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Resumo 

 

 A terapia celular é uma alternativa promissora para o tratamento do câncer. Células 

Natural Killer (NK) são linfócitos que se desenvolvem na medula óssea a partir de células 

progenitoras hematopoéticas de linhagem linfóide, e que podem ser encontradas no sangue 

periférico. Importantes efetoras do sistema imune inato, as células NK tem função citotóxica 

e papel imunoregulador, sendo consideradas leucócitos especializados no combate a 

neoplasias e células infectadas por vírus. Quando ativadas, as células NK tem um grande 

potencial terapêutico para o tratamento do câncer, podendo melhorar os benefícios de 

transplante de células-tronco hematopoéticas. Células NK também estão relacionadas com o 

desejado efeito do enxerto versus leucemia, sem indução de doença do enxerto contra o 

hospedeiro. Com base nisso, as células NK parecem ser candidatas naturais a serem utilizadas 

na imunoterapia adoptiva (IA). A segurança e a eficácia da IA utilizando células NK tem sido 

direcionada principalmente para o tratamento de leucemia mielóide aguda. Entretanto, a 

utilização de células NK para o tratamento de outras doenças hematológicas, tais como 

linfoma e mieloma múltiplo, também tem sido relatada. Há ainda alguns desafios a serem 

superados para tornar a terapia com células NK efetiva, segura e economicamente acessível, 

sendo primordial a necessidade de um número expressivo de células ativas. Nesta revisão são 

discutidos protocolos para isolamento, expansão e produção in vitro de grandes quantidades 

de células NK funcionais e que atendem aos critérios para aplicações clínicas. Dentre os 

métodos estudados estão: o uso de biorreatores para aumentar a produção, e expansão das 

células NK em presença de interleucinas e feeder cells. A revisão também traz novas 

metodologias visando otimizar a geração de produtos de grau clínico para IA. 

 

PALAVRAS-CHAVE 

Células Natural Killer, imunoterapia adotiva, câncer, produção in vitro. 
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Abstract 

 Cell therapy is a promising alternative for the treatment of cancer. Natural Killer (NK) 

cells are lymphocytes that develop in the bone marrow from lymphoid lineage hematopoietic 

progenitor cells, and can be found circulating in peripheral blood. Important effectors of the 

innate immune system, NK cells have cytotoxic function and immunoregulatory role, being 

considered specialized lymphocytes that fight cancer and virally infected cells.  

 Activated NK cells have a great therapeutic potential for cancer treatment and can 

improve the benefits of hematopoietic stem cell transplant. NK cells are also related to the 

desirable graft versus leukemia effect, without inducing graft versus host disease. Based on 

that, NK cells appear to be natural candidates to be used in adoptive immunotherapy (AI). 

The safety and efficacy of AI using NK cells has been primarily directed for treating acute 

myeloid leukemia. In the meantime, the use of NK cells to other hematological diseases like 

lymphoma and multiple myeloma has been also reported.  

 There are still some challenges to overcome to make NK cell therapy cost-effective, 

being the most important the need of an expressive number of active cells. In this review we 

discuss protocols for isolation, expansion and in vitro production of large quantities of 

functional NK cells that meet the criteria for clinical applications. Among the methods 

studied are: the use of bioreactors for scaling up production,  and expansion of NK cells in 
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presence of interleukines and feeder cells. The review also brings novel methodologies 

aiming to optimize the generation of clinical grade products for AI. 

 

Keywords: Natural Killer cells, adoptive immunotherapy, ex vivo expansion, 

hematopoietic stem cell transplant, graft versus host disease, graft versus leukemia, acute 

myeloid leukemia. 

 

1. Introduction 

Cell therapy is a promising alternative for the treatment of proliferative diseases like 

cancer, especially in the context of hematopoietic stem cell transplant (HSCT) for the 

treatment of malignancies. It is known today that the factor that effectively gives HSCT its 

curative potential is the effect of graft versus malignancy or graft versus leukemia (GVL) (1) 

exerted by the donor´s normal immune system. Despite all the advances in both diagnostic 

and therapeutic technology, allogeneic HSCT remains a procedure with high morbidity, 

associated to a mortality of 20 to 50 %, depending on the type of HSCT (related or unrelated) 

(2). The main cause of mortality related to HSCT are recurrence of primary disease and graft 

versus host disease (GVHD), acute or chronic (3). 

