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ABSTRACT

Recovering three-dimensional information from bi-dimensional images is an im-
portant problem in computer vision that finds several applications in our society.
Robotics, entertainment industry, medical diagnose and prosthesis, and even inter-
planetary exploration benefit from vision based 3D estimation. The problem can
be divided in two interdependent operations: estimating the camera position and
orientation when each image was produced, and estimating the 3D scene structure.
This work focuses on computer vision techniques, used to estimate the trajectory
of a vehicle equipped camera, a problem known as visual odometry. In order to
provide an objective measure of estimation efficiency and to compare the achieved
results to the state-of-the-art works in visual odometry a high precision popular
dataset was selected and used. In the course of this work new techniques for image
feature tracking, camera pose estimation, point 3D position calculation and scale
recovery are proposed. The achieved results outperform the best ranked results in
the popular chosen dataset.

Keywords: Computer Vision. Visual Odometry. Visual SLAM. 3D.



Tese de Doutorardo: Odometria Visual Monocular de Alta Precisão

RESUMO

Extrair informação de profundidade a partir de imagens bidimensionais é um impor-
tante problema na área de visão computacional. Diversas aplicações se beneficiam
desta classe de algoritmos tais como: robótica, a indústria de entretenimento, apli-
cações médicas para diagnóstico e confecção de próteses e até mesmo exploração
interplanetária. Esta aplicação pode ser dividida em duas etapas interdependen-
tes: a estimação da posição e orientação da câmera no momento em que a imagem
foi gerada, e a estimativa da estrutura tridimensional da cena. Este trabalho foca
em técnicas de visão computacional usadas para estimar a trajetória de um veículo
equipado com uma câmera, problema conhecido como odometria visual. Para obter
medidas objetivas de eficiência e precisão, e poder comparar os resultados obtidos
com o estado da arte, uma base de dados de alta precisão, bastante utilizada pela
comunidade científica foi utilizada. No curso deste trabalho novas técnicas para
rastreamento de detalhes, estimativa de posição de câmera, cálculo de posição 3D
de pontos e recuperação de escala são propostos. Os resultados alcançados superam
os mais bem ranqueados trabalhos na base de dados escolhida até o momento da
publicação desta tese.

Palavras-chave: Visão Computacional, Odometria Visual, 3D.



LIST OF ABBREVIATIONS AND ACRONYMS

AR Augmented Reality

BA Bundle Adjustment

BRIEF Binary Robust Independent Elementary Features

CV Computer Vision

DoG Difference of Gaussian

EL Epipolar Line

FAST Feature from Accelerated Segment Test

GN Gauss-Newton

HoG Histogram of Gradients

IMU Inertial Measurement Unit

KL Kallman Filter

LK Lucas-Kanade

LM Levenberg-Marquardt

MVO Monocular Visual Odometry

OpenCV Open source Computer Vision library

ORB Oriented FAST and Rotated BRIEF

PnP Perspective-n-Point

RANSAC RANdom SAmple Consensus

RI Resection-Intersection

SAD Sum of Absolute Differences

SIFT Scale Invariant Feature Transform

SfM Structure from Motion

SLAM Simultaneous Location And Mapping

SVO Stero Visual Odometry



UAV Unmanned Aerial Vehicles

VO Visual Odometry

VSLAM Visual Simultaneous Location And Mapping



LIST OF SYMBOLS

uk Feature coordinate pair on framek

w Arbitrary origin labeled "world frame of reference"

uk Feature horizontal coordinate on framek

vk Feature horizontal coordinate on framek
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1 INTRODUCTION

"The only thing worse than being blind is having sight but no vision."

� Helen Keller

Vision is one of the base foundations of human civilization. The ability to see,

recognize and interpret a scene, perceiving three-dimensional shape is a trivial task

even to young children. Providing machines with such abilities, however, although

seemed straightforward decades ago, remain as an interesting and unsolved problem.

