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CONTINUITY OF LYAPUNOV EXPONENTS FOR COCYCLES WITH
INVARIANT HOLONOMIES

LUCAS BACKES, AARON BROWN AND CLARK BUTLER
(Communicated by Federico Rodriguez Hertz)

ABSTRACT. We prove a conjecture of Viana which states that Lyapunov expo-
nents vary continuously when restricted to GL(2,R)-valued cocycles over a
subshift of finite type which admit invariant holonomies that depend contin-
uously on the cocycle.

1. INTRODUCTION

Consider an invertible measure preserving transformation f : (X ,µ) → (X ,µ)
of a standard probability space. For simplicity, assume µ to be ergodic. Given
a measurable function A : X →GL(d ,R) we define the linear cocycle over f by
the dynamically defined products

An(x) =




A( f n−1(x)) · · · A( f (x))A(x) if n > 0
I d if n = 0
(A−n( f n(x)))−1 = A( f n(x))−1 · · · A( f −1(x))−1 if n < 0.

(1)

Under certain integrability hypotheses (for instance, if the range of A is bound-
ed), Oseledets theorem guarantees the existence of numbers λ1 > . . . >λk , called
the Lyapunov exponents, and a decomposition Rd = E 1

x ⊕ . . .⊕E k
x , called the Ose-

ledets splitting, into vector subspaces depending measurably on x such that for
almost every x

A(x)E i
x = E i

f (x) andλi = lim
n→±∞

1

n
log‖An(x)v‖

for every non-zero v ∈ E i
x and 1 ≤ i ≤ k.

Lyapunov exponents arrive naturally in the study smooth dynamics. Indeed,
given a diffeomorphism of a manifold that preserves a probability measure, the
derivative determines a natural cocycle associated to the system. The corre-
sponding Lyapunov exponents play a central role in the modern study of dy-
namical systems. For instance, given a C 2 diffeomorphism preserving a measure
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with negative exponents, Pesin constructed stable manifolds through almost ev-
ery point [26]. Moreover, Lyapunov exponents are deeply connected with the
entropy of smooth dynamical systems and the geometry measures as shown by
the entropy formulas of Ruelle [28], Pesin [27], and Ledrappier–Young [20, 21].

In the present paper, we are interested in the continuity properties of Lya-
punov exponents as one varies the cocycle and the underlying measure while
keeping the base dynamics constant. Our base dynamics will be a subshift of
finite type or, more generally, a hyperbolic set and our measures will always be
taken to be measures admitting a local product structure. As a corollary of our
main result, we obtain continuity of Lyapunov exponents for fiber-bunched co-
cycles in the space of Hölder continuous cocycles, giving an affirmative answer
to a conjecture [31, Conjecture 10.12] of Viana (see Sections 2 and 3 for precise
definitions and statements):

THEOREM 1.1. Lyapunov exponents vary continuously when restricted to the sub-
set of fiber-bunched elements A : M →GL(2,R) of the space H r (M).

In general, one can not expect to obtain continuity of Lyapunov exponents
in the space of Hölder cocycles without any extra assumption. Indeed, in [6],
Bocker and Viana presented an example of a Hölder-continuous, SL(2,R)-valued
cocycle with non-zero Lyapunov exponents which is approximated in the Hölder
topology by cocycles with zero Lyapunov exponents. Recently the third author
has refined the Bocker-Viana construction to build a family of examples of dis-
continuity of Lyapunov exponents in the Hölder topology which are arbitrarily
close to being fiber-bunched [12]. Thus, Theorem 1.1 is sharp for this family.

The technique employed by Bocker and Viana to construct their example
is a refinement of a technique used by Bochi [4, 5] to prove the Bochi–Mañé
theorem. This theorem implies that, in the space of continuous cocycles over
aperiodic base dynamics, the only continuity points for Lyapunov exponents of
SL(2,R)-valued cocycles are those which are (uniformly) hyperbolic and those
with zero exponents. Thus, discontinuity of Lyapunov exponents is typical if
one only assumes continuous variation of the cocycle.

The main dynamical feature exhibited by fiber-bunched cocycles is the exis-
tence of a continuous family of invariant holonomies. These holonomies more-
over vary continuously with the cocycle. This is the main geometric property
we exploit to establish the continuity of Lyapunov exponents. Our main theo-
rem below states that Lyapunov exponents depend continuously on the cocycle
and on the underlying measure if we restrict ourselves to families of cocycles
admitting invariant holonomies and to families of invariant measures with local
product structure and “well behaved” Jacobians.

Even though discontinuity of Lyapunov exponents is a quite common fea-
ture as pointed out above, there are some contexts where continuity has been
previously established. For instance, Furstenberg and Kifer [14, 17] established
continuity of the largest Lyapunov exponent for i.i.d. random matrices under
certain irreducibility conditions. In the same setting, but under assumption of
strong irreducibility and a certain contraction property, Le Page [22] showed
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local Hölder continuity and even smoothness of Lyapunov exponents. Duarte
and Klein [13] derived Hölder continuity of the Lyapunov exponents for a class
irreducible Markov cocycles. In certain cases one can obtain real-analyticity
of the Lyapunov exponents [29, 25]. Continuity has also been shown in the
context of Schrödinger cocycles by Bourgain and Jitomirskaya [9, 10]. More
recently, Bocker and Viana [6] and Malheiro and Viana [23] proved continuity
of Lyapunov exponents for random products of 2-dimensional matrices in the
Bernoulli and Markov settings. Our result extends the results of [6] and [23]. In
higher dimensions, continuous dependence of all Lyapunov exponents for i.i.d.
random products of matrices in GL(d ,R) was announced by Avila, Eskin, and
Viana [2].

2. DEFINITIONS AND STATEMENT OF MAIN THEOREM

2.1. Subshifts of finite type. Let Q = (qi j )1≤i , j≤` be an `×` matrix with qi j ∈
{0,1}. The subshift of finite type associated to the matrix Q is the subset of the
bi-infinite sequences {1, . . . ,`}Z satisfying

Σ̂= {(xn)n∈Z : qxn xn+1 = 1 for all n ∈Z}.

We require that each row and column of Q contains at least one nonzero entry.
We let f̂ : Σ̂→ Σ̂ be the left-shift map defined by f̂ (xn)n∈Z = (xn+1)n∈Z. We will
always assume that f̂ is topologically transitive on Σ̂. We let

Σu = {(xn)n≥0 : qxn xn+1 = 1 for all n ≥ 0},

Σs = {(xn)n≤0 : qxn xn+1 = 1 for all n ≤−1}.

We have projections P u : Σ̂→ Σu and P s : Σ̂→ Σs obtained by dropping all of
the negative coordinates and all of the positive coordinates, respectively, of a
sequence in Σ̂. We let fs and fu denote the right and left shifts on Σs and Σu ,
respectively.

We define the local stable set of x̂ ∈ Σ̂ to be

W s
loc(x̂) = {(yn)n∈Z ∈ Σ̂ : xn = yn for all n ≥ 0},

and the local unstable set to be

W u
loc(x̂) = {(yn)n∈Z ∈ Σ̂ : xn = yn for all n ≤ 0}.

We think of open subsets of Σs and Σu , respectively, as parametrizations of the
local stable and unstable sets. We define

Ωs = {(x̂, ŷ) ∈ Σ̂× Σ̂ : ŷ ∈W s
loc(x̂)},

Ωu = {(x̂, ŷ) ∈ Σ̂× Σ̂ : ŷ ∈W u
loc(x̂)}.

Then Ωs and Ωu can be expressed locally as the product of a cylinder in Σ̂ with
a cylinder in Σs and Σu , respectively. For x ∈ Σu we define W s

loc(x) = (P u)−1(x)

and for y ∈Σs we write W u
loc(y) = (P s)−1(y). Observe that if x̂ ∈ Σ̂, then W s

loc(x̂) =
W s

loc(P u(x̂)). In this way, we also think of Σu as a parametrization of the space
of local stable sets.
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Each θ ∈ (0,1) gives rise to a metric on Σ̂,

dθ(x̂, ŷ) = θN (x̂,ŷ), where N (x̂, ŷ) = max{N ≥ 0; xn = yn for all | n |< N }.

These metrics are all Hölder equivalent to one another and thus each defines
the same topology on Σ̂.

For m ∈Z and a0, . . . , ak ∈ {1, . . . ,`}, we define the cylinder notation

[m; a0, . . . , ak ] = {x̂ ∈ Σ̂ : xm+i = ai , 0 ≤ i ≤ k}.

2.2. Stable and unstable holonomies. A d-dimensional linear cocycle Â over f̂
is a map Â : Σ̂→GL(d ,R).

DEFINITION 2.1. A stable holonomy for a linear cocycle Â over f̂ is a collection

of linear maps H s,Â
x̂ ŷ ∈GL(d ,R) defined for ŷ ∈W s

loc(x̂) which satisfy the following
properties,

• H s,Â
ŷ ẑ = H s,Â

x̂ ẑ H s,Â
ŷ x̂ and H s,Â

x̂ x̂ = I d ;

• H s,Â
f̂ (ŷ) f̂ (ẑ)

= Â(ẑ)H s,Â
ŷ ẑ Â(ŷ)−1;

• The map Ωs →GL(d ,R) given by (x̂, ŷ) 7→ H s,Â
x̂ ŷ is continuous.

By replacing f̂ and Â with the inverse cocycle Â−1 over f̂ −1, we get an analo-

gous definition of unstable holonomies H u,Â
x̂ ŷ for ŷ ∈W u

loc(x̂).

Stable and unstable holonomies for linear cocycles are not unique in gen-
eral, even if the cocycle is locally constant (see [16]). To circumvent this issue

we define a cocycle with holonomies to be a triple (Â, H s,Â , H u,Â) where Â is a

linear cocycle over f̂ and H s,Â and H u,Â are a stable and unstable holonomy
for Â, respectively. We let H denote the space of all cocycles with holonomies,
endowed with the subspace topology given by the inclusion

H ,→C 0(Σ̂,GL(d ,R))×C 0(Ωs ,GL(d ,R))×C 0(Ωu ,GL(d ,R)),

where H is cut out by the linear equations in Definition 2.1 and these spaces
of maps have the uniform topology. This means that a sequence of cocycles

with holonomies {(Ân , H s,Ân , H u,Ân )}n∈N converges to (Â, H s,Â , H u,Â) if Ân → Â
uniformly and the stable and unstable holonomies converge uniformly on local
stable and unstable sets, respectively.

DEFINITION 2.2. A sequence of linear cocycles {Ân}n∈N over f̂ converges uni-
formly with holonomies to a linear cocycle Â if for each n there is a triple

(Ân , H s,Ân , H u,Ân ) ∈H

such that this sequence converges in H to a triple (Â, H s,Â , H u,Â) defining a
stable and unstable holonomy for Â.

REMARK 2.3. If Â is α-Hölder continuous and α-fiber-bunched (see Definition
3.1) or locally constant, there is a canonical stable holonomy for Â defined by
the formula

H s,Â
x̂ ŷ = lim

n→∞ Ân(ŷ)−1 Ân(x̂), ŷ ∈W s
loc(x̂).
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Our definition of stable and unstable holonomies is more general and does not
imply that the sequence on the right converges.

2.3. Product structure of measures. For an f̂ -invariant measure µ̂ on Σ̂ we
let µu = P u

∗ µ̂ and µs = P s
∗µ̂. The map [0; i ] → P s([0; i ])×P u([0; i ]) induced by

x̂ → (P s(x̂),P u(x̂)) is a homeomorphism. We say that an f̂ -invariant measure
µ̂ on Σ̂ has local product structure if there is a positive continuous function
ψ : Σ̂→ (0,∞) such that the restriction is of the form

d µ̂|[0;i ] =ψ d(µs |P s ([0;i ]) ×µu |P u ([0;i ])).

That is, for A ⊂ [0; i ], we have

µ(A) =
∫

A
ψd(µs |P s ([0;i ]) ×µu |P u ([0;i ])).

Observe that since µu = P u
∗ µ̂, we have that

∫
W s

loc(x)ψ(x̂)dµs(x̂) = 1 on every local

stable set W s
loc(x).

A Jacobian of the measure µu with respect to the dynamics fu is the measur-
able function Jµu fu such that

d
(
( fu)∗(µu |[0;i ])

)
( f (y)) = (Jµu fu(y))−1 dµu( f (y)).

A Jacobian of µs with respect to fs is defined similarly.
Lemmas 2.4 and 2.5 below give consequences of the existence of local prod-

uct structure for µ which are well known, see for instance [8, Lemmas 2.1, 2.2].
We reproduce the proofs here to indicate explicitly how the local product struc-
ture of µ̂ is used; in particular, we emphasize in the proofs that the Jacobians
and disintegrations constructed depend continuously on the function ψ which
gives the local product structure of µ̂ via explicit formulas.

LEMMA 2.4. Assume µ̂ has local product structure. Then the measure µu admits
a continuous positive Jacobian Jµu fu with respect to the map fu . Similarly µs

admits a continuous positive Jacobian Jµs fs with respect to the map fs .