The currently unquestionable existence of the GVL effect, without GVHD, has been 

exploited widely in the past few years (4–9). Knowing how to differentiate GVL and GVHD 

allows us to choose a lymphocyte type, and, without transplant, to infuse in vitro expanded 

activated lymphocytes active against malignant cells. The so called Adoptive Immunotherapy 

(AI). Lymphocytes of various subgroups have been explored for this purpose (10). Natural 

Killer (NK) cells appear to be natural candidates since it is a population of specialized 

lymphocytes with activity against cancer and virally infected cells (4), with little or no anti-

HLA activity (4,9,11). However, in vitro expansion of NK cells may be accompanied by joint 

expansion of undesirable T lymphocytes. Therefore, purification techniques for NK cells 

cultures have been explored (8,12–14).  

The ex vivo cultivation of immune cells for use in AI usually requires addition of 

supplements, some from animal origin like fetal bovine serum (FBS), with obvious risks of 

xenoreaction.  The World Health Organization (15), the European Medicines Agency (16), 

and several researchers (17–20) have already manifested their concern on the subject, since 

laboratory cultured cells are being increasingly used in clinical trials (21,22) (registered at 

www.clinicaltrial.gov as clinical trials: NCT00625729, NCT01795378, NCT01787474). 
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There are still some challenges to overcome in order to make NK cell therapy safe 

and cost-effective, being the most important of it the need of an expressive number of active 

cells. In this study we review methodologies to obtain and expand NK cells. Possible clinical 

applications of AI are reviewed. 

 

1.2. Natural Killer cells 

NK cells develop during fetal life, and also after birth, from lymphoid lineage CD34
+
 

hematopoietic progenitor cells (23,24). NK cells constitute from 1 to 32.6 % of peripheral 

blood (PB) lymphocytes from normal individuals (5), and can be found in the lymph nodes, 

spleen, bone marrow, lung, liver, bowel, omentum, and placenta (25). Differentiation occurs 

in the periphery, in lymph nodes, where they acquire cytotoxic activity (1). Resting, or not 

activated, NK cells circulate in the blood, but following activation by cytokines, they are 

capable of extravasation and infiltrate into almost all tissues that contain pathogen-infected or 

malignant cells (26–29). 

Human NK cells were firstly described by Trinchieri as nonadherent and 

nonphagocytic cells (30),  being morphologically recognized as large lymphocytes containing 

azurophil granules (Large Granular Lymphocytes) (30,31), and depending on their activation 

status, some NK cells can also display normal small lymphocyte morphology (32).  

Besides their size and morphology, human NK cells are immunophenotypically 

characterized by the expression of CD56, with or without CD16, and lack of expression of 

CD3 (13,33). Based on their CD56 expression, NK cells can be separated into two subsets: 

CD56
dim

 and CD56
bright

 (34).  The first subset is defined by a low-density expression of 

CD56, and corresponds to the majority of the human NK cells, while the second corresponds 

to around 10 % of the human NK cells (34). Studies relate these subsets to functional 

properties of the NK cells, being the CD56
dim

 subset associated to more cytotoxic cells, while 

CD56
bright

 subset shows the ability to produce more cytokines than the first (34–36).  

NK cell activation results from the balance between positive and negative signals 

provided by activating and inhibitory types of receptors (37), and the density of ligands of the 

interacting cells for these receptors dictates whether or not NK cells will be activated or have 

their cytotoxicity and/or cytokine secretion increased (38). NKG2D, NKp46, NKp30, NKp44 

are the activating form known as KIR-S and CD16 (37), and the most studied inhibitory 

receptors are KIR2DL1, KIR2DL2/3, KIR3DL1, and immunoreceptor tyrosine-based 

inhibition intracellular motifs (38). Some ligands of the activating receptors remain unknown, 
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while ligands of the inhibitory receptors are well characterized as large families of major 

histocompatibility complex class I (38). 

NK cells play an important role in the elimination of virally infected and tumor cells. 

When activated, NK cells have the capacity to lyse tumors with aberrant expression of the 

major histocompatibility complex class I, and to produce cytokines and chemokines for their 

self-regulation, or for other immune effectors regulation (7). NK cells, upon activation, lead 

to target cell apoptosis through contact-dependent cytotoxicity, primarily mediated by 

perforin and granzyme B (24,33,39), and can secrete large quantities of pro-inflammatory 

cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) (38,40–43).  

 1.2. Mode of action of NK as cell therapy agents 

NK cells are important effectors of the innate immune system, and as previously 

mentioned, these cells have cytotoxic function and immunoregulatory role (13,24,41). They 

work significantly in the immune surveillance, especially in the initial phase of defense 

against infections caused by a variety of microorganisms, or in the control of malignant 

tumors (4,44,45). NK cells have been studied to be used in AI, in an autologous or allogeneic 

setting, alone or after allotransplantation (38).  