Computer Vision (CV) is a multidisciplinary �eld that studies methods to

enable automatic understanding of images (RADKE, 2012). The problems that CV

scientists try to solve range from detecting people in images, recognizing faces and

facial expressions, objects, scene 3D structure, characters and handwriting among

many others. To accomplish those objectives, concepts spanning from image pro-

cessing to algebra, geometry, physics and statistics must be synergistically combined.

During last decades, the exponential expansion in the number of camera

equipped mobile phones, decline of consumer camera price, combined to increased

processing power of embedded devices, pushed for an increased interest of the sci-

enti�c community towards the development of vision capable embedded solutions.

This work's main focus is in three-dimensional scene comprehension from two

or more bi-dimensional images. Two closely related and interdependent problems

must be addressed: the assessment of the scene structure and the de�nition of

camera position and orientation when each image was produced. In the computer

vision community the topic is frequently referred to as Visual Simultaneous Location

and And Mapping (VSLAM). Monocular systems use a single camera to produce the

images while stereo-vision systems use two cameras usually mounted on a rigid rig,

where the relative camera positions is usually approximately known. While stereo

vision frequently provides better estimation accuracy, as it is a more constrained

problem, monocular solutions are appealing due to the simpler hardware and the

number of single camera equipped devices already in use in our society.

The camera model describes how a 3D scene is projected on an image plane,

an operation where depth information is lost. If more than one image of the same

scene are provided, the methods studied in this work, indicate solutions to recover



15

the scene structure up to a well de�ned ambiguity. If no other information besides

the images is provided, the scene scale and absolute position can not be determined,

as the image of a planet can be similar to the sketch of a single atom. In those

cases, if the projection model is accurate, the scene can be estimated up to what is

called a similarity transformation (correct shape up to an unknown absolute scale,

position and orientation), otherwise the scene is only estimated up to a projective

ambiguity. In some applications, scale can be recovered using information from other

sensors (GPS, inertial sensors, ultrasound etc), known image physical characteristics

or provided information about camera relative pose.

Despite the fact that the algorithms developed during this work focus on

a particular purpose, a broad range of applications, and closely related problems,

bene�t from advances in scene structure and camera pose estimation. Next section

enumerates some of those applications.

1.1 Motivation - From robots to the movies

The problem of three dimensional information extraction from bi-dimensional

views of the scene has extensive practical applications in di�erent �elds. Although

this work targets a singular application (the chosen application is the trajectory

estimation of a camera equipped vehicle), most of the proposed contributions are

equally quali�ed for any of the uses listed in this section.

1.1.1 Visual Odometry

Vision Odometry (VO), also called motion tracking or camera solving, tries

to estimate the camera position and orientation, i.e. camera pose, when each image

produced by the camera was generated. Monocular Visual Odometry (MVO) and

Stereo Visual Odometry (SVO) terms are used to di�erentiate cases where a single

camera and a pair of cameras are used respectively.

In order to estimate camera motion, scene structure must be calculated, and

errors in the learned scene will translate into errors in the calculated camera pose.

Scene structure for VO is an intermediary step not evaluated in the �nal ego motion -

camera relative movement with respect to a static scene (IRANI; ROUSSO; PELEG,
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1994).

Visual odometry is frequently related to robotics, where a camera equipped

robot must �nd its own location based on the images and possibly other sensors. Au-

tonomous vehicles (FERNANDES et al., 2014), Unmanned Aerial Vehicles (UAVs)

(FORSTER; PIZZOLI; SCARAMUZZA, 2014) and even the Mars exploration rover

(CHENG; MAIMONE; MATTHIES, 2005) are examples of use cases for VO sys-

tems.

In order to gauge the precision of a visual estimation system, a ground truth

must be acquired and used to compare to the estimated output. Camera pose can be

accurately measured and recorded with relative facility, with high precision sensors

(GPS + inertial sensors). Building a high �delity 3D map of the viewed scene is

more complex. Due to the practical e�cacy of recording and comparing real camera

pose to vision based estimations, VO systems are often used to test vision based

systems accuracy.

