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Optimization Point Cloud in Keyframe-Based SLAM Using Fusion Information

RESUMO

SLAM (do inglês Simultaneous Localization and Mapping) Monocular baseado em Key-

frames é uma das principais abordagens de SLAM Visuais, usado para estimar o mo-

vimento da câmera juntamente com a reconstrução do mapa sobre frames selecionados.

Estas técnicas representam o ambiente por pontos no mapa localizados em um espaço

tri-dimensional, que podem ser reconhecidos e localizados no frame. Contudo, estas téc-

nicas não podem decidir quando um ponto do mapa se torna um outlier ou uma informa-

ção obsoleta e que pode ser descartada, ou combinar pontos do mapa que correspondem

ao mesmo ponto tri-dimensional. Neste trabalho, apresentamos um método robusto para

manter um mapa refinado. Esta abordagem usa o grafo de covisibilidade e um algoritmo

baseado na fusão de informações para construir um mapa probabilístico, que explicita-

mente modela medidas de outlier. Além disso, incorporamos um mecanismo de poda

para reduzir informações redundantes e remover outliers. Desta forma, nossa abordagem

gerencia a redução do tamanho do mapa, mantendo informações essenciais do ambiente.

Finalmente, a fim de avaliar a performance do nosso método, ele foi incorporado ao sis-

tema do ORB-SLAM e foi medido a acurácia alcançada em datasets publicamente dis-

poníveis que contêm sequências de imagens de ambientes internos gravados com uma

câmera monocular de mão.

Palavras-chave: Information Fusion, Robot Vision, Visual SLAM, Keyframe-Based.



ABSTRACT

Keyframe-based monocular SLAM (Simultaneous Localization and Mapping) is one of

the main visual SLAM approaches, used to estimate the camera motion together with the

map reconstruction over selected frames. These techniques based on keyframes represent

the environment by map points located in the three-dimensional space that can be rec-

ognized and located in the frames. However, many of these techniques cannot combine

map points corresponding to the same three-dimensional point or detect when a map point

becomes outlier and an obsolete information. In this work, we present a robust method to

maintain a refined map that uses the covisibility graph and an algorithm based on infor-

mation fusion to build a probabilistic map, which explicitly models outlier measurements.

In addition, we incorporate a pruning mechanism to reduce redundant information and re-

move outliers. In this way our approach manages the map size maintaining essential infor-

mation of the environment. Finally, in order to evaluate the performance of our method,

we incorporate it into an ORB-SLAM system and measure the accuracy achieved on pub-

licly available benchmark datasets which contain indoor images sequences recorded with

a hand-held monocular camera.

Keywords: Information Fusion. Robot Vision. Visual SLAM. Keyframe-Based.
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1 INTRODUCTION

Humans have always dreamed of building skillful and intelligent machines that are

subject to their command and can take the annoying, tedious and dangerous jobs that are

repetitive, tiresome and dangerous, where the human cognitive abilities are not necessary

and human lives are exposed to risks. Selection, transportation, monitoring and delivery

of products as fast as possible in e-commerce companies with enormous warehouses and

many customers; observation and monitoring of potentially dangerous situations such as

protests or large scale sport events; inspection of damaged nuclear reactors; removal of

landmine; deactivate bombs in the case of terrorist attacks; explore the extensive space

and the deep sea; search, location and rescue of survivors after natural disasters such as

earthquakes, fires or landslides in tunnels under the soil are some of them. For these jobs

the idea of using robots is promising. These machines with certain intelligence could be

interacting, assisting and exploring in homes and schools; in hospitals and factories; on

other planets and in the oceans. However, developing a robot capable to replace a human

on these scenarios is a very complex and challenging task.

In general, building robots with such skills requires the solution of three tasks,

which are mapping, localization and path planning (THRUN; BURGARD; FOX, 2005).

Firstly, mapping is the problem of interpreting and integrating the knowledge gathered

with the robot’s sensors into a given representation known as map, which can be ma-

nipulated. For the most part of this representation falls into one of three main classes

(CADENA et al., 2016): occupancy grids, geometric maps, or landmark-based maps.

The mapping task is done while the robot is navigating an unknown environment. In

contrast to this, localization is the problem of estimating the pose of the robot in an al-

ready mapped area. Typically, two types of localization capabilities are distinguished

(CADENA et al., 2016) : position tracking or local localization, which is the ability of

tracking the correctly current pose when the initial pose is known; and global localization,

where the robot should be able to localize itself when its initial pose is unknown. Finally,

the path planning problem involves to answer the question of how to efficiently guide the

robot to a desired location. The route must be safe, free of obstacles and if possible avoid

regions with difficult traversing, such as narrow spaces. Unfortunately, these three tasks

cannot be solved independently of each other. Because, before a robot can answer the

question of what the environment looks like given a set of observations, it needs to know

from which locations these observations have been made. At the same time, it is hard to
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estimate the current pose of the robot without a map. In addition, planning a path to a

goal location is also tightly coupled with the information about the current robot’s pose

and the knowledge of what the environment looks like.

Figure 1.1: Tasks that need to be solved by a robot in order to acquire accurate models of
the environment. The overlapping areas represent different combinations of the mapping,
localization, and path planning tasks. Image extracted from (MAKARENKO et al., 2002).

Figure 1.1 shows all possible combinations of these tasks (MAKARENKO et al.,

2002). The simultaneous localization and mapping problem (SLAM) is when the robot

moves in an unknown environment and incrementally building a consistent map while

simultaneously determining its location within this map. Since robot motion is subject to

error, the mapping problem necessarily induces a robot localization problem. In this way,

SLAM is a chicken-and-egg problem: a map is needed for localization and a precise local-

ization is needed for mapping. Next, active localization problem is when the robot, based

on a known map, tries to recalculate the path to follow during its traversing in which it can

choose motions intended specifically to provide the opportunity to reduce the uncertainty

of its own pose. This skill is important for a robot that lacks an accurate source of odom-

etry. In contrast to this, exploration is the robot’s ability to navigate in an environment

where it does not have any knowledge. The robot must move to a region to gain as much

new information as possible in order to cover the environment and build a complete map

in the shortest possible time. The exploration directly affects the input of the robot sys-

tem. Finally, the center area of the diagram represents the so-called integrated approaches

which address mapping, localization, and path planning simultaneously. This means that

a robot can acquire sensor data by moving autonomously through its environment while

at the same time building a map. Furthermore, whenever the robot is moving, it considers

actions to improve its localization, to acquire information about unknown terrain and to

improve its map model by revisiting areas where it is uncertain about. In the end, the
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robot is assumed to have learned an accurate model of the whole environment as well

as determined its own pose relative to this model. However, performing the three main

necessary tasks to an autonomous robot is already a challenge.

