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Abstract Two-particle angular correlations were mea-
sured in pp collisions at

√
s = 7 TeV for pions, kaons, pro-

tons, and lambdas, for all particle/anti-particle combinations
in the pair. Data for mesons exhibit an expected peak domi-
nated by effects associated with mini-jets and are well repro-
duced by general purpose Monte Carlo generators. However,
for baryon–baryon and anti-baryon–anti-baryon pairs, where
both particles have the same baryon number, a near-side anti-
correlation structure is observed instead of a peak. This effect
is interpreted in the context of baryon production mecha-
nisms in the fragmentation process. It currently presents a
challenge to Monte Carlo models and its origin remains an
open question.

1 Introduction

Ultrarelativistic proton–proton collisions at the Large Hadron
Collider (LHC) provide a unique opportunity to study Quan-
tum Chromodynamics (QCD) at new energy scales. Two-
particle angular correlations [1–11] are a robust tool which
allows for exploration of the underlying physics phenomena
of particle production in collisions of both protons and heavy
ions by measuring the distributions of angles in �η�ϕ space
(where �η is the pseudorapidity difference and �ϕ is the
azimuthal angle difference between two particles). These
correlations open up the possibility to study a number of
mechanisms simultaneously. The baseline, the physics mech-
anism underlying all correlations, is the global conservation
of energy and momentum as well as strangeness, baryon
number, and electric charge. It results in a “− cos(�ϕ)”-like
shape spanning the entire phase-space [12]. Other phenom-
ena, including mini-jets, elliptic flow, Bose–Einstein cor-
relations, resonance decays, are sources of additional cor-
relations and each produces a characteristic distribution in
�η�ϕ space. Together with the baseline, they determine
the final shape of the correlation function.

� e-mail: alice-publications@cern.ch

This work presents an extension to the traditional angular
correlation measurements, which were studied at the LHC
for all available collision systems [4,7,10,13–16]. It is per-
formed for identified particles, that is pions, kaons, protons,
and lambda baryons, produced in proton–proton collisions
at

√
s = 7 TeV recorded by ALICE [17]. The high collision

energies provided by the LHC, leading to large cross-sections
for production of (anti-)baryons, enable the measurement of
correlations not only of primary protons, but also of lambdas
and anti-lambdas with very high precision. Choosing specific
particle types allows for the selection of a specific combina-
tion of quantum numbers (strangeness, baryon number) that
may manifest in the measured correlation. As a consequence
the angular correlations for identified particles may reveal
new structures, which reflect the specific conservation laws
for these quantum numbers. The correlations should also
be sensitive to details of particle production mechanisms,
including the parton fragmentation. In order to interpret the
data in this context, dedicated Monte Carlo simulations using
PYTHIA and PHOJET generators were performed.

The paper is organized as follows. Experimental setup,
data taking conditions, and track selection criteria are pre-
sented in Sect. 2. Section 3 presents the analysis procedure
and introduces the correlation function. In Sect. 4 system-
atic uncertainties are discussed. The experimental results are
presented in Sect. 5. Detailed studies and the comparison
of results to Monte Carlo simulations are shown in Sect. 6.
Section 7 summarizes the paper.

2 Data taking and track reconstruction

This study was performed on a data sample of about 2.5×108

pp events at
√
s = 7 TeV recorded by ALICE [18] in 2010.

The trigger system is described in details in Ref. [19]. The
minimum-bias trigger required a signal in either V0 (a detec-
tor made of the two arrays of scintillating counters V0A and
V0C; see Ref. [20] for details) or one of the two inner layers of
the Silicon Pixel Detector (SPD), which cover pseudorapidity
ranges of 2.8 < η < 5.1 for V0C and −3.7 < η < −1.7 for
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V0A and |η| < 1.4 for the SPD. Each event (collision) con-
sists of global properties and trajectories of particles (tracks).