Figure 1.1 shows a typical trajectory, where the red and black lines show

the estimated trajectory and GPS recorded ground-truth and the camera equipped

vehicle used in a popular VO dataset (GEIGER; LENZ; URTASUN, 2012b).

Figure 1.1: Visiual Odometry trajectory and vehicle
(a) Visual Odometry Trajectory example (b) Camera and GPS equipped vehicle

source: (GEIGER; LENZ; URTASUN, 2012b)

1.1.2 3D Reconstruction

Three-dimensional reconstruction refers to the broad problem of discovering

the structure of an object, not necessarily using images. The use of images from one

or more cameras however, is an important branch in 3D reconstruction work-�ow.
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Structure from motion (SfM) aims to reconstruct 3D morphology of a scene

using the images of a moving camera. Analogous to VO, the camera relative position

and orientation must be provided or estimated, as that information is needed for the

reconstruction �ow, although in this case, camera pose is not evaluated in the �nal

result of the reconstructed object or scene. An example of visual 3D reconstruction

is shown in �gure 1.2.

Figure 1.2: Visual 3D reconstruction

source: (ENGEL; KOLTUN; CREMERS, 2016)

Discovering an object 3D shape from images, is an important �eld in geo-

sciences (ALIAKBARPOUR; PALANIAPPAN; SEETHARAMAN, 2017), architec-

ture and civil engineering (MERRELL et al., 2011) and medical applications for

both prosthesis and diagnose (BOYKOV; FUNKA-LEA, 2006) among others.

1.1.3 Visual SLAM

Simultaneous Location And Mapping (SLAM) is the classical robotics prob-

lem, where a robot must build a map of the environment and simultaneously cal-

culate its own position in the map. Originally several sensors have been used for

SLAM, such as radars, ultrasound, laser, Inertial Measurement Units (IMU), GPS

among others. When a camera is used, either alone or combined with other sensors,

the problem is termed Visual SLAM (VSLAM) and is an important bound between

computer vision and robotics.

Visual SLAM could be regarded as a combination of VO and SfM, noting
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that SfM algorithms usually produce a dense map of the scene or object, while Vi-

sual odometry can use a dense map, or a sparse set of a few localized 3D landmarks

depending on the application. Autonomous robots are the main example of appli-

cation, and have been used in autonomous vehicles (FERNANDES et al., 2014),

domestic robots, and even inside the human body (PAHLAVAN; BAO; LIANG,

2013).

1.1.4 Augmented Reality

Augmented Reality (AR) is the technology of combining real world images or

video with computer-generated information and or imagery. As in other examples,

the camera pose and scene structure must be determined. In addition care must be

taken to adjust illumination, shadowing and occlusion (when a scene element covers

part of the arti�cially generated image).

Possible uses of AR examples include architecture (to furnish and decorate

an empty house), broadcasting (to display statistics information in sports games as

if they belonged to the scene for instance) and the game industry (the pokemon

mobile phone game is an example of AR in the �eld).

One of the most important uses of AR is probably in the movies industry, in

the AR variant called matchmoving used to provide video sequences with computer

generated e�ects. According to (RADKE, 2012)43 of the top 50 greatest �lms of

all time are visual e�ects driven. Figure 1.3 shows an AR example. In the left �gure

a window on a �lming set is shown, and in the right image the �nal movie scene is

pictured, where the window is arti�cially mounted on the building brick wall.

Figure 1.3: Augmented Reality example (movie "A Beautiful Mind")
(a) Window on a �lming set (b) Final movie scene

source: (RADKE, 2012)
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1.2 Objectives of this study

This work focus is on 3D information extraction from 2D images. The monoc-

ular problem is especially attractive for several reasons. The relative facility to con-

nect a single camera to embedded hardware when compared to a camera array. The

ubiquity of camera equipped processing units such as mobile phones. The challenge

of a less constrained problem, more a�ected by outliers and stability issues (PERS-

SON et al., 2015) which impose an additional level of di�culty when compared

to multiple camera con�gurations. And �nally the fact that the generic methods of

monocular vision, can be applied to the particular case of stereo vision with minimal

or no modi�cation.