1.1 Motivation

Maps serve as important resources to build truly autonomous robots by providing

them with the necessary relevant information about their environment. The use of maps

enables robots to perform their tasks more reliably, flexibly, and efficiently. Additionally,

maps allow limiting the error produced when estimating the robot’s states. In recent years

the interest in using cameras as main sensors in SLAM has increased and some authors

have been concentrating on building 3D maps using visual information (NEWCOMBE;

LOVEGROVE; DAVISON, 2011; ENGEL; SCHOPS; CREMERS, 2014; MUR-ARTAL;

MONTIEL; TARDOS, 2015). The reasons for this interest are not only because of their

low power consumption, small size and cost, but also for their ability to provide rich infor-

mation about the surrounding environment, such as color, texture, motion and structure.

In that sense, SLAM algorithms using visual information are known in the liter-

ature as Visual SLAM (DAVISON; KITA, 2001) and many of these methods represent

the scene as a set of sparse 3D landmarks corresponding to discriminative features in

the environment (e.g., points, lines, polygons) (LU; SONG, 2015; ZHOU et al., 2015;

PUMAROLA et al., 2017). Moreover, a common assumption underlying these represen-

tations is that the landmarks are distinguishable and provide descriptors which establishes

a data association between each measurement and the corresponding landmark. Thus, the

robot can operate for an extended period of time and revisit a place several times, while

new information is continuously added to the map. However, this is a problem since the

size of the map grows with the mapping process duration and not only with the size of

the area explored. Furthermore, new information can be repetitive or outlier and cur-

rent visual SLAM techniques are vulnerable to them. The inclusion of a single outlier

degrades the quality of the estimate, which in turn degrades the capability of discerning

outliers later on. Therefore, it is necessary to have approaches that can deal with repetitive

information and outliers to maintain a refined and accurate representation of the map.
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1.2 Objectives

This work proposes a new method to maintain a refined map through the pruning

of map points that can have a direct influence on the performance of the Visual SLAM

process, such as outliers generated from a poor depth estimate, or map points, which have

been visualized only in some frames and over time have become obsolete; and also deals

with repetitive information to maintain a good quality map and counteract the effect of

the frequent addition of features. Our method uses a covisibility graph (STUMM; MEI;

LACROIX, 2013) similar to the one employed by ORB-SLAM (MUR-ARTAL; MON-

TIEL; TARDOS, 2015) and an information fusion algorithm as Forster et al. (FORSTER;

PIZZOLI; SCARAMUZZA, 2014) or Pizzoli et al. (PIZZOLI; FORSTER; SCARA-

MUZZA, 2014), to reduce the number of outliers and combine repetitive information

in the map. Then, we represent the depth information of each map point as a mixture of

probability distributions and take advantage of the keyframe neighbourhoods created in

the covisibility graph to update these probabilities and thus maintain the highest possible

accuracy of depth estimation. Additionally to ensure a few outliers in the map and reduce

the number of redundant keyframes, a pruning policy based on the depth accuracy of the

map points is performed.

1.3 Organization

This dissertation is divided as follows: Chapter 2 reviews the fundamentals of

SLAM and Visual SLAM, presenting two Keyframe-Based SLAM methods: PTAM (KLEIN;

MURRAY, 2007) and ORB-SLAM (MUR-ARTAL; MONTIEL; TARDOS, 2015). Chap-

ter 3 introduces the core ideas of our method. Then, an overview of the proposed algo-

rithm is presented followed by its formal derivation to clarify in details each process of

our approach. Chapter 4 presents the tested environments used to appraise the present

work. Later, the results obtained by our approach are compared to the ORB-SLAM. The

differences between the tested techniques are highlighted and discussed. Finally, Chap-

ter 5 summarizes the result obtained of an extensive set of experiments and presents the

conclusions of this work.
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2 SLAM FOUNDATION

This chapter starts with a review of the foundation of simultaneous localization

and mapping techniques, describing the problem and introducing its mathematical formu-

lation. Then, the division of SLAM problem is introduced. In Section 2.2 we describe

a graph-based SLAM as an optimal strategy to represent the SLAM problem. In Section

2.3 we describe the use of visual sensors in SLAM problem and its advantages. In Section

2.4 we introduce a specific type of visual SLAM problem, which uses a monocular cam-

era. Finally, In Section 2.5 we introduce two main monocular SLAM methods. First, we

introduce the PTAM (KLEIN; MURRAY, 2007) and later ORB-SLAM (MUR-ARTAL;

MONTIEL; TARDOS, 2015).

2.1 SLAM

One of the most fundamental problems in robotics is the simultaneous localization

and mapping problem, better known in its abbreviated form as SLAM. The SLAM prob-

lem is generally considered as key requisite in the pursuit of building truly autonomous

robots. SLAM addresses the problem of a robot navigating an unknown environment.

While navigating, the robot perceives its environment and constructs a coherent map, later

this map is used in the deduction of its pose. The reason why SLAM is difficult arises

precisely from the interaction between the localization and the map building processes.

While for localization the robot needs to know a priori map, for map building the robot

needs to know its precise pose in the map. This is an example of the chicken-and-egg

problem where both actions are strongly dependent on each other.

Figure 2.1 shows the essential SLAM problem. Consider a robot in an instant of

time t with a state xt moving in an environment consisting of a population of k landmarks

denoted bym. The robot is equipped with proprioceptive sensors that can measure its own

motion ut and exteroceptive sensors that can take measurement of observations zk,t that

are defined as the relative location between robot with state xt and a nearby landmark mk.