Two main subsystems were used for particle trajectory
reconstruction: the Inner Tracking System (ITS), a silicon-
based tracker consisting of 6 layers, and the Time Projection
Chamber (TPC). Their acceptance covers the full azimuth
within the pseudorapidity range |η| < 0.9. The collision-
vertex position was determined with tracks reconstructed in
the ITS and the TPC as described in Ref. [21]. Particle tra-
jectories are reconstructed from a collection of space points.
The ITS provides up to 6 points, one at each layer. The TPC
provides up to 159 points (clusters), which also contain infor-
mation on the ionization energy. This information is averaged
over all clusters, giving a measurement of the specific ion-
ization energy loss 〈dE/dx〉 for the particle. For each track,
the 〈dE/dx〉 signal is computed as a truncated mean of the
lowest 60% of the all measured points. The charged particle
momentum is determined on the basis of the charged particle
trajectories bent by the magnetic field of 0.5 T parallel to the
beam axis.

ALICE provides a particle identification (PID) capability
through the combination of the measurement of the specific
ionization in the TPC and the timing signals in the Time-
Of-Flight (TOF) detector [21,22]. Particle trajectories are
propagated from the TPC to the TOF and matched to hits in
this detector. Each hit is associated with the time of its detec-
tion. The start-time of the event is determined by combining
the time estimated using the particle arrival times at the TOF
and the time measured by the T0 detector [20,23]. This time,
combined with the time of the detection of the particle and
with the total length of the track enables the measurement
of a particle’s velocity. This, combined with the momentum
obtained from the TPC, enables the determination of parti-
cle’s mass and therefore its identity.

The protons analyzed here have a minimum transverse
momentum of pT = 0.5 GeV/c, while the kaons and pions are
measured for pT > 0.3 GeV/c and pT > 0.2 GeV/c, respec-
tively. At lower values of transverse momenta, the sample
can be contaminated by particles from the detector material
and the PID procedures are also less reliable. The upper limit
of pT for all particle species was set to 2.5 GeV/c; above this
value the selected identification process was no longer able
to efficiently distinguish pions from kaons and protons. In
order to ensure that the sample of accepted tracks corresponds
mostly to primary particles, a pT-dependent selection on the
Distance of Closest Approach (DCA) to the primary vertex
was applied. Accepted tracks were located at a distance in
the transverse plane smaller than (0.018 + 0.035p−1.01

T ) cm,
where pT is expressed in GeV/c (which corresponds to about
7σ of the track DCA resolution), and 2.0 cm in the beam
direction. The contamination from secondary particles was
estimated using PYTHIA Perugia-0 [24,25] simulations and
found to be below 1% for pions and kaons, and below 4%

for protons. To ensure that only tracks with sufficient recon-
struction quality were used in the analysis, they were required
to have a minimum of 70 TPC clusters (maximum possible
number is 159) associated to them; additionally, the maxi-
mum value of χ2 of the Kalman fit per TPC cluster was set
to 4.0 (2 degrees of freedom per cluster) [26]. The selection
criteria described above are summarized in Table 1.

The particle identification of pions, kaons, and protons
was performed on a track by track basis using information
from the TPC and TOF detectors; namely the measured val-
ues of 〈dE/dx〉, the particle velocity β, and their resolu-
tions defined as standard deviations around the nominal sig-
nal, σTPC and σTOF respectively. Based on the difference
(expressed in units of the resolution σ) between the mea-
sured signal and the expected signal for pions, kaons, or pro-
tons in the TPC and TOF, three values of Na

σ,PID (where
Nσ is the number of standard deviations of the observable
away from the mean and “a” denotes one of the three par-
ticle type hypotheses) were used to select each track [26].
For particles with pT > 0.5 GeV/c, the values were calcu-
lated from the combined TPC–TOF information, Na

σ,PID
2 =

Na
σ,TPC

2 + Na
σ,TOF

2, resulting in a circular cut in the Na
σ,TPC

and Na
σ,TOF space. For pT less than 0.5 GeV/c, only a few

tracks have an associated signal in the TOF and information
only from the TPC was used (Na

σ,PID = Na
σ,TPC). In order to

form a sample consisting of particles of a species “a”, parti-
cles were selected with Na

σ,PID < 2. Additionally, to keep the
purity of the sample above 96%, in regions where the areas
of two species overlap, an exclusive identification was used.
Specifically, tracks for which the Na

σ,PID < 3 condition is
fulfilled for more than one particle species hypothesis, were
rejected. This procedure resulted in a purity above 99% for
pions and protons and above 96% for kaons.