Proof. Let y ∈Σu and D be any measurable set containing y and contained in a
cylinder [0; i , j ]. Thus, by definition,

µu( fu(D)) = µ̂((P u)−1( fu(D))) =
∫

{x∈ fu (D)}
ψ(x, z)dµu(x)dµs(z)

and moreover,

µu(D) = µ̂((P u)−1(D)) = µ̂( f̂ ((P u)−1(D))) =
∫

{x∈ fu (D),z−1=i }
ψ(x, z)dµu(x)dµs(z),

where in the second equality we have used the f̂ -invariance of µ̂. Now, letting
D shrink to {y} we have

µu( fu(D))

µu(D)
→ 1∫

{z−1=i }ψ( fu(y), z)dµs(z)
.
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Defining Jµu fu(y) := 1∫
{z−1=i }ψ( fu(y), z)dµs(z)

, which is clearly positive and con-

tinuous, we get the desired result. An analogous proof replacing fu by fs shows
that fs admits a continuous positive Jacobian Jµs fs with respect to µs .

Given x, y ∈ Σu in the same cylinder P u([0; i ]), we define the unstable holo-
nomy map hx,y : W s

loc(x) →W s
loc(y), by assigning to each x̂ ∈W s

loc(x) the unique
ŷ = hx,y (x̂) ∈W s

loc(y) with ŷ ∈W u
loc(x̂).

The partition of (Σ, µ̂) into local stable sets is a measurable partition and thus
induces a disintegration into a family of conditional measures {µ̂x }x∈Σu with
each µ̂x supported on W s

loc(x). All such families agree up to null sets.
Using the local product structure of the measure µ̂ we have the following.

LEMMA 2.5. Assume µ̂ has local product structure. Then the measure µ̂ has a
disintegration into conditional measures {µ̂x }x∈Σu that vary continuously with x
in the weak-∗ topology. In fact, for every x, y ∈Σu in the same cylinder [0; i ],

hx,y : (W s
loc(x), µ̂x )) → (W s

loc(y), µ̂y )

is absolutely continuous, with Jacobian Rx,y depending continuously on (x, y).

Proof. For each i ∈ {1, . . . ,`}, the local product structure of µ̂ allows us to express
µ̂|[0;i ] as ψ · (µs |P s ([0;i ]) ×µu |P u ([0;i ])) for a positive continuous function ψ. We
have

∫
W s

loc(x)ψ(x̂)dµs(x̂) = 1 on every local stable set and thus µ̂x =ψ(x̂)µs and

Rx,y (x̂) = ψ(hx,y (x̂))

ψ(x̂)
define a disintegration of µ̂ and a Jacobian for hx,y as we

want.

REMARK 2.6. Observe that, with the above disintegration of µ̂ and the Jacobians
given in Lemma 2.4, we have that

µ̂ f n
u (y) | f̂ n (W s

loc(y))=
1

Jµu f n
u (y)

f̂ n
∗ µ̂y

for every y ∈Σu .

In order to state the main theorem we need to formulate a notion of conver-
gence of probability measures on Σ̂ which is stronger than weak-∗-convergence.
We say that a sequence of f̂ -invariant probability measures {µ̂k }k∈N with lo-
cal product structure converges to an f̂ -invariant measure µ̂ with local prod-
uct structure if µ̂k converges to µ̂ in the weak-∗ topology on probability mea-
sures on Σ̂ and the positive continuous functions ψk defining the local product
structure of µ̂k converge uniformly to the function ψ defining the local prod-
uct structure of µ̂. Uniform convergence of ψk to ψ together with the weak-*
convergence of µ̂k implies that the sequences of stable and unstable Jacobians
{Jµu

k
fu}k∈N and {Jµs

k
fs}k∈N converge uniformly to Jµu fu and Jµs fs , respectively.

For furthermore, the conditional measures µ̂k
x of µ̂k along Σu converge uni-

formly to the conditional measures of µ̂ along Σu ; that is, identifying all local
unstable sets W u

loc(x̂) for x̂ ∈ [0; i ] with a 0-cylinder in Σu , the functions x̂ 7→ µ̂k
x

converge uniformly to x̂ 7→ µ̂x .
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As a shorthand for this notion of convergence we will say that “µ̂k converges
to µ̂ as in Section 2.3”. A useful criterion for checking this notion of convergence
as well as the existence of local product structure is given in the next lemma.

LEMMA 2.7. Let µ̂ be an ergodic, fully supported probability measure on Σ̂. Sup-
pose that the projected measure µu = P u

∗ µ̂ admits a positive β-Hölder continuous
Jacobian Jµu fu in the β-Hölder norm with respect to fu . Then µ̂ has local product
structure given by a function ψ : Σ̂→ (0,∞) and moreover ψ depends continu-
ously on Jµu fu in the β-Hölder norm.

Proof. The assertion that µ̂ admits local product structure follows from [8, Lem-
mas 2.4, 2.6] since the Jacobian Jµu fu is assumed to be Hölder continuous. To
establish that ψ depends continuously on Jµu fu , we recall the formula for ψ
derived in the course of the proof.

Fix points zi ∈ P u([0; i ]) for 1 ≤ i ≤ `. The construction of the local product
structure in [8] gives the following formula for ψ: for x̂ ∈ [0; i ],

ψ(x̂) = lim
n→∞

Jµu fu(P u( f̂ n(hx,zi (x̂))))

Jµu fu(P u( f̂ n(x̂)))

if we identify µu with the measure µ̂zi from Lemma 2.5. A standard argument us-
ing distortion estimates shows that the limit on the right side exists and depends
continuously on the function Jµu fu in the β-Hölder topology, see [8, Lemma 2.4]
or the arguments at the beginning of the proof of Lemma 3.2.

As a consequence, if µ̂k → µ̂ is a sequence of measures converging in the
weak-* topology all of which are ergodic, fully supported, and have local prod-
uct structure, and moreover the Jacobians Jµu

k
fu are β-Hölder continuous and

converge in the β-Hölder norm to Jµu fu , then µ̂k converges to µ̂ as in Section
2.3.

2.4. Main theorem. For a continuous cocycle Â over f̂ and an f̂ -invariant prob-
ability measure µ̂ on Σ̂, it follows by the Kingman Sub-Additive Ergodic Theorem
([18]) that

λ+(Â, x̂) = lim
n→∞

1

n
log‖Ân(x̂)‖

and

λ−(Â, x̂) = lim
n→∞

1

n
log‖(Ân(x̂))−1‖−1

are well-defined at µ̂ almost every point x̂ ∈ Σ̂. These are the (extremal) Lya-
punov exponents of Â. These functions are f̂ -invariant and hence, if µ̂ is er-
godic with respect to f̂ , these functions are constant µ̂-a.e. In this case, we
define λ+(Â, µ̂) and λ−(Â, µ̂) to be the µ̂-a.e. constant values of the extremal
Lyapunov exponents.

The main theorem of the paper is a criterion for joint continuity of the Lya-
punov exponents λ+(Â, µ̂) and λ−(Â, µ̂) in the cocycle Â and the measure µ̂ in
the case when Â is 2-dimensional.
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THEOREM 2.8. Let {Ân}n∈N be a sequence of 2-dimensional linear cocycles over
f̂ converging uniformly with holonomies to a cocycle Â and {µ̂n}n∈N a sequence
of fully supported, ergodic, f̂ -invariant probability measures converging as in
Section 2.3 to an ergodic, f̂ -invariant measure µ̂ with local product structure
and full support. Then λ+(Ân , µ̂n) →λ+(Â, µ̂) and λ−(Ân , µ̂n) →λ−(Â, µ̂).

Theorem 2.8 provides an affirmative answer to [31, Conjecture 10.13]. The
proof of Theorem 2.8 begins in Section 4. We collect some corollaries of Theo-
rem 2.8 in Section 3 below.

3. COROLLARIES

In this section we demonstrate how to apply Theorem 2.8 to prove continuity
of the Lyapunov exponents for certain classes of 2-dimensional linear cocycles
over hyperbolic systems. We fix a θ ∈ (0,1) and for α> 0 we let Cα(Σ̂,GL(d ,R))
be the space of α-Hölder continuous linear cocycles over the shift with respect
to the metric dθ on Σ̂. Cα(Σ̂,GL(d ,R)) is a Banach space with the α-Hölder
norm

‖Â‖α = sup
x̂∈Σ̂

‖Â(x̂)‖+ sup
x̂ 6=ŷ∈Σ̂

‖Â(x̂)− Â(ŷ)‖
dθ(x̂, ŷ)α

.

DEFINITION 3.1. A linear cocycle Â : Σ̂ → GL(d ,R)) is α-fiber-bunched if Â ∈
Cα(Σ̂,GL(d ,R)) and there is an N > 0 such that

‖ÂN (x̂)‖ ·‖(ÂN (x̂))−1‖−1 ·θ−Nα < 1

for every x̂ ∈ Σ̂.

The set of α-fiber-bunched cocycles is open in Cα(Σ̂,GL(d ,R)).
For each Hölder continuous potential ϕ : Σ̂→ R we may associate a unique

equilibrium state µ̂ϕ which is an ergodic, fully supported probability measure
on Σ̂ with local product structure [11, 24]. The following lemma shows that
Hölder-convergence of potentials implies convergence of equilibrium states as
in Section 2.3.

LEMMA 3.2. If ϕk →ϕ in Cβ(Σ̂,R) for some β> 0 then µ̂ϕk converges to µ̂ϕ as in
Section 2.3.

Proof. We recall some well-known facts about equilibrium states which can be
found in [11]. We first note that it suffices to prove the claim when the functions
ϕk are constant on the local stable sets of f̂ . For x̂, ŷ ∈ [0; i ] for some 1 ≤ i ≤ `

we let hs
x̂,ŷ denote the stable holonomy from W u

loc(x̂) to W u
loc(ŷ) which assigns

to each ẑ ∈W u
loc(x̂) the unique point hs

x̂,ŷ (ẑ) ∈W s
loc(ẑ)∩W u

loc(ŷ). Now fix ` points
ẑ1, . . . , ẑ` such that ẑi ∈ [0; i ]. We then define for x̂ ∈ [0; i ],

ψu
k (x̂) =

∞∑

j=0
ϕk ( f̂ j (x̂))−ϕk ( f̂ j (hs

x̂,ẑi
))

and define ϕu
k (x̂) =ϕk (hs

x̂,ẑi
(x̂)). These functions then satisfy the equation

ϕu
k =ϕk +ψu

k ◦ f̂ −ψu
k
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which implies that ϕu
k is cohomologous to ϕk . Furthermore ϕu

k is constant on
local stable sets and thus descends to a continuous function on Σu for each k.
Since cohomologous potentials define the same equilibrium state we get that
µ̂ϕu

k
= µ̂ϕk for all k. Each function ψu

k is β-Hölder continuous and thus so is ϕu
k ,

and as k →∞ convergence of ϕk to ϕ in Cβ(Σ̂,R) implies convergence of ψu
k to

the corresponding function ψk for ϕ in Cβ(Σ̂,R), and thus ϕu
k converges to ϕu

in Cβ(Σ̂,R).
Thus we may assume that ϕk and ϕ are constant on local stable sets of f̂ ,

and hence they descend to Hölder continuous functions on Σu . Recall that the
transfer operator Tϕ : C 0(Σu ,C) →C 0(Σu ,C) associated to ϕ on Σu is defined on
continuous functions g : Σu →C by

Tϕg (x) =
∑

y∈ f −1
u (x)

eϕ(y)g (y).

By the Ruelle-Perron-Frobenius theorem, Tϕ acts with a spectral gap on the
Banach space Cβ(Σu ,C)[11]. Let νu

ϕ be the dominant eigenvector for the adjoint

action of Tϕ on probability measures and ζu
ϕ ∈ Cβ(Σu ,C) the strictly positive

dominant eigenvector for Tϕ which satisfies
∫
Σu ζu

ϕdνϕ = 1 and has eigenvalue

eP , where P is the topological pressure of ϕ. Then µu
ϕ is given by µu

ϕ = ζu
ϕν

u
ϕ and

the Jacobian of fu with respect to µu
ϕ is eP−ϕ ζϕ

ζϕ◦ fu
.

Since Tϕ depends continuously on ϕ ∈Cβ(Σ̂,R), we conclude from the spec-
tral gap property that the dominant eigenvector ζu

ϕ and its eigenvalue eP depend
continuously on ϕ in the β-Hölder norm and similarly the dominant eigenvec-
tor νu

ϕ for the adjoint depends continuously on ϕ in the weak-∗ topology on

probability measures on Σ̂. Consequently convergence of ϕk to ϕ implies weak-
* convergence of µu

ϕk
to µu

ϕ and convergence in the β-Hölder norm of Jµu
ϕk

fu to
Jµu

ϕ
fu . By Lemma 2.7 and the subsequent remark, we conclude that µ̂ϕk con-

verges to µ̂ as in Section 2.3.

COROLLARY 3.3. For each α,β> 0, the Lyapunov exponents

λ± : Cα(Σ̂,GL(2,R))×Cβ(Σ̂,R) →R

(Â,ϕ) →λ±(Â, µ̂ϕ)

are continuous when restricted to Â ∈Cα(Σ̂,GL(2,R)) which are α-fiber-bunched.

Proof. For fiber-bunched cocycles stable and unstable holonomies exist and
moreover they vary continuously with respect to the cocycle in the α-Hölder
topology (see [7] and [30]). Lemma 3.2 implies that if ϕk converges to ϕ in
Cβ(Σ̂,R) then the corresponding equilibrium states µ̂ϕk converge to µ̂ϕ as in
Section 2.3. These two statements together then imply the corollary by Theorem
2.8.

Continuous dependence of holonomies in the space of α-fiber-bunched co-
cycles may actually be shown under slightly weaker hypotheses than conver-
gence in the Hölder topology. It suffices to assume that the linear cocycle A is
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α-fiber-bunched, Ak converges to A in the C 0 topology, and each Ak and A are
α-Hölder continuous with uniformly bounded Hölder constant. We refer the
interested reader again to [7] and [30] for further details.

