 250 ng/ml amphotericin B. Cells were maintained 
in a 5% CO2-humidified incubator at 37°C. Cells were 
treated with hydrogen peroxide (1.5 mM-Sigma) and 
Rapamycin (50 nM – LC Laboratories). Cells were 
synchronized with forskolin (10μM; Sigma-Aldrich, 
USA) before each assay. All cells were previously 
authenticated by PCR amplification of short tandem 
repeats to ensure cell identity. Cal27 and HeLa cells were 
acquired from the American Type Culture Collection 
(ATCC-Manassas).

Immunofluorescence (IF)

Paraffin-embedded tissues were sectioned (3-5 
μm), and a standard procedure was used to dewax and 
hydrate the tissues through graded alcohol followed by 
antigen retrieval and an endogenous peroxidase block 
[68]. IF was performed using primary antibodies BMAL1 
(NB100-2288, Novus Biological, Littleton, CO), pS6 
(S235/236, Cell Signaling Technology, Danvers, MA), 
and Ki-67 (Cell Signaling Technology, Danvers, MA) 
(Supplementary Table S1). After incubation overnight, 
slides were washed with PBS, incubated with a secondary 
antibody conjugated with either fluorescein (Jackson 
ImmunoResearch Labs 1:100) or rhodamine (Jackson 
Immuno Research Labs 1:100) and mounted with media 
containing DAPI (Vector Laboratories). Images were 
taken using a QImaging ExiAqua monochrome digital 
camera attached to a Nikon Eclipse 80i Microscope 
(Nikon, Melville, NY) and by a color QImaging Publisher 
attached to a Leica CTR5000 microscope. Images were 
visualized with QCapturePro software.
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ROS assay

The ROS assay was performed as previously 
reported [69]. Intracellular levels of ROS were analyzed 
using chloromethyl CM-H2DCFDA (Molecular Probes/
Life Technologies, Grand Island, New York) and detection 
of positive cells using a Nikon fluorescent microscope. 
ROS was detected after intracellular esterases removed 
the acetate groups upon cellular oxidation.

Experimental mice

The in vivo study was performed according to the 
University of Michigan Committee on Use and Care of 
Animals (UCUCA) approved protocol and in compliance 
with the Guide for the Care and Use of Laboratory 
Animals. Animals were housed in 12-hrs light/dark cycles, 
and they received standard rodent chow and water ad 
libitum in compliance with AAALAC guidelines. PtenF/F 
mice (The Jackson Laboratory) were crossed with K14Cre 
mice to generate K14Cre Pten mutant mice [20]. Briefly, 
K14Cre PTENF/+ mice were crossed with PtenF/F mice 
to generate K14Cre PtenF/F, K14Cre PtenF/+ and control 
mice in the same litter. Genotyping was performed on 
tail biopsies using a PCR assay with primers previously 
described [20]. mPer2 knockout mice (Per2tm1Drw) were 
genotyped as previously described [32].

Administration of rapamycin

Rapamycin (LC Laboratories) was reconstituted 
in absolute ethanol at 10 mg/mL and stored at −20°C. 
Rapamycin was diluted in 5.2% Tween 80 (Sigma) and 5.2% 
polyethylene glycol (PEG-400; Hampton Research) and 
injected i.p. (1 mg/kg) every other day for 15 days [20, 68]. 
Only vehicle solution was administered as controls.

Western blotting

Tumor cells were lysed with cell lysis buffer 
containing protease inhibitors and briefly sonicated. Total 
protein was run in sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred to an 
Immobilon membrane (Millipore, Billerica, MA, USA). 
Membranes were blocked in 5% nonfat dry milk containing 
0.1 M Tris (pH 7.5), 0.9% NaCl and 0.05% Tween-20 for 
1 hour at room temperature. Membranes were incubated 
with PTEN (Cell Signaling Technology, Danvers, MA), 
p-S6 (S235/236, Cell Signaling Technology, Danvers, MA), 
BMAL1 (NB100-2288, Novus Biological, Littleton, CO), 
Raptor (53A2 - Cell Signaling Technology), and Rictor 
(24C12 - Cell Signaling Technology) primary antibodies 
at 4°C overnight (Supplementary Table S1). Membranes 
were then incubated with appropriate secondary antibodies 
conjugated to horseradish peroxidase (Santa Cruz 
Biotechnology, Sta. Cruz, CA, USA). The signal was 
developed using the ECL SuperSignal West Pico Substrate 

(Pierce Biotechnology, Rockford, IL, USA). GAPDH 
served as a loading control (Calbiochem, Gibbstown, NJ, 
USA). Identification of reduced and oxidized forms of 
PTEN was performed as previously described [19]. Briefly, 
cells were scraped into an ice-cold solution containing 50% 
trichloroacetic acid and sonicated. After centrifugation, cell 
lysate was washed with buffer containing 0.2 ml of Tris-
HCL (100 nM, PH 6.8), 2% SDS, and 40 nM of MEM 
followed by polyacrylamide gel electrophoresis.

Raptor and rictor knockdown

Knockdown of Raptor and Rictor was performed as 
previously described [70-72]. In detail, cells were seeded 
in 24-well plates and transfected with HiPerFect (Qiagen) 
using 15 nM double-stranded RNA oligonucleotides 
directed against human Raptor (forward: 5′- GGA CAA 
CGG CCA CAA GUAdTdT-3′ and reverse: 5′- UAC UUG 
UGG CCG UUG UCCdTdT-3′), or 5 nM double-stranded 
RNA oligonucleotides against Rictor (forward: 5′- CCU 
AAU GAA UAU GGC UGC AUC CUU UdTdT-3′ and 
reverse: 5′- AAA GGA UGC AGC CAU AUU CAU UAG 
GdTdT-3′) (Invitrogen). Optimal concentrations and time 
points were determined by dilution curves of siRNA for 
each target and immunoblot analysis. The sequences of the 
control negative siRNA (Invitrogen) oligonucleotides were 
as follows: 5′-UUC UCC GAA CGU GUC ACG UdTdT-3′ 
and 5′- ACG UGA CAC GUU CGG AGA AdTdT-3′[73].
The sequences of the PTEN siRNA were 5′-CCAAUGGC
UAAGUGAAGAUGACAAUdTdT-3′ and 5′-AUUGUCA
UCUUCACUUAGCCAUUGGdTdT-3′.

Statistical analysis

Statistical analyzes were performed using GraphPad 
Prism 5 (GraphPad Software, San Diego, CA). Statistical 
analyzes of positive cells for BMAL1 in K14Cre Pten 
and Per2 knockout mice and others were performed 
using one-way ANOVA followed by the Tukey’s multiple 
comparison tests. Asterisks denote statistical significance 
(*p<0.05; **p<0.01; ***p<0.001; and NS p>0.05).
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