Visual Odometry for camera equipped vehicles was chosen as target applica-

tion: a camera equipped vehicle generates a sequence of images, and the position

and orientation of the camera must be determined for each available image. Good

datasets provide a practical way of objective accuracy measurement and comparison

to state-of-the-art solutions.

This thesis objective is to elaborate a monocular visual odometry pipeline,

able to achieve high accuracy at reduced computational cost, allowing the imple-

mentation of a navigation system for real time operation with moderate hardware

resources.

1.3 Contributions

During the investigation of visual estimation principles, several algorithms

were developed. While solutions to monocular vision odometry can be found in

literature, this thesis innovates according to the following contributions:

Y An analysis of instability in forward motion estimation able to determine

source of local-minima problems is conceived (PEREIRA et al., 2017a).

Y A new method of ground feature tracking, using perspective image warping

and approximate camera movement is developed (PEREIRA et al., 2017b).

Y The use of movement translation for camera nodding approximation and fur-

ther scale adjustment is designed (PEREIRA et al., 2017b).

Y A Multi-attribute ground feature selection procedure is formulated (PEREIRA
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et al., 2017b).

Y A new two-view bundle adjustment algorithm, based on resection-intersection

is created (PEREIRA et al., 2018).

1.4 Notation

As the notation of di�erent books and technical papers in computer vision

tend to vary as often happens in multidisciplinary �elds, this section brie�y intro-

duces the notation used throughout this work.

Scalars are denoted by mixed case italicsˆs; C•, vectors are lower case bold

ˆv• and unless otherwise stated are column wise. Matrices are uppercase boldˆM •.

A feature in the kth frame is denoted byuk � ˆuk ; vk•T , and the set of all

features in framek is grouped in then � 2 matrix U k where each row stores a pair

of coordinates. The matrixP represents a set of points in 3D space, where each

row represents a pointp � ˆx; y; z• that can be mapped to an image coordinate

by the camera projection model to position̂u � ˆ û; v̂•T . The œ(prime) symbol is

used to denote image coordinate after shifting by the camera center and scaling by

the focal length, in homogeneous coordinates:uœ� K � 1u where K represents the

camera intrinsic parameters.

The camera pose is represented by either the vectorw � � � x ; � y; � z; tx; ty; tz �

containing the three rotations and translations relative to the previous camera pose

or by a 3� 4 matrix characterizing the rigid-body transformationT � RSt as explained

in (RADKE, 2012).

1.5 Outline

This work is structured as follows: chapter 2 introduces the fundamental

background and classical algorithms related to 3D estimation from bi-dimensional

images. Chapter 3 brings a survey on recent developments in VO. Peculiarities of

projection error for translation along optical axis is analyzed in chapter 4. Detection

and tracking of scene details on the images are studied in chapter 5. Scale estimation

for camera equipped wheeled robots using detected details on the ground is discussed

in chapter 6. Calculation of point distance to the camera is covered in chapter 7.
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The position of camera and points that minimize reprojection error is computed

in chapter 8. Results of a full odometry system using the concepts considered

and implemented algorithms are presented in chapter 9. Finally a conclusion is

performed in chapter 10.
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2 VISUAL NAVIGATION BACKGROUND

"Poetry is as precise as geometry."

Gustave Flaubert

This chapter describes the fundamental concepts and algorithms related to

visual navigation. Good references for the reader who wishes a more thorough cov-

erage on the topic are the books "Computer Vision for Visual E�ects" (RADKE,

2012) from Richard Radke and "Computer Vision Algorithms and Applications"

(SZELISKI, 2010) from Richard Szeliski. For an in depth review of projective ge-

ometry the reader may refer to the milestone work "Multiple View Geometry in

Computer Vision" (HARTLEY; ZISSERMAN, 2004) from Hartley and Zisserman.

