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Theory for the conditioned spectral density of noninvariant random matrices
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We develop a theoretical approach to compute the conditioned spectral density of N × N noninvariant random
matrices in the limit N → ∞. This large deviation observable, defined as the eigenvalue distribution conditioned
to have a fixed fraction k of eigenvalues smaller than x ∈ R, provides the spectrum of random matrix samples
that deviate atypically from the average behavior. We apply our theory to sparse random matrices and unveil
strikingly different and generic properties, namely, (i) their conditioned spectral density has compact support,
(ii) it does not experience any abrupt transition for k around its typical value, and (iii) its eigenvalues do not
accumulate at x. Moreover, our work points towards other types of transitions in the conditioned spectral density
for values of k away from its typical value. These properties follow from the weak or absent eigenvalue repulsion
in sparse ensembles and they are in sharp contrast to those displayed by classic or rotationally invariant random
matrices. The exactness of our theoretical findings are confirmed through numerical diagonalization of finite
random matrices.
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Ensembles of random matrices offer the simplest nontrivial
mathematical laboratory to study the statistical properties
of rare events in complex systems. Owing to the universal
properties of their eigenvalue statistics, random matrices find
applications in areas as diverse as nuclear physics, quantum
chaos, finance, complex networks, and string theory [1,2].

The study of classical disordered systems is an emblematic
example where random matrix theory is very useful. Large
many-particle systems with quenched or self-induced disorder
are described by a free-energy or an energy function [3],
respectively. The structure of such functions in the con-
figuration space is usually highly nontrivial, owing to the
enormous number of stationary points (saddle points, minima
and maxima), whose impact on the dynamics of the system
is decisive [3–5]. The local stability around an extremum
is determined by the Hessian matrix of the energy second
derivatives, with its positive (negative) eigenvalues measuring
the curvature of the stable (unstable) directions. Unfortunately,
deriving the distribution of the Hessian is a hopeless task, due
to its explicit dependency on the configurations, and a fruitful
strategy consists in replacing the Hessian with a suitable
random matrix [6]. In this approach, the distribution of the
number of eigenvalues below a certain threshold, the so-called
index, is exactly computed [6–8]. This effective model for the
Hessian has led to valuable insights not only in disordered
systems [6], but also in string theory [9,10] and quantum
cosmology [11,12].

Even though the index distribution characterizes the fluctua-
tions of the stability throughout the energy landscape, one may
be interested, for instance, in the curvature distribution around

specific saddle points with a given number of stable directions.
In order to access such refined information, one has to compute
the conditioned spectral density (CSD), namely, the Hessian
eigenvalue distribution constrained to have a fixed fraction
of positive eigenvalues. As the typical fluctuations of this
fraction vanish by increasing the system size, the CSD yields
the spectrum of constrained rare samples, strongly deviating
from the typical case.

The CSD is a crucial observable in random matrix theory.
This quantity arises as a by-product of the Coulomb fluid
method [13], recently adapted to obtain the index distribution
in the case of invariant random matrix ensembles [7,14–16],
which include Gaussian [7,17,18], Wishart [14,19], and
Cauchy random matrices [15]. In this context, the effect of
constraining the eigenvalues in different regions is modeled
as having one or more confining walls. For invariant random
matrices, the CSD exhibits generic features, resulting from the
repulsive Coulomb interaction between eigenvalues, namely,
(i) it is an asymmetric function with a noncompact support,
(ii) it undergoes an abrupt transition as the number of con-
strained eigenvalues crosses its typical value [16], and (iii) the
eigenvalues accumulate at the walls.

A natural question is whether these salient and somewhat
universal features persist in the case of noninvariant random
matrices, for which the joint distribution of eigenvalues is
generally unknown and, consequently, the Coulomb fluid
method is inapplicable. One of the most interesting classes
of noninvariant random matrices is that of sparse random
matrices (SRMs), whose main defining property is the presence
of a large amount of zero entries. Since SRMs encode the
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topology of spin models on treelike random graphs, they
find applications in several fields, including spin glasses,
error-correcting codes, optimization problems, and complex
networks (see Refs. [20,21] and references therein). The
spectrum of SRMs is richer than their invariant counterparts
[22–24], with the existence of regions containing localized
eigenvectors [25–28], in which eigenvalue repulsion is weak
or absent. It is unclear how this feature affects the properties
of the CSD.