NK cells play a significant role in the GVL reaction without inducing GVHD, through 

reacting against receptor´s dendritic cells (13), and this is associated with a better prognosis 

(4,45). In allogeneic HSCT, better grafting and lower relapse rate are observed when 

inhibitory receptors of donor NK cells are not compatible with HLA class I molecules of the 

receptor, therefore these receptors are not activated (45). Aloreactive potential of the NK 

cells is mainly due to the incompatibility of the killer immunoglobulin-like receptor (KIR) 

ligand (7), what has been exploited as a tool for cell immunotherapy  (9), and can be used to 

eradicate residual disease after allogeneic HSCT in patients refractory to chemotherapy (46). 

 

1.3. NK cells in the treatment of AML  

Acute myeloid leukemia (AML) is a hematological malignancy, representing a 

heterogeneous group of myeloid neoplasms - some of it high-grade - mostly affecting elderly 

(mean age of 66 years).  The annual incidence of new cases, is 4.4 per 100,000 in United 

States (47). In southern Brazil, the prevalence described so far is of 1.1 cases per 100,000 

inhabitants per year (48). 

Allogeneic HSCT is an effective and potentially curative treatment for AML (49–52). 

However, HSCT is associated with high morbidity and mortality rates, and GVHD is the 
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foremost serious complication of this procedure (53,54). It was reported that activated NK 

cells have a great therapeutic potential for the treatment of cancer and improve the benefits of 

HSCT (55). Ruggeri and colleagues demonstrated that patients with AML who received 

haploidentical transplantation with aloreactive NK cells showed decreased risk of refractory 

leukemia, no GVHD and better event-free survival (56). 

NK cells may also exert anti-tumor activity in non-transplanted patients. In a study by 

Miller et al., 5 out of 19 patients with poor prognosis AML achieved complete remission 

after treatment with haploidentical NK cells, and a significantly higher rate of complete 

remission was obtained when KIR mismatched donor cells were used (57). 

 

1.4. Other clinical applications for NK cells 

The safety and efficacy of AI using NK has been primarily directed for the treatment 

of AML. In the meantime, the use of NK cells to other hematological diseases has been also 

reported. In a pilot study published by Bachanova et al., six patients with advanced B cell 

non-Hodgkin lymphoma received infusion of haploidentical NK cells, and after two months, 

four patients showed an objective clinical response. This finding suggests that allogeneic NK 

cell therapy can be safe, feasible and effective in patients with lymphoma (58). NK cells are 

endowed with a natural function to make antibody mediated cellular killing (59), and are 

known to be the principal cellular component to determine cancer cells destructions, mainly 

upon treatment with tumor antigen-associated specific antibody – such as anti-CD20 

monoclonal antibody – which  utilization changed the lymphoproliferative treatment scenario 

(60). 

NK cells have been also studied to treat multiple myeloma (MM) (59). There are 

evidences suggesting that NK cells have anti-MM activity (61,62), contributing to the graft-

versus-myeloma reactions along with T lymphocytes (59,63–65). In a study by Shi et al., 

haploidentical KIR-ligand mismatched NK cells were infused into patients with 

relapsed/refractory MM. The results of this study indicate that the use of NK cells is safe, 

does not diminish engraftment, neither causes GVHD. However, the real contribution of the 

AI with NK is difficult to be confirmed due to the fact that patients, who also received 

autologous peripheral blood stem cell transplantation, were heavily pre-treated, so the authors 

point out suggestions to enhance the efficacy of future protocols (66). A more recent study 

also reports the safety of using NK cells for poor prognosis MM patients, and the results 

provide further support for the hypothesis that NK cell therapy can be optimized and become 

effective to the point of being incorporated as treatment for MM (67). 
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Although NK cells are cytotoxic and can infiltrate into solid tumors (68), these are 

complex and NK cells can have their activity prevented by the tumor microenvironment 

(69,70). However, due to their ability of precisely kill antibody coated cells, cancer cells, and 

genotoxically altered cells, while maintaining tolerance to healthy cells, NK cells are very 

attractive effectors to be tested, either alone or with standard therapy, against all forms of 

cancer, including disseminated solid cancer (71). 

Patients with advanced non-small cell lung cancer were treated with a combination of 

chemotherapy and NK cells in a Phase I clinical trial. In this study, patients with 

adenocarcinoma and squamous cell carcinoma were enrolled and treatment was evaluated as 

safe and potentially effective (72). Krause et al. tested activated NK cells in patients with 

metastatic colorectal cancer and non-small cell lung cancer, in order to evaluate the 

tolerability, feasibility, and safety of these cells in a Phase I clinical trial. Overall, the results 

indicated that the use of the activated NK cells is safe (73). Regarding the clinical response, 

these findings may be somewhat limited by the fact that the patients were in an advanced 

disease state when they entered the study. Future clinical studies on patients with lower tumor 

burden can provide more information about the clinical value of the immunotherapy with NK 

cells (72,73). 