The weakly decaying lambda baryons were reconstructed
using their distinctive V-shaped decay topology in the chan-
nel �(�) → p π−(p π+), which has a branching ratio of
63.9% [27]. The reconstruction method forms V 0 decay can-
didates1; details are described in [28,29]. The selection cri-
teria used in this analysis are listed in Table 1. They were
also varied to estimate the V 0 selection systematic uncer-
tainty. Only � candidates within an invariant mass window
m�PDG − 0.0038 < mV 0 < m�PDG + 0.0038 GeV/c2 and
pT > 0.6 GeV/c were used. To calculate the � purity, the
signal S was first approximated by a Gaussian superimposed
on a second order polynomial background B [28]. The �

purity (defined as S/(S + B)), in the invariant mass range
defined above, was found to be larger than 95%. With respect
to the method used in Refs. [28,29] an additional selection
on maximum DCA of the � candidate to the primary ver-

1 V 0 candidate is a combination of two secondary tracks of opposite
charge which have a sufficiently large impact parameter with respect to
the primary vertex.
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tex was applied to minimize the contribution of weak decays
of the charged and neutral �. The resulting contamination
was estimated using a data-driven approach, based on the fit
of the V 0 transverse DCA to the primary vertex distribution
with the expected shapes for primary and secondary particles
[22]. The contamination corresponds to 17% of the V 0 can-
didates in the sample. Another cut was used to prevent two
reconstructed V 0s from sharing the same daughter track. If
two V 0 candidates shared a daughter track, the V 0 candidate
with the lowest DCA to the primary vertex was chosen, while
the other one was rejected from the analysis.

For pairs of pions, kaons and protons, a dedicated proce-
dure (called share fraction rejection) was used to mitigate
the effects of merging (two tracks reconstructed as one), and
splitting (one track reconstructed as two). A share fraction
value for a pair is obtained as a ratio of the number of times the
two tracks share a cluster to the number of all clusters of both
tracks in the TPC. All pairs for which this fraction was larger
than 5% were rejected. In the � analysis, two main particle
pair selection criteria were used. To resolve two-track inef-
ficiencies associated with daughter tracks, such as the split-
ting or merging of tracks discussed above, a separation cut
was employed (the share fraction cut is defined for primary
tracks only): for each pair, the spatial separation between the
same-sign daughters was measured at several points through-
out the TPC (every 20 cm radially from 80 to 250 cm) and
averaged. If the average separation of either pair of like-sign
tracks was below 3 cm, the � pair was not used. Moreover,
the process of photon conversions to e+e− pairs, which pro-
duce a very sharp peak at (0, 0), is usually treated as non-
interesting in angular correlation analyses.2 In this work their
influence was intentionally minimized with dedicated exper-
imental selection criteria, which remove electron–positron
pairs with invariant mass me+e− < 2 MeV/c and polar angle
difference �θ < 0.008 rad.

3 Analysis

The correlation function for two particles, of type “1”
and type “2” (which in general may be non-identical), is
expressed as the inclusive two-particle distribution
P12(ϕ1,η1,ϕ2,η2) divided by the product of the inclusive
single-particle distributions P1(ϕ1,η1) and P2(ϕ2,η2)

3:

C(ϕ1,η1,ϕ2,η2) = P12(ϕ1,η1,ϕ2,η2)

P1(ϕ1,η1)P2(ϕ2,η2)
. (1)

2 By the conservation of momentum and energy, electron positron pairs
coming from gamma conversion move parallel to each other (both �η

and �ϕ are equal to zero). The angular width of the peak is only slightly
increased due to the detector resolution.
3 We note that the expression given by Eq. (1) is general and also
applicable to all two-particle correlations by substituting ϕ and η with
the quantities of interest.

We can interpret the distribution P12(ϕ1,η1,ϕ2,η2) as a
conditional probability to observe a particle with azimuthal
angle ϕ1 and pseudorapidity η1 if a particle with azimuthal
angle ϕ2 and pseudorapidity η2 is observed as well, and
distributions P1(ϕ1,η1) and P2(ϕ2,η2) as probabilities of
observing particles with ϕ1 and η1, and ϕ2 and η2, respec-
tively. In the absence of correlations, the ratio should equal
unity.