Camera pose estimation is extensively covered in the in depth review of bundle

adjustment made in (TRIGGS et al., 2000). Practical approaches using OpenCV

(BRADSKI, 2000) can be found in (DAWSON-HOWE, 2014) and industry applica-

tions on (WOHLER, 2009).

The main classes of algorithms involved in visual navigation can be clas-

si�ed in image processing algorithms and geometric projection methods. In real

applications, positions orientations and distances can not be exactly measured, but

estimated with a varying level of certainty. Proposed solutions must address both

noisy (with small deviations from the real value) and bad (outliers with large errors)

measurements.

The chapter starts discussing the typical sparse odometry pipeline. Then

the most relevant image processing methods used to select distinguishable image re-

gions, and recognize those regions in subsequent images are addressed. The chapter

continues with projective geometry, describing the basic model that explains how

a 3D scene structure is projected on a 2D image plane. The projection constrains

of epipolar geometry and the main ideas on camera pose and feature depth esti-

mation are illustrated. The chapter concludes elucidating ground plane based scale

estimation mechanism.
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2.1 Sparse Monocular Visual Odometry Overview

Monocular navigation can be split in two interrelated proceedings: the esti-

mation of camera pose at the moment the images were registered and the 3D scene

structure inference. Although Monocular Visual Odometry (MVO) results are only

related to the position and orientation of the camera, the 3D structure of the viewed

scene must be estimated and errors in scene estimation do re�ect in localization re-

sults.

Dense or semi-dense solutions like (ENGEL; STURM; CREMERS, 2013) try

to adjust camera pose and scene structure matching all pixels with signi�cant image

gradient. Sparse systems, on the other hand (SONG; CHANDRAKER; GUEST,

2016; Mirabdollah M., Mertshching B. (GET Lab, 2015), select recognizable image

regions, called features, and locate those regions in subsequent images. For sparse

systems the 3D position is only calculated for those points in the scene (features).

Figure 2.1: Generic MVO pipeline

source: author

The typical sparse MVO pipeline is shown in �gure 2.1. The system input is

a sequence of images. An image processing unit detects interest points in one image

and tracks those points in the remaining images. The point's correspondences are

used to estimate scene depth and camera pose, and �nally the original scale is

approximated. Next sections detail those operations.

2.2 Feature Detection and Tracking

Feature detection in computer vision refers to methods for computing abstrac-

tions of image information, and making decisions whether an image point matches

a given interest criterion. Throughout this work, feature detection and tracking is
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referred as the process of selecting traceable image regions and locating those re-

gions in subsequent frames. The centers of those regions are called features and 3D

positions are only estimated for those points. Two classes of image processing algo-

rithms are then relevant and will be presented in this section: the methods to select

image regions labeled feature detectors and methods to recognize those regions in

other frames identi�ed as trackers and matchers.

A feature correspondence refers to pairs of pixel coordinates belonging to

the same scene point. as shown in �gure 2.2. The green squares in the left part

of �gure 2.2 mark three detected features. The squares in the right part of the

�gure show the matched features. The red square, marks a matching failure due

to the occlusion of the top of the pentagon. The arrows represent motion vectors,

connecting the feature position in the original image to the tracked position in the

second frame. The section starts with detection algorithms followed by tracking and

matching techniques.

Figure 2.2: Feature Detection and Tracking
(a) Feature detection example (b) Tracking and motion vectors

source: author

2.2.1 Harris Corner Detector

One of the earliest corner detection algorithms was proposed by Moravec

(MORAVEC, 1980) based on the similarity of an image region to overlapping regions

in horizontal, vertical and diagonal neighborhood. Harris and Stephens (HARRIS;

STEPHENS, 1988) built upon Moravec's ideas using image gradients in stead of

shifted image blocks.