The objective of the SLAM problem consists in the simultaneous estimation of the robot’s

states and the map of the environment. The robot’s state xt also is called robot’s pose

because it generally represents the pose of the robot (position and orientation), although

other quantities can be included, such as robot’s velocity, sensor biases and calibration

parameters. On the other hand the map (set of landmarks) is a representation of aspects
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of interest describing the environment in which the robot operates.

Figure 2.1: The essential SLAM problem. A simultaneous estimation of both robot and
landmarks locations is required. The true locations are never known or measured directly.
Observations are made between true robot and landmark locations. Image generated by
the author.
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Along the time the robot moves, increasing the uncertainty over its localization

due to the inherent noise in the sensor measurements and the uncertain about the motion,

therefore the estimation of the robot’s states and map are approximate. However, there

are many ways to model this uncertainty. For example, the extended Kalman filter SLAM

(EKF-SLAM) proposed by Smith et al. (SMITH; CHEESEMAN, 1986) represents the

uncertainty using an approximated Gaussian distribution, while the GMapping technique

proposed by Grisetti et al (GRISETTI; STACHNISS; BURGARD, 2007) uses a Rao-

Blackwellized particle filter scheme. In this way, the SLAM problem usually is described

by means of probabilistic tools like a Bayesian network.

Figure 2.2 shows the relations between the observed and the hidden variables

of this Bayesian network. The observed variables, the set of motion controls u1:t =

{u1, u2, ..., ut} and the set of observations z1:t = {z1, z2, ..., zt} are those ones that can

be directly measured. Hidden variables, the set of robot’s states x0:t = {x0, x1, ..., xt}

and the map m = {m1,m2, ...,mk} are the variables not directly measured by the robot
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and what a SLAM technique have to estimate. According to this model, the observed

variables are dependent of the hidden variables which can be inferred from the observed

ones.

Figure 2.2: The SLAM problem modeled as a Bayesian Network. The observed variables
(orange nodes) are the observations z1:t and motion controls u1:t, whereas the hidden
variables (yellow nodes) are the robot’s states x0:t and map of the environment m. Image
generated by the author.

xt−3 xt−2 xt−1 xt

m

zt−3 zt−2 zt−1 zt

ut−3 ut−2 ut−1 ut

· · ·· · ·

So to compute a good estimation, this Bayesian network requires two probabilis-

tic models: a motion model and an observation model. The motion model is described in

terms of a probability distribution on state transitions. That is, the state transition is as-

sumed to be a Markov process in which the next state xt depends only on the immediately

preceding state xt−1 and the applied control ut:

P (xt | xt−1, z1:t, u1:t) = P (xt | xt−1, ut) (2.1)

On the other hand, the observation model describes the probability of making an

observation zt based on the current information. So, once the robot’s state and map are

defined, observations are conditionally independent:

P (zt | x0:t, z1:t, u1:t,m) = P (zt | xt,m) (2.2)

In other words, these models represent the uncertain robot motion and the sensor

measurements corrupted by noise like probabilistic distributions. In this way, from a

probabilistic perspective there are two main forms of the SLAM problem: online SLAM

and full SLAM, which are both of equal importance.
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Online SLAM formulation involves the estimation of the map and the robot’s state

persist only at time t. As shown at Equation 2.3, the robot’s state xt at time t and the map

estimation m are the posterior probability computed from all observed states whereas z1:t

are the observations and u1:t are the controls. These algorithms use the last estimation of

map and robot’s state to compute the next robot’s state.

P (xt,m | z1:t, u1:t) (2.3)

On the other hand, full SLAM formulation involves the estimation of all robot’s

states that persist along the time 1 : t, instead of just the current state xt at time t. As

shown at Equation 2.4, the robot’s states x1:t over the entire trajectory and the map esti-

mation m are the posterior probability computed from all observed states whereas z1:t are

the observations and u1:t are the controls.

P (x1:t,m | z1:t, u1:t) (2.4)

In particular, online SLAM is the result of integrating out past poses estimates

from the full SLAM problem (THRUN; BURGARD; FOX, 2005):

P (xt,m | z1:t, u1:t) =

∫ ∫
...

∫
P (x1:t,m | z1:t, u1:t) dx1dx2...dxt−1 (2.5)

The aim of both formulations is to estimate the posterior which captures all there

is to be known about the map and the robot’s pose or the trajectory. In the literature, a

large variety of solutions to the SLAM problem are available and can be classified either

as filtering or smoothing (GRISETTI et al., 2010). In filtering approaches the estima-

tion is augmented and refined by incorporating the new measurements as they become

available. They are usually referred to online SLAM methods. Many techniques like

Kalman, information filter (SMITH; SELF; CHEESEMAN, 1990; CASTELLANOS et

al., 1999; EUSTICE; SINGH; LEONARD, 2006; THRUN et al., 2004) or particle filters

(MONTEMERLO et al., 2002; HAHNEL et al., 2003; GRISETTI; STACHNISS; BUR-

GARD, 2007) fall into this category. On the other hand, smoothing approaches address

the full SLAM problem, estimating the full trajectory of the robot and map from the set of

measurements (LU; MILIOS, 1997; DELLAERT; KAESS, 2006; OLSON; LEONARD;

TELLER, 2006).
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2.2 Graph-Based SLAM

Filtering techniques such as EKF-SLAM have led to hundreds of extensions for

years. Nevertheless, a key disadvantage is that the robot’s states are not stored therefore it

is impossible revisit past states. Thereby, in 1997 Lu and Milios (LU; MILIOS, 1997) pro-

posed an efficient and intuitive formulation of the full SLAM problem, but only became

popular years later due to advances on error minimization techniques (THRUN; MON-

TEMERLO, 2006). This formulation is known as graph-based SLAM shown at Figure

2.3 and involves building a graph where the robot’s states x0:t and the set of landmarks

m are represented as nodes of the graph. The observations z1:t and motion measurements

u1:t are the spatial constraints represented by the edge of this graph. These constraints

represent the probability distribution over the relative transformations between two nodes

that connect two robot’s states (motion constraint) or the robot’s state to landmark (mea-

surement constraint). Obviously such constraints are always affected by noise, so it is

necessary to find the spatial configuration of the nodes that best satisfies such constraints.

This involves solving a error minimization problem.

Figure 2.3: Graph-based SLAM, the robot poses and the landmarks are represented as
nodes in a graph. The observations and motion measurements are the constraints encoded
in the edges of this graph. Image generated by the author.