For our second application we give an example of how to use Markov par-
titions to prove continuity of the Lyapunov exponents for cocycles over other
hyperbolic systems besides subshifts of finite type. Let M be a closed Riemann-
ian manifold. Let f : M → M be an Anosov diffeomorphism, meaning that there
is a D f -invariant splitting T M = E s ⊕E u and constants C > 0, 0 < ν < 1 such
that

‖D f n |E s‖ ≤Cνn , ‖D f −n |E u‖ ≤Cνn , n ≥ 1.

For 0 < α ≤ 1 we say that f is a C 1+α diffeomorphism of M if D f is α-Hölder
continuous. We write Diff1+α(M) for the space of C 1+α diffeomorphisms of
M , equipped with the topology of uniform convergence for f together with α-
Hölder convergence for the derivative D f . For a C 1+α Anosov diffeomorphism
f , the stable and unstable bundles E s and E u are each β-Hölder continuous
for some β> 0. In analogy to Definition 3.1 we say that the derivative cocycle
D f |E u is fiber-bunched if there is an N > 0 such that

‖D f N
x |E u

x ‖ ·‖(D f N
x |E u

x )−1‖ ·max
{‖D f N

x |E s
x‖β,‖(D f N

x |E u
x )−1‖β}< 1.

As in the case of a subshift of finite type, for each Hölder continuous potential
ϕ : M → R we have an equilibrium state µϕ which is a fully supported ergodic
invariant probability measure for f . The two most important equilibrium states
for f are the measure of maximal entropy (given by the potential ϕ≡ 0) and the
SRB measure characterized by having absolutely continuous conditional mea-
sures on the unstable leaves of f (given by ϕ(x) = − log(|det(D fx |E u

x )|)) which
coincides with volume if f is volume-preserving. To emphasize the dependence
of E u on f we will write E u, f for the unstable bundle associated to f .

COROLLARY 3.4. Let f : M → M be a transitive C 1+α Anosov diffeomorphism for
some α > 0 and ϕ : M → R a Hölder continuous potential. If dimE u = 2 and
D f |E u is fiber-bunched then f is a continuity point for the Lyapunov exponents
λ±(D f |E u, f ,µϕ) as a function of f ∈ Diff1+α(M) and ϕ ∈Cβ(M ,R).

Proof. Let fk be a sequence of C 1+α-diffeomorphisms converging in Diff1+α(M)
to f . For large enough k, fk is also an Anosov diffeomorphism, and moreover
by structural stability there is a unique Hölder continuous homeomorphism
gk : M → M close to the identity such that gk◦ fk = f ◦gk . Let Gk : E u, fk → E u, f be
a homeomorphism covering the homeomorphism gk : M → M which is linear

on the fibers Gk (x) : E u, fk
x → E u, f

gk (x) and such that Gk converges uniformly to the

identity map on E u, f as k →∞. For k sufficiently large we may take Gk (x) to be

the orthogonal projection of the plane E u, fk
x onto E u, f

gk (x).

Since D f |E u, f is fiber-bunched and fiber bunching of D f |E u is an open con-
dition in Diff1+α(M) we conclude that the cocycles D fk |E u, fk all admit stable
and unstable holonomies H s,k and H u,k along the stable and unstable mani-
folds of fk and moreover that these stable and unstable holonomies converge
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locally uniformly to the stable and unstable holonomies H s and H u of D f |E u

as the local stable and unstable manifolds of fk converge uniformly to those of
f (see [7] and [30]). We then define for each k a new cocycle Ak on the vector
bundle E u, f by

Ak (x) =Gk ( fk (g−1
k (x)))◦D fk (g−1

k (x))|E u, fk ◦G−1
k (g−1

k (x))

which admits stable and unstable holonomies

H̃∗,k
x y =Gk (g−1

k (y))◦H∗,k
g−1

k (x)g−1
k (y)

◦G−1
k (g−1

k (x))

for y ∈ W ∗
f (x), ∗ = s,u and W ∗

f being the stable and unstable manifolds of

f . Since Gk converges uniformly to the identity on E u, f we conclude that
Ak converges to D f |E u, f uniformly and further that the stable and unstable
holonomies of Ak converge uniformly to those of D f |E u, f .

The diffeomorphism f admits a Markov partition and thus there is a subshift
of finite type f̂ : Σ̂→ Σ̂ and a topological semiconjugacy h : Σ̂→ M such that
h ◦ f̂ = f ◦h [11]. By refining the Markov partition if necessary, we can assume
that the image of each cylinder [0; j ] of Σ̂ under h in M is contained inside of an
open set on which the bundle E u, f is trivializable. For x̂ ∈ [0; j ] let L j (x̂) : R2 →
E u, f

h(x̂) be the linear map associated to a fixed trivialization of E u, f over h([0; j ]).

We can then extend h to a continuous surjection L : Σ̂×R2 → E u, f ,

L(x̂, v) = [L j (x̂)](v)

which is a linear isomorphism on each of the fibers. We then define new linear
cocycles Âk : Σ̂→GL(2,R) by

Âk (x̂) = L−1( f̂ (x̂))◦ Ak (h(x̂))◦L(x̂)

which admit stable and unstable holonomies

Ĥ∗,k
x̂ ŷ = L−1(ŷ)◦ H̃∗,k

h(x̂)h(ŷ) ◦L(x̂)

for y ∈ W ∗
loc(x), ∗ = s,u. It is again clear that Âk converges to Â uniformly and

that the new stable and unstable holonomies Ĥ∗,k for Âk converge uniformly
to those for Â.

Let νk = (gk )∗µϕk . νk is the equilibrium state for f associated to the potential
ϕk ◦ gk and thus is a fully supported ergodic f -invariant measure with local
product structure on M . Let

Ω= {x ∈ M : #h−1(x) > 1}.

Ω is a null set for any equilibrium state associated to a Hölder continuous po-
tential [11]. Hence we can lift νk to an f̂ -invariant measure ν̂k on Σ̂ such that
h∗ν̂k = νk . Furthermore ν̂k is the equilibrium state associated to the potential
ψk =ϕk ◦ gk ◦h on Σ̂. As k →∞, ψk converges in a Hölder norm to ψ=ϕ◦h. It
follows from Lemma 3.2 that ν̂k converges to ν̂ as in Section 2.3.

Hence by the criterion of the Theorem 2.8 we get that λ+(Âk , ν̂k ) → λ+(Â, ν̂)
and the same statement for λ−. By construction the map h : (Σ̂, ν̂k ) → (M ,νk ) is
a measurable isomorphism, and the same holds with ν̂k and νk replaced by ν̂
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and ν. Then by construction the map L : Σ̂×R2 → E u, f gives a measurable con-
jugacy between the cocycles Âk and Ak . It follows that λ+(Âk , ν̂k ) = λ+(Ak ,νk )
and λ+(Â, ν̂) = λ+(A,ν) = λ+(D f |E u, f ,µϕ). The map gk : (M ,ϕk ) → (M ,νk ) is
also a measurable isomorphism by construction and Gk gives a measurable
conjugacy from D fk |E u, fk to Ak over this isomorphism. Hence we conclude
that λ+(Ak ,νk ) =λ+(D fk |E u, fk ,µϕk ) for each k, which completes the proof.

By replacing f with f −1 we obtain the same corollary for D f |E s instead, pro-
vided that dimE s = 2.

REMARK 3.5. The conclusions of Corollary 3.4 can be extended to 2-dimensional
cocycles over maps f : X → X which are hyperbolic homeomorphisms (see [1])
with X a compact metric space. This includes the derivative cocycle of a diffeo-
morphism f : M → M over a hyperbolic set Λ for f . Corollary 3.4 can also be
extended to the case of Anosov flows with 2-dimensional unstable bundle by
using the fact that an Anosov flow is topologically semiconjugate via a Markov
partition to a suspension flow over a subshift of finite type and then inducing
on a transverse section to reduce to the case of a subshift of finite type.

4. PRELIMINARY RESULTS

The rest of the paper is devoted to the proof of Theorem 2.8. From now on
µ̂ will denote an ergodic f̂ -invariant measure with local product structure and
full support on Σ̂. In this section we prove some preliminary results.

4.1. Projective cocycles. Let P1 be the 1-dimensional real projective space of
lines in R2. Given a one-dimensional subspace U ⊂R2 we consider both U ⊂R2

and U ∈P1. Given a non-zero vector v ∈R2 we abuse notation and consider v ∈
P1 by identifying v with its linear span. Given T ∈GL(2,R) we write PT : P1 →P1

for the induced projective map.
Consider a cocycle Â : Σ̂→ GL(2,R). The projective cocycle associated to Â

and f̂ is the map F̂ Â : Σ̂×P1 → Σ̂×P1 given by

F̂ Â(x̂, v) = ( f̂ (x̂),PÂ(x̂)v).

4.2. s- and u-states. Let m̂ be a probability measure on Σ̂×P1 projecting to µ̂;
that is, π̂∗m̂ = µ̂ where π̂ : Σ̂×P1 → Σ̂ is the canonical projection. A disintegra-
tion of m̂ along the fibers is a measurable family {m̂x̂ : x̂ ∈ Σ̂} of probabilities on
P1 satisfying

m̂(D) =
∫

Σ̂
m̂x̂ ({v : (x̂, v) ∈ D}) d µ̂(x̂)

for any measurable set D ⊂ Σ̂×P1. Observe that m̂ is F̂ Â-invariant if and only if
PÂ(x̂)∗m̂x̂ = m̂ f̂ (x̂) for µ̂-almost every x̂ ∈ Σ̂.

Following [1] we say that a disintegration {m̂x̂ : x̂ ∈ Σ̂} of an F̂ Â-invariant prob-
ability measure m̂ projecting to µ̂ is essentially s-invariant with respect to a
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stable holonomy H s,Â for Â if there is a full measure subset E of Σ̂ such that
x̂, ŷ ∈ E and ŷ ∈W s

loc(x̂) implies that

(H s,Â
x̂ ŷ )∗m̂x̂ = m̂ ŷ

We define the notion of an essentially u-invariant disintegration similarly. An
F̂ Â-invariant probability measure m̂ projecting to µ̂ is called an s-state with

respect to a stable holonomy H s,Â if it admits some disintegration which is
essentially s-invariant. We will always assume that the subset E is s-saturated,
meaning that if x̂ ∈ E then W s

loc(x̂) ⊂ E . This can always be done by modifying
the disintegration of m̂ on a µ̂-null set. We define u-states similarly.

An F̂ Â-invariant probability measure m̂ is an su-state if it is simultaneously
an s-state and a u-state. The main property of su-states is the following.

PROPOSITION 4.1. Assume that µ̂ is fully supported and has local product struc-
ture. If m̂ is an su-state then it admits a disintegration for which the condi-
tional probabilities m̂x̂ depend continuously on x̂ and are both s-invariant and
u-invariant.

For a proof of this proposition see [1, Proposition 4.8].
Given a cocycle with holonomies, there is always at least one s- and one

u-state. On the other hand, su-states impose some rigidity on the system as
exhibited by Proposition 4.1 and as such need not always exist. However, here
is one situation in which su-states are guaranteed to exist. As stated here, this
follows from the main result in [19] and has been extended to more general
settings in [1].

THEOREM 4.2 (Invariance Principle). Let Â : Σ̂→ SL(2,R) be a cocycle admitting
stable and unstable holonomies and assume that µ̂ is an ergodic f̂ -invariant
probability measure with local product structure. If λ+(Â, µ̂) =λ−(Â, µ̂) = 0 then
any F̂ Â-invariant probability measure projecting to µ̂ is an su-state.

In the sequel, we will be interested in sequences of s- and u-states projecting
to different base measures and invariant under different projective cocycles and
corresponding holonomies. The next lemma gives a criterion for an accumula-
tion point of such a sequence to be an s- or u-state for the limiting cocycle.

LEMMA 4.3. Let Âk : Σ̂→GL(2,R) be a sequence of linear cocycles with holonomies
and suppose that Âk converges to Â uniformly with holonomies. For each k let

m̂k be an s-state for Âk with respect to the stable holonomies H s,Âk of Âk and
projecting to a fully supported f̂ -invariant probability measure µ̂k with local
product structure. Suppose that the sequence µ̂k converges to µ̂ as in Section 2.3
and that m̂k → m̂ in the weak-∗ topology. Then m̂ is an s-state with respect

to the stable holonomies H s,Â for Â which projects to µ̂. The same holds with
unstable holonomies and u-states replacing stable holonomies and s-states.

Proof. We will prove the statement for s-states. The statement for u-states then
follows by considering the inverse cocycle Â−1 over f̂ −1.
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We begin by defining continuous changes of coordinates which make each
Âk and Â constant on local stable manifolds. For each k let {m̂k

x̂ }x̂∈Σ̂ be a disinte-
gration of m̂k along the P1 fibers. Each of these conditional measures is defined
on a µ̂k -full measure set Ek ⊂ Σ̂ which we may assume to be s-saturated, since
these measures are s-states, and we may assume these conditional measures
are invariant under stable holonomy on Ek . We may also assume that the sets
Ek are f̂ -invariant.

Fix ` points ẑ1, . . . , ẑ` with ẑi ∈ [0; i ]. For x̂ ∈ [0; i ], let g (x̂) be the unique point
in the intersection W u

loc(ẑi )∩W s
loc(x̂). Note that g (x̂) = g (ŷ) if ŷ ∈W s

loc(x̂). Define

Ãk (x̂) = Âk (g (x̂))

for each k, and similarly define Ã(x̂) = Â(g (̂x)). By construction each Ãk is
constant along local stable sets and furthermore and Ãk → Ã uniformly.