Therefore the experimental correlation function, includ-
ing physical two-particle correlations as well as effects from
single-particle acceptance, is constructed as

C(�η,�ϕ) = S(�η,�ϕ)

B(�η,�ϕ)
, (2)

where �η = η1 − η2 is the difference in pseudora-
pidity, �ϕ = ϕ1 − ϕ2 is the difference in azimuthal
angle, S(�η,�ϕ) is the distribution of correlated pairs
and B(�η,�ϕ) is the reference distribution, reflecting the
single-particle acceptance. S is constructed from particle
pairs coming from the same event

S(�η,�ϕ) = 1

Nsignal
pairs

d2Nsignal
pairs

d�ηd�ϕ
, (3)

where Nsignal
pairs is the number of pairs of particles in S. B

is constructed using an event mixing technique, where each
particle in the pair comes from a different event and can be
expressed as

B(�η,�ϕ) = 1

Nmixed
pairs

d2Nmixed
pairs

d�ηd�ϕ
, (4)

where Nmixed
pairs is the number of pairs of particles in B. Given

each of the S and B distributions are divided by the respec-
tive number of pairs, the reported distribution is a ratio of
probabilities, as defined in Eq. (1).

In order to improve the reference estimation, particles
from each event, selected according to Table 1, are combined
with particles from other events, for which the multiplicities
differ by no more than 5 tracks and primary vertex positions
differ by no more than 2 cm in the beam direction. Each event
is mixed with 10 events.

Each particle is weighted with a correction factor that
accounts for detector acceptance, reconstruction and parti-
cle identification efficiencies, as well as contamination by
secondary particles calculated using events from PYTHIA6
(Perugia-2011 tune) with particle transport performed via a
GEANT3 [30] simulation of the ALICE detector. Applied
corrections are pT-dependent and the correction method is
validated on simulated events.4 Therefore, the distributions

4 Correlation functions obtained from MC models after full ALICE
reconstruction chain, with all corrections applied, were compared to the
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Table 1 Track and secondary
vertex selection criteria

Selection variable Cut value

Common track selections

|η| ≤0.8

Number of TPC clusters ≥70

χ2 per cluster ≤4

Primary track selections

DCAxy to primary vertex ≤(0.0182 + 0.0350p−1.01
T ) cm

DCAz to primary vertex ≤2 cm

Particle identification Nσ,PID < 2, with additional rejection, see text

Secondary track selections (� and � daughters)

DCA of daughter track to primary vertex ≥0.06 cm

DCA between daughter tracks ≤1 cm

p (p) daughter 0.3 ≤ pT ≤ 4.0 GeV/c

π− (π+) 0.16 ≤ pT ≤ 4.0 GeV/c

Particle identification Nσ,TPC < 5

V 0 vertex selections (� and �)

|η| ≤0.8

DCA of V 0 to primary vertex ≤0.6 cm

Cosine of V 0 pointing angle ≥0.99

� mass acceptance window m�PDG − 0.0038 ≤ mV 0 ≤ m�PDG + 0.0038 GeV/c2

K0
s mass rejection window mV 0 /∈ (mK 0

s,PDG
− 0.01,mK 0

s,PDG
+ 0.01) GeV/c2

are considered unfolded to the particle level. The contam-
ination by secondary particles from weak decays (mostly
charged and neutral �) is estimated by varying the DCA cut
and found to be relevant, after applying corrections, only
for lambda particles. The related systematic uncertainty was
calculated from the lambda sample in which the weak decay
content was increased by 50%. The influence of misidentified
particles was estimated by applying alternative PID methods
for pions, kaons, and protons (i.e. by increasing the misiden-
tification rate by 100%) and varying the invariant mass win-
dow for lambdas as well as by taking the misidentification
fraction extracted from simulations into account.

4 Systematic uncertainty

In order to asses the systematic uncertainty connected to
the measurement, the selection criteria discussed in Sect. 2
were modified and for each new set of them the analysis
was repeated. The contribution from the different systematic
sources were added in quadrature. The correlation functions
were found to be rather insensitive to changes of selection cri-
teria, yielding total uncertainty from about 1.5% for pions to
7.5% for lambdas. Due to different methods of particle recon-

Footnote 4 continued
correlation functions obtained on the particle level. The correction
procedure was tested on PYTHIA6 Perugia-0 and Perugia-2011 tunes.

struction for neutral lambdas (V 0s) and charged pions, kaons,
and protons (tracks) the calculation of systematic uncertainty
for each of them was done separately.