Landmark
Robot
Motion Constraint
Measurement Constraint

Since the publications of graph-based SLAM, many approaches to minimizing

the error have been proposed. For example Howard et al. (HOWARD; MATARIC;

SUKHATME, 2001) apply relaxation to localize the robot and build a map. Frese et

al. (FRESE; LARSSON; DUCKETT, 2005) propose a variant of Gauss-Seidel relaxation
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called multi-level relaxation which applies to different resolutions. Dellaert and Kaess

(DELLAERT; KAESS, 2006) were the first to exploit sparse matrix factorizations to solve

the linearized problem in offline SLAM. Kaess et al. (KAESS; RANGANATHAN; DEL-

LAERT, 2007) presented iSAM, a fast incremental matrix factorization method. Konolige

et al. (KONOLIGE et al., 2010) proposed an open source implementation of a pose-graph

method which constructs the linearized system in an efficient way. Olson et al. (OLSON;

LEONARD; TELLER, 2006) presented an efficient non-linear optimization algorithm

that rapidly recovers the robot trajectory, which is based on the stochastic gradient de-

scent. Later, Grisetti et al. (GRISETTI et al., 2008) proposed an extension of Olson’s

approach that uses a tree parametrization of the nodes in 2D and 3D, increasing the con-

vergence speed.

Besides, graph-based SLAM has an observation model which is multi-modal. This

means that a single observation zt might result in multiple potential edges connecting

different poses, and one needs to determine the most likely constraint resulting from an

observation. This decision depends on the probability distribution over the robot’s poses.

Such strategy is weak and susceptible to false positive matches especially when the sensor

used by the robot is poor. Such problem is known as data association and is usually treated

in the construction of the graph.

The graph-based SLAM problem can be divided in two tasks: graph construction,

usually called front-end, that seeks to interpret the sensor data to create nodes and edges

of the graph representing the robot’s states and their constraints between them; and graph

optimization also known as back-end, which aims to minimize the error introduced by

the constraints given in the edges of the graph and thus determine the most likely nodes

configuration.

In this sense, we explain the common idea to compute the maximum likelihood

of a graph configuration. Let x = (x1, x2, ..., xt)
T be a vector of parameter, where xi

describes the pose of ith node. The constraint over each edge between two nodes xi

and xj is represented by a Gaussian distribution with mean zij and information matrix

Ωij (which is the inverse of the covariance matrix Σij). Therefore, the error observation

e (xi, xj) is computed as the difference between the measurement zij gathered by the robot

and the predicted measurement z̄ (xi, xj), as shown:

e (xi, xj) = zij − z̄ (xi, xj) (2.6)

For simplicity of notation e (xi, xj) will be represented as eij . Hence the log-
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likelihood lij of a measurement zij is given by:

lij ∝ eTijΩijeij (2.7)

Using this information the back-end minimizes the error produced by all disagree-

ments between the observations and predictions. This minimization is done by moving

the nodes inside its zones of uncertainty in a manner to reach an optimized global consis-

tency, without losing the local constraints identified by the robot. Therefore, to compute

the maximum likelihood configuration of nodes x∗, we seek to solve the Equation 2.9 that

minimizes F (x), the sum of the log-likelihood for all pairs of indices for which observa-

tions exist in the set of constrains C.

F (x) =
∑

(i,j)∈C

eTijΩijeij (2.8)

x∗ = arg min
x

F (x) (2.9)

To compute the maximum likelihood x∗, it is usually employed methods such

as conjugate gradient, Gauss-Newton and Levenberg-Marquardt (KUMMERLE et al.,

2011). Nevertheless, the approach based on a stochastic gradient descent method intro-

duced by Olso et al. (OLSON; LEONARD; TELLER, 2006) has shown better results

with less computational time.

2.3 Visual SLAM

In recent years many approaches using visual sensors (monocular, stereo and

RGB-D cameras) in SLAM have been proposed as a replacement for the traditional laser

range and they are known as Visual SLAM. The use of visual sensors such as cameras has

several key advantages, for example, less energy requirement, low price, small size and

weight, as well as also the amount of information that can be gathered about the environ-

ment. In addition, the set of consecutive images can be used to track the camera motion

known as visual odometry that was introduced in the work of Nister et al. (NISTER;

NARODITSKY; BERGEN, 2004).
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Figure 2.4: Visual SLAM methods. (left) Features-based methods, minimize projection
error of features. (right) Direct methods, minimize photometric error, thereby exploit all
image information. Image generated by the author.

Nevertheless, Visual SLAM aims not only at tracking the camera motion but also

at building a globally consistent map. Therefore, Visual SLAM methods are often built

upon visual odometry and can be divided into two classes: feature-based and direct, which

are briefly discussed next. First, feature-based SLAM are methods that extract a suffi-

ciently large set of features such as points (MUR-ARTAL; MONTIEL; TARDOS, 2015)

or lines (??) from each image and match them across multiple frames. These features

and their corresponding matches are the input to the joint process of estimating the cam-

era pose and map representation. The majority of Visual SLAM methods fall into this

class, for example, Davison et al. (DAVISON et al., 2007) proposed a real-time algo-

rithm which can recover the 3D trajectory of a monocular camera. Klein et al. (KLEIN;

MURRAY, 2007) proposed to split tracking and mapping in two separate tasks processed

in parallel. Newcombe et al. (NEWCOMBE et al., 2011) used kinect camera to rapidly

create detailed 3D reconstructions of an indoor scene. Taguchi et al. (CANSIZOGLU;

TAGUCHI; RAMALINGAM, 2016) used the valid pixel’s depths to compute the invalid

pixel’s depths in kinect camera.

Second, direct SLAM. These types of methods do not require a matching step,

they work directly with the intensity values of the pixels. An important advantage is the

level of accuracy that they can attain due to the exploitation of all image information,

such as areas where the intensity of the gradient is sufficiently large. For instance, En-

gel et al. (ENGEL; SCHOPS; CREMERS, 2014) proposes LSD-SLAM, a direct SLAM
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method based on image intensities which allows to build large-scale maps. Foster et

al. (FORSTER; PIZZOLI; SCARAMUZZA, 2014) proposes SVO, a new method that

combine a feature-based SLAM and direct SLAM methods. Newcombe et al. proposes

DTAM (NEWCOMBE; LOVEGROVE; DAVISON, 2011) that uses the image alignment

for camera tracking and dense reconstruction of the scene. Dubbelman et al. (DUBBEL-

MAN; BROWNING, 2015) proposes COP-SLAM, a solution called closed-form online

pose-chain SLAM that performs accurate visual odometry and reliable appearance-based

loop detection.