Geller et al. used allogeneic NK cells in recurrent ovarian and breast cancer in a Phase 

II study, and an important finding was that in vivo sustainment of NK expansion may be 

limited by host rejection, competition with host lymphocytes or suppression by recipient Treg 

or myeloid-derived suppressor cells. It is suggested by the authors that, in order to evaluate 

the clinical benefit of NK cells against solid tumors, more effective strategies to augment in 

vivo NK cell persistence and expansion are required (74). Or a more intense 

immunosuppression of the host like Rosenberg suggested (75,76).  

A more recent study shows that NK cells can be effective against brain tumors like 

medulloblastoma. In vitro and in vivo experiments using animal model were performed, and 

the results indicate that NK cells can reach the tumor through the brain, being the tumor 

sensitive to NK cell lysis. These pre-clinical data provided the foundation for a Phase I 

clinical trial to be approved by the United States Food and Drug Administration, in which NK 

cells will be used in patients who have undergone re-resection of infratentorial tumors (77). 

 

1.5. Defining the protocol and obtaining the cells 

The efficacy of NK cells depends on their maturation and activation status, thus 

protocols for isolation, expansion and in vitro production following Current Good 
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Manufacturing Practices guidelines of large quantities of functional NK cells for clinical 

applications have been explored (38). Ex vivo expansion of NK cells can be performed in 

flasks, culture bags, gas-permeable static cell culture flasks (G-Rex), and in bioreactors 

(8,12,78–80), depending on the starting number of cells and their intended application.  

 Clinical trials usually require a large number of cells, being those cells preferably of 

the same product. The most commonly reported number of cells for infusion ranges from 5 × 

10
6
 to 5 × 10

7
 NK cells per kilogram (57,58). Infusion of a number of cells as high as 1 × 10

8
 

NK cells per kilogram has been also reported (67). 

 Many studies, including clinical trials, use NK cells derived from apheresis (8,81,82) 

(registered at www.clinicaltrial.gov as clinical trials: NCT02123836, NCT01287104, 

NCT00846833), a technique that enables to harvest large numbers of PB lymphocytes (13). 

To obtain NK cells from apheresis, the protocol usually consists in removing white blood 

cells from PB, depleting the CD3
+ 

T cells, enriching the CD56
+
 cells, and using the resulting 

product as treatment (8). Although apheresis can be a rapid approach for obtaining NK cells, 

the number of cells is limited, providing less than 2 × 10
7
 NK cells per kg for a single 

infusion, which is considered insufficient (8). The apheresis product can also be relatively 

impure prior manipulation, containing less than 30 % NK cells (74). Clinical trials with NK 

cells demand high NK cell doses and often several infusions, and one apheresis product may 

not contain sufficient numbers of these cells (14). Besides, apheresis is considered an 

invasive and expensive technique (8). 

 Donor-to-donor differences can have an impact in the absolute number of NK cells 

obtained (66), and products with high NK cell numbers tend to be derived from  donors who 

present high NK cell count in PB (81). Interestingly, in a study by Al-Ali et al., it was 

reported that donor´s older age had an impact on NK cell count encountered in leukapheresis 

grafts. Significantly more NK cells were found in harvests from donors  ≥ 60 years when 

compared with younger donors (82).  

 Although, PB has been the main source to obtaining NK cells in most of the studies 

up to date (83), NK cells can also be generated from, umbilical cord blood (UCB), bone 

marrow, human embryonic stem cells or induced pluripotent stem cells (84,85).  

 Bone marrow is the microenvironment where NK cells develop in vivo, being 

considered a rich source of CD34
+
 stem cells to generate NK cells with mature properties. 

However, there are important drawbacks of using NK cells from bone marrow for cell 

therapy: harvesting procedure and the cell number that can be obtained (37). UCB can also be 

an alternative font to isolate NK cells (83,37,86–88). In a study by Shah et al., expanded NK 
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cells were obtained from UCB, and both fresh and cryopreserved units were used. According 

to the authors, it was possible to obtain a log-scale expansion of pure NK cells (> 95 % 

CD56
+
/CD3

-
, < 1 % CD3

+
 cells), and the cells were significantly active against MM in vivo 

(xenogeneic mouse model) (83). These results support the idea of UCB also being an 

important source of NK cells. It is important to bear in mind though, that the low initial 

numbers of NK cells in UCB can be an important limitation of this approach (89).  