The authors de�ned the positive de�nite Harris Matrix H a as shown in equa-

tion 2.1. In the equationI ˆu; v• is the pixel intensity at coordinatesˆu; v•, @I
@u is the
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partial derivative of the intensity (image gradient) along directionu and the sum

spam over the currently tested image regionW:

H a �
<@@@@>

P ˆ u;v •>W ˆ @I
@û u; v•• 2 P ˆ u;v •>W

@I
@û u; v• @I

@v̂ u; v•

P ˆ u;v •>W
@I
@û u; v• @I

@v̂ u; v• P ˆ u;v •>W ˆ @I
@v̂ u; v•• 2

=AAAA?
(2.1)

Harris and Stephens proposed an approximate quality measure was based on

the trace ofH a as shown in equation 2.2 where� is a tunable sensitivity parameter:

Ql � det̂ H a• � � trace ˆH a•2 (2.2)

Analyzing the eigenvalueŝ � 1; � 2• of the matrix H a a better approximation

of corner quality can be estimated. If the pixel intensities inside the box are similar

(homogeneous image area), both@I
@u and @I

@v will be small and both eigenvalues will

present small values. On the occasion that the image region presents a linear edge,

one eigenvalue will be large with associated eigenvector perpendicular to the edge,

while the other will be near zero. When a corner is present in the image crop, both

� 1 and � 2 will present non-zero values.

By analyzing the smaller eigenvalue of the Harris Matrix, the quality of the

corner can be de�ned. In 1994, J. Shi and C. Tomasi proposed a small modi�cation

in their work (SHI; TOMASI, 1994) according to equation 2.3.

Ql � min ˆˆ � 1; � 2• (2.3)

Corners are tested for all pixel positions in an image and regions with the

quality measure above a threshold de�ned as a fraction of the maximum found

quality are returned. To avoid multiple results in a neighborhood, non-maximum

suppression is usually applied, where only the highest value in a user-de�ned radius

is retained.

2.2.2 FAST Corner Detector

To avoid calculating Harris matrix and eigenvalues, a low-complexity method

was proposed by Rosten and Drummond (ROSTEN; DRUMMOND, 2005) named

Features from Accelerated Segment Test (FAST). In the method a pixel is compared

to neighbor pixels at a �xed distancer as shown in �gure 2.3. If a contiguous arc
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of n pixels of neighbors are signi�cantly darker or lighter then the central reference,

the patch is selected as a corner.

Figure 2.3: FAST corner detector

source: (ROSTEN; DRUMMOND, 2005)

In the original algorithm sixteen pixels around the central pixel where tested

and n � 9. The algorithm was extended with machine learning approach (ROSTEN;

DRUMMOND, 2006) where an extensive set of features were used to build a decision

tree based on the intensity di�erence of the central pixel to the sixteen neighbors.

On average fewer than three comparisons are made for each patch candidate to test

for corner detection.

2.2.3 Hybrid and Multi-Scale Corner Detector

As FAST veri�es a reduced number of pixels around the central feature candi-

date, regions with high spatial frequency, that should be avoided, may be selected by

the feature detector. A common approach in recent solutions is to initially select cor-

ners with the FAST methodology, and reject candidates based on the Harris corner

algorithm. In this way the slower Harris corner detector is only applied to locations

previously selected by the FAST detector, reducing computational complexity and

rejecting high spatial frequency candidates in a hybrid solution.

A sensitive point in corner detection is the scale in which corners are searched.

If small windows are chosen, �ne grained corners are returned, whether larger win-

dows return features in a larger image region. Lindeberg (LINDEBERG, 1998)

proposed search for corners in di�erent scales. By searching features in scale-space

and scale-normalizing Harris matrix eigenvalues, to prevent larger windows from

out weighting smaller ones, it is possible to �nd multi-scale Harris corners and the

natural corner scale.
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2.2.4 Lukas-Kanade Tracker

Once distinguishable image regions have been selected, those regions must be

located in subsequent images. When images are taken sequentially, features in the

new image are expected to be close to the detected features in the original image. A

possible method is to use a search procedure to �nd the image region most similar

to the target feature.

Considering a series of images registered by a camera and indexed by time

I ˆu; v; t• it is possible to approximate a blockW of pixels at time t � 1 by the block

at time t shifted by a vectorˆx; y• as in equation 2.4.