In the case of evaluation of the tracking uncertainty for
pions, kaons, and protons, an alternative track selection was
used, where two classes of tracks are combined in order to
avoid an azimuthally-dependent tracking efficiency due to
inactive SPD modules [31]. The first class requires for tracks
to have at least one hit in the SPD (as in the default track
selection). For tracks which do not fulfill this criterion, in
the second class, the primary vertex position is used as an
additional constraint in the global track fit. To assess the sys-
tematic uncertainties related to the particle identification, the
misidentification rate was doubled with respect to the val-
ues reported in Sect. 2. These uncertainties were found to be
lower than 0.5% for pions, 1% for kaons, and 2% for pro-
tons. Finally, for pions, kaons, and protons separate analyses
were performed for four the datasets collected, changing the
single-track inefficiencies. For like-sign pairs the results were
obtained separately for positive and negative particles.

The systematic uncertainty on V 0 selection was evaluated
by varying selection criteria discussed in Sect. 2; minimum
DCA ofV 0 to the primary vertex, maximal DCA of daughters
to the primary vertex, V 0 decay length and cosine of point-
ing angle. Based on Pythia Perugia-2011 calculations, this
increased or decreased the default content of fake V 0s in the
sample of 0.7% by a factor of 2 or 3, respectively. The invari-
ant mass window was varied in the systematic uncertainty
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Table 2 Summary of the main systematic uncertainties

Source Pions (%) Kaons (%) Protons (%) Lambdas (%)

Track selection
and efficiencies

<0.5 <2 <2 –

Particle
identification

<0.5 <1 <2 –

Dataset
comparison

<1 <1 <1 –

V 0 selection – – – <5

V 0 signal
extraction

– – – <4

Feed-down
(weak decays)

– – – <4

Sum 1.5 2.5 3 7.5

estimation procedure to ±0.0044 GeV/c2. To estimate the
systematic uncertainty of feed-down from weak decays the
selection on the DCA was removed, resulting in an increase
in the contamination coming from secondary particles from
17 to 26%. The uncertainty of the correction procedure on
PID efficiencies and contamination from secondary particles
on both tracks and V 0s are discussed in Sect. 3.

Table 2 summarizes the main sources of systematic uncer-
tainties of the measurement.

5 Results

The measured correlation functions for the four analyzed par-
ticle species (pions, kaons, protons, lambdas) are shown in
Fig. 1. In the measurement of correlations in pp collisions
at LHC energies a distinct near-side peak at (�η,�ϕ) about
(0, 0) is observed [4,32,33], which is a combination of at
least three effects: (i) fragmentation of hard-scattered par-
tons, (ii) resonance decays, and (iii) femtoscopic correlations.
(i) The fragmentation originating from low momentum-
transfer scatterings, sometimes referred to as mini-jets [34],
produces a broad structure extending at least over one unit
in �η and �ϕ. (ii) The decay of resonances contributes to
the near-side peak of the correlation function or produces
a ridge at �η = 0 (extended in �ϕ [4,35,36]), depend-
ing on the released kinetic energy of a given resonance. This
effect plays a significant role only for correlation functions of
unlike-sign particle pairs. (iii) The third effect, femtoscopic
correlations (an enhancement due to Bose–Einstein quantum
statistics for identical bosons, a suppression due to Fermi–
Dirac quantum statistics for identical fermions, as well as
Coulomb and strong final-state interactions), is present for
particles at low relative momenta. The shape of this effect in
�η�ϕ depends strongly on the mass of the particle type con-
sidered, as well as on the size of the particle-emitting system.
For pp collisions at ALICE this size was measured in great

detail with pions [37] and kaons [38]. The expected width of
the correlation peak produced by like-sign charged particles,
e.g., pions, is comparable to the one for the mini-jet peak. In
addition, by constraints on the energy–momentum conserva-
tion, an “away-side ridge” structure at �ϕ = π , with a mag-
nitude only weakly changing with �η, is produced as well.

For correlation functions (a)–(f) in Fig. 1 the baseline
reflecting the energy–momentum conservation is combined
with several expected physics mechanisms. For same sign
particle pairs of mesons (e)–(f), the near side peak is consis-
tent with the mini-jet mechanism combined with the Bose–
Einstein correlations. The away-side ridge is also prominent,
consistent with a mini-jet origin.

