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1. Introduction

The process of combustion appears in many
practical situations in several industrial
branches like in the automotive and the aero-
nautic industries. The need to decrease fuel
consumption and pollutants due to this process
have made the study of combustion models an
increasingly active scientific research area.

The combustion phenomenon can be char-
acterized by a high and irreversible heat re-
lease process with a non-linear reaction rate.
The study of this phenomenon requires a de-
scription of the chemical reaction schemes (pol-
lutants and combustion products yielding ig-
nition, flame stability, etc.), chemical species
mass transfer (by diffusion, convection and tur-
bulent transport, etc.), heat transfer and the
description of the flow field [11]; therefore, this
process involves a multidisciplinary study.

Analytic solutions for combustion are known
for only a few simple models. In order to over-
come this difficulty several numerical methods
have been proposed and considerable advances
have been made [11]. However, the numerical
simulation of more complex combustion models
remains a great challenge. The numerical mod-
els have to deal with high gradients of temper-
ature, species mass fraction and velocity fields.
Moreover, the chemical scales of length and
time as well as the species mass fractions can
differ by many orders of magnitude.

The Finite Element Method (FEM) has been
successfuly developed to solve transient flows
and has gained significant popularity. This
increasing popularity can be justified by the
mathematical tools developed to analyze the
FEM. This mathematical basis permits one to
estimate local and global errors, convergence

and stability of several problems [5, 6, 13].
In this work we present a numerical study of

a set of reacting Navier-Stokes equations. The
model describes the molecular mixture and the
reaction-diffusion of two chemical species (fuel
and oxidizer) yielding a product. The chemi-
cal scheme is supposed to be a single-step, ir-
reversible, exothermic Arrhenius type reaction
of a incompressible fluid [2]. The time inte-
gration follows the explicit Runge-Kutta three-
stage scheme for second order time approxima-
tion. The FEM is used to the spacial discretiza-
tion with triangular elements. A first order lo-
cal error estimate is obtained for the aproxima-
tion of the exact solution of the problem by the
FEM.

2. Governing Equations

The set of non-linear governing equations
which describes a single-step, binary, irre-
versible, exothermic reaction between two
species F and O to yield a product P as

vf [F ] + vo[O] ⇒ vp[P ] + heat

can be expressed such as follows [2, 4, 11]. The
governing equations for momentum and mass
for an incompressible Newtonian fluid are ex-
pressed by the two-dimensional Navier-Stokes
equations in the stream function-vorticity for-
mulation as

∂ω

∂t
+ u · ∇ω =

1

Re
∆ω, (1)

∆ψ = ω, (2)

where Re is the nondimensional Reynolds num-
ber, ψ and ω are the associated stream function
and vorticity, respectively, related to the veloc-
ity u by

u =

„
− ∂ψ

∂x2
,

∂ψ

∂x1

«
, ω =

∂u2

∂x1
− ∂u1

∂x2
.



The overall reaction rate is described by the
Arrhenius kinetics law of the form

ẇ = K e−Ze/T ,

where K is the frequency factor, Ze the non-
dimensional Zel’dovich’s number and T the
absolute temperature. The diffusion-reaction
equations for the mass fractions Ck of each of
the species k = {F, O, P}, and the temperature
T are given by
∂Ck

∂t
+ u · ∇Ck −

1

ReSck
∆Ck = ∓vkDaCF CO e−Ze/T (3)

∂T

∂t
+ u · ∇T − 1

RePr
∆T = vP HeDaCF CO e−Ze/T (4)

where vk and Sck are the molar stoichiometric
coefficients and the Schmidt number, respec-
tively, for k = {F, O, P}. Da and Pr are the
Damköhler and the Prandtl non-dimensional
numbers, respectively, and He is the heat re-
lease parameter. The minus sign in equation
(3) is used to k ∈ {F,O} and the plus sign to
k ∈ {P}.