2.4 Monocular Keyframe-Based SLAM

A specific problem in Visual SLAM is known as monocular SLAM, which uses

a single video camera as sensor. Initially, monocular SLAM was solved by filtering-

based method, where every frame is processed by the filter to jointly estimate the map

representation and the camera pose. However recently keyframe-based methods have be-

come popular. They retain a selected subset of previous observations called keyframes

that explicitly represent past knowledge gained. These keyframes are snapshots taken

by the camera at various instants in the time and are composed of regions of interest

called keypoints, which represent small and distinguishable areas in the image. In ad-

dition, keypoints are the two dimensional projections of landmarks on the image plane.

There are many approaches to compute keypoints such as SIFT (LOWE, 1999), SURF

(BAY; TUYTELAARS; GOOL, 2006) or FAST (ROSTEN; DRUMMOND, 2006). One

of the most representative keyframe-based SLAM is probably PTAM (KLEIN; MUR-

RAY, 2007), because it was the first work that introduced the idea of splitting camera

tracking and mapping in parallel threads, and proved to be successful for real time aug-

mented reality (AR) applications in small environment.

2.5 Related Work

Over the last decade, numerous efforts have been made towards minimizing the

computational requirements of SLAM by reducing the amount of variables (observations

and poses) in the state space, while keeping the sparse structure of the problem. How-

ever recently due to the popularity of graph-based optimization solutions for SLAM, re-
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searchers investigated how to reduce the number of nodes in the SLAM graph. Some

approaches focus on which node to remove from the graph and how to deal with the re-

sulting graph. Konolige et al. (KONOLIGE; BOWMAN, 2009) clustered nodes in the

graph according to their spatial distance. Among each cluster, they removed the least

recently used nodes, in order to keep a limited number of nodes and still capture the dy-

namic nature of the environment. A similar idea has also been introduced by Eade et

al. (EADE; FONG; MUNICH, 2010), who proposed to remove nodes without data or

with similar observations to existing nodes in their vicinity. Moreover, Ila et al. (ILA;

PORTA; ANDRADE-CETTO, 2010) introduce a principled on-line approach for Pose

SLAM, which only keeps non-redundant poses and highly informative links. While Jo-

hannsson et al. (JOHANNSSON et al., 2013) reuse already existing poses in previously

mapped areas, keeping the number of poses bounded by the size of the explored environ-

ment and using the new measurements to improve the map.

Similarly, keyframe-based approaches are among the first attempt to reduce the

pose graph for visual SLAM. They create a sparse pose graph, where each node is a se-

lected keyframe representing the prominent visual appearances and variations in order to

keep the density of nodes constant. In this section we will detail two monocular keyframe-

based SLAM methods. They will serve as comparison to our approach in Chapter 4. First

an explanation and mathematical derivation of PTAM (KLEIN; MURRAY, 2007) is intro-

duced. Later, a detailed revision of ORB-SLAM (MUR-ARTAL; MONTIEL; TARDOS,

2015) is presented. PTAM is a system in real time that infers the motion of the hand-held

monocular camera from a video frames in a small AR workspace. While ORB-SLAM is

a system that operates in real time, in small and large, indoor and outdoor environments.

2.5.1 PTAM

Parallel Tracking and Mapping also known as PTAM was proposed in 2007 by

Klein and Murray (KLEIN; MURRAY, 2007). PTAM is a method to estimate the pose

of a hand-held monocular camera in a unknown scene. It is simple and efficient because

it uses FAST corners, which can be detected and processed quickly. PTAM also splits

tracking and mapping into two separate tasks which are processed in parallel, one thread

deals with the task of robustly tracking hand-held camera motion, while the other thread

produces a 3D map from previously observed video frames. In this sense, PTAM is con-

sidered an important milestone in the development of SLAM monocular methods. Nev-
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ertheless, the advantages of PTAM are also its limitations, since it is a relatively simple

system that does not extract structural meaning from the reconstructed environment other

than the points detected by the FAST corners . Furthermore, it is necessary to perform a

stereo initialization in a very specific way.

Map Representation

The map consists of a collection of N landmarks located in a world coordinate

frame, where each landmark represents a locally planar textured patch of size 8 × 8 pix-

els. The ith landmark has homogeneous coordinates wpi = ( wxi,
wyi,

wzi, 1)T in world

coordinates frame w; a normal unit vector ni ∈ R3 and a reference to the patch coordi-

nates (ui, vi)
T which is the center pixel of the source patch. The map also contains M

keyframes, where each jth keyframe wKj has coordinates frame associated to a central

position of the camera; a matrix transformation between the coordinates frame and the

Figure 2.5: Map representation in PTAM. Keyframes are depicted as red-white-green
coordinates frames, landmarks as red crosses. Image extracted from PTAM (KLEIN;
MURRAY, 2007).

world coordinates wEj . This matrix transformation contains a rotation and a translation

component and is a member of the Lie group SE (3), the set of 3D rigid body transforma-

tions. Furthermore, each keyframe also has a four level image pyramid, where the level
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zero stores the full image and this is sub-sampled down to level three. Additionally, each

landmark stores a reference to a source keyframe typically the first keyframe in which this

landmark was observed.

Tracking Process

Tracking is the process that calculates the corresponding camera position to every

new frame taken with the assumption that a map of landmarks has already been created.

When a new frame is acquired, the image pyramid is built and the FAST corner detector is

run on each pyramid level. Later, a priori pose estimate is generated from a motion model.

Once the pose is estimated, the current map of landmarks can be projected into the new

image plane and the patches correspondences can be searched over the neighbourhood

of the projected location. Initially few landmarks are projected and the camera pose is

updated from the matches found. Next, a large number of landmarks are projected, their

matches are searched and the pose estimate for the frame is computed from all matches

found.