Consider the map Ψk : Σ̂→GL(2,R) given by

Ψk : x̂ 7→ H s,Âk

x̂g (x̂).

We have that

Ãk (x)◦Ψk (x) =Ψk ( f (x))◦ Âk (x).

In particularly, Ãk and Âk are continuously cohomologous via Ψk . Since the

stable holonomies H s,Âk converge uniformly to H s,Â , we also have Ψk converges

uniformly to Ψ0 : x̂ 7→ H s,Â
x̂g (x̂). In particular, up to the continuous change of

coordinates Ψk and Ψ0, we may assume that Âk and Â are constant on local
stable sets.

Define ν̂k
x̂ = (H s,Âk

x̂g (x̂))∗m̂k
x̂ and let ν̂k be the probability measure on Σ̂×P1

projecting to µ̂k with this disintegration along the P1 fibers. ν̂k is F̂ Ãk
-invariant

and since the linear maps H s,Âk

x̂g (x̂) depend continuously on x̂, we conclude that

ν̂k converges in the weak-∗ topology to a measure ν̂ with disintegration ν̂x̂ =
(H s,Â

x̂g (x̂))∗m̂x̂ . To prove that m̂ is an s-state it thus suffices to show that for µ̂-a.e.

pair of points x̂ and ŷ with ŷ ∈ W s
loc(x̂) we have ν̂x̂ = ν̂ŷ , because if ŷ ∈ W s

loc(x̂)
for some x̂ in the intersection of this full measure subset with E , we then have

(H s,Â
x̂g (x̂))∗m̂x̂ = ν̂x̂ = ν̂ŷ = (H s,Â

ŷ g (ŷ))∗m̂ ŷ

and therefore

m̂ ŷ =
(
H s,Â

g (ŷ)ŷ ◦H s,Â
x̂g (x̂)

)
∗

m̂x̂ =
(
H s,Â

g (x̂)ŷ ◦H s,Â
x̂g (x̂)

)
∗

m̂x̂ =
(
H s,Â

x̂ ŷ

)
∗

m̂x̂

where we used g (x̂) = g (ŷ) in the second line. Since the measures ν̂k are s-states
we have ν̂k

ŷ = m̂k
g (x̂) for every ŷ ∈W s

loc(x̂), so the disintegrations of the measures
ν̂k are constant on µ̂k -a.e. local stable sets.

Since Ãk : Σ̂→ GL(2,R) is constant along local stable sets, there are contin-
uous maps Ak : Σu → GL(2,R) such that Ak ◦P u = Ãk and such that Ak → A
uniformly, where A is defined by A ◦P u = Ã. Let νk , ν be the images of the

JOURNAL OF MODERN DYNAMICS VOLUME 12, 2018, 223–260



CONTINUITY OF LYAPUNOV EXPONENTS 237

measures ν̂k , ν̂ under the projection P u × I d : Σ̂×P1 →Σu ×P1. The disintegra-
tion {ν̂k

x̂ }x̂∈Σ̂ descends under this projection to a disintegration {νk
x }x∈Σu with the

property that for µu
k -a.e. x,

Ak (x)∗νk
x = νk

fu (x).

We first show that A(x)∗νx = ν fu (x) for µu-a.e. x ∈Σu . Let η be the probability
measure on Σu ×P1 with disintegration {A−1(x)∗ν fu (x)}x∈Σu . It suffices for this
claim to prove that η = ν, since the disintegration of ν along the P1 fibers is
unique up to µu-null sets. Let ϕ : Σu ×P1 → R be a continuous function and
define

Φ(x) =
∫

P1
ϕ(x, A−1(x)v)dν fu (x)(v).

Since µu is fu-invariant and admits a positive Jacobian Jµu fu with respect to fu ,

∫

Σu
Φ(x)dµu(x) =

∫

Σu

(
∑

y∈ f −1
u (x)

1

Jµu fu(y)
Φ(y)

)
dµu(x)

=
∫

Σu

∫

P1

∑

y∈ f −1
u (x)

1

Jµu fu(y)
ϕ(y, A−1(y)v)dνx (v)dµu(x)

=
∫

Σu×P1

∑

y∈ f −1
u (x)

1

Jµu fu(y)
ϕ(y, A−1(y)v)dν(x, v).

On the other hand,
∫

Σu
Φ(x)dµu(x) =

∫

Σu

∫

P1
ϕ(x, A−1(x)v)dν fu (x)(v)dµu(x)

=
∫

Σu×P1
ϕ(x, v)dη(x, v).

Hence it suffices to show that for every continuous map ϕ : Σu ×P1 →R we have
∫
ϕdν=

∫ ∑

y∈ f −1
u (x)

1

Jµu fu(y)
ϕ(y, A−1(y)v)dν(x, v).

But for each k we know that for µu
k -a.e. x ∈Σu we have A−1

k (x)∗νk
fu (x) = νk

x . The

same calculation as above shows that the above equality holds with appropriate
modifications for νk , i.e.,

∫
ϕdνk =

∫ ∑

y∈ f −1
u (x)

1

Jµu
k

fu(y)
ϕ(y, A−1

k (y)v)dνk (x, v).

By assumption, νk converges to ν in the weak-∗ topology, A−1
k → A−1 uniformly,

and Jµu
k

fu → Jµu fu uniformly. It follows that this equality holds in the limit
k →∞, and hence that A(x)∗νx = ν fu (x) for µu-a.e. x.

The disintegration of the measure ν̂ along the P1 fibers of Σ̂×P1 can be recov-
ered from the disintegration of ν along the P1 fibers of Σu ×P1 by the formula

ν̂x̂ = lim
n→∞ An(P u( f̂ −n(x̂)))∗νP u ( f̂ −n (x̂))
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(see Lemma 3.4 of [1]) for µ̂-a.e. x̂. But we have just shown that

An(P u( f̂ −n(x̂)))∗νP u ( f̂ −n (x̂)) = νP u (x̂)

for every n. Hence we conclude that

ν̂x̂ = νP u (x̂)

and thus ν̂x̂ = ν̂ŷ for ŷ ∈W s
loc(x̂).

4.3. Continuity of conditional measures. From now on we will write Σ, f , P
and µ for Σu , fu , P u , and µu , respectively. Moreover, from the proof of Lemma
4.3 it follows that an arbitrary sequence of cocycles {Âk }k∈N converging uni-
formly with holonomies to a cocycle Â may be straightened out using the sta-
ble holonomies so that each Âk and Â are constant on local stable sets and
the property of uniform convergence is preserved. Moreover, the straightened
out cocycles still admit u-holonomies and the u-holonomies also converge uni-
formly.

Consider such a cocycle Â that has been straightened out along stable holono-
mies. We write A : Σ→GL(2,R) for the continuous map defined by Â = A ◦P . In
particular, A(x) = Â(x̂) for every x̂ ∈W s

loc(x).

4.3.1. Measures induced from a u-state. In the sequel, we will be primarily in-
terested in families of measure on Σ×P1 induced from measures on Σ̂×P1 with
certain dynamical properties. The measures on Σ×P1 will in turn have certain
geometric properties that we describe here.

DEFINITION 4.4. A probability measure m on Σ×P1 is said to be induced from
a u-state if there exists

• a cocycle Â : Σ̂→ GL(2,R) that is constant along local stable sets and ad-

mits a continuous family of unstable holonomies H u,Â ,
• a fully supported measure µ̂ on Σ̂ with local product structure,
• and an F̂ Â-invariant measure m̂ on Σ̂×P1 projecting to µ̂ such that m̂ is a

u-state for the holonomies H u,Â with m = (P × I d)∗m̂.

Note that such an m is necessarily FA-invariant, where A is such that Â = A◦P
as above.

4.3.2. Continuity of the disintegration of measures induced from u-states. They
key geometric fact we exploit in the remainder of the paper is that every mea-
sure m induced from a u-state admits a disintegration into a continuous family
of conditional measures {mx : x ∈ Σ}. The continuity properties of the condi-
tional measures of m were first established in [8]; in this section we establish
additional equicontinuity properties of the conditional measures over families
of linear cocycles for which unstable holonomies exist and vary continuously.

We retain all notation from Definition 4.4. Observe that if m = (P × I d)∗m̂
and {m̂x̂ : x̂ ∈ Σ̂} is a disintegration of m̂ along the fibers {π̂−1(x̂); x̂ ∈ Σ̂}, then for
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x ∈Σ
mx =

∫

W s
loc(x)

m̂x̂ d µ̂x (x̂)(2)

is a disintegration of m relative to {π−1(x); x ∈ Σ}, where π : Σ×P1 → Σ is the
canonical projection.

PROPOSITION 4.5. Any probability measure m induced from a u-state admits a
disintegration into conditional measures {mx }x∈Σ that are defined for every x ∈Σ
and vary continuously with x in the weak-∗ topology.

Proof. Let m̂ be a u-state such that (P× I d)∗m̂ = m and {µ̂x }x∈Σ a disintegration
of µ̂ as in Lemma 2.5. Take a disintegration (m̂x̂ )x̂∈Σ̂ of m̂ such that for µ̂-a.e.
x̂ ∈ Σ̂,

(H u,Â
x̂ ŷ )∗m̂x̂ = m̂ ŷ for every ŷ ∈W u

loc(x̂)

and let {mx }x∈Σ be the disintegration of m as in (2).
Let g : P1 →R be continuous and consider x, y ∈Σ in the same cylinder [0; i ].

Then, changing variables ŷ = hx,y (x̂) we get that
∫

P1
g dmy =

∫

W s
loc(y)

∫

P1
g dm̂ ŷ d µ̂y (ŷ)

=
∫

W s
loc(x)

(∫

P1
g ◦H u,Â

x̂ ŷ dm̂x̂

)
Rx,y (x̂)d µ̂x (x̂)

since m̂ is a u-state. Thus,∣∣∣∣
∫

g dmy −
∫

g dmx

∣∣∣∣≤
∫

W s
loc(x)

∫

P1

∣∣∣Rx,y (x̂) · g ◦H u,Â
x̂ ŷ − g

∣∣∣dm̂x̂ d µ̂x (x̂).

From the continuity properties of unstable holonomies (see Definition 2.1)

we have that ‖H u,Â
x̂ ŷ − I d‖ is uniformly close to zero whenever x and y are close.

Moreover, Lemma 2.5 implies that ‖Rx,y −1‖L∞ is also close to zero whenever
x and y are close. Therefore, given ε> 0 there exist γ> 0 such that d(x, y) < γ

implies ‖Rx,y (x̂)·g ◦H u,Â
x̂ ŷ −g‖L∞ < ε and thus | ∫ g dmy −

∫
g dmx |< ε as we want.

REMARK 4.6. A probability measure m in Σ×P1 is FA-invariant if and only if
∑

y∈ f −1(x)

1

Jµ f (y)
A(y)∗my = mx(3)

for µ almost every x ∈ Σ and any disintegration {mx }x∈Σ. When m is induced
from a u-state and {mx }x∈Σ is the the continuous family of conditional measures
above then (3) holds for every x ∈Σ.

We recall the setting of Lemma 4.3. Let µ̂k be a family of fully supported
measures on Σ̂ with product structure. Assume µ̂k converges as in Section 2.3
to a fully supported measure µ̂ with product structure. In particular, the family
of Jacobians Rk

x,y associated to the disintegration of µ̂k given by Lemma 2.5
converge uniformly to the Jacobians Rx,y of µ̂.
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For each k let Âk be a cocycle that is constant along stable sets, and suppose
Âk → Â uniformly. Moreover assume Âk and Â admit (unstable) holonomies

and that H u,Âk converges to H u,Â as in Section 2.2. For each k, let mk be a mea-

sure on Σ×P1 induced by a u-state m̂k for the holonomies H u,Âk and projecting
to µk . Assume that m̂k converges in the weak-∗ topology to m̂. From Lemma

4.3 we have that m̂ is a u-state for the holonomies H u,Â and projects to µ̂. Let
m = (P × I d)∗m̂ be the measure induced by the u-state m̂.

Observing that all the convergences above are uniform and following the
same lines as in the proof of the previous proposition we get

PROPOSITION 4.7. The measures mk and m admit disintegrations into condi-
tional measures {mk

x }x∈Σ and {mx }x∈Σ, respectively, which are defined for every
x ∈Σ and such that the family {{mk

x }x∈Σ, {mx }x∈Σ}k is equicontinuous. More pre-
cisely, for every continuous function g : P1 → R and ε> 0 there exists δ> 0 such
that dθ(x, y) < δ implies

∣∣∣∣
∫

g dmx −
∫

g dmy

∣∣∣∣< ε and

∣∣∣∣
∫

g dmk
x −

∫
g dmk

y

∣∣∣∣< ε

for every k ∈N.

Let {mk
x }x∈Σ and {mx }x∈Σ be the continuous family of conditional measures

constructed above.

LEMMA 4.8. For any x ∈Σ, mk
x → mx . Moreover, the convergence is uniform in x.

