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Abstract: Psychotria brachyceras Müll.Arg. (Rubiaceae) is an understorey shrub of the 
Atlantic Forest whose leaves accumulate brachycerine, an antioxidant monoterpene indole 
alkaloid (MIA). This work aimed at evaluating the response of this MIA in leaf disks upon 
exposure to different temperatures and irradiance, similar to those experienced by the 
plant in its environment. Leaf disks obtained from growth room-acclimated cuttings were 
submitted to three distinct series of treatments: 1) Light -  two days under control condition 
(50 µmol.m-2.s-1) in a growth chamber followed by three days treatment of exposure to 
high irradiance (500 µmol.m-2.s-1); 2) Temperature Cold/Heat – three days under control 
conditions (25ºC) and then exposure for two days to 10°C or 40°C; 3) Acclimation – 
gradual heat increase from 25°C up to 40°C. Brachycerine, chlorophyll, and lipid 
peroxidation levels were not significantly affected by high light or cold exposure, although 
a decrease in chlorophyll a/b ratio was observed under high irradiance. In contrast, there 
was increased accumulation of brachycerine at elevated temperatures (where higher cell 
damage was expected) and significantly lower lipid peroxidation, indicating that this MIA is 
possibly playing a central role in preventing or mitigating cell damage. A threshold 
temperature to trigger alkaloid accumulation was identified at approximately 40ºC. 

 

1 - Introduction:  

 Plant primary metabolism involves the production of substances essential for 

survival. Through various specific biosynthetic pathways, primary metabolites originate 

secondary metabolites, which, in general, have very complex chemical structures and 

several biological activities. Secondary metabolites are not essential for plant survival 
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under ideal growth conditions; however, they play major roles in the interaction of plants 

with the environment, such as in defense against herbivores and micro-organisms, 

protection from UV rays, high temperatures, attraction of pollinating insects or seed 

dispersing animals, contributing to plant adaptation to stresses and ensuring reproductive 

success (SANDES & BLASI, 2000). 

 As sessile organisms, plants have developed different evolutionary strategies for 

defense, association with other organisms and occupation of different habitats, being 

highly capable of facing environmental adversity. UV-B radiation, excess visible irradiance, 

and high temperature, for example, can be harmful to living organisms by damaging DNA, 

proteins, and/or membranes (DODGE, 1994; FOYER et al., 1997; PRASAD et al., 1999; 

TSUGANE et al., 1999; GEOFFROY et al., 2002; MITTLER, 2002). It is well known that 

irradiance and temperature extremes, which often take place simultaneously, may lead to 

increased content of reactive oxygen species (ROS) (GILL & TUTEJA, 2010). Plants have 

acquired strategies of using light effectively and protecting themselves from damage under 

light and temperature stresses. 

 Secondary metabolites, particularly flavonoids and monoterpene indole alkaloids 

(MIAs), may minimize the damage caused by stresses, such as UV-B, drought and 

wounding, by quenching ROS generated under these conditions (SUZUKI & MITTLER, 

2006; MATSUURA et al., 2013). Recent studies with Psychotria species have shown the 

capacity of MIAs to protect against the effects of UV-B radiation (NASCIMENTO, 2011; 

MATSUURA et al., 2014).  

 Psychotria (Rubiaceae) is one of the largest genus within the angiosperms, with 

estimates between 1000 to 1650 species distributed worldwide (NEPKROEFF et al., 1999). 

In southern Brazil, 22 species have been recorded, and the main species are P. 
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brachyceras, P. carthagenensis, P. leiocarpa, P. myriantha, P. suterella e P. umbellata, all 

occurring in the understorey of the Atlantic Forest (Rio de Janeiro Botanical Garden 

Institute - REFLORA program http://reflora.jbrj.gov.br ).  

 The major MIA of P. brachyceras, object of this study, is brachycerine.  Some 

studies suggest that this indole alkaloid originates from the direct condensation of 

tryptamine (which originates from the decarboxylation of the amino acid tryptophan) with 

epi-loganin (from the plastidic mevalonate-independent pathway) (CONTIN et al., 1998; 

KERBER et al., 2001). It has been suggested that there is a close link between 

brachycerine induction by UV-B radiation and the possible role of this MIA in protection 

against ROS (NASCIMENTO et al., 2007; MATSUURA & FETT-NETO, 2013). 

Brachycerine has shown significant bioactivity as antioxidant, antimutagenic, and as UV-B 

protectant in heterologous systems (NASCIMENTO et al., 2007; NASCIMENTO et al., 

2013; PORTO et al., 2014). 

 However, caution is advised since experiments were conducted with high rates of 

UV-B radiation, hardly found in the natural environment in which P. brachyceras thrives 

(tropical and subtropical forests). The roles of temperature extremes and high visible 

irradiance in the metabolism of brachycerine are unknown, although these factors can 

have significant effects on the redox equilibrium of the cell, apparently a predominant 

factor in controlling production of the alkaloid (MATSUURA et al., 2013).  