Figure 1: Initial condition: a two-sided lid-driven
cavity flow.

2.1 Boundary Conditions

We formulated the problem as a driven cav-
ity flow (see Figure 1). The non-slip boundary
conditions associated to equations (1)-(4) are
taken to be

ψ = 0,
∂ψ

∂η
= 0,

∂Ck

∂η
, = 0 k ∈ {F, O, P}, ∂T

∂η
= 0,

where η is the unit outer normal to the fron-
tiers.

3. Local error estimate

In this section, we show a local error esti-
mate for the approximation of the exact solu-

tion of (1)-(4) by FEM, which is a revised result
from Zavaleta [14]. Local error estimates for
the Navier-Stokes equation in polygon regions
can be found in [7, 8]. We observe that the
vorticity and the stream function are solved in-
dependently of the species concentrations and
temperature in the problem. Thus, we as-
sume that the vorticity and stream function are
known.

More specific, we consider Ω a bounded open
set in R2 with sufficient smooth boundary ∂Ω
and external unit normal η. The problem is
then reduced to a system formed just by equa-
tions (3) and (4) with k ∈ {F, O}. Here,
Ci = Ci(x, t) : Ω × [0, τ ] → R for i ∈ {F, O},
T = T (x, t) : Ω × [0, τ ] → R and the known
velocity v = v(x, t) : Ω × [0, τ ] → R2. We
assume homogeneous Neumann boundary con-
ditions and the initial conditions

CF (x, 0) = CF0 , CO(x, 0) = CO0 , T (x, 0) = T0,

∀ x ∈ Ω. Moreover, we set the non-negative
constants αF , αO and αT as vF Da, vODa and
vP HeDa, respectively; we take νF = 1

ReScF
,

νO = 1
ReScO

and νT = 1
RePr .

Here, the aim is to find a local error esti-
mate for the approximate solution of the prob-
lem generated by the finite element method.
In order to do this, we establish the variational
formulation of the problem in an appropriate
Hilbert space. In the sequel, we introduce the
semi-discretized problem, which is defined in
the finite element space. We want to estimate
the difference between the solution of the vari-
ational problem (exact solution) and the solu-
tion of the semi-discretized problem (approxi-
mate solution).

The variational problem is to find y =
(CF , CO, T ) ∈ (H1(Ω))3 such that, for all
φ ∈ (H1(Ω))3 we have
fi

∂y

∂t
, φ

fl
+ 〈u · ∇y, φ〉 − 〈D∆y, φ〉 = 〈f(y), φ〉 (5)

y(0) = y0 (6)

where D = diag(νF , νO, νT ) is a diagonal
matrix, 〈·, ·〉 is the usual inner product in
(L2(Ω))3 and fk(y) = ∓αkCF COe−Ze/T (t) with
k ∈ {F, O, T} and the “+” sign is used just
when k = T .

The semi-discretized problem is constructed
in the finite element space (Sh)3 which is a fi-
nite dimensional space parameterized by the
small parameter h. We illustrate the basic
ideas used to construct Sh [3, 12]. For each
h > 0 let Th be a partition of Ω (the closure



of Ω) into disjunct closed triangles κ such that
the diameter of κ is bounded by h. In the Th,
two triangles are either disjoint or share exactly
either one side or one vertex.

We consider Th an uniformly regular family
of triangles. For each h > 0, the finite dimen-
sional space Sh is defined by

Sh = {uh ∈ C(Ω) : uh|κ ∈ P ∀ κ ∈ Th}, (7)

where P is the space of the polynomials in two
variables of degree less or equal to one.