 Apart from all the previously cited sources, another way of obtaining NK cells could 

be the buffy coat (9,13). Instead of blood banks discarding the white blood cells from the 

blood donations processing, they could be used to generate NK cells, and probably other 

immune cells. This strategy could bring some advantages: it is promptly available and the 

samples are previously screened for a range of infectious diseases and hematological 

conditions.  

 

1.5.1. Use of activating cytokines 

NK cells depend on cytokines for their development, survival, and function (37,90). 

The clinical use of cytokines is of great interest due to their role in sustaining and/or 

activating NK cell antitumor potential. Cytokines including interleukin (IL)-2, IL-12, IL-15, 

IL-18 and IL-21 have influence on NK cell (see table 1) (37,90). 

IL-2 and IL-15 are the best studied cytokine activators of NK cells (91–95). Both can 

enhance antitumor response (90), having their combined efficacy also tested in vitro, showing 

additive response in NK cell stimulation (96) . When IL-2 is combined with IL-12, they 

synergy to stimulate NK cell cytotoxicity in vitro (97). A combined pre-activation with IL-

12, IL-15, and IL-18 generate cytokine-induced memory-like NK cells, long-lived NK cells 

that exhibited enhanced functionality when re-stimulated, producing significantly more IFN-γ 

(98,99).  

IL-2 was one of the first cytokines used clinically to induce antitumor immunity 

(90,100–102). IL-2 plays an immunoregulatory role on lymphocytes, and despite having no 

direct impact on cancer cells, it has the ability to mediate immune reactions directed against 

cancer antigens (102). IL-2 activated NK cells can lyse tumor targets which are not normally 

susceptible to their action (NK cells resistant targets) (103). However, this cytokine alone is 

not able to sustain the proliferation, and the association of it with feeder cells or artificial 

Antigen Presenting Cells (aAPC) seems to be more efficient for NK cell in vitro expansion 

(13,44,89,104,105). 
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Once NK cells are infused, IL-2 is administered systemically to support NK cell 

survival in vivo (66,101). Treatment with low dose of IL-2 may not be very effective (106), 

while using high doses of this cytokine may cause toxicity symptoms in patients (66). When 

incubated with IL-2 for longer periods, NK cell products contained significant amounts of 

pro-inflammatory cytokines IFN- γ and TNF-α, which were associated to symptoms like 

hypotension and chills presented by patients in a study reported by Shi and colleagues. The 

authors suggest that incubating NK cells with IL-2 only during the period of processing 

instead of overnight allows the administration of larger number of subcutaneous IL-2 doses to 

the patients to enhance NK cells survival in the body (66).  

 

1.5.2. Feeder cells and artificial Antigen Presenting Cells 

NK cells do not normally undergo sustained proliferation (79), so clinically applicable 

methods for ex vivo production of functional cells on a large scale are needed. In many 

studies, the proliferation of NK cells in response to cytokines, with or without co-culture with 

different types of feeder cells - used in culture systems to support NK cells ex vivo expansion 

(4), has been limited in number of cells and duration of proliferative response (107–109). To 

overcome this limitation, aAPC derived from K562 cells were genetically modified to 

express specific markers (13).  

Being initially designed to generate tumor-specific T cells for allogeneic cell therapy 

of B-cell malignancies, the first aAPC used to propagate clinical-grade NK cells for AI 

human trials was the clone 4 (79), K562 cells genetically modified to co-express CD19, 

CD64, CD86, 4-1BBL, and surface membrane–bound IL-15 (110–112). However, ex vivo 

proliferation of NK cells mediated by aAPC clone 4 was limited by telomere shortening (13). 

Singh and coworkers developed a aAPC clone 9, genetically modified to co-express  CD19, 

CD64, CD86, CD137L, as did the clone 4, and a mutein of interleukin 21 (IL-21) bound to 

the membrane (K562-CL9-mIL21) (113). Denman and colleagues compared the ex vivo 

proliferation of human NK cells using different aAPC, including the clones 4 and 9. 

According to the study, aAPC clone 9 promoted better proliferation of activated human NK 

cells, which supports the clinical use in the expansion of NK cells for  AI  (13). Another 

advantage of NK cell production mediated by aAPC is the reported reduction of T 

lymphocyte concurrent expansion (83,114). 

In order to be used to produce NK cells for clinical protocols, aAPC are irradiated 

before culture (13,44,79,83,115), being lysed by the expanding NK cells (79,115). Although 

the risk of infusing viable aAPC is negligible, it is recommended to incorporate safety 
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measures to guarantee that the NK cell product can be released (79). At the end of the culture, 

NK cell product must be tested for the presence of viable aAPC (79) (as well as for other 

parameters further described) by flow cytometry. Cultures of irradiated aAPC can be 

prepared and have their growth and DNA synthesis rate monitored (79).   