 The ecological roles of MIAs from Psychotria are not fully established, although 

studies to date indicate that these alkaloids and extracts from plants such as P. 

brachyceras have the ability to prevent damage to cells caused by excess ROS (common 

products of high light irradiance, temperature extremes, and herbivory damage to the 

plant). To better understand the function of these alkaloids in planta, it becomes necessary 

http://reflora.jbrj.gov.br/
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to study the dynamics of these metabolites under conditions and stresses similar to those 

faced by plants in their environment.  

 Thus, this study aims to evaluate the role of brachycerine in response to thermal 

and high light stresses in Psychotria brachyceras, which are likely to be faced by 

individuals of the species in their natural habitat. The specific objectives are: 1) to examine 

whether high light irradiance induced photo-oxidative stress affects production of 

brachycerine; 2) to verify if extreme temperature shock changes the accumulation pattern 

of brachycerine; 3) to investigate whether alkaloid content changes occurs both in 

conditions of acute stress and as incremental steps, allowing acclimatization (to be tested 

only for the abiotic factor that most markedly changes brachycerine content); 4) gauge the 

level of oxidative stress generated in each of the conditions outlined in 3 to access its role 

as a trigger of alkaloid accumulation. 

 

2 - Methods 

2.1 - Sample source 

 Field-grown Psychotria brachyceras Müll. Arg. tip cuttings (with 6-8 leaves) were 

harvested (between April and June, 2014 at Morro Santana, Porto Alegre, RS, Brazil) and 

acclimated in 10% (v/v) MS (MURASHIGE & SKOOG, 1962) nutrient solution, pH 5.8 for a 

week [16 h.day-1 photoperiod, 60 µmol.m-2.s-1 photosynthetically active radiation (P.A.R.), 

25 ± 3° C] prior to use as leaf disk source. A voucher specimen (7899) is deposited at the 

ICN herbarium (UFRGS). 

2.2 - Brachycerine extraction 

 Brachycerine was purified from Psychotria brachyceras leaves essentially following 



 

 

5 

a previously described method (KERBER et al., 2001). HPLC was used to evaluate purity 

index in comparison to authentic brachycerine. Chromatographic parameters were as 

described below for sample analysis (GREGIANINI et al., 2003). 

2.3 - HPLC analysis of extracts 

 Methanolic extracts were obtained from leaf disk samples and analyzed by HPLC, 

as previously described (GREGIANINI et al., 2003). Shortly, 150 mg of fresh tissue were 

ground with mortar and pestle in liquid nitrogen, followed by 1 mL of methanol (Merck- 

HPLC grade) addition; the extract was then sonicated for 20 min. The extract was 

centrifuged at 13.000 x g at 4°C for 20 min and the methanolic layer recovered for HPLC 

analysis. Pellets were dried at 60°C until reaching constant weight for extracted dry weight 

measurement. 

 Samples were analyzed by HPLC (Thermo Scientific Surveyor) in a linear gradient 

starting with water:methanol (81:19), and ending with 100% methanol, both eluents 

containing trifluoroacetic acid (TFA) (Sigma) in a final concentration of 0.05%. Flow rate 

was 1 mL.min-1 and column was a C8 Shimadzu equipped with respective guard column; 

an external standard curve was prepared with authentic brachycerine. The content of 

brachycerine was expressed on a leaf extracted dry weight basis. 

2.4 - Chlorophyll analysis 

 Chlorophyll concentrations were obtained as previously described (ROSS, 1974). 

Leaf disks (1 cm diameter, 3 disks per sample) were homogenized in a tissue 

homogenizer (PowerGen 125, Fischer Scientific - USA ) with 1.5 mL acetone 85% and 

then sonicated for 15 min. After centrifugation (10 000 x g for 10 min at 4°C), pellets were 

re-extracted twice and combined supernatants were brought to a final volume of 10 mL. 
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The absorbances were recorded at 645 and 663 nm; pellet was dried at 60°C until 

constant weight for extracted dry weight determination. 

2.5 - Lipid peroxidation assay 

 Determination of TBARS for lipid oxidative damage measurement was assayed 

essentially as previously described (VELIKOVA et al., 2000). Samples (150 mg) were 

ground with liquid nitrogen and homogenized with trichloroacetic acid (TCA) 0.1%. The 

homogenate was centrifuged for 20 min at 10 000 x g, 4°C, and the supernatant (0.5 mL) 

reacted for 30 min at 100°C with 1 mL of thiobarbituric acid (TBA) 0.5% in TCA 20%; the 

reaction was stopped by immediate chilling and the absorbance was taken at 532 nm. 