I ˆx � u; y � v; t � 1• � I ˆu; v; t• ¦ ˆu; v• >W (2.4)

Using �rst order Taylor series approximation it is possible to go from equation

2.4 to equation 2.5 (LUCAS; KANADE, 1981).

H a

<@@@@>

x

y

=AAAA?
� �

<@@@@>

P ˆ u;v • ˆ
@I
@û u; v; t• @I

@t̂ u; v; t••

P ˆ u;v • ˆ
@I
@v̂ u; v; t• @I

@t̂ u; v; t••

=AAAA?
(2.5)

Where H a is the Harris matrix, de�ned in equation 2.1. Multiplying both

sides of equation 2.5 by the inverse of the Harris matrix the displacement vector can

be iteratively approximated. As the algorithm only works for small displacement

where the used Taylor series expansions are meaningful, a pyramidal implementa-

tion of the algorithm is usually used as proposed by (BOUGUET, 2000). In that

algorithm image pyramids with di�erent resolutions are generated and features are

located in the lowest resolution image. Found positions are subsequently re�ned in

higher resolution images until the original full resolution image is processed. An in

depth overview of the algorithm can be found in (BAKER; MATTHEWS, 2004).

2.2.5 SIFT Feature Matching

Feature matching is an alternative to tracking. Matching involves computing

image descriptors of detected features on both the reference and target images.

Then a descriptor comparison strategy indicates if those descriptors refer to the

same image feature. The use of descriptors enables algorithms to provide some level
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of robustness to scale, orientation, illumination and position di�erences.

The Scale Invariant Feature Transform (SIFT) (LOWE, 1999) is an extremely

popular and robust image descriptor (FAN; WANG; WU, 2016) based on histogram

of gradients (HoG). The �rst step for descriptor extraction in SIFT is the feature

scale detection. Di�erence of Gaussian (DoG) for di�erently scaled versions of the

smoothed original image is used and scale with maximum output is chosen. A block

of 16x16 pixels around the feature center oriented by the dominating gradient is

de�ned and an 8 bin HoG for each 4x4 sub-blocks is calculated as shown in �gure

2.4.

Figure 2.4: SIFT

source: https://gilscvblog.com

The 8 bins of each of the 16 sub-blocks form a vector of 128 elements that are

normalized and used to match to candidate descriptors through Euclidean distance

comparison.

Scale detection provide robustness to scale di�erences, the dominant orien-

tation is used to provide invariance to image rotation di�erences, gradients provide

robustness to illumination di�erences and the feature position is irrelevant for the

matching algorithm.

2.2.6 ORB Feature Matching

Although SIFT presents good results, the histogram of gradients and Eu-

clidean distance comparison are computationally demanding for large sets of fea-

tures. A family of so called binary descriptors have been proposed to provide similar

precision of SIFT with a fraction of the computational complexity. Among those

methods Binary Robust Independent Elementary Features (BRIEF) (CALONDER

et al., 2010) that was later improved in Oriented FAST and Rotated BRIEF (ORB)

(RUBLEE et al., 2011) is one of the most relevant.
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ORB uses FAST corners, detect and compensate the feature orientation, and

use a binary descriptor for feature matching. Each descriptor bit is the result of

a binary comparison of pixel intensity of two di�erent positions inside the feature

patch as de�ned by equations 2.6 and 2.7.

� ˆ I; u; v• ��

¢̈
¨̈
¦
¨̈̈
¤

1 � I ˆu• @I ˆv•

0 � I ˆu• CI ˆv•
(2.6)

f n ˆp• � Q
0Bi @n

2i � ˆp;u i ; v i • (2.7)

In the equations ˆu; v• are two pixel positions inside the patch,W is the

pixel intensity inside the patch at positionu and f n ˆP• is the code-word for patch.

The positions of pixel comparison inside the patcĥu i ; v i • have been de�ned using

a training set of 300.000 features. The original work usedn � 256 bit codes for

descriptor size.