In this Rapid Communication, we present a theoretical
approach that allows us to compute the CSD of noninvariant
random matrices in the limit N → ∞. We apply our technique
to two paradigmatic ensembles of SRMs: the adjacency matrix
of Erdős-Rényi random graphs and sparse Wishart random
matrices. Our analysis shows that different universal properties
emerge in the case of SRMs: (i) The conditioned spectral
density displays a compact support; (ii) it does not exhibit
any transition when the constrained number of eigenvalues
approaches its typical value; and (iii) in the limit N → ∞,
there is no accumulation of eigenvalues at the wall. All
these properties seem to follow from the absence of eigen-
value repulsion, in striking contrast with the behavior of
traditional invariant ensembles. The theoretical results are
fully confirmed by numerical diagonalization of finite random
matrices.

We consider an ensemble of N × N symmetric random
matrices M with eigenvalues {λi}i=1,...,N . The number of
eigenvalues smaller than a threshold x ∈ R is given by
IN (x) = ∑N

i=1 �(x − λi ), where �(x) is the Heaviside step
function. The conditioned spectral density is defined as

ρx (λ|k) = lim
N→∞

N−1
〈 ∑N

i=1 δ(λ − λi )δ[kN − IN (x)]
〉

〈δ[kN − IN (x)]〉 , (1)

where δ is the Dirac delta and 〈· · · 〉 denotes the expectation
over the random matrix ensemble. Equation (1) represents the
conditional probability density for the eigenvalues between
λ and λ + dλ, provided there is precisely kN eigenvalues
smaller than x. Notice that we are imposing a hard constraint
in the random matrix ensemble by choosing those samples
for which IN (x) = kN , having x ∈ R and 0 � k � 1 as
adjustable parameters of our theory.

Let us sketch our theoretical approach to evaluate the CSD
for arbitrary random matrix ensembles. Here, we state only the
main results, while all details of our technique are discussed
in the Supplemental Material [29]. Using the standard version
of the replica method [30], combined with a representation of
the index IN (x) in terms of complex logarithms [6,31], one
rewrites the CSD as

ρx (λ|k) = − 2

π
lim

η→0+
lim

ε→0+
lim

N→∞
lim
n→0

1

Nn

∂

∂λη

× Im

[∫
dy P (N )(y, xε ) ln

(
Q(N )

n (y, λη, xε )

Q
(N )
0 (y, xε )

)]
,

(2)

where the weight P (N )(y, xε ) is given by

P (N )(y, xε ) = exp (N [yk − F (N )(y, xε )])∫
dy exp (N [yk − F (N )(y, xε )])

, (3)

with

Q(N )
n (y, λη, xε ) = 〈

[Z(xε )]
iy

π [Z(xε )]−
iy

π [Z(λη )]n
〉
, (4)

F (N )(y, xε ) = y

2
− 1

N
ln Q

(N )
0 (y, xε ). (5)

The symbol (· · · ) stands for complex conjugation. The func-
tion Z explicitly depends on the random matrix M and it is
defined generically as follows,

Z(aμ) =
∫ ∞

−∞

(
N∏

i=1

dyi

)
exp

[
− i

2
yT · (aμI − M ) y

]
,

aμ = a − iμ, yT = (y1, . . . , yN ), (6)

with I denoting the N × N identity matrix. Equation (4) is a
direct consequence of introducing mathematical identities to
represent IN (x) and the Dirac delta [31–33], while Eq. (5)
determines the cumulant generating function that controls the
fraction of eigenvalues smaller than x [29].