Therefore, to project the map of landmarks on the image plane, they are first trans-

formed from the world coordinates frame w to the camera centred coordinates frame c.

This is done by multiplying a transformation matrix wEc with the landmark position in

world coordinates frame wpi:

cpi = wEc
wpi (2.10)

Where cpi is the landmark position in camera centred coordinates. Next, to project

the landmarks, in the camera centred coordinates frame c, into image coordinates frame

is used a calibrated camera projection model: ui

vi

 = Θ ( cpi) (2.11)

Where Θ is the pinhole camera projection model which defines the relationship

between the landmark cpi = ( cxi,
cyi,

czi, 1)T , in the camera centred coordinates frame

c, and the pixel (ui, vi)
T into image coordinates frame, as shown:

Θ ( cpi) =

 uc

vc

+

 fu 0

0 fv

 r̂

r

 cxi
czi
cyi
czi

 , (2.12)
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Here fu and fv are the focal lengths; (uc, vc)
T is the principal point of the frame c

and the field of view model (FOV) is the radial distortion model proposed by Devernay et

al. (DEVERNAY; FAUGERAS, 2001). This model transforms the radial distortion r to r̂

using the image distortion d and it is defined as:

r =

√
cxi + cyi

czi
(2.13)

r̂ =
1

d
arctan

(
2r tan

(
d

2

))
(2.14)

On the other hand, a fundamental requirement of the tracking process (and also the

mapping) is the ability to differentiate Equation 2.11 with respect to changes in camera

pose wEc. Therefore, changes in the camera pose are represented by the multiplication of
wEc with the camera motion M :

wÊc = M wEc = exp (ξ) wEc (2.15)

Where,M is also a member of the Lie group SE (3) and can be mapped to the tan-

gent space or twist that represents the camera pose or motion as a six-dimensional vector

ξ = (wx, wy, wz, vx, vy, vz)
T , with the first three elements represent the angular velocity

and the latter three elements represent the linear velocity. Twist is mapped by exponential

map (ETHAN, 2014) and the inverse is done by the logarithmic map (ETHAN, 2014).

This representation of the camera pose and motion allow to readily obtain in a closed

form, the differentiation of Equation 2.15 and Equation 2.11.

Once the projection of the landmarks into image has been made, for each landmark

a set of patches (patches centered on FAST corners), lying inside a circular region around

the projection of the landmark, is selected. This set is first affine warped by matrix A ∈

R2×2 to accommodate view point changes. Later, the patches are searched in the image

pyramid level whose scale matches with the original patches. Next, the best match is

selected evaluating SSD (sum of squared differences) scores. Then, the error projection

ek, defined by the difference between the coordinates of the kth patch and the coordinates

of the projection matched cpk , is calculated:

ek =

 ûk

v̂k

−Θ (exp (ξ) cpk) (2.16)

By last, to update the camera pose, the objective function of the projection error is
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minimized iteratively with respect to the current camera pose ξ:

ξ̂ = arg min
ξ

∑
k∈S

G
(
| ek |
σk

, T
)
, (2.17)

Where, ξ̂ represents the camera pose updated; S is the set of patches successfully

matches; σk is the assumed measurement noise; T is the standard deviation derived from

all the residuals (median based) and G is the Tukey biweight objective function introduced

in the work of Huber et al. (HUBER, 2011).

Eventually tracking process can failure, for this reason for each frame is estimated

the quality of tracking and it is computed as the fraction of landmarks in the map that have

been successfully observed. If this fraction falls below than a certain threshold, tracking

quality is considered poor because such frames would likely be of poor quality. If the

fraction falls below an even lower threshold for more than few frames, then tracking is

considered lost. Then, when tracking is lost a recovery procedure is required. Therefore

PTAM implements the recovery method of William at al. (WILLIAMS; KLEIN; REID,

2007) which tries to recover the camera pose, comparing the current frame with all ex-

isting keyframes in the map, to find an approximate match. If this method find a pose

estimate, the tracking procedure continues as normal.

Mapping Process

Mapping describes the process by which the map of keyframes and landmarks

(3D map points) is built. In the beginning an initial map is built from the sequence of

images, then this map is continually refined and expanded whenever new keyframes and

landmarks are added by the tracking process. Visual SLAM using stereo and RGB-D

camera can build an initial map simply from the first image. This is not possible for

monocular SLAM because the landmark positions are not fully observable. Therefore,

PTAM employs a separate initialization procedure using the five-point stereo algorithm

of Nister et al. (NISTER, 2004) which simulates an stereo system and requires the user

cooperation. The user must place the camera above the scene and select the first keyframe

to be added to the map. Using the lowest image pyramid level of the selected keyframe,

1000 FAST corners are computed. Then, the user smoothly moves the camera to a new

position and selects the second keyframe to also be added to the map.

Next, FAST corners are matched and an essential matrix encoding the relation be-
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tween two viewpoints is computed using the five-point algorithm (NISTER, 2004) and

RANSAC (FISCHLER; BOLLES, 1981). This essential matrix encodes the rotation ma-

trix and translation vector for the second keyframe with respect to the first, and it is also

used to compute the triangulation of the initial map. Later, the resulting map is refined

through non-linear optimization called bundle adjustment (TRIGGS et al., 1999). Due to

numerical considerations, the initial map obtained in the previous step has an arbitrary

scale factor such as the average distance between camera and landmarks.

Once the initialization is finished, the initial map contains only two keyframes

and few landmarks which describe a relatively small volume of space. Nevertheless, as

the camera moves away from its initial pose, one needs to add new keyframes to allow

the map to expand. Thus, a new keyframe is added whenever the following conditions

are met: the tracking quality is good; the frame is separated at least 20 frames since

last keyframe added; the camera center is a minimum distance away from the nearest

keyframe already in the map. The latter addresses the problem of a stationary camera cor-

rupting the map, ensuring that there is enough stereo baseline for new triangulation. Later,

for each image pyramid level in the keyframe the most salient FAST points are selected by

computing non-maximal suppression and using the threshold based on Shi-Tomasi scores

(SHI; TOMASI, 1994). The salient FAST points which are close to existing observations

are discarded and each remaining salient FAST point is a candidate to be a new map point.