The particle–anti-particle correlations (a)–(d) also show
a mini-jet like structure on the near-side and a weak away-
side one. For pairs of non-identical particles Bose–Einstein
and Fermi–Dirac effects are not present; however, resonances
play a significant role in shaping the correlation function.
Baryon and meson correlations are qualitatively similar. The
only difference is the magnitude and width of the near side
peak, which is highest for kaons, lower for protons and lamb-
das, and lowest for pions. The shape and strength of the corre-
lation functions (a distinct near-side peak) in (a)–(f) suggest
that they might be dominated by significant mini-jet contri-
butions.

In contrast to like-sign meson correlations, the baryon–
baryon (combined with anti-baryon–anti-baryon) distribu-
tions for identical proton (g) and lambda (h) pairs show a
qualitatively different effect of a wide near-side depression
instead of the peak, combined with an away-side ridge. Such
a structure resembles the one associated with the baseline
global energy–momentum conservation. Thus, this strong
near-side suppression means that the mechanisms which
would produce a peak are either not present or produce a very
different correlation shape. On the other hand, a clear corre-
lation of particles with opposite baryon number (c) and (d) is
observed, resembling the structures observed for unlike-sign
mesons. Based on the results of these studies we can draw
the following conclusion: if we consider a process of mini-jet
fragmentation as the one producing a strong, positive near-
side correlation then baryon–anti-baryon pairs are produced
in mini-jets (see (c), (d)). However, producing more than one
such a pair in a single fragmentation is strongly suppressed
(see (g), (h)).

There are several hypotheses that could explain the depres-
sion observed for baryon–baryon pairs. First, it may be that
we are seeing the effects of Fermi–Dirac statistics originat-
ing from the wave-function (anti-)symmetrization for iden-
tical baryon pairs for triplet (singlet) pair spin combinations
[37,39]. However, using an effective source size of about
1.5 fm (comparable to the measured source size for pions
[37]), the repulsive effects of Fermi–Dirac statistics should
be limited to baryon pairs with momentum differences of
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Fig. 1 Correlation functions
for identical-particle pairs:
π+π+ + π−π−,
K+K+ + K−K−, pp + pp,
�� + �� (left panel) and
particle–anti-particle pairs:
π+π−, K+K−, pp, �� (right
panel). Plots are mirrored
around �η = 0
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less than 200 MeV/c – a far too short range to explain our
observations. The Coulomb and strong final-state interac-
tions would also be convoluted with the quantum statistics
effect (the combination of those three effects is referred to
as a “femtoscopic” effect [37,39]). In panel (g) an additional

peak at (0, 0) with a height of ∼0.2 and a width compara-
ble to the size of a single bin is observed. The origin of that
structure was studied by measuring the “femtoscopic” corre-
lation function in momentum space and transforming it with a
simple Monte Carlo procedure to (�η,�ϕ) space. Such pro-
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Fig. 2 Correlation functions
for combined pairs of (left)
p� + p� and (right) p� + p�.
Plots are mirrored around
�η = 0
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Fig. 3 �η integrated projections of correlation functions for combined pairs of (left) pp + pp, p� + p�, and �� + �� and (right) pp, p� + p�,
and ��. Statistical (bars) and systematic (boxes) uncertainties are plotted

cedure shows that this peak can be qualitatively and quantita-
tively reproduced by “femtoscopic” correlations mentioned
above. Moreover, the Fermi–Dirac suppression cannot be
present for non-identical baryon pairs, like p� + p�, which
were also measured. The results are shown in Fig. 2. One
observes that the characteristic shape of anti-correlation is
preserved also in this case.

The comparison of all baryon pairs, shown as a func-
tion of �ϕ and integrated over �η, can be seen in Fig. 3.
The shape of the correlation function for all studied baryon–
baryon (and baryon–anti-baryon) pairs is similar, regardless
of particles’ electric charge. Therefore, we must reject the
hypothesis that Fermi–Dirac quantum statistics is the cause
of the observed depression for baryon–baryon pairs. Similar
conclusions were reached based on observations of baryon
production in e+e− collisions, see Ref. [40]. The depression
is a characteristic attribute connected solely to the baryonic
nature of a particle.

In order to check whether some fraction of the observed
effect depends on the momentum transfer during the inter-
action, the pp + pp sample was divided into two transverse
momentum ranges. The correlation functions obtained with

these selection criteria are shown in Fig. 4 and show even
stronger anti-correlation for higher transverse momenta of
particles in the pair.