 A particle-based feeder-free approach has been recently reported by Oyer et al. Their 

methodology consisted in ex vivo expansion of PB derived unsorted NK cells using plasma 

membrane particles derived from the aAPC K562-mbIL15-41BBL. The current study found 

that the extent of NK cell expansion and cell content depended on the concentration of the 

plasma membrane particles. Phenotype analysis and cytotoxicity assays demonstrated that 

these NK cells present cytotoxic phenotype and activity. The authors suggested that this 

novel and promising methodology is effective to expand active NK cells, and should be 

translatable into clinical setting (116). 

 

1.5.3. Supplements used in NK cell culture 

 FBS still is a widely used supplement in cell culture media. In 1997, the World Health 

Organization issued a memo advising that, whenever possible, bovine derived inputs should 

not be used in the pharmaceutical practice, nor should be any product that is administered to 

patients for the risk of xenoreaction (15). 

Besides the risk of xenoreaction, other factors corroborate the importance of finding 

alternatives to the use of FBS in cell culture for clinical application, and we can relate, for 

example its indefinite composition, the risk of contamination, concerns with animal welfare 

during its collection and production, problems due to limited availability, and cost (19,117). 

In Brazil, the Agência Nacional de Vigilância Sanitária has published a resolution referred as 

RDC 09/2011, which regulates cell therapy and use of animal products. It determines that the 

use of animal products should be avoided, and if used, the absence of infectious agents and 

contaminants must be certified (118). 

Most studies that relate using culture medium supplemented with products of human 

origin instead of animal´s aim to mesenchymal stem cell culture, being the platelet lysate 

reported as an alternative (17,19,20,22,119–121). In 1985, Brown and co-workers have 

developed a culture medium free of bovine supplement, which was shown to be advantageous 

for the production of NK cells, since both proliferation and activation were better for cells 

grown in animal free medium, than those from cells grown in medium supplemented with 

FBS (122). 
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There is a growing number of studies reporting successful use of human serum or 

human serum albumin for expanding NK cells (6,8,58,66,123,124). Serum free medium have 

also been used (88,125,126), as well as supplemented with chemokines and monoclonal 

antibodies  (125). Therefore, replacing animal origin supplements by optimized serum-free 

medium or human serum for ex vivo expansion of NK cells can be a promising approach for 

clinical immunotherapeutic application. 

 

1.5.4. Purification of NK cells and release criteria 

Minimizing CD3
+
 T lymphocyte populations is a necessary step so that the expanded 

NK cells can be clinically applicable to adoptive allogeneic therapy (14). The presence of T 

cells in NK cells cultures intended to clinical use is undesirable due to the risk of GVHD, 

particularly when the donor is haploidentical (13). Therefore, release criteria must be 

established for the residual content of CD3
+
 in the final product, regardless the manufacturing 

methodology of the NK cells. The purity criteria of NK cells products varies from study to 

study as a consequence of the manufacturing process (127). A study by Shah and coworkers 

has shown that aAPC-mediated expansion of NK cells from UCB can yield a product 

containing less than 1 % CD3
+
 cells after CD3 depletion (83). In another study, an infusion 

target with less than 1.0 × 10
5
/kg CD3

+
 CD56

−
 T cells was settled (66). 

Depletion of CD3
+
 T cells can be performed at any stage of NK cell expansion. 

Denman et al reported no difference in NK cell proliferation when depletion is performed 

prior to expansion, or by the third stimulation (13). Establishing the best time during the 

expansion of the NK culture in which T cell depletion is more efficient must take into 

account the starting number of cells, the expected yield of purified NK cells, and donor´s NK 

cell repertoire. Depletion of CD3
+
 T cells on a large scale, like on the final product of 

manufactured NK cells for clinical use, requires higher total number of starting cells (78).  

In addition to CD3 depletion, isolation of clinical grade NK cells for AI can also be 

accomplished by combining an enrichment step of NK cells, utilizing strategies such as CD56 

enrichment (8,123,128–130), when CD56
+
 cells are isolated (127), which enables to obtain a 

higher purity than using CD3 depletion alone. However, cell recovery is lower when CD56 

enrichment is associated to CD3 depletion (106).  Besides isolation protocols being costly 

and time consuming, in order to obtain elevated NK cell purity and extensive T cell depletion 

there is still a considerable loss of NK cells during the process  (8). 