New map point requires depth information which is not available from a single keyframe.

Therefore, in order to simulate a stereo system a second view already existing in the map

is selected (the closest keyframe to the current one in terms of camera position). Next,

correspondences between the two views are established and in the second view patches

around FAST corner and near to epipolar lines are matched using SSD (sum of squared

differences). This procedure is also known as search along epipolar line. Because the

epipolar line is infinite, a priori hypothesis on the likely of the depth of the new candidate

point is used to reduce the search space. This hypothesis depends on the distribution of

the depths of the observed landmarks in the new keyframe. Later, each patch is searched

only in its corresponding level of the image pyramid and if a match is found, the new

point is triangulated and inserted into the map as a new landmark.

Finally, all landmarks and camera poses estimate are refined using an iterative min-

imization procedure known as full bundle adjustment or global bundle adjustment. Full

bundle adjustment is very similar to the previous pose refinement problem expressed by

Equation 2.17. But now the optimization is over all landmarks positions and all keyframes
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except the first, which is a fixed data. Then, given a set of N landmarks wp1, ..,
wpN ; a

set of M keyframes wK1, ..,
wKM in the current map and the set of patches successfully

matches Sj associated with each jth keyframe, for j = 1, ...,M . Full bundle adjustment

iteratively adjusts the map, minimizing the objective function G:

{
ξ̂1..ξ̂M

}
, { wp̂1..

wp̂N} = arg min
{ξ1..ξM},{ wp1.. wpN}

M∑
j=1

∑
k∈Sj

G
(
| jek |
jσk

, σT
)

(2.18)

Where ξ̂1, ..., ξ̂M and wp̂1, ...,
wp̂N represent the camera poses and landmarks up-

dated in the map; ξ1, ..., ξM are the camera poses of all keyframes in the map; jσk and jek

are the assumed measurement noise and the error projection of the kth patch in the jth

keyframe with pose ξj , respectively. Full bundle adjustment is solved using the algorithm

of Levenberg-Marquardt (MORE, 1978). Nevertheless, this optimization may take a long

time as the map size increases. Therefore when the camera is exploring, PTAM applies a

bundle adjustment only with the pose of the most recent keyframe, its 4 closest keyframes

and the position of all landmarks seen by them. This last procedure is known as local

bundle adjustment and in essence just limits the variables being optimized.

As discussed earlier, PTAM is the most representative keyframe-based SLAM

approach, which provides simple but effective methods for keyframe selection, patches

matching, point triangulation, camera localization and relocalization after tracking fail-

ure. Unfortunately several factors limit its application, such as lack of loop closure, large-

scale operation or even an incorrect initialization. Probably the biggest problem is the

constant insertion of keyframes even if the camera is looking at the scene from different

viewpoints, generating redundant information in the map and causing an excessive growth

of the map size. In next Section, ORB-SLAM is presented. This method expands the ver-

satility of PTAM to environments that are intractable for it. ORB-SLAM integrates a very

efficient place recognition system in PTAM to perform relocalization and loop closing.

ORB-SLAM also adds methods for an automatically initialization and for the removal of

keyframes and landmarks in order to avoid unnecessary redundancy.



32

2.5.2 ORB-SLAM

ORB-SLAM proposed by Mur-Artal et al. (MUR-ARTAL; MONTIEL; TARDOS,

2015), is a keyframe-based monocular SLAM which operates in real time, in small and

large, indoor and outdoor environments. ORB-SLAM is composed of three main tasks:

tracking, mapping and loop closure, which run in parallel. ORB-SLAM also builds a

reusable map features that can be used for recognition, relocalization and loop closure. In

addition, it incorporates a pruning mechanism to reduce the redundancy of keyframes and

landmarks in the map.

Map Representation

Just as PTAM, the map contains a collection of map points and keyframes. Ad-

ditionally, ORB-SLAM builds a covisibility graph (RUBLEE et al., 2011) that allows

to perform real-time operation in large environments; and to deal with the loop closure

problem, ORB-SLAM builds an essential graph which is constructed from the graph of

covisibility.

Each map point wpi represents a FAST feature and stores its location in the world

coordinates expressed in homogeneous coordinates wXi ∈ R4; an ORB descriptor Di

that provides a good invariant to changes in viewpoint and illumination (RUBLEE et al.,

2011); a viewing direction ni ∈ R4 and the maximum dmax and minimum dmin distance

at which the map point can be observed. In the case of keyframes, each wKi stores all

the FAST features and ORB descriptors extracted in the frame associated or not to a map

point; the camera pose wTi; a image pyramid to deal with the scale and the intrinsic

parameters of the camera.

On the other hand, a covisibility graph is defined as an undirected weighted graph

where each node is a keyframe. An edge between two keyframes exists if they see at least

θ common map points. This covisibility graph allows to maintain the tracking and map-

ping focused in a local covisible area, independent of global map size. The covisibility

graph also allows the construction of the essential graph containing a subset of edges with

high covisibility, the loop closure edges and a spanning tree that provides a connected

sub-graph with a minimum number of edges. These graphs and the structure of the map

are shown in Figure 2.6
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Figure 2.6: Reconstruction and graphs in the sequence fr3 long office household from the
TUM RGB-D Benchmark (STURM et al., 2012). Image extracted from (MUR-ARTAL;
MONTIEL; TARDOS, 2015).

(a) KeyFrames (blue), Current Camera (green),
MapPoints (black, red), Current Local Map-
Points (red)

(b) Covisibility Graph

(c) Essential Graph
(d) Spanning Tree (green) and Loop Closure
(red)

Place Recognition

ORB-SLAM also integrates a place recognizer to perform loop detection and re-

localization. This place recognizer is based on bags of binary words DBoW2 of Galvez

Lopez et al. (GALVEZ-LOPEZ; TARDOS, 2012). So, in an offline step, using DBoW2

a visual vocabulary is built on a large set of ORB descriptors. These descriptors are ex-

tracted from a training image dataset that is collected in both indoor and outdoor areas. If

the images in the training dataset are general enough, the same visual vocabulary can be

used for different environments getting a good performance (MUR-ARTAL; TARDOS,

2014).