An alternative interpretation of the observed depletion is
that this structure is the manifestation of a local conserva-
tion of baryon number influencing the hadronization pro-
cess, as argued in Ref. [40] in the analysis of e+e− collisions
at

√
s = 29 GeV. By “local” we denote the production of

particles close together in the phase-space (e.g. in the same
mini-jet), as opposed to “global” conservation which applies
to all particles produced in an event. In string hadronization
models, the “local” mechanism requires that two baryons
produced in a single fragmentation are separated by at least
one particle with a different baryon number [40]. The pro-
duction of two baryons in a mini-jet would also be suppressed
if the parton energy is small when compared with the mini-
mum energy required to produce four baryons (2 particles + 2
anti-particles, the minimum amount to satisfy the law of local
baryon number conservation when two baryons are produced
in single mini-jet). At a collision energy of

√
s = 29 GeV it

was reasonable to assume that the energy constraint would
dominate. However, at LHC energies this constraint should
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(a) (b) (c)

Fig. 4 Correlation functions for combined pairs of pp + pp for two transverse momentum intervals a 0.5 < pT < 1.25 GeV/c and b 1.25 < pT <

2.5 GeV/c. Panel c shows �η integrated projections. Statistical (bars) and systematic (boxes) uncertainties are plotted

have less of an impact on the observed structures. We tested
this expectation by employing Monte Carlo generators which
include local baryon number conservation: PYTHIA (6.4 and
8) and PHOJET (1.12). The results of MC simulations are
discussed in the next section.

6 Comparison to Monte Carlo models

The correlation functions measured in this work are com-
pared to predictions of Monte Carlo (MC) models. The fol-
lowing MC event generators were used: PYTHIA6.4 tunes
Perugia-0 and Perugia-2011 [24,25], PYTHIA8 Monash
tune [41,42] and PHOJET version 1.12 [43]. PYTHIA,
widely used for simulations of high-energy collisions, com-
bines perturbative QCD for large momentum-transfer inter-
actions and phenomenologically motivated models for the
description of soft hadronic interactions; the Lund string frag-
mentation model [44] is used for hadronization. PYTHIA has
many free parameters which are optimized to best describe
specific measurements. These parameters are collected in
predefined “tunes”. Perugia-0 was tuned for the best descrip-
tion of data up to

√
s = 1.96 TeV [25]. Perugia-2011 takes

into account some of the early LHC results at
√
s = 900 GeV

and 7 TeV, along with increased baryon production (espe-
cially of strange baryons) as well as removing suppression
of strangeness in fragmentation models [25]. The PYTHIA8
Monash tune [41,42] includes further improvements to the
parameters by comparing them with both e+e− collisions
and recent pp LHC data, including strange particle and
baryon production rates. The PHOJET generator success-
fully describes experimental data measured at collision ener-
gies up to

√
s = 1.8 TeV; however, it has not been updated to

reproduce LHC data. PHOJET uses the Dual Parton Model
[45] for the simulation of particle production in low-pT pro-
cesses and thus it is interesting to consider in addition to
PYTHIA. Similarly to PYTHIA, it incorporates the Lund
string fragmentation model.

In Figs. 5 and 6 �η integrated correlation function pro-
jections onto �ϕ, integrated over |�η| < 1.3 for particle–
anti-particle pairs and for particle–particle pairs (combined
with anti-particle–anti-particle pairs) from four different MC
calculations are compared to ALICE data.

The MC models reproduce the experimental results rea-
sonably well for mesons. It should be noted that none of the
models include quantum-statistics effects, therefore a smaller
correlation strength in the near-side region is expected for
correlation functions of identical particles in comparison to
the experimental data. Both tunes of PYTHIA6.4, Perugia-
0 and Perugia-2011, give the results which are close to the
experimental data (Perugia-0 for pions and Perugia-2011 for
kaons). They were also successfully used to describe the
non-femtoscopic correlations underlying the Bose–Einstein
statistics signal in femtoscopic measurements of identical
pions [37] and identical kaons [38], respectively.