Proof. Let g : P1 → R be continuous and ε> 0. By Proposition 4.7, there exists
δ> 0 such that, if dθ(x, y) ≤ δ then

∣∣∣∣
∫

P1
g dmx −

∫

P1
g dmy

∣∣∣∣<
ε

10
and

∣∣∣∣
∫

P1
g dmk

x −
∫

P1
g dmk

y

∣∣∣∣<
ε

10
(4)

for every k ∈N. Cover Σ with finitely many clopen sets Vi with diam(Vi ) < δ. As
mk converges to m there exists k0 ∈N such that

∣∣∣∣
∫

Vi

(∫

P1
g dmk

x

)
dµk (x)−

∫

Vi

(∫

P1
g dmx

)
dµ(x)

∣∣∣∣<
εµ(Vi )

10
(5)

and, with M = max{1,max |g |},

∣∣∣∣1−
µk (Vi )

µ(Vi )

∣∣∣∣≤
ε

10M

for every k ≥ k0 and each Vi .
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Given x ∈Σ take Vi with x ∈Vi . Then
∣∣∣∣
∫

P1
g dmk

x −
∫

P1
g dmx

∣∣∣∣=
1

µ(Vi )

∣∣∣∣
∫

Vi

(∫

P1
g dmk

x

)
dµ(y)−

∫

Vi

(∫

P1
g dmx

)
dµ(y)

∣∣∣∣

≤ 1

µ(Vi )

∣∣∣∣
∫

Vi

∫

P1
g dmk

x dµ(y)−
∫

Vi

∫

P1
g dmk

x dµk (y)

∣∣∣∣

+ 1

µ(Vi )

∣∣∣∣
∫

Vi

∫

P1
g dmk

x dµk (y)−
∫

Vi

∫

P1
g dmk

y dµk (y)

∣∣∣∣

+ 1

µ(Vi )

∣∣∣∣
∫

Vi

∫

P1
g dmk

y dµk (y)−
∫

Vi

∫

P1
g dmy dµ(y)

∣∣∣∣

+ 1

µ(Vi )

∣∣∣∣
∫

Vi

∫

P1
g dmy dµ(y)−

∫

Vi

∫

P1
g dmx dµ(y)

∣∣∣∣

≤M

∣∣∣∣1−
µk (Vi )

µ(Vi )

∣∣∣∣

+ 1

µ(Vi )

(∫

Vi

∣∣∣∣
∫

P1
g dmk

x −
∫

P1
g dmk

y

∣∣∣∣dµk (y)

)

+ 1

µ(Vi )

∣∣∣∣
∫

Vi

∫

P1
g dmk

y dµk (y)−
∫

Vi

∫

P1
g dmy dµ(y)

∣∣∣∣

+ 1

µ(Vi )

(∫

Vi

∣∣∣∣
∫

P1
g dmy −

∫

P1
g dmx

∣∣∣∣dµ(y)

)

≤ ε

10
+

(
1+ ε

10M

) ε

10
+ ε

10
+ ε

10

≤ 5ε

10
.

5. REDUCTIONS IN THE PROOF OF THEOREM 2.8

We begin the proof of Theorem 2.8. We start by observing that it suffices
to prove continuity for cocycles taking values in the group of matrices with
determinant ±1. We write SL±(2,R) for this group. By continuity of Â and com-
pactness of Σ̂, the function s(x̂) = sgn(det(A(x))) is continuous on Σ̂. Given

Â : Σ̂→ GL(2,R) consider g Â : Σ̂→ R defined by g Â(x̂) = s(x̂)(|det Â(x̂)|) 1
2 and

B̂ : Σ̂→ SL±(2,R) such that Â(x̂) = g Â(x̂)B̂(x̂). Thus, since

λ±(Â, µ̂) =λ±(B̂ , µ̂)+
∫

log |g Â(x̂)| d µ̂(x̂),

and g Âk
→ g Â uniformly, we get that λ±(Âk , µ̂k ) →λ±(Â, µ̂) if and only if

λ±(B̂k , µ̂k ) →λ±(B̂ , µ̂),

where B̂k is defined analogously to B̂ for Âk . Moreover,

λ+(Â, µ̂) =λ−(Â, µ̂) ⇐⇒λ+(B̂ , µ̂) = 0 =λ−(B̂ , µ̂).

From now on, we will assume that our cocycles always take values in SL±(2,R).
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The proof of Theorem 2.8 is by contradiction. Suppose (Â, µ̂, H s,Â , H u,Â) and

(Âk , µ̂k , H s,Âk , H u,Âk ) are as in Theorem 2.8. Moreover, suppose for the purposes
of contradiction that

λ+(Âk , µ̂k ) 6→λ+(Â, µ̂).(6)

We then also have λ−(Âk , µ̂k ) 6→λ−(Â, µ̂).

5.1. Characterization of discontinuity points. From [31, Lemma 9.1] we have
that the functions (B̂ , ν̂) 7→λ+(B̂ , ν̂) and (B̂ , ν̂) 7→λ−(B̂ , ν̂) are, respectively, upper-
and lower-semicontinuous with respect to the topology of uniform convergence
on continuous cocycles B̂ and weak-∗ convergence in ν̂. Thus, assuming (6) we
may assume λ−(Â, µ̂) < 0 <λ+(Â, µ̂).

Let R2 = E s,Â
x̂ ⊕E u,Â

x̂ be the Oseledets decomposition associated to Â at the

point x̂ ∈ Σ̂. Consider the measures on Σ̂×P1 defined by

m̂s =
∫

Σ̂
δ

(x̂,E s,Â
x̂ )

d µ̂(x̂) and m̂u =
∫

Σ̂
δ

(x̂,E u,Â
x̂ )

d µ̂(x̂).

By construction, m̂s and m̂u are F̂ Â-invariant probability measures with pro-
jections µ̂. Moreover, m̂s is an s-state (with disintegration {δ

E s,Â
x̂

}x̂∈Σ̂) and m̂u is

a u-state. By the Birkhoff ergodic theorem

λ−(Â, µ̂) =
∫

Σ̂×P1
ΦÂ(x̂, v) dm̂s(x̂, v)

and

λ+(Â, µ̂) =
∫

Σ̂×P1
ΦÂ(x̂, v) dm̂u(x̂, v)

where

ΦÂ(x̂, v) = log

(‖Â(x̂)(v)‖
‖v‖

)
.

By the (non-uniform) hyperbolicity of (Â, µ̂) we have the following.

CLAIM 5.1. Let m̂ be a probability measure on Σ̂×P1 projecting to µ̂. Then, m̂
is F̂ Â-invariant if and only if it is a convex combination of m̂s and m̂u : m̂ =
αm̂s +βm̂u where α and β are constant.

Indeed, one only has to note that every compact subset of P1 disjoint from
{E u ,E s} accumulates on E u in the future and on E s in the past. That α and β

are constant (independent of x̂ ∈ Σ̂) follows from ergodicity.
We now prove the key characterization of discontinuity points for extremal

Lyapunov exponents. The proof is well known but is included here for complete-
ness.

PROPOSITION 5.2. If (Â, µ̂) is as in (6), then every F̂ Â-invariant probability mea-
sure m̂ on Σ̂×P1 projecting to µ̂ is an su-state for F̂ Â .
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Proof. By Claim 5.1, it suffices to show the measures m̂s and m̂u are su-states.
By the upper semi-continuity of λ+(·, ·), passing to a subsequence we may

assume limk→∞λ+(Âk , µ̂k ) < λ+(Â, µ̂). For each k, there exists an ergodic, F̂ Âk
-

invariant probability measure m̂k , projecting to µ̂k , which is a u-state for H u,Âk ,
and such that

λ+(Âk , µ̂k ) =
∫

Σ̂×P1
ΦÂk

dm̂k .

Indeed, if λ+(Âk , µ̂k ) 6= 0 we can take

m̂k =
∫

Σ̂
δ

(x̂,E
u,Âk
x̂ )

d µ̂k (x̂)

as above. If λ+(Âk , µ̂k ) = 0 then (as Âk ∈ SL±(2,R)) we have λ−(Âk , µ̂k ) = 0 and
by Theorem 4.2, any F̂ Âk

-invariant probability measure m̂k , projecting to µ̂k is
a su-state; moreover for any such measure

∫
Σ̂×P1 ΦÂk

dm̂k = 0.
Consequently

lim
k→∞

∫

Σ̂×P1
ΦÂk

dm̂k <λ+(Â, µ̂).

Taking subsequences again, we may assume that (m̂k )k converges to a F̂ Â-invari-

ant probability measure m̂. By Lemma 4.3, m̂ is a u-state for H u,Â . Now, by
Claim 5.1,

m̂ =αm̂s +βm̂u

for some constants α,β ∈ [0,1]. By uniform convergence of ΦÂk
→ΦÂ and weak-

∗ convergence of m̂k → m̂ we have
∫

Σ̂×P1
ΦÂ dm̂ = lim

k→∞

∫

Σ̂×P1
ΦÂk

dm̂k <λ+(Â, µ̂)

hence m̂ 6= m̂u . It follows that α 6= 0 and

m̂s = 1
α

(
m̂ −βm̂u)

is a u-state for H u,Â . Similarly, m̂u is an s-state for H s,Â . In particular, m̂s and
m̂u are su-states. Claim 5.1 completes the proof.

5.2. Final reductions and standing notation. As discussed in the proof of Lem-
ma 4.3, the family of invariant stable holonomies defines a continuous change
of linear coordinates on the fibers {x}×P1 that makes the cocycle constant along
local stable sets of f̂ . The convergence of the cocycles Âk → Â is not affected by
this coordinate change. Moreover, the straightened out cocycles admit unstable
holonomies with the appropriate convergence and have the same Lyapunov ex-
ponents. We assume for the remainder we have straightened out the cocycles in
(6) along their respective stable holonomies. Following the notation introduced
in Section 4.3, let A, Ak : Σ→ SL±(2,R) be such that Â = A ◦P and Âk = Ak ◦P
where P : Σ̂→Σ is the natural projection.

We assume for the remainder that

λ+(Âk , µ̂k ) 6→λ+(Â, µ̂)
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and fix a sequence of ergodic u-states m̂k as in the proof of Proposition 5.2. We
assume m̂k converges to some measure m̂. From (the proof of) Proposition 5.2,
we have that m̂ =αm̂s +βm̂u and, moreover that m̂s and m̂u are su-states.

From Proposition 4.1, it follows that there are continuous functions σs/u : Σ̂→
P1 such that E s/u,Â

x̂ =σs/u(x̂). Using σs/u , we perform a final continuous change

of coordinates, that is projective in each fiber, such that for x̂ ∈ Σ̂
σs(x̂) = [1 : 0] := q, and σu(x̂) = [0 : 1] := p.

In particular, after this coordinate change the projective cocycle PÂ(y) leaves q
and p invariant for every y . Note that the change of coordinate is constant on
local stable sets so the cocycle Â is still of the form Â = A ◦P for some A : Σ→
SL(2,R). Note that in order to define this coordinate change, we rely on the fact
that the limiting measure µ is fully supported.

We take mk := (P × I d)∗m̂k and similarly take m := (P × I d)∗m̂, ms := (P ×
I d)∗m̂s , mu := (P× I d)∗m̂u . Each of the above measures is induced by a u-state
on Σ̂×P1 and hence induces a continuous family of conditional measures. Since
the measures m̂u

k are ergodic for each k, the projected measures mk are ergodic.

Let {mk
x } and {mx } denote a continuous family of conditional measure for

mk and m, respectively, given by Proposition 4.5. Observe that, for every x ∈Σ,
mx =αδq +βδp where α,β ∈ (0,1). We split the proof of Theorem 2.8 into two
cases. In Section 6 we consider the case that for infinitely many k there is a x ∈Σ
such that the conditional measure mk

x has an atom. In Section 7 we consider
the case that the measures mk

x are non-atomic for every x and infinitely many
k. Passing to subsequences, we can assume that either the measures mk

x are
non-atomic for all x and k or contains an atom for some x and all k. In both
cases, we derive a contradiction showing that (Â, µ̂) can not satisfy (6).

6. CASE 1: THE MEASURES mk
x ARE ATOMIC

In this section we will deduce a contradiction to (6) under the assumption
that for every k ∈N there is some x ∈ Σ such that the conditional measure mk

x
contains an atom. We first claim that mk

x contains an atom for every x ∈ Σ
which, by ergodicity, implies that the measures mk

x are all finitely supported.
The proofs of Lemmas 6.1 and 6.2 given below are not new; to the best of our
knowledge they first appear as a consequence of [8, Lemmas 5.2, 5.3]. We repro-
duce the proofs here for completeness.

For each k, consider

γk
0 := sup

{
mk

x (v) : x ∈Σ, v ∈P1
}

.

By hypothesis, γk
0 > 0 for all k.

LEMMA 6.1. For each x ∈Σ there exists vk
x ∈P1 such that mk

x (vk
x ) = γk

0 . Moreover,
mk

x (vk
x ) = γk

0 if and only if mk
y (Ak (y)−1(vk

x )) = γk
0 for all y ∈ f −1(x).

Proof. Consider Γk
0 := {x ∈Σ : mk

x (v) = γk
0 for some v ∈P1}. We argue that this is

a non-empty closed set. Indeed, let {x j } j∈N ⊂Σ and {v j } j∈N ⊂P1 be sequences

JOURNAL OF MODERN DYNAMICS VOLUME 12, 2018, 223–260



CONTINUITY OF LYAPUNOV EXPONENTS 245

such that mk
x j

(v j )
j→∞−−−−→ γk

0 . Restricting to a subsequence we may assume that

{x j } j∈N converges to some x ∈Σ and {v j } j∈N converges to some v ∈P1. Now, as
x 7→ mk

x is continuous, for each ε> 0 we have that

γk
0 ≤ limsup

j→∞
mk

x j
(B(v,ε)) ≤ mk

x (B(v,ε)).