2.3 Camera Pose and Scene Structure Estimation

Once feature correspondences have been established, point 3D positions and

the camera poses can be approximated in order to match calculated projections

to found features. This section starts with the camera projection model, followed

by epipolar constraints, and �nally introduces camera pose estimation and scene

reconstruction algorithms.

2.3.1 Pinhole Projection Model

This section introduces the model that maps a three-dimensional scene into

a bi-dimensional image. The simple pinhole camera model is explained and rela-

tionship to real cameras is brie�y highlighted.

In the pinhole camera model, light from the scene passes through a single

point (the pinhole or principal point) and project an inverted image on a plane as

shown in �gure 2.5 (a). For convenience, a virtual image plane, in front of the

principal point is used and a non inverted projection is formed as shown in �gure

2.5 (b).
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Figure 2.5: Pinhole Camera Model
(a) Pinhole camera

(b) Pinhole Camera Model

source: (BRADSKI, 2000)

Figure 2.5 (b) shows the used orientation convention, where the optical axis

is aligned with the z axis, and axisx and y are aligned to the image plane. A

point with coordinates ˆx; y; z•T is projected to image coordinateŝu; v•T by the

projection equation 2.8.

<@@@@@@@@>

u

v

1

=AAAAAAAA?

Œ

<@@@@@@@@>

f x 0 cx

0 f y cy

0 0 1

=AAAAAAAA?

<@@@@@@@@>

x

y

z

=AAAAAAAA?

(2.8)

On equation 2.8 variableŝ u; v•T are image coordinates in pixels,̂f x ; f y• is

the focal length in pixels,ˆcx ; cy• are pixel coordinates of the camera center, and the

vector ˆx; y; z•T is the point coordinate in units of distance (meters for example).

Equation 2.8 can be written in the simple form of equations 2.9 and 2.10.

u �
x
z

f x � cx (2.9)

v �
y
z

f y � cy (2.10)
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The set of parameterŝ f x ; f y; cx ; cy• de�ne the main characteristics of the

pinhole camera model and are referred to as intrinsic camera parameters. When

points position use a di�erent coordinate reference than the camera, the point's

coordinates must be rotated and translated to the camera frame of reference, before

being projected onto the image plane as shown in equation 2.11.

<@@@@@@@@>

u

v

1

=AAAAAAAA?
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<@@@@@@@@>

f x 0 cx

0 f y cy

0 0 1

=AAAAAAAA?
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x

y

z

1

=AAAAAAAAAAA?

(2.11)

The coe�cients r ij are coe�cients of a 3x3 rotation matrix and t i are thex; y

and z translation parameters. The matrix with the intrinsic camera parameters is

denoted byK , replacing the rotation matrix by R and translation vector by t , and

using homogeneous coordinates the proportionality of equation 2.11 becomes the

identity on equation 2.12. The rotation and translation are called camera extrinsic

parameters or camera pose.

~u � K � R S t � ~x (2.12)

Homogeneous coordinates are useful to represent points at in�nity and non-

linear relations in a simpler form. The operations on point~x on equation 2.12 can be

combined in the matrixT ˆ k;w • as shown in equation 2.13. In equation 2.13 subscripts

ˆk; w• indicate that a point in the world frame of referencew (an arbitrary �xed

reference) will be projected byT ˆ k;w • in the camera image plane at instantk.

k ~u � T k;w : w ~x (2.13)

Projection error minimization for pose estimation aims to �nd a transforma-

tion T k;w that minimizes the di�erence between viewed features, and the calculated

projection on the image plane as shown in equation 2.14.

T k;w � arg min
T ˆ k;w •

Q
i >n

SSu i � T ˆ k;w • : w ~x i SS2 (2.14)

Figure 2.6 exempli�es the projection errors. In the �gure three 3D points

p1, p2 and p3 are projected in the blue squares in the image plane. The tracked

feature positions are marked in the plane as the red circle, square and triangle. The
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