However, the models fail to reproduce baryon correlations
(both particle–particle and particle–anti-particle pairs). No
depression is observed for protons and lambdas for any of
the studied models. Instead, a near-side peak is present for
particle–particle pairs. Furthermore, additional studies were
performed, concluding that the anti-correlation cannot be
reproduced by tuning parameters of PYTHIA6.4. Apparently
all models frequently produce two baryons close in phase-
space (within the mini-jet peak). These results argue against
the hypothesis that the combination of energy and baryon-
number conservation is enough to explain the observed near-
side anti-correlation, since both local baryon number and
energy conservation laws are implemented in all studied
models.

For baryons, pronounced differences are also seen for
particle–anti-particle pairs; the magnitude of the near-side
peak is much higher in all MC models than in ALICE data.
The universality of this behaviour for all baryon pairs is fur-
ther confirmed with the studies of the proton–lambda correla-
tions, as shown in Fig. 7. The results show that p�+p� cor-
relation functions follow the trend common for all baryon–
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(a)

(c)

(b)

(d)

Fig. 5 �η integrated projections of correlation functions for a π+π−,
b K+K−, c pp, and d �� pairs obtained from ALICE data and four
Monte Carlo models (PYTHIA6 Perugia-0, PYTHIA6 Perugia-2011,

PYTHIA8 Monash, PHOJET) at
√
s = 7 TeV. Bottom panels show

ratios of MC models to ALICE data. Statistical (bars) and systematic
(boxes) uncertainties are plotted

baryon pairs, and correlation functions of p� + p� behave
similarly to the baryon–anti-baryon correlations. The away-
side correlation is similar to the experimental data for all pair
combinations.

7 Conclusions

Angular correlations of identified particles were analyzed in
pp collisions at

√
s = 7 TeV recorded with the ALICE exper-

iment. The studies were done separately for particle/anti-
particle pairs (for like-sign and unlike-sign pairs) and for four
particle species (pions, kaons, protons, lambdas). A signif-
icant depression around (�η,�ϕ) ≈ (0, 0) is observed for
the baryon–baryon and anti-baryon–anti-baryon pairs, which
is not seen for baryon–anti-baryon pairs.

The analysis was complemented by Monte Carlo model
calculations using the PYTHIA6.4 Perugia-0, Perugia-2011,
PYTHIA8 and PHOJET (v. 1.12), two event generators

designed to simulate high momentum fragmentation (i.e.
jets). While the correlation functions of mesons are well-
reproduced by the studied models, those of baryons in simu-
lations are significantly different than those in collision data.
The most surprising result is obtained for baryon–baryon
(antibaryon–antibaryon) pairs where the models are unable to
reproduce even qualitatively the depletion which is observed
experimentally. In the case of baryon–antibaryon pairs the
correlations are qualitatively comparable, however the simu-
lated ones are much stronger than those observed in collision
data.

The observed differences can therefore mean that either
the models describe the hadronization process properly but
the jet fragmentation is not the dominant mechanism involved
in the production of particles found in the measured pT range
(pT < 2.5 GeV/c), or the fragmentation mechanisms used in
PYTHIA and PHOJET are incomplete. The latter scenario
would further suggest that some additional, not yet identi-
fied mechanism must exist, which suppresses the production
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(a)

(c)

(b)

(d)

Fig. 6 �η integrated projections of correlation functions for com-
bined pairs of a π+π+ + π−π−, b K+K+ + K−K−, c pp + pp and
d �� + ��, obtained from ALICE data and four Monte Carlo mod-

els (PYTHIA6 Perugia-0, PYTHIA6 Perugia-2011, PYTHIA8 Monash,
PHOJET). Bottom panels show ratios of MC models to ALICE data.
Statistical (bars) and systematic (boxes) uncertainties are plotted

(a) (b)

Fig. 7 �η integrated projection of correlation functions for com-
bined pairs of (left) p� + p� and (right) p� + p� obtained from
ALICE pp collision data and four Monte Carlo models (PYTHIA6

Perugia-0, PYTHIA6 Perugia-2011, PYTHIA8 Monash, PHOJET) at√
s = 7 TeV. Clear anti-correlation is observed for all baryon pairs.

Statistical (bars) and systematic (boxes) uncertainties are plotted
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of more than one baryon–anti-baryon pair during a single
fragmentation. Therefore, this may suggest the need to mod-
ify particle production mechanisms and/or the modification
of fragmentation functions in Monte Carlo models.
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