Thus mk
x (v) ≥ γk

0 and hence mk
x (v) = γk

0 . It follows that Γk
0 is non-empty and

closed.
By Remark 4.6,

mk
x (v) =

∑

y∈ f −1(x)

1

Jµk f (y)
mk

y (Ak (y)−1(v))

for all x ∈ Σ and v ∈ P1. As
∑

y∈ f −1(x)
1

Jµk
f (y) = 1 for every x ∈ Σ, it follows that

mk
x (v) = γk

0 if and only if my (Ak (y)−1(v)) = γk
0 for every y ∈ f −1(x). In partic-

ular, f −1(Γk
0 ) ⊂ Γk

0 . Since f is transitive, Σ is the unique non-empty, closed,
backwards-invariant subset of Σ. Hence Γk

0 =Σ.

We show that points realizing the maximal atomic mass of mk
x have the same

property for the measure m̂k .

LEMMA 6.2. Given x ∈Σ and v ∈P1 we have that m̂k
x̂ (v) ≤ γk

0 for µ̂k
x almost every

x̂ ∈W s
loc(x). Consequently, mk

x (vk
x ) = γk

0 if and only if m̂k
x̂ (vk

x ) = γk
0 for µ̂k

x almost
every x̂ ∈W s

loc(x).

Proof. Suppose that there exist v ∈ P1, x ∈ Σ, γ1 > γk
0 and a subset Z ⊂ W s

loc(x)

with positive µ̂k
x -measure such that m̂k

x̂ (v) ≥ γ1 for every x̂ ∈ Z . For any n ≥ 0 let
us consider the partition of W s

loc(x) given by

{ f̂ n(W s
loc(y)) : y ∈ f −n(x)}.

Observe that the diameter of this partition goes to zero when n goes to infinity.
Therefore, given ε> 0 we can find n ≥ 1 and y ∈ f −n(x) such that

µ̂k
x (Z ∩ f̂ n(W s

loc(y))) > (1−ε)µ̂k
x ( f̂ n(W s

loc(y))).(7)

Take ε> 0 so that (1−ε)γ1 > γk
0 . As m̂k is an F Âk

-invariant measure we have

m̂k
ŷ (An

k (y)−1(v)) = An
k (y)∗m̂k

ŷ (v) = Ân
k (ŷ)∗m̂k

ŷ (v) = m̂k
f̂ n (ŷ)

(v) ≥ γ1

for almost every ŷ ∈ f̂ −n(Z )∩W s
loc(y). By Remark 2.6,

µ̂k
y ( f̂ −n(Z )∩W s

loc(y)) = Jµk f n(y)µ̂k
x (Z ∩ f̂ n(W s

loc(y)))

≥ (1−ε)Jµk f n(y)µ̂k
x ( f̂ n(W s

loc(y))) = (1−ε)

and it follows that

mk
y (An

k (y)−1(v)) =
∫

W s
loc(y)

m̂k
ŷ (An

k (y)−1(v))d µ̂k
y (ŷ) ≥ (1−ε)γ1 > γk

0

contradicting the definition of γk
0 .
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Note that we have shown that if mk
x contains an atom for some x ∈ Σ, then

mk
x contains an atom of mass γk

0 for every x ∈ Σ. By ergodicity of the measure
mk , it follows that mk

x is finitely supported for every x ∈ Σ and, moreover, that
every atom of mk

x has mass γk
0 . To derive a contradiction to (6), we further

divide the case that mk
x contains atoms into two subcases.

6.1. Case A: Positive Lyapunov exponents. Passing to a subsequence, assume
that λ+(Âk , µ̂k ) > 0 for every k ∈N.

Recall Lemma 6.1. Given x ∈ Σ, let vk
x ∈ P1 be such that such that mk

x (vk
x ) =

γk
0 > 0 for all x ∈Σ. From Lemma 6.2 we have m̂k

x̂ (vk
x ) = γk

0 for µ̂x almost every

x̂ ∈ W s
loc(x). But, as we assume λ+(Âk , µ̂k ) > 0, it follows from the definition of

m̂k (see the proof of Proposition 5.2) that m̂k
x̂ = δE u,k

x̂
. Consequently, γk

0 = 1 and

vk
x = E u,k

x̂ for µ̂x almost every x̂ ∈W s
loc(x).

It then follows from Lemma 4.8 that mk
x = δvk

x
converges to mx =αδq +βδp

for every x ∈Σ. Since α,β ∈ (0,1) and p 6= q this gives a contradiction.

6.2. Case B: Zero Lyapunov exponents. We now suppose λ+(Âk , µ̂k ) = 0 for ev-
ery k ∈N.

First note that, as λ+(Âk , µ̂k ) = 0 =λ−(Âk , µ̂k ) for every k ∈N, by Theorem 4.2,
each measure m̂k is an su-state. By Proposition 4.1 we may find an su-invariant
disintegration into a continuous family of conditional measures {m̂k

x̂ }x̂∈Σ̂. As the

stable holonomies are trivial, we have that mk
x = m̂k

x̂ = m̂k
ẑ for every x̂, ẑ ∈W s

loc(x)
and all x ∈Σ. By Proposition 5.2 the same property holds for the disintegrations
of m̂ and m.

In particular this allows to identify mk
x and mk

y via unstable holonomies, for
x, y in the cylinder [0; i ] for 1 ≤ i ≤ `.

CLAIM 6.3. For each 1 ≤ i ≤ ` and every x, y ∈ [0; i ], x̂ ∈W s
loc(x), and ŷ =W s

loc(y)∩
W u

loc(x̂) we have

my =
(
H u,Â

x̂ ŷ

)
∗

mx and mk
y =

(
H u,k

x̂ ŷ

)
∗

mk
x .

Let {V k
x }x∈Σ be the family of finite subsets of P1 given by

V k
x := {v ∈P1 : mk

x (v) = γk
0 }.

Note that mk
x (V k

x ) = 1. Moreover, combining Lemma 6.1 and the previous claim
we have

CLAIM 6.4. For x, y ∈Σ, and k ∈N,

1. card(V k
x ) = card(V k

y ),

2. Ak (x)(V k
x ) =V k

f (x), and

3. V k
y = H u,k

x̂ ŷ (V k
x ) for any x̂ ∈W s

loc(x) and ŷ ∈W s
loc(y)∩W u

loc(x̂).

We now bound the number of atoms appearing in the measure mk
x .

LEMMA 6.5. For every x ∈Σ we have that card(V k
x ) ≤ 2 for k sufficiently large.
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Proof. As card(V k
x ) is defined for every x and is moreover constant, it is enough

to prove that card(V k
x ) ≤ 2 for some x ∈Σ.

We claim there is a periodic point x ∈ Σ with period ` such that A`(x) :=
A( f `−1(x)) . . . A(x) is hyperbolic. Indeed, recall that the cocycle A(x) preserves
the coordinate axes and is thus of the form

A(x) =
(
γ(x) 0

0 ±γ(x)−1

)
.

If follows that the logarithm of the eigenvalues of A`(x) for any such periodic
point x are

1

`

`−1∑

j=0
log |γ±1( f j (x))|.

If the logarithm of the eigenvalues of A`(x) vanished for every periodic point
x then, as measures concentrated on periodic orbits are dense in the set of all
f -invariant measures, it follows that

∫
log |γ(x)| dµ′(x) = 0 for every f -invariant

measure µ′. It follows that the Lyapunov exponents of the cocycle vanish for
every f -invariant measure µ′ contradicting our assumption on the measure µ.
The matrix A`(x) is thus hyperbolic for some periodic point x and, as the set
of hyperbolic matrices is open, for k sufficiently large A`

k (x) is also hyperbolic.

Therefore, as A`
k (x)(V k

x ) =V k
x and V k

x is finite, it follows that card(V k
x ) ≤ 2.

Let V k
x = {vk

x } or V k
x = {vk

x , wk
x } depending on the cardinality of V k

x . As mk is
ergodic, either

mk =





∫
δ(x,vk

x ) dµk (x) card(V k
x ) = 1

∫
1
2δ(x,vk

x ) + 1
2δ(x,w k

x ) dµk (x) card(V k
x ) = 2.

As before, we write ΦAk : Σ×P1 →R for

ΦAk (x, v) = log

(‖Ak (x)(v)‖
‖v‖

)
.

Recalling that the cocycle Âk is constant along local stable sets and recalling the
definition of the measure mk we have

λ+(Âk , µ̂k ) =
∫

Σ̂×P1
ΦÂk

dm̂k =
∫

Σ×P1
ΦAk dmk .(8)

In particular

0 =λ+(Âk , µ̂k ) =





∫
ΦAk (x, vk

x ) dµk (x) card(V k
x ) = 1

∫
1
2ΦAk (x, vk

x )+ 1
2ΦAk (x, wk

x ) dµk (x) card(V k
x ) = 2.

(9)

We now consider two subcases depending on the cardinality of V k
x .
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6.2.1. Subcase: card(V k
x ) = 1 for every k ∈N. Passing to a subsequence, suppose

that card(V k
x ) = 1 for every k ∈N. For every x ∈Σ, let V k

x = {vk
x }.

As in the previous case, from Lemma 4.8 we have that mk
x = δvk

x
converges to

mx =αδq +βδp for every x ∈ Σ. Again, since α,β ∈ (0,1) and p 6= q this gives a
contradiction.

6.2.2. Subcase: card(V k
x ) = 2 for every k ∈N. If card(V k

x ) = 2 for every k we may
take V k

y = {vk
y , wk

y } with

vk
y = H u,k

x̂ ŷ (vk
x ) and wk

y = H u,k
x̂ ŷ (wk

x )(10)

for every x and y in the same cylinder. Moreover,

Ak (y)
({

vk
y , wk

y

})
=

{
vk

f (y), wk
f (y)

}
(11)

for every y ∈Σ.
Fix x ∈Σ. Passing to subsequences suppose that vk

x converges to v0 and wk
x

converges to w0 in P1. Then, by (10), it follows that

vk
y = H u,k

x̂ ŷ (vk
x )

k→∞−−−−→ H u,Â
x̂ ŷ (v0) := vy

and

wk
y = H u,k

x̂ ŷ (wk
x )

k→∞−−−−→ H u,Â
x̂ ŷ (w0) := wy

for every y in the same cylinder as x. Invoking (11) and (10) it follows that
vk

y converges to some vy and wk
y converges to some wy in P1 for every y ∈ Σ.

Moreover, y 7→ vy and y 7→ wy are continuous and

A(y)
({

vy , wy
})= {

v f (y), w f (y)
}

(12)

and

vz = H u,Â
ŷ ẑ (vy ) and wz = H u,Â

ŷ ẑ (wy )

for every y, z ∈Σ in the same cylinder.
The functions y 7→ vy and y 7→ wy are continuous and defined everywhere.

From (12) the graphs of y 7→ vy and y 7→ wy together form a closed, FA-invariant
subset of Σ×P1. Hence (by an argument similar to the proof of Claim 5.1), the
(non-uniform) hyperbolicity of the cocycle A implies that either vy = q for every
y ∈Σ or vy = p for every y ∈Σ. Similarly, we have that wy = q for every y ∈Σ or
wy = p for every y ∈Σ.

Sub-subcase: v0 = w0. Suppose first that w0 = v0 = q . Then wy = vy = q for
every y ∈Σ and from (9)

0 =
∫

1
2ΦAk (x, vk

x )+ 1
2ΦAk (x, wk

x ) dµ(x)

→
∫

Σ
ΦA(x, q) dµ(x) =

∫
ΦA dms =λ−(Â, µ̂)
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which is a contradiction since λ−(Â, µ̂) < 0. Similarly, if wy = vy = p for every y
then

0 =
∫

1
2ΦAk (x, vk

x )+ 1
2ΦAk (x, wk

x ) dµ(x)

→
∫
ΦA(x, p) dµ(x) =

∫
ΦA dmu =λ+(Â, µ̂)

contradicting that λ+(Â, µ̂) > 0.

Sub-subcase: v0 6= w0. If v0 6= w0 then (by ergodicity) without loss of generality
we may assume vy = q and wy = p for all y ∈Σ. However, as we assumed mk to
be ergodic, for any k we have that Ak (y)vk

y = wk
f (y) for some y ∈Σ. Having taken

k sufficiently large, it follows from the uniform convergence of Ak → A, vk
y → vy

and wk
y → wy that A(y)vy = w f (y) and hence A(y)(p) = q , a contradiction.

7. CASE 2: THE MEASURES mk
x ARE NON-ATOMIC

We now derive a contradiction to (6) under the assumption that the mea-
sures mk

x are non-atomic for every x ∈ Σ and every k. To arrive at a contradic-
tion, we introduce the tools of couplings and (additive) energies: {mk

x }x∈Σ being
non-atomic implies that the family of measures {mk

x |Ux } obtained from {mk
x }

by restriction to a suitable family of sets {Ux } admit a family of symmetric self-
couplings with finite energy. Taking advantage of the fact that the stable space
is a repeller for the action of the cocycle A on P1, we are able to build a new
family of symmetric self-couplings of {mk

x |Ux }x∈Σ with energy strictly smaller by
a definite factor coming from the rate of expansion of A at the stable space.
We can then iterate this procedure to construct a symmetric self-coupling of
{mk

x |Ux } with negative energy, arriving at a contradiction. This approach follows
the main ideas in [31, Chapter 10] though we deviate slightly from [31] by us-
ing additive Margulis functions introduced in [2]. The contradiction is given by
Proposition 7.6.