Then, the semi-discretized problem is to find
ỹh = (C̃Fh, C̃Oh, T̃h), ỹh : [0, τ∗] → (Sh)3
such thatfi

∂ỹh

∂t
, φh

fl
+ 〈u · ∇ỹh, φh〉 − 〈D∆hỹh, φh〉 =

〈f(ỹh), φh〉 (8)

ỹh(0) = ỹh0 (9)

for all φh ∈ (Sh)3 and t ∈ ]0, τ ]. Here, ỹh0
is the approximation of y0 in the finite element
space and the discrete Laplace operator ∆h :
(Sh)3 → (Sh)3 is defined by

〈−∆hψ, φ〉 = 〈∇ψ, ∇φ〉 , ∀ φ ∈ (Sh)3. (10)

We introduce the orthogonal projection opera-
tors Ph : L2(Ω) → Sh and Rh : H1(Ω) → Sh.
These operators satisfy the following estimates
for all u ∈ H l+1(Ω), 0 ≤ l ≤ 1 [12]:

‖u− Phu‖L2(Ω) + ‖u−Rhu‖L2(Ω)

+h
`‖u− Phu‖H1(Ω) + ‖u−Rhu‖H1(Ω)

´

≤ Chl+1‖u‖Hl+1(Ω) (11)

To prove the local error estimate we will need
the two following Lemma’s. We will use ‖·‖ and
〈·, ·〉 to the norm and inner product in (L2(Ω))3,
respectively. Moreover, ‖ · ‖m denote the norm
on (H1(Ω))3.

Lemma 1. Let Ph : (L2(Ω))3 → (Sh)3 be the
orthogonal projection operator. The orthogonal
projection yh of the solution of (5)-(6) satisfies
fi

∂yh

∂t
, φh

fl
+ 〈Phu · ∇yh, φh〉+

D
Phu · ∇y⊥h , φh

E

−〈D∆hyh, φh〉 −
D
D∆y⊥h , φh

E
= 〈Phf(y), φh〉 (12)

yh(0) = Phy(0) (13)

∀ φh ∈ (Sh)3 with y = yh + y⊥h
.= Phy + (I −

Ph)y.

Lemma 2. If wF = CFh − C̃Fh, wO = COh −
C̃Oh and wT = Th − T̃h, then

fi(y)− fi(ỹh) = ±αi

“
wF wO + wF C̃Oh + wF C̃⊥Oh

+wOC̃Fh + C̃FhC⊥Oh + wOC⊥Fh

+C⊥FhC̃Oh + C⊥FhC⊥Oh

”
e−Ze/|T̃h|

±αiCF CO

“
e−Ze/|wT +T̃h+T⊥h |e−Ze/|T̃h|

”
, (14)

where the sign ”+” corresponds to i = T .

In the following theorem, we use Ci with i
a positive integer to denote various constants
which occurs in the arguments.

Theorem 1. Let y the solution of (5)-(6), ỹh
the solution of (8)-(9) and we assume y ∈
(H2(Ω))3. Then, there exists an interval [0, τ ]
and a Cτ = C(τ) such that

‖y − ỹh‖ ≤ Cτh, 0 ≤ t ≤ τ. (15)

Proof. Take y− ỹh = y−Phy + Phy− ỹh and
from (11) we have

‖y−Phy‖ ≤ Ch‖y‖1, ‖y−Phy‖ ≤ Ch2‖y‖2. (16)

Thus, to establish the Theorem we have to
show that exists a constant Cτ such that
‖Phy − ỹh‖ ≤ Ch. To do this, we define
w = yh−ỹh = (wF , wO, wT ). Subtracting (8)
of (12), taking φh = wi and using the Lemma
2, we can obtain the inequality