The derivation of Eq. (2) is a fundamental step of our
analytic approach, since it recasts the calculation of ρx (λ|k)
in terms of the solution of an extremization problem. In fact,
let us assume the limit N → ∞ can be performed before taking
n → 0 in Eq. (2). This is a common and harmless procedure
in the study of disordered systems [30], which enables us
to evaluate formally the integral over y in Eq. (2) using the
saddle-point method,

ρx (λ|k) = − lim
η→0+

lim
ε→0+

lim
n→0

2

πn

∂

∂λη

× Im

(
lim

N→∞
1

N
ln

[
Q(N )

n (y	, λη, xε )
])

, (7)

where y	 is obtained from the stationary condition

k = ∂F (y, xε )

∂y

∣∣∣∣
y=y	

, (8)

with F (y, xε ) ≡ limN→∞ F (N )(y, xε ). This concludes the
essence of our analytic approach: According to Eq. (7), the
computation of ρx (λ|k) boils down to being able to calculate
Q(N )

n (y, λη, xε ) for N → ∞. Note that, up to this point, our
technique is completely general, in the sense we have not done
any assumption regarding the random matrix ensemble.

In principle, once the random matrix ensemble is specified,
any suitable analytic tool can be used to evaluate the ensemble
average and the large-N behavior of Q(N )

n , yet the presence of
imaginary and real-valued exponents in Eq. (4) is a serious
issue. We surmount this obstacle by following the replica
approach as discussed in Refs. [31–33]. At first, these expo-
nents are regarded as integer positive numbers, which allows
us to calculate the ensemble average and extract the large-N
behavior of Q(N )

n . The last step is the analytic continuation of
the exponents n± and n back to, respectively, their original
complex and real values, which is only feasible if one makes
an ansatz regarding the functional form of the order parameter
emerging in the effective replica theory. Here, we present
analytic expressions for the CSD under the so-called replica-
symmetric assumption for the order parameter [30,32,33].
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We derive explicit results for two prototypical ensembles
of SRMs: the adjacency matrix of weighted Erdős-Rényi (ER)
random graphs [34], and sparse Wishart random matrices
[22]. In the first case, the matrix entries are defined as Mij =
cij Jij , where the random variables {cij } are independently and
identically drawn from

Pc(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0, (9)

with cii = 0 and cij = cji . The parameter c is the average
connectivity of the corresponding ensemble of ER random
graphs [34]. The variables {Jij } set the values of the nonzero
entries of M and they are drawn independently from a dis-
tribution PJ (J ), whose analytic form does not need to be
specified at this point. In the sparse Wishart ensemble, M is
an N × N sparse covariance matrix M = c−1ξξT built from
the N × P rectangular random matrix ξ . Its entries {ξiμ},
with i = 1, . . . , N and μ = 1, . . . , P , are independently and
identically drawn from the distribution Pc(ξiμ), defined in
Eq. (9). From a random graph viewpoint, ξ is associated to
a bipartite random graph, in which the μ nodes have average
degree c, while the i nodes have average degree αc, with
α = P/N [22]. In both random matrix ensembles, M has a
sparse structure as c remains of O(1) in the limit N → ∞.

Although we show explicit results for both ensembles
introduced above, the final equations determining the CSD
are presented only for the ensemble of ER random graphs (the
analogous formulas for the sparse Wishart ensemble are shown
in Ref. [29]). Thus, we have obtained the following expression
for the CSD,

ρx (λ|k) = 1

π
lim

η→0+
lim

ε→0+

∫ ∞

−∞
d�wy	

(�)Im �, (10)

where d� ≡ d Im �d Re �, and wy	
(�) is the joint probability

density of the real and imaginary parts of �. For the sake of
simplicity, we have omitted the dependence of wy	

(�) with
respect to xε . The function wy	

(�) follows from

wy	
(�) =

∫ ∞

−∞
d�wy	

(�,�), d� ≡ d Im �d Re �, (11)

where wy	
(�,�) obeys the self-consistency equation in the

case of ER random graphs,

wy	
(�,�) = 1

N

∞∑
�=0

e−cc�

�!