Recall we changed coordinates on the cocycle A so that A(y) fixes q = [1 : 0]
and p = [0 : 1] for every y ∈Σ. Recall the sequence of measures mk projecting to
µk and admitting continuous family of conditional measures {mk

x }x∈Σ. Moreover
mk converges to the measure µ× (αδq +βδp ) and the conditional measures mk

x
converge uniformly to αδq +βδp . Recall we assume α > 0. We write PA : Σ→
Diff∞(P1), x 7→ PA(x) for the projective cocycle. Similarly, write PAk for the
projectivized cocycle of Ak .

7.1. q is an expanding point. We begin by recalling that, given B ∈GL(2,R) and
v ∈P1, the derivative at the point v of the action of PB in the projective space
is given explicitly by

DvPB(v̇) =
projB(v)B(v̇)

∥ B(v) ∥ for every v̇ ∈ TvP
1 = {v}⊥
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where projv : w → w − v 〈w,v〉
〈v,v〉 denotes the orthogonal projection to the hyper-

plane orthogonal to v .

CLAIM 7.1. For almost every x ∈Σ we have

lim
n→∞ log

(∥∥DqPAn(x)
∥∥1/n

)
=λ+(Â, µ̂)−λ−(Â, µ̂) =: c > 0.

Proof. Recall p, q are orthogonal and preserved by the cocycle A.
Then for v ∈ TqP

1 = {q}⊥ we have v ∈ span(p). Thus if ‖v‖ = 1 we have
‖An(y)(v)‖ = ‖An(y)(p)‖. Projecting back to TqP

1 we have

‖DqPAn(y)(v)‖ = ‖An(y)(p)‖
‖An(y)(q)‖ .

The claim then follows from the pointwise ergodic theorem.

CLAIM 7.2. We may select N ∈N such that
∫

Σ
log

(‖DqPAN (x)‖)dµ(x) > 6.

Proof. We have limn→∞ 1
n log

(‖DqPAn(x)‖) → c > 0 almost everywhere. More-
over, as 1

n log
(‖DqPAn(x)‖) is bounded above and below uniformly in x and n,

by dominated convergence we have

lim
n→∞

1

n

∫
log

(‖DqPAn(x)‖)dµ(x) → c > 0.

Fix such an N for the remainder. We define

κ(x) := log
(‖DqPAN (x)‖) .

As κ : Σ→R is a continuous function, for all sufficiently large k we have
∫
κ(x) dµk (x) > 4.(13)

7.2. Couplings and energy. Let d be the distance on P1 defined by the angle
between two directions. We assume d is normalized so that P1 has diameter 1.

Consider a Borel probability measure µ′ on Σ and a µ′-measurable family
{νx }x∈Σ of finite Borel measures on P1. The measures νx are not assumed to
be probabilities nor are they assumed to have the same mass. For j ∈ {1,2},
let π j : P1 ×P1 → P1 be the projection on the j -th factor. For x ∈ Σ, let ξx be
a measure on P1 ×P1. We say a parameterized family of (positive) measures
{ξx }x∈Σ on P1×P1 is a (measurable) family of symmetric self-couplings of {νx }x∈Σ
if

1. x 7→ ξx is µ′-measurable,
2. (π j )∗ξx = νx for j ∈ {1,2}, and
3. ι∗ξx = ξx where ι : P1 ×P1 →P1 ×P1 is the involution ι : (u, v) → (v,u).

We note that we always have one family of symmetric self-couplings constructed
by taking for every x the product measure

ξx = 1

‖νx‖
νx ×νx
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for all x with ‖νx‖ 6= 0, where ‖νx‖ := νx (P1) denotes the mass of the measure
νx .

We define a function ϕ : P1 ×P1 →R by

ϕ(u, v) =− logd(u, v).

Note that ϕ is non-negative. In the language of [2], the function ϕ is an additive
Margulis function and its properties will be used to deduce the contradiction
in Proposition 7.6 below. For a family of symmetric self-couplings {ξx }x∈Σ of
{νx }x∈Σ as above we define the (additive) energy of {ξx }x∈Σ to be

∫

Σ

∫

P1×P1
ϕ(u, v) dξx (u, v)dµ′(x).

7.3. Choice of parameters. To establish a contradiction to (6) we select a num-
ber of parameters that will be fixed for the remainder. Recall the N fixed above
and the function κ.

1. Let U0 ⊂P1 be an open ball centered at q with p 6∈U 0.
2. Let U1 ⊂U1 ⊂U0 be an open neighborhood of q such that for every x ∈Σ

and every sufficiently large k we have
(a) PAN

k (x)(U1) ⊂U0;

(b) U1 ⊂PAN
k (x)(U0);

(c) for every u, v ∈U1

d(PAN
k (x)(u),PAN

k (x)(v)) ≥ e−αeκ(x)d(u, v).(14)

From (14) it follows for every u, v ∈U1, x ∈Σ and k sufficiently large that

ϕ(PAN
k (x)(u),PAN

k (x)(v)) ≤ϕ(u, v)−κ(x)+α.(15)

3. Fix q ∈U4 ⊂U4 ⊂U3 ⊂U3 ⊂U2 ⊂U2 ⊂U1 such that
(a) each U j is an open set;

(b) PAN
k (y)(U 4) ⊂U3 for every y ∈Σ and k sufficiently large.

4. By compactness of Σ and uniform convergence of Ak to A, we may select
M1 > 1 so that for all x ∈Σ,u ∈P1 and k sufficiently large,

−M1 < log(‖DuPAN
k (x)‖) < M1.

Note in particular that |κ(x)| ≤ M1.
5. Take M2 > 1 to be the maximum of

sup{ϕ(u, v) : u ∈U3, v ∈U c
2 } and sup{ϕ(u, v) : u ∈U2, v ∈U c

1 }.

6. Fix 0 < δ< 1−α with 100δM1M2 <α.
7. For k sufficiently large, we have for every x ∈Σ that

(a) mk
x (U4) >α−δ;

(b) mk
x (U0) <α+δ.

8. For the remainder, fix k sufficiently large so that all estimates above (in-
cluding (13)) hold.

9. Given our k fixed above define ρ : Σ→ [0,1) so that

mk
x (B(q,ρ(x))) =α+δ.
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Observe that as mk
x is assumed to have no atoms and as the measures mk

x vary
continuously in x, the function ρ is continuous. We write

Ux := B(q,ρ(x)).

Note that the choices above ensure that U0 ⊂Ux .

7.4. Constructing finite energy families of symmetric self-couplings. For the
remainder of this section we work exclusively with the k fixed above. We will
work primarily with the family of measures {mk

x |Ux }. Recall that the measure
mk

x |Ux is defined for every x ∈ Σ. Moreover, the dependence on x is continu-
ous. Below, we will define a number of families of symmetric self-couplings
{ξx }x∈Σ of {mk

x |Ux }x∈Σ. For every such family {ξx }x∈Σ, the measure ξx will be de-
fined for every x ∈Σ. We first construct a family of symmetric self-couplings of
{mk

x |Ux }x∈Σ with finite energy.
From the continuity and non-atomicity of the conditional measures mk

x we
obtain the following.

CLAIM 7.3. There is an r > 0 so that for every x ∈Σ and u ∈P1

mk
x (B(u,3r )) < α+δ

10
.

Using the above claim we have the following lemma.

LEMMA 7.4. There exists a family of symmetric self-couplings {ξx }x∈Σ of {mk
x |Ux }x∈Σ

with finite energy.

Proof. Let {ξx }x∈Σ be any family of symmetric self-couplings of {mk
x |Ux }x∈Σ. Let

{vi }i=1,...,m ⊂P1 be such that P1 =⋃m
i=1 B(vi ,r ). Define ξ1

x by

ξ1
x := ξx −ξx |B(v1,r )×B(v1,r ) −θxξx |B(v1,3r )c×B(v1,3r )c +ζx + ι∗ζx ,

where

θx = ξx (B(v1,r )×B(v1,r ))

ξx (B(v1,3r )c ×B(v1,3r )c )
and

ζx := 1

ξx
(
(B(v1,r ))2

)
(
(π1)∗ξx |B(v1,r )2 × (π1)∗θxξx |(B(v1,3r )c )2

)
.

As

ξx (B(v1,r )×B(v1,r )) ≤ ξx (B(v1,3r )×B(v1,3r ))

= mk
x |Ux (B(v1,3r ))−ξx (B(v1,3r )×B(v1,3r )c )

< mk
x |Ux (B(v1,3r )c )−ξx (B(v1,3r )c ×B(v1,3r ))

= ξx (B(v1,2r )c ×B(v1,3r )c )

we have that θx < 1, hence ξ1
x is a (positive) measure. Moreover, ξ1

x is clearly
symmetric and we check that (π1)∗ξ1

x = mk
x |Ux .

The family {ξ1
x }x∈Σ depends measurably on x and satisfies

ξ1
x (B(v1,r )×B(v1,r )) = 0.
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Moreover, we have

ξ1
x (B(vi ,r )×B(vi ,r )) ≤ ξx (B(vi ,r )×B(vi ,r ))

for all 1 ≤ i ≤ m. Indeed, ζx is supported on B(v1,r )×B(v1,3r )c . But for any
v ∈P1,

(
B(v,r )×B(v,r )

)∩ (
B(v1,r )×B(v1,3r )c)=∅

and thus ζx (B(vi ,r )×B(vi ,r )) = 0 for each i . Thus with S = B(vi ,r )×B(vi ,r ) we
have

ξ1
x (S) = (

ξx −ξx |B(v1,r )×B(v1,r ) −θxξx |B(v1,3r )c×B(v1,3r )c
)

(S).

Iterating the above construction yields a measurable family of symmetric
self-couplings {ξm

x }x∈Σ of {mk
x |Ux }x∈Σ, defined for every x ∈Σ, with

ξ`x (B(vi ,r )×B(vi ,r )) = 0

for every 1 ≤ i ≤ m. Taking 0 < r0 < r to be the Lebesgue number of the cover
{B(vi ,r )}l

i=1 we have

ξm
x (B(u,r0)×B(u,r0)) = 0

for every u ∈P1 and x ∈Σ. Then
∫
ϕ dξm

x ≤− log(r0) for every x ∈Σ.

We introduce the first of many modifications we perform on our families of
symmetric self-couplings. The construction of the family {ξ̇x }x∈Σ is formally
very similar to the construction of {ξ1

x }x∈Σ in Lemma 7.4.

LEMMA 7.5. Let {ξx }x∈Σ be a family of symmetric self-couplings of {mk
x |Ux }x∈Σ

with finite energy. Then there exists a family of symmetric self-couplings {ξ̇x }x∈Σ
of {mk

x |Ux }x∈Σ with ξ̇x (U c
2 ×U c

2 ) = 0 and such that for every x ∈Σ
∫
ϕ d ξ̇x ≤

∫
ϕ dξx +4δM2.

Proof. Let νx := (π1)∗ξx |U c
2×U c

2
and ηx = (π1)∗ξx |U3×U3 . Define

ξ̇x := ξx −ξx |U c
2×U c

2
− ‖νx‖
‖ηx‖

ξx |U3×U3 +
1

‖ηx‖
(
νx ×ηx +ηx ×νx

)
.

We have that ξ̇x (U c
2 ×U c

2 ) = 0, (π j )∗(ξ̇x ) = mk
x |Ux for both j = {1,2}, and that

ξ̇x is symmetric. Moreover, we have

‖ηx‖ ≥ ‖ξx‖−2ξx ((Ux rU3)×P1) = (α+δ)−4δ.

and

‖νx‖ = ‖ξx |U c
2×U c

2
‖ ≤ ξx (U c

2 ×P1) ≤ 2δ.

It follows for every x that ‖νx‖ ≤ ‖ηx‖ and hence ξ̇x is a (positive) measure.
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Note that νx ×ηx is supported on U c
2 ×U3. It follows that

∫
ϕ d ξ̇x ≤

∫
ϕ dξx +

1

‖ηx‖

∫
ϕ d(νx ×ηx +ηx ×νx )

≤
∫
ϕ dξx +

2

‖ηx‖

∫
ϕ d(νx ×ηx )

≤
∫
ϕ dξx +

2

‖ηx‖

∫
M2 d(νx ×ηx )

≤
∫
ϕ dξx +

2M2‖ηx‖‖νx‖
‖ηx‖

.

As ‖νx‖ ≤ 2δ the claim follows.

7.5. Key proposition. We are now in position to state the key proposition that
establishes the contradiction to (6) in the case when the measures mk

x are non-
atomic. To prove it we exploit the fact that q is an expanding point for the
projective cocycle PAN

k (recall (15)) and the invariance of mk with respect to
FAk (recall Remark 4.6).

PROPOSITION 7.6. Let {ξx }x∈Σ be a family of symmetric self-couplings of
{mk

x |Ux }x∈Σ with finite energy. Then, there exists a family of symmetric self-cou-
plings {ξ̈x }x∈Σ of {mk

x |Ux }x∈Σ such that
Ï

ϕ d ξ̈x dµk (x) ≤
Ï

ϕ dξx dµk (x)−α.

As ϕ is a non-negative function, by recursive applications of Proposition 7.6
we arrive at a contradiction.

The proof of Proposition 7.6 is as follows: acting on a symmetric self-coupling
{ξx }x∈Σ by the diagonal action of FAk creates a new measure {ξ̂x }x∈Σ on Σ×P1×P1

whose energy is strictly smaller than that of {ξx }x∈Σ. However, the new family
of measures {ξx }x∈Σ is not a self-coupling so we correct this to create a new
symmetric self-coupling whose energy is still strictly smaller than that of {ξx }x∈Σ.