Non-specific absorption values at 600 nm were subtracted. TBARS contents were 

calculated using an extinction coefficient of 155 mM-1.cm-1. 

2.6 - Light assay 

 Leaf disks (1cm diameter) were prepared from growth chamber-acclimated shoots. 

In a Petri dish, forty disks were arranged on filter paper and 20 mL of distilled water, and 

exposed for two days to control condition (50 µmol.m-2.s-1 of P.A.R. and 25 ± 3° C) in a 

growth chamber before three days treatment exposure to high irradiance (500 µmol.m-2.s-1 

PAR and 25 ± 3°C); control samples remained at 50 µmol.m-2.s-1 PAR condition. After 5 

days assay, disks were harvested, immersed in liquid nitrogen and stored at -20° C until 

brachycerine, chlorophyll and TBARS analyses were carried out. 

2.7 - Temperature assay 

 For temperature assays, leaf disks (1 cm diameter) were prepared from growth 

chamber-acclimated shoots. In each Petri dish, forty disks were arranged on a filter paper 

moistened with 20 mL of MS solution (MURASHIGE & SKOOG, 1962) at 10% strength, pH 
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5.8, and maintained two days under control conditions (25 ± 0.3°C) in a BOD (16 h.day-1 

photoperiod) and then exposed to treatments for three days (10°C or 40°C); control 

samples remained at 25°C. A second assay was performed to analyze brachycerine 

induction pattern by gradual heat increase from 25°C up to 40°C. During the control 

treatment condition, disks were gradually exposed to higher temperatures (increment of 

5°C per day), reaching 40°C after three days; then the disks remained for two more days 

at 40°C. Control samples were maintained at 25°C. After 5 days, samples were harvested, 

immersed in liquid nitrogen and frozen at -20°C until analysis (brachycerine, chlorophyll 

and TBARS). 

2.8 - Experimental layout and statistics 

 All assays herein described were performed in totally randomized design, in 

biological quadruplicates, containing technical duplicates or more when possible, and each 

assay was independently repeated at least twice. The results were analyzed using the 

software SPSS 17.0, checked for normality and submitted to ANOVA followed by Tukey, 

or a t-test, P < 0.05, whenever appropriate. 

 

3 - Results 

3.1 - Light assay 

 Exposure to light at 500 μmol.m-2.s-1 caused photosynthetic damage, mainly due to 

partial impairment of photosystem II (significant chlorophyll a:b ratio reduction – 50 

µmol.m-2.s-1 = 1,988502 ± 0,116061; 500 μmol.m-2.s-1  = 1,672826 ± 0,185485  - mean ± sd; 

t-test P<0.05). Brachycerine, total chlorophyll and TBARS contents remained at levels 

similar to those of the control disks (50 µmol.m-2.s-1) (Fig. 1). 
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Figure 1 - Chlorophyll content, lipid peroxidation – estimated by TBARS concentration and 
brachycerine content in leaf disks of Psychotria brachyceras after high irradiance exposure 
500μmol.m-2.s-1 expressed as percentage of control levels (50 µmol.m-2.s-1). Parameters evaluated 
were not significantly different between treatments (ANOVA, P<0.05).  

 

3.2 - Temperature cold/heat assays 

 In the first temperature assay, cold treatment (10ºC) did not change brachycerine 

content. High temperature (40ºC) caused an approximately 20-fold brachycerine induction 

(Figure 2). Basal and induced levels are in good agreement with previously published 

results (GREGIANINI et al., 2003, 2004; PORTO et al., 2014). 
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Figure 2 – Chlorophyll content, lipid peroxidation – estimated by TBARS concentration and 
brachycerine content in leaf disks of Psychotria brachyceras after low (10ºC) and high (40ºC) 
temperature treatment expressed as percentage of control levels (25ºC). Parameters not sharing a 
letter are significantly different between conditions. Bars marked with asterisk are significantly 
different from control values (ANOVA, P < 0.05). 

 

3.3 - Acclimation treatment  

 When temperature was gradually increased, brachycerine content was higher upon 

reaching 40ºC than in disks that were suddenly exposed to same temperature. 

Interestingly, at 35ºC there was no brachycerine induction (Fig. 3). 
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Figure 3 - Chlorophyll content, lipid peroxidation – estimated by TBARS concentration and 
brachycerine content in leaf disks of Psychotria brachyceras after 35ºC (condition that preceded 
the transfer to 40ºC in the stepwise increase of temperature) and 40ºC treatment expressed as 
percentage of control levels (25ºC). C I and C II – content after 24 and 48h of abrupt transfer to 
40ºC, respectively. C AI and C AII – content after 24 and 48h of stepwise transfer to 40ºC, 
respectively.  Parameters not sharing a letter are significantly different between conditions 
(ANOVA, P < 0.05). Bars marked with asterisk are significantly different from control values (t-test, 
P < 0.05). 