If one compares the use of cells for therapy with medicines (mainly intravenous), the 

need to validate quality control methodologies is even more obvious. To guarantee sterility, 
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Gram stain, endotoxin, and Mycoplasma are among the tests that need to be done 

(67,79,123). To release the final NK cell product, it is essential to perform 

immunophenotypic analysis of the cells, contemplating NK cell antigens (CD56, CD16), and 

T cell antigens (CD3, CD4, CD8) (8,13,44,66). It is also recommended phenotyping NK cells 

during expansion protocol, identifying those which are CD3
-
 and CD16

+
 or CD56

+ 
(44). 

Other NK cell markers like HLA-E, NKG2A, NKG2D, NCR (NKp30, NKp44, NKp46), and 

KIR can also be evaluated (8,66,131). Levels of cytokines related to the functional state of 

NK cells - IFN-γ, TNF-α, and interleukins - can be determined using a flow cytometric bead 

array (5,66).   

For a clinically efficacious NK cell product, not only the NK cell number must be taken 

into account, but cell purity and function are also key factors (132). Prior to infusion, 

products containing more than 95 % viable NK cells are desirable (66). However, lower 

viabilities have been also reported (106). Cell viability can be measured by flow cytometry 

using NK cells markers, as described above, in combination with propidium iodide or 7AAD 

staining, or by trypan blue exclusion (6,12,89). The ability of the NK cells to kill sensitive 

targets must also be tested. For evaluating NK cell activity, the 
51

Cr release assay is 

considered the “gold standard” (133). The calcein release assay, a fluorimetric assay related 

to the chromium release assay (134), is also used in determining NK cell cytotoxicity (13,44). 

Flow cytometry-based NK cell cytotoxicity assays have been developed, and when compared 

to the traditional chromium release assay, they can be a viable alternative presenting 

interesting advantages (133,135–137).  

Once infused, the successful in vivo expansion of the allogeneic NK cells product in the 

receiving patient can be evaluated by measuring donor chimerism using a standard short-

tandem repeat assay on unsorted mononuclear cells (74). 

  

1.6. Genetically engineered NK cells 

 T cells can be genetically modified to express specific antigens receptors via 

transduction with viral vector encoding Chimeric Antigen Receptors (CAR) (138–140). 

Similar approaches have been studied using NK cell lines, as well as NK cells (141), and the 

genetic modification can be applied either to induce the proliferation and survival of NK cells 

(142,143) or to specifically direct them to malignant targets (144), like cancer or infected 

cells/tissues.  

 Genetically engineered NK cells with CARs directed against CD20 have been 

proposed as treatment for B cells malignancies (145), and CD19 transfection restored the 
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capacity of NK-92 cells to kill previously resistant leukemic cells (146). In another study, NK 

cells had their cytotoxicity importantly enhanced against neuroblastoma after being 

transduced with a disialoganglioside GD(2)-recognizing CAR (147). These findings indicate 

that genetically engineered NK cells can have their therapeutical potential enhanced, and 

even be able to overcome inhibitory signals (114,145).  

 Overall, data obtained from experimental models indicate that this might be an 

interesting approach in immunotherapy with NK cells (106). A Phase I study, sponsored by 

St. Jude Children's Research Hospital, to determine the maximum tolerated dose of 

genetically modified NK cells in relapsed/refractory B-lineage acute lymphoblastic leukemia 

has been completed, but no study results have been reported so far (registered at 

www.clinicaltrial.gov as trial NCT00995137) (148). Further research should be carried out to 

establish the safety and feasibility of genetically modified NK cells in the clinical setting. 

 

1.7. NK cell line 

The use of cell lines can be an alternative in NK cell antitumor immunotherapy 

(84,106), in allogeneic setting (84). Amongst several, NK-92 is the most studied NK cell line 

(141), in both pre-clinical and clinical scenario (84,141,149–152). When considering CD56 

and CD3 expression, NK-92 cells show a typical NK profile, being positive for CD56
 
and 

negative for CD3 (150). They express activating receptors such as NKp30 and NKp46, 

express few inhibitory receptors, lacking most of the KIR receptors, and also express high 

levels of molecules involved in the cytolytic/cytotoxic activity (TNF family factors and 

perforin-granzyme) (153). 