To start the proof of Proposition 7.6, given {ξx }x∈Σ let {ξ̇x }x∈Σ be the family of
symmetric self-couplings constructed in Lemma 7.5. For each x ∈Σ define

ξ̂x =
∑

y∈ f −N (x)

1

Jµk f N (y)

(
PAN

k (y)×PAN
k (y)

)
∗ ξ̇y .

The restriction of ξ̂x to Ux ×Ux is not necessarily a self-coupling of mk
x |Ux . Write

ηx for the projection ηx := (π1)∗
(
ξ̂x |Ux×Ux

)
. Below, we estimate the defect be-

tween ηx and mk
x |Ux .

Write g (y) = 1

Jµk f N (y)
. Recall that for any x ∈Σ

∑

y∈ f −N (x)

g (y)PAN
k (y)∗mk

y = mk
x .

Define two families of measures on P1 by
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• Ix :=
(

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |U c
y

))∣∣∣∣
Ux

, and

• Ox := (π1)∗
(
ξ̂x |Ux×U c

x

)
.

The families {Ix }x∈Σ and {Ox }x∈Σ are measurable.

LEMMA 7.7. We have

mk
x |Ux = ηx + Ix +Ox .

Moreover, for every x ∈Σ we have ‖Ox‖ ≤ ‖Ix‖ ≤ 2δ and supp(Ix ) ⊂U c
1 .

Proof. We have

mk
x |Ux =

(
∑

y∈ f −N (x)

g (y)PAN
k (y)∗mk

y

)∣∣∣∣
Ux

=
(

∑

y∈ f −N (x)

g (y)PAN
k (y)∗(mk

y |U c
y
)

)∣∣∣∣
Ux

(16)

+
(

∑

y∈ f −N (x)

g (y)PAN
k (y)∗(mk

y |Uy )

)∣∣∣∣
Ux

.(17)

The term (16) is precisely Ix . The term (17) is
(
(π1)∗ξ̂x

)|Ux = (π1)∗(ξ̂x |Ux×Ux )+Ox

hence we obtain

mk
x |Ux = ηx + Ix +Ox .

To bound ‖Ix‖ note that for any measurable set B ⊂P1 we have Ix (B) ≤ mk
x (B).

Moreover, Ix is supported on
⋃

y∈ f −N (x)

PAN
k (y)(U c

y ) ⊂
⋃

y∈ f −N (x)

PAN
k (y)(U c

0 ) ⊂U c
1 .

Thus ‖Ix‖ ≤ mk
x (Ux rU1) ≤ 2δ.

To derive the bound on ‖Ox‖ first note that

mk
x (Ux ) =

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |Uy

)
(Ux )+

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |U c
y

)
(Ux ).

Similarly,
∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |Uy

)
(Ux )+

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |Uy

)
(U c

x )

=
∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |Uy

)
(P1)

=
∑

y∈ f −N (x)

g (y)
(
mk

y (Uy )
)

=α+δ= mk
x (Ux ),

JOURNAL OF MODERN DYNAMICS VOLUME 12, 2018, 223–260



256 LUCAS BACKES, AARON BROWN AND CLARK BUTLER

where the final equality follows from the choice of open sets Uy . Combining the
above we have for any x ∈Σ that

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |U c
y

)
(Ux ) =

∑

y∈ f −N (x)

g (y)PAN
k (y)∗

(
mk

y |Uy

)
(U c

x ).(18)

The left hand side of (18) is Ix . The right hand side of (18) is

(π2)∗(ξ̂|P1×U c
x
).

Then
‖Ix‖ = ‖(π2)∗(ξ̂|P1×U c

x
)‖ ≥ ‖(π2)∗(ξ̂|Ux×U c

x
)‖ = ‖Ox‖

and the lemma follows.

7.6. Proof of Proposition 7.6. We conclude this section with the proof of Propo-
sition 7.6.

Proof of Proposition 7.6. Recall the notation and constructions above (see also
Figure 1 below). Define measurable families of measures

• θx := (π1)∗
(
ξ̂x |U3×U3

)
;

• λx :=
(
1− ‖Ox |U2‖

‖Ix‖

)
Ix +Ok

x |U c
2

.

For x ∈Σ we define a new measure on P1 ×P1 by

ξ̈x := ξ̂x |Ux×Ux −
‖λx‖
‖θx‖

ξ̂x |U3×U3 +
1

‖Ix‖
(
Ox |U2 × Ix + Ix ×Ox |U2

)

+ 1

‖θx‖
(λx ×θx +θx ×λx ) .

The family {ξ̈x }x∈Σ is measurable.
As ‖Ox‖ ≤ ‖Ix‖, we have that λx is a (positive) measure. Moreover, we have

‖θx‖ ≥ ‖ξ̂x |U3×P1‖−‖ξ̂x |U3×U c
3
‖ ≥ mk

x (U3)−mk
x (Ux rU3) ≥α−3δ.

As
‖λx‖ ≤ 4δ≤α−3δ≤ ‖θx‖

we have that ξ̈x is a (positive) measure. Also ξ̈x is clearly symmetric.
Let D ⊂P1 be a measurable set. Then,

(π1)∗ξ̈x (D) = ξ̈x (D ×P1)

= ηx (D)− ‖λx‖
‖θx‖

θx (D)+Ox (D ∩U2)+ 1

‖Ix‖
Ix (D)Ox (U2)

+λx (D)+ ‖λx‖
‖θx‖

θx (D)

= ηx (D)+Ox (D ∩U2)+ 1

‖Ix‖
Ix (D)Ox (U2)+λx (D)

= ηx (D)+Ox |U2 (D)+ ‖Ox |U2‖
‖Ix‖

Ix (D)+
(
1− ‖Ox |U2‖

‖Ix‖

)
Ix (D)+Ox |U c

2
(D)

= ηx (D)+Ox (D)+ Ix (D) = mk
x |Ux (D)

JOURNAL OF MODERN DYNAMICS VOLUME 12, 2018, 223–260



CONTINUITY OF LYAPUNOV EXPONENTS 257

hence the family {ξ̈x }x∈Σ is a family of symmetric self-couplings of {mk
x |Ux }x∈Σ.

From the definition of ξ̈x we have
Ï

ϕ d ξ̈x dµk (x) ≤
Ï

ϕ d ξ̂x |Ux×Ux dµk (x)

+
∫

1

‖Ix‖

∫
ϕ d

(
Ox |U2 × Ix + Ix ×Ox |U2

)
dµk (x)

+
∫

1

‖θx‖

∫
ϕ d (λx ×θx +θx ×λx ) dµk (x).

CONTINUITY OF LYAPUNOV EXPONENTS 257

hence the family {ª̈x }x2ß is a family of symmetric self-couplings of {mk
x |Ux }x2ß.

From the definition of ª̈x we have

œ
' d ª̈x dµk (x) ∑

œ
' d ª̂x |Ux£Ux dµk (x)

+
Z

1

kIxk

Z
' d

°
Ox |U2 £ Ix + Ix £Ox |U2

¢
dµk (x)

+
Z

1

kµxk

Z
' d (∏x £µx +µx £∏x ) dµk (x).
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Let D � P1 be a measurable set. Then,

(�1)��̈x(D) = �̈x(D � P1) = �x(D) � ��x�
��x�

�x(D)

+ Ox(D � U2) +
1

�Ix�
Ix(D)Ox(U2) + �x(D) +

��x�
��x�

�x(D)

= �x(D) + Ox(D � U2) +
1

�Ix�
Ix(D)Ox(U2) + �x(D)

= �x(D) + Ox|U2
(D) +

�Ox|U2�
�Ix�

Ix(D) +

�
1 � �Ox|U2�

�Ix�

�
Ix(D) + Ox|Uc

2
(D)

= �x(D) + Ox(D) + Ix(D) = mk
x|Ux

(D)

hence the family {�̈x}x�� is a family of symmetric self-couplings of {mk
x|Ux

}x��.

From the definition of �̈x we have

� �
� d�̈xdµk(x) �

� �
� d�̂x|Ux�Ux

dµk(x)

+

�
1

�Ix�

�
� d (Ox|U2

� Ix + Ix � Ox|U2
) dµk(x)

+

�
1

��x�

�
� d (�x � �x + �x � �x) dµk(x).

Figure 1. Mass away from the diagonal.

U3 £U c
2

U c
2 £U3

FIGURE 1. Mass away from the diagonal

Since supp(Ix ) ΩU c
1 and supp(Ox |U2 ) ΩU2 we have

Z
1

kIxk

Z
' d

°
Ox |U2 £ Ix + Ix £Ox |U2

¢
dµk (x)

=
Z

2

kIxk

Z
' d

°
Ox |U2 £ Ix

¢
dµk (x)

∑
Z

2

kIxk

Z
M2 d

°
Ox |U2 £ Ix

¢
dµk (x)

∑
Z

2M2kIxkOx (U2)

kIxk
dµk (x) ∑ 4±M2.
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FIGURE 1. Mass away from the diagonal

Since supp(Ix ) ⊂U c
1 and supp(Ox |U2 ) ⊂U2 we have

∫
1

‖Ix‖

∫
ϕ d

(
Ox |U2 × Ix + Ix ×Ox |U2

)
dµk (x)

=
∫

2

‖Ix‖

∫
ϕ d

(
Ox |U2 × Ix

)
dµk (x)

≤
∫

2

‖Ix‖

∫
M2 d

(
Ox |U2 × Ix

)
dµk (x)

≤
∫

2M2‖Ix‖Ox (U2)

‖Ix‖
dµk (x) ≤ 4δM2.
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Similarly, supp(θx ) ⊂U3 and supp(λx ) ⊂U c
2 hence

∫
1

‖θx‖

∫
ϕ d (λx ×θx +θx ×λx )dµk (x)

≤
∫

2

‖θx‖

∫
ϕ d (λx ×θx )dµk (x)

≤
∫

2

‖θx‖

∫
M2 d (λx ×θx )dµk (x)

≤
∫

2M2‖θx‖‖λx‖
‖θx‖

dµk (x) ≤ 8δM2.

Moreover, from the construction of ξ̈x and recalling that ξ̇y (U c
2 ×U c

2 ) = 0 for
all y we have
Ï

ϕ d ξ̂x |Ux×Ux dµk (x) ≤
∫ ∫

ϕ d ξ̂x dµk (x)

=
∫ ∑

y∈ f −N (x)

g (y)

(∫

Uy×Uy

ϕ
(
PAN

k (y)(u),PAN
k (y)(v)

)
d ξ̇y

)
dµk (x)

≤
∫ ∑

y∈ f −N (x)

g (y)

(∫

U1×U1

ϕ
(
PAN

k (y)(u),PAN
k (y)(v)

)
d ξ̇y

)
dµk (x)

+
∫ ∑

y∈ f −N (x)

g (y)

(∫

(U2×U c
1 )∪(U c

1×U2)
ϕ

(
PAN

k (y)(u),PAN
k (y)(v)

)
d ξ̇y

)
dµk (x).

Recalling the choice of M1, M2 and δ we have
∫ ∑

y∈ f −N (x)

g (y)

(∫

(U2×U c
1 )∪(U c

1×U2)
ϕ

(
PAN

k (y)(u),PAN
k (y)(v)

)
d ξ̇y

)
dµk (x)

≤ 2
∫ ∑

y∈ f −N (x)

g (y)

(∫

U2×U c
1

M1ϕ(u, v) d ξ̇y

)
dµk (x)

≤ 2M1M2

∫
ξ̇x (U c

1 ×U2) dµk (x)

≤ 2M1M2

∫
mk

x |Ux (U c
1 ) dµk (x) ≤ 4δM1M2.

On the other hand, it follows from (15) and Lemma 7.5 that

∫ ∑

y∈ f −N (x)

g (y)

(∫

U1×U1

ϕ
(
PAN

k (y)(u),PAN
k (y)(v)

)
d ξ̇y

)
dµk (x)

≤
Ï

U1×U1

ϕ(u, v) d ξ̇x dµk (x)−
∫
ξ̇x (U1 ×U1)κ(x) dµk (x)+α

≤
Ï

P1×P1
ϕ(u, v) d ξ̇x dµk (x)−

∫
ξ̇x (U1 ×U1)κ(x) dµk (x)+α

≤
Ï

P1×P1
ϕ(u, v) dξx dµk (x)+4δM2 −

∫
ξ̇x (U1 ×U1)κ(x) dµk (x)+α.
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Note that for any family of symmetric self-couplings {ξ̇x }x∈Σ of {mk
x |Ux }x∈Σ we

have

α−3δ≤ ξ̇x (U1 ×P1)− ξ̇x (U1 × (Ux rU1)) = ξ̇x (U1 ×U1) ≤ ξ̇x (U1 ×P1) ≤α+δ.

Writing κ+(x) and κ−(x), respectively, for the positive and negative parts of
κ(x) we have that

∫
ξ̇x (U1 ×U1)κ(x) dµk (x)

≥ (α−3δ)
∫
κ+(x)dµk (x)− (α+δ)

∫
κ−(x) dµk (x)

= (α−3δ)
∫
κ(x) dµk (x)−4δ

∫
κ−(x) dµk (x)

≥ (α−3δ)4−4δM1 ≥ 4α−16δM1 > 3α.

We therefore haveÏ
ϕ d ξ̈x dµk (x)

≤
Ï

ϕ dξx dµk (x)+4δM2 −3α+4δM1M2 +4δM2 +8δM2 +α

≤
Ï

ϕ dξx dµk (x)−α.

This completes the proof of Proposition 7.6. Combined with the results of
Section 6 this completes the proof of Theorem 2.8.
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