1

2

d

dt
‖w‖2 +

X

i

νi‖∇wi‖2 ≤
X

i

|〈Phv · ∇wi, wi〉|

+
X

i

˛̨
˛
D
Phv · ∇C⊥ih, wi

E˛̨
˛+
X

i

|νi|
˛̨
˛
D
∇C⊥ih,∇wi

E˛̨
˛

+
X

i

|αi|
˛̨
˛
D
PhwF COe−Ze/|T̃h|, wi

E

+
D
PhCF wOe−Ze/|T̃h|, wi

E
−
D
PhwF wOe−Ze/|T̃h|, wi

E

+
D
PhCF C⊥Ohe−Ze/|T̃h|, wi

E
−
D
PhC⊥FhC⊥Ohe−Ze/|T̃h|, wi

E

−
D
PhwF C⊥Ohe−Ze/|T̃h|, wi

E
+
D
PhC⊥FhCOe−Ze/|T̃h|, wi

E

−
D
PhC⊥FhwOe−Ze/|T̃h|, wi

E
+

D
PhCF CO

“
e−Ze/|wT +T̃h+T⊥h | − e−Ze/|T̃h|

”
, wi

E˛̨
˛

Now, taking estimates in the Sobolev norms
the last inequality yields

1

2

d

dt
‖w‖2 + ν′‖∇w‖2 ≤ C1‖w‖2 + C2‖w‖‖∇w‖2

+C3‖w‖3 + C4h
4 + ε

„
3

2
h2 + 1

«
‖∇w‖2 + C5h

2 (17)

where C1, C2, C3, C4, C5, ν
′ and ε are positive

constants. For ε and h sufficiently small we
have C4h

4 is small compared to C5h
2 and,

ν ′ > ε
(

3
2h2 + 1

)
. Then, we have ν ′′ = ν ′ −

ε
(

3
2h2 + 1

)
> 0 and

d

dt
‖w‖2 + 2ν′′‖∇w‖2 ≤ 2C1‖w‖2 +

2C2‖w‖‖∇w‖2 + 2C3‖w‖3 + 2C4h
2 (18)

From the theory of differential inequalities, for
all (h, τ), there exists an interval [0, s] such
that ∀ t ∈ [0, s] we have

‖w‖ ≤ ν′′

2C2
. (19)



Hence, we see that

d

dt
‖w‖2 ≤ C1‖w‖2 + C6h

2. (20)

We use the Gronwall’s Lemma to find

‖w‖ ≤
r

C6

C1
heC1τ/2 ≤ ν′′

2C2
(21)

provided h ≤
q

C1
C6

ν′′
2C2

e−C1τ/2 Now, by contradi-
tion, we can conclude that ‖w‖ ≤ Cτh is valid
for all t ∈ [0, τ ].

4. Numerical results

In this section, numerical results are presented
for mixing flows including chemical reaction.
We show the evolution of the concentration of
the reactants and product and the temperature
and reaction rate due to a set of parameters.

In the numerical simulation we consider a
square box [0, 1] × [0, 1]. Initially, the two re-
actants F (fuel) and O (oxidizer) are placed
in contact as shown in (Fig. 1). We assume
that the diffusivities Di of the initial mixed
quantities are equal to the viscosity of the
fluid. Therefore, we have taken Sci = 1 for
i ∈ {F, O, P}. We take Pr = 1, He = 10,
Ze = 7 and the molar stoichiometric coeffi-
cients to be vF = vO = vP = 1.

4.1 Spatial Discretization

For the spatial discretization with the FEM, we
apply the Galerkin’s method [15, 16]. The two-
dimensional computational domain Ω is dis-
cretized using triangular linear elements. A
non-uniform 65× 65 grid points has been used
such that there is a cell concentration near the
cavity walls. Hence, inside each element the
variables are approximated as

ω ≈ ωe = NJ(ξ, η)ωJ(t), ψ ≈ ψe = NJ(ξ, η)ψJ(t),

Ck ≈ Ce
k = NJ(ξ, η)CJ

k (t), T ≈ T e = NJ(ξ, η)T J(t),

where ωJ , ψJ , CJ
k , T J are, respectively, the

variables ω, ψ, Ck and T taken in the node J ;
as before, k ∈ {F, O, P}. Moreover, we have
assumed the following approximation in each
element

Ce
F Ce

Oe−Ze/T e ≈
X

J

NJCJ
F (t)CJ

O(t)e−Ze/T J (t).