∫ ∞

−∞

[
�∏

k=1

d�kd�kwy	
(�k,�k )

]

×
〈
Wy	

[{Jk,�k}�k=1] δ

(
�− 1

xε − ∑�
k=1 J 2

k �k

)

× δ

(
� − 1

λη − ∑�
k=1 J 2

k �k

)〉
J1,...,J�

, (12)

with the weight

Wy	

[{Jk,�k}�k=1

] ≡
(

xε − ∑�
k=1 J 2

k �k

xε − ∑�
k=1 J 2

k �k

) iy	
2π

. (13)

The brackets 〈· · · 〉J1,...,J�
represent the average over J1, . . . , J�

with the distribution PJ (Jk ) (k = 1, . . . , �), while N is the

normalization factor ensuring
∫ ∞
−∞ d�d�wy	

(�,�) = 1. The
value of y	 follows from the solution of Eq. (8), where the
cumulant generating function for ER random graphs reads

F (y, xε ) = y + c

2

〈 ∫ ∞

−∞
d�d�′wy (�)wy (�′)

×
[(

1 − J 2��′

1 − J 2��′

) iy

2π

− 1

]〉
J

− ln

〈 ∞∑
�=0

e−cc�

�!

∫ ∞

−∞

[
�∏

k=1

d�kwy (�k )

]

× Wy

[{Jk,�k}�k=1

]〉
J1,...,J�

. (14)

Given a position of the threshold x ∈ R, we determine y	

corresponding to an imposed fraction k of eigenvalues smaller
thanx. This is done by solving iteratively the fixed-point Eq. (8)
for y	 using Newton’s method, as explained in Ref. [29].

Let ktyp(x) be the typical fraction of eigenvalues smaller
than x, obtained by integrating the unconditioned spectral
density from −∞ to x [22]. We may have an excess or a
defect of eigenvalues to the left of x depending if we choose
k > ktyp(x) or k < ktyp(x), respectively. We want to understand
how the eigenvalues accommodate themselves as k changes
and compare the results with those obtained for invariant
random matrices [7,14,15].

In Fig. 1, we illustrate the main outcome of our theory for
the two ensembles of SRMs. Figure 1 shows the CSD of ER
random graphs with c = 5 and of the sparse Wishart ensem-
ble with parameters (α, c) = (2, 2). For each random matrix
ensemble, we have chosen a different value of x and several
values of k. In striking contrast to invariant random matrix
ensembles [7,14,15], the CSD has a compact support, there
is no accumulation of eigenvalues around x, and the function
ρx (λ|k) does not experience any type of sudden transition when
k = ktyp(x). All these features, which seem to be universal
within the realm of sparse random matrices, are due to the
weak or absent repulsion between the eigenvalues. In fact, the
spectrum of sparse random matrices often contains localized
eigenstates [26–28], where the spacing between adjacent
eigenvalues typically follows a Poisson distribution [25,28,35]
and the eigenvalues can be arbitrarily close to each other.

We also note that the spectrum of infinitely large ER
random graphs must be always symmetric. Strictly in the limit
N → ∞, such a symmetry requirement is individually fulfilled
by each member of the graph ensemble. This implies that,
mathematically, the constrained graph ensemble of Fig. 1(a)
must be empty for k < 1/2, signaling a transition for some
critical value kc, which can be equal to or larger than 1/2.
Because of this proximity to a transition, the time required to
find y	 slows down and it becomes cumbersome to decrease
k towards 1/2. In the case of the sparse Wishart ensemble,
Fig. 1(b) shows that, as k → 1−, the constraint is obeyed by a
significant increase of the mass corresponding to the discrete
part of the spectrum, while its continuous part decreases ac-
cordingly. It is difficult, though, to ascertain, either analytically
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FIG. 1. Conditioned spectral density of Erdős-Rényi (ER) ran-
dom graphs and sparse Wishart random matrices for fixed x and
several y	, derived from the numerical solution of our analytic
equations. The unconditioned spectral density, where k = ktyp(x ), is
obtained for y = 0. The values of k, indicated on the graphs, denote
the fraction of eigenvalues smaller than x. (a) ER random graphs with
average connectivity c = 5 and Gaussian entries with zero mean and
variance 1/c. The wall is located at x = 1. (b) Sparse Wishart random
matrices with parameters c = 2 and α = 2. The wall is located at
x = 3.

or numerically, whether there is a critical value of k above
which the continuous part of ρx (λ|k) vanishes.