 

3.4 - Lipid peroxidation 

 The results obtained in the analysis of TBARS showed that at 40ºC, both for abrupt 

or stepwise transfer, cell membranes showed less damage after 48 h of high temperature 

treatment (Fig. 3), the same time points when brachycerine concentration was significantly 

higher. Other conditions had membrane integrity comparable to that of control disks. 

Similarly, based on the same parameter, cellular damage under high irradiance did not 

differ statistically from the control condition (Fig. 1). 
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4 - Discussion 

 Irradiance conditions in the understorey of the forest where P. brachyceras leaves 

were harvested, at the transition from Fall to Winter 2014, varied considerably (around 10 

µmol.m-2.s-1in a cloudy day to between 45 and 210 µmol.m-2.s-1in a sunny day). Therefore, 

the amounts of irradiance used in the experiments can be considered as basal and high 

taking into account the understorey values. From previous studies involving brachycerine 

accumulation (GREGIANINI et al., 2004), it was expected that exposure to high irradiance 

could reduce the photosynthetic capacity, mainly by interfering with photosystem II 

function due to ROS production. Indeed, damage to PSII, estimated by chlorophyll a:b 

ratio, was also apparent in our results, although total chlorophyll content and TBARS were 

not significantly affected (Fig. 1). It was also expected that brachycerine levels would 

increase due to oxidative stress, as a counteractive measure to modulate it 

(NASCIMENTO & FETT-NETO, 2010). However, under the high irradiance conditions 

used in the experiment, this alkaloid response did not take place.   

 There are no previous studies involving temperature and brachycerine, and there 

are few studies that demonstrate the relation between temperature and MIAs. It is known, 

however, that cold stress increases transcription, protein levels and activity of different 

ROS-scavenging enzymes, as well as the induction of H2O2 accumulation in cells (SUZUKI 

& MITTLER, 2006). In Catharanthus roseus, MIA biosynthetic pathway has been shown to 

be downregulated by cold (DUTTA et al., 2007). Our data for low temperature (10ºC) 

showed no change in the concentrations of brachycerine. This observation may be the 

result of brachycerine stability, at least within the time frame of the experiment.  

 Clearly, high temperature induced brachycerine accumulation. When acutely 

exposed to 40°C, for example, leaf disks accumulated approximately 16 times more 
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brachycerine than under control conditions (Fig. 2). Although significantly higher than the 

respective control treatment, the content of alkaloid upon acute exposure to 40°C in the 

second group of experiments had a lower fold increase (1.5 times) compared to the first 

group of experiments (brachycerine fold increase of this treatment in relation to control in 

Fig 2 and Fig 3, respectively). This discrepancy is possibly due to a prior induction in the 

field of the leaves harvested to prepare disks in the second group of experiments, which is 

indeed apparent based on the large difference in basal control content between these 

experiments (experiments Fig. 2  = 0.051 ± 0.026 versus experiments Fig. 3  = 0.767 ± 

0.083, % d.w). 

 Besides accelerating metabolism, heat can cause malfunction in mitochondria and 

chloroplasts, often leading to oxidative damage and lipid peroxidation (SUZUKI & 

MITTLER, 2006; MANSOOR & NAVQI, 2013). Nevertheless, none of the conditions tested 

caused significant lipid peroxidation. At the highest temperature, cell damage was lower 

than in control conditions. However, under these circumstances large increases in 

brachycerine accumulation were also observed (Fig. 2 and Fig. 3). This suggests a 

possible relation between brachycerine accumulation and protection against the damage 

that commonly occurs at elevated temperatures, possibly as part of a strategy to prevent 

or mitigate cell damage. This potential protective function of brachycerine was also 

reported under other stresses, such as treatment with abscisic acid, heavy metals, and 

osmotic agents (NASCIMENTO et al., 2013).  

 Brachycerine accumulation was higher when temperature was progressively raised 

than when abruptly increased (Fig. 3). However, the acclimation assay did not show 

progressive accumulation of brachycerine as part of an adaptation response to deal with 

the increase in temperature.  Surprisingly, we found that up to 35ºC there was no 



 

 

13 

significant difference in the production of this MIA, which accumulated expressively only 

when the disks were submitted to a temperature of 40°C (Fig. 3). This indicates that there 

is a threshold for the induction of brachycerine by heat, apparently reached when the cells 

are under a temperature of approximately 40°C.  

 

5 – Conclusion 

 It is noteworthy that in stressful conditions of 40ºC, brachycerine levels in leaf disks 

are high, TBARS levels are low and chlorophyll levels remain constant. This indicates that 

under high temperature conditions, cell integrity is maintained and alkaloid metabolism is 

strongly stimulated. The relation between high levels of brachycerine and low cellular 

damage at high temperature suggests that this MIA takes part in the defense of P. 

brachyceras against oxidative stress caused by high temperature. 
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