A Galerkin approximation solution to the set
of equations (1)-(4) is given using a variational
formulation of the problem. Then, if we use
the natural coordinate system we can write the

element equations as

[ML]{Ẇ}+ ([B(ψ)]− [C(ψ)]) {W} = − 1

Re
[K]{W},

[K]{Ψ} = [M ]{W},
[ML]{Ċk}+ ([B(ψ)]− [C(ψ)]) {Ck}+

1

ReSck
[K]{Ck}

= ∓vkDa[M ]{H},
[ML]{Ṫk}+ ([B(ψ)]− [C(ψ)]) {Tk}+

1

RePr
[K]{Tk}

= vP HeDa[M ]{H},
where the point indicates temporal derivative,
{W}, {Ψ}, {Ck} and {T } are column vectors
whose components are the nodal variable ωJ ,
ψJ , CJ

k and TJ , respectively. The other matri-
ces have the following components

Mi,j =
∆x∆y

4

Z 1

−1

Z 1

−1

NiNj dξdη

Bi,j =

Z 1

−1

Z 1

−1

Ni
∂ψe

∂η

∂Nj

∂ξ
dξdη

Ci,j =

Z 1

−1

Z 1

−1

Ni
∂ψe

∂ξ

∂Nj

∂η
dξdη

Ki,j =

Z 1

−1

Z 1

−1

„
∂Ni

∂ξ

∂Nj

∂ξ
+

∂Ni

∂η

∂Nj

∂η

«
dξdη

The matrix [ML] is the known lumped mass
matrix associated to the consistent mass matrix
[M ]. This approximation makes the compu-
tational process much simpler and less expen-
sive because it allows the application of explicit
methods [10, 15, 16].

4.2. Time-stepping scheme

We have seen that FEM, when applied to the
problem under study, yields EDO’s systems
which have to be solved. In order to solve
these EDO’s with high accuracy and low stor-
age requirements the Runge-Kutta method was
chosen. To extend the stability region and to
obtain second order time approximation three
stages are employed [9].

4.3. Simulations

Here, we present some results of simulations
(see Figure 2). Initially, the two reactants F
(fuel) and O (oxidizer) are placed in contact
as shown in Figure 1. We assume that the
diffusivities Di of the initial mixed quantities
are equal to the viscosity of the fluid. There-
fore, we have taken Sci = 1 for i ∈ {F,O, P}.
We have set Re = 400, Pr = 1, He = 10
and the molar stoichiometric coefficients to be
vF = vO = vP = 1.



Figure 2: Simulation results for Re = 400, Pr = 1, Sc = 1, Ze = 6 and He = 10: (a)
temperature evolution; (b) reaction rate evolution; (c) fuel mass fraction evolution; (d) product
mass fraction evolution; (e) stationary horizontal velocity; (f) stationary vertical velocity.



We can observe that the Damköhler number
changes significantly the reaction rate behav-
ior, as shown in Figure 2(b). The reaction rate
increases rapidly at the beginning of the pro-
cess and then it decreases slowly until all fuel
is consumed. As is expected, increasing Da in-
creases the reaction rate. This implies increase
of the temperature and product formation (see
Figure 2(a) and Figure 2(d)).

5. Conclusions

In this work we have applied FEM to the nu-
merical simulation of reacting flows in a two-
sided lid-driven cavity. A non-uniform grid and
the a Runge-Kutta three time-stepping scheme
were choose to improve the stability and the
simplicity of the code. The numerical results
show how changes in the Damköhler affect the
mixing and reaction process. Furthermore,
the mathematical nature of FEM has been ex-
plored here. We have shown a local error esti-
mate for the approximation of the solution of
the problem with FEM. This estimate of order
h is valid only for small t and h. In [7], it is ob-
served that the constant in the estimate of the
local error grows exponentially with time. In a
future work we intend to establish global error
estimates for the solutions based on FEM.
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