The advantages of cell lines like NK-92 are that they can be utilized “off the shelf” 

(141),  be grown under GMP conditions (106), and they provide a more homogeneous 

population when compared to NK cells isolated from PB (141). When infused to patients, the 

results of clinical trials indicate that NK-92 cells can be safe and potentially beneficial 

(126,149,154). The Food and Drug Administration approved NK-92 cell for testing in 

patients with advanced malignant melanoma and renal cell carcinoma, being currently the 

only NK cell line that has entered clinical trials (155). On the other hand, NK-92 is a tumor 

cell line derived from non-Hodgkin's lymphoma (141,150), with the need to be irradiated 

prior to infusion for safety reasons (24,141), but the irradiation can limit the efficacy of NK-

92 cell in vivo (24). Further studies are still required to assess the long-term effects and safety 

of these cells in clinical trials.   
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2. Final considerations and concluding remarks 

 Anticancer therapy has progressed significantly over the last few years. Important 

example of this is the development of monoclonal antibodies, which are already available in 

the clinical setting, and are used to treat many diseases, including cancer (156). In the 

meantime, standard anticancer therapy like chemotherapy drugs still fails in a considerable 

number of patients (157), and even when successful, can cause serious adverse effects. 

Immune cells have the potential to bypass cellular mechanisms of drug resistance provided 

by tumor environment and spare normal tissues (38,45). Therefore, treating cancer with cell 

therapy has become a very attractive approach. 

 One of the principal challenges in cell immunotherapy as a whole is its cost. 

Producing cells in a GMP environment is very expensive, mainly when multiple purification 

and stimulation steps are required. In NK cell immunotherapy, the lack of a consolidated 

large scale clinical grade expansion method is the major barrier to be overcome, considering 

that there can be a substantial variability in the process, pointing to its need of optimization. 

Not to mention the variability of the NK cell content that can be obtained from each 

individual donor.  

 The efficacy of NK cells depend on their maturation and activation status, thus 

protocols for isolation, and in vitro expansion of large quantities of functional of NK cells 

that meet the criteria for clinical applications have been explored. The production of cells, 

traditionally grown in culture flasks, needed to be scaled up to bags and bioreactors. 

Manufacturing protocols combining different approaches like feeder cells mediated 

expansion of NK cells also stimulated with chemokines such as IL-2 have been exploited. 

Gene modification technologies, e.g. CAR (84,141,146), have been also applied, and novel 

methodologies started to be explored for NK cells, aiming to optimize the generation of 

clinical grade products for AI.   

 Regarding the clinical protocol for AI with NK cells, there is still no consensus on 

some parameters, such as the ideal dose, the possibility of dose dependent response or the 

maximum number of residual T cells per kg that can be infused. Defining what is the top 

priority during ex vivo NK cell expansion, if high yield or high purity, may raise debate. 

Release criteria and a “gold standard” methodology of obtainment and expansion of NK cells 

for clinical application might be difficult to be stated yet, because standardization of a 

procedure that is prone to so many variables is a great challenge.    

 When using feeder or aAPC cells in the manufacturing process, it is important to bear 

in mind that the required amount of these cells for mediating NK cell expansion meant to 
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clinical protocols is also significantly high. So proper banking of produced and tested cells 

under Current Good Manufacturing Practices needs to be maintained. For large scale 

manufacturing cell process, having master and working banks is recommended (79,158).   

 Issues that have not been previously addressed, but also need to be taken into 

consideration when NK cells are manufactured for clinical use are: cryopreservation and 

optimization/standardization of shipping conditions if the cells are used at distant sites. This 

is critical, because not just must the final product meet all the release criteria, it should also 

get to the patient in the same condition it was approved during quality control.    

 Despite all the previously mentioned difficulties, NK cell-based therapy has been 

continuously explored over the years due to the fact that NK cells have numerous properties 

that make them appealing for clinical applications. Besides all the issues involving the 

manufacturing process, there is still much to be learnt regarding NK cells. Studies addressing 

ex vivo kinetics expansion, in vivo biodistribution, and cell behavior after genetic 

modification are essential for further understanding of NK cells, and for helping improve 

their generation approaches, taking strategies so far mostly applied on bench to bedside.  
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Table 1 

Key interleukins and their role on Natural Killer cell. 

Interleukine Role on NK cell 

IL-2 Supports in vivo activation and expansion (90) and in vitro survival (159), 

induces activation, triggers antitumor response, and upregulates IL-12  (106) 

IL-4 Supports survival (159) and proliferation (108,159) 

IL-7 Augments cell proliferation (108) 

IL-10 Increases in vitro cytotoxicity and the expression of cell migration-related 

genes (160)  

IL-12 Augments cell proliferation (108), induces activation (106), differentiation, 

and IFN-γ production (159), increases cytotoxic activity (90)   

IL-15 Promotes in vitro proliferation and survival (159,127), supports maturation 

(159), and induce activation (106)  

IL-18 May be involved in the functional final maturation to IFN-γ production (159) 

IL-21 Enhances proliferative response (127), and cytotoxic activity (90,127), 

increasing expression of IFN-γ, perforin, and granzyme B  (90) 

Note: not all the studies were performed in vivo or utilized human derived cells. 
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