Finally, let us compare our theory with the numerical diag-
onalization of finite matrices. Figure 2 illustrates the CSD for
ER random graphs with c = 5 and for sparse Wishart random
matrices with parameters (α, c) = (2, 2). The nonzero entries
in the case of ER random graphs are drawn from PJ (J ) =
(2π/c)−1/2e−cJ 2/2. Since we are exploring rare events and

FIG. 2. Comparison between the theoretical results (red curve)
and numerical diagonalization (symbols) of finite random matrices
for the conditioned spectral density of Erdős-Rényi (ER) random
graphs and sparse Wishart random matrices. The symbols result
from the numerical diagonalization of random matrices of dimensions
N = 25 (brown triangles), N = 50 (orange squares), N = 75 (yellow
pentagons), andN = 100 (blue hexagons). (a) ER random graphs with
average connectivity c = 5 and Gaussian entries with zero mean and
variance 1/c. The fraction of eigenvalues smaller than x = 1 is given
by k = 0.92, which is larger than its typical value ktyp(x ) = 0.83.
(b) Sparse Wishart random matrices with parameters c = 2 and α = 2.
The fraction of eigenvalues smaller than x = 3 is given by k = 0.64,
which is smaller than its typical value ktyp(x ) = 0.75.

advanced biased sampling methods are usually tailored for
invariant random matrices [36], numerical diagonalization
only enables us to extract the CSD for rather small values
of N . Thus, the finite-size effects in Fig. 2 are remarkable,
showing that for finite N the eigenvalues accumulate on
both sides of the wall located at x. However, this effect is
suppressed as the matrix dimension becomes larger and larger,
with numerical diagonalization results consistently approach-
ing our theoretical predictions, valid strictly for N → ∞.
Overall, the agreement between our theory and numerical
simulations is remarkable, which corroborates the exactness
of our analytic equations. More than that, the method yields
results beyond numerical diagonalization: It allows us to
determine the CSD in domains that are not accessible through
diagonalization.
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In this Rapid Communication, we have put forward a
powerful analytic approach to evaluate, in the limit N → ∞,
the spectral density of random matrices conditioned to have
a fixed fraction k of eigenvalues smaller than a threshold x.
The present theory can be applied to the broad and scarcely
explored class of noninvariant random matrices, for which
the traditional Coulomb fluid approach is unworkable. We
have shown how our approach can be used to unveil universal
features of the conditioned spectral density in sparse random
matrix ensembles. For both the adjacency matrix of Erdős-
Rényi random graphs and sparse Wishart random matrices,
the constrained density has a compact support, the eigenvalues
do not accumulate at the position x, and there is no abrupt
transition when k = ktyp(x). On the other hand, our work
suggests other types of transitions in the constrained density,
such as the vanishing of the continuous part of the spectrum. All
these features seem to follow from the weak or absent repulsive
interaction between the eigenvalues, which is the driving force
behind the properties of the constrained density in invariant
random matrices.

The present work can be further developed in various
directions, which extend beyond the scope of random matrices.
Our analytic method allows us to determine the spectral density
of a diversity of random graph ensembles with structural
constraints, shedding light on the relationship between the
spectrum and the structure of complex networks [37]. The
present approach can be also employed to explore equilibrium
and nonequilibrium properties of rare samples of disordered
systems, such as spin glasses and combinatorial optimization
problems [20]. The behavior of phase transitions in constrained
ensembles of disordered systems is a general exciting problem,
which is now accessible for analytical scrutiny.
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