The visual vocabulary is composed of words which are just a discretization of

the descriptor space. Then, each ORB descriptor is associated to a word, and for each

word a list of keyframes where it has been seen is stored. This structure in the vocab-
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ulary allows queries to the recognition database can be performed very efficiently by

just checking common visual words. Then, when the relocalization or the loop detector

query the recognition database, a similarity score is computed between all keyframes that

share visual words with the query image. Because there exists visual overlap between

keyframes, there will not exist a unique keyframe with high score, rather there will be

several keyframes with high scores. In addition, the bags of words representation is also

used for feature matching.

Automatic Map Initialization

The purpose of the map initialization is to calculate the relative pose between two

frames and create an initial set of map points. Therefore, to perform an initialization a

good two-view configuration must be selected without human intervention. Then, ORB-

SLAM proposed an automatic map initialization method which works independent of the

scene (planar or non-planar).

Initially, the method takes a reference frame Kr and extracts a set of ORB features

X . Then, another frame Kc known as current frame is taken and the matches Y are

searched in the the reference frame. If not enough matches are found, the reference frame

is restarted. Otherwise, two geometrical models are computed: a homography model

Hcr assuming a planar scene and a fundamental matrix model Fcr assuming a non-planar

scene. Then a score SM is computed for each model M (H for the homography, F for the

fundamental matrix). This score is computed in each iteration of RANSAC using:

SM =
∑
i

[ρ (d (Xi,Yi) ,M) + ρ (d (Yi,Xi) ,M)] (2.19)

Where ρ and d are the weight and the symmetric transfer error function, respec-

tively (HARTLEY; ZISSERMAN, 2003). If no model could be found, the ORB features

are extracted again and the process is repeated. Otherwise, it is necessary to select one of

the two models. Then, a weight R is calculated using the previously scores, as shown:

R =
SH

SH + SF
(2.20)

If R > 0.45, the homography model is selected, otherwise, the fundamental ma-

trix model. Once a model is selected, the relative pose is retrieved. In the case of the

homography model, 8 relative poses are retrieved using the method of Faugeras et. al
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(HARTLEY; ZISSERMAN, 2003). In the case of the fundamental matrix model, first it

is converted in an essential matrix using the camera calibration matrix and then 4 relative

poses are retrieved using the singular valued decomposition (SVD) (FAUGERAS; LUST-

MAN, 1988). Later, the relative pose with most map points seen in front of both cameras

and with low reprojection error is selected. Finally, the bundle adjustment is performed.

Tracking Process

Once an initial map has been created, the tracking process estimates the camera

pose with every current frame incoming from the camera. First, the image pyramid is

computed with FAST features. However, in order to ensure an homogeneous distribution

each pyramid level is divided in a grid, trying to extract the same number of FAST fea-

tures for each cell. After, the orientation and the ORB descriptor are computed on each

feature. These descriptors are used in all feature matching instead of the search by patch

correlation.

Then, a match in the current frame is searched for each FAST feature observed

and associated a map point in the last frame. Later, with the set of correspondences

previously calculated a priori camera pose is estimated using a constant velocity motion

model. And it is optimized using the Levenberg-Marquardt algorithm with the Huber cost

function (HUBER, 2011) that minimizes the projection error. Thus, with a priori camera

pose and an initial set of correspondences between FAST features, the map is projected

into the current frame for searching more correspondences.

However, to deal with the complexity in large maps, ORB-SLAM only projects a

local map instead of projecting all map points. The local map is the union of K1 and K2.

Where K1 is the set of keyframes which share map points with the current frame. While

K2 is the set with a limited number of neighbouring keyframes in the covisibility graph

to each keyframe in K1. Furthermore, the local map also has a reference keyframe wKref

that is used in the mapping process. This keyframe belongs to set K1 and shares most

map points with the current frame.

In this way, for each map point in the local map is calculated its projection x, the

angle α between the current viewing ray v and the map point mean viewing direction n

and its distance to the center of the camera d. If the map point projection x is outside the

image boundaries or v · n < cos(60◦) or d is not within of [dmin, dmax], the map point

is not considered for the tracking procedure. Then, using the map point descriptor, it is
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associated with the still unmatched FAST features close to x in the current frame. Later,

the camera pose is optimized with all the map points found in the current frame.

If the tracking was successful, it has to be checked if the current frame can be

inserted as a new keyframe on the map. So, to be a new keyframe, all the following

conditions must be checked: the current frame tracks at least 50 map points, this condition

ensures a good tracking; the current frame tracks less than 90% map points contained in

Kref , this condition ensures the visual change; more than 20 frames have passed from last

keyframe insertion, this condition inserts keyframes as soon as possible to make tracking

more precise in front of challenging camera movements, such as rotations.

Otherwise, if the tracking is lost. First, the current frame is converted on its bag

of word representation and then in order to obtain the relocalization candidates a query

is made to the recognition database (place recognition). For each keyframe candidate

obtained by the query, the correspondences are computed between those FAST features

in the keyframe candidate associated to a map point and the FAST features extracted in

the current frame. Later, PnP algorithm (LEPETIT; MORENO-NOGUER; FUA, 2009)

with RANSAC iterations are performed trying to find the camera pose. The RANSAC

iterations are performed until finding a camera pose with enough inliers. Finally, the

camera pose is optimized and the tracking process continues.

Local Mapping Process

The mapping procedure processes every new keyframe wKi accepted in the track-

ing procedure. Initially, the new keyframe is inserted in the map and its bags of words

representation is computed. So, in the covisibility graph a new node for wKi is created

and new edges from the shared map points with other keyframes are also created. Fur-

thermore in the spanning tree, the node that represents wKi is connected to the keyframe

with most map points in common. Before the creation of the new points, in current

map a point culling policy (MUR-ARTAL; MONTIEL; TARDOS, 2015) is applied. This

culling procedure is performed in order to retain only high quality map points. Further-

more it procedure ensures that the map points are trackable and not wrongly triangulated.

To retained a map point in the map, the tracking must find it in more than the 25% of the

keyframes. And if more than one keyframe has inserted since the map point creation, it

must be observed from at least three keyframes. Otherwise the map point is discarded.
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To create new map points. First,Ni a set of neighbouring keyframes of the current

keyframe is extracted from the covisibility graph. Subsequently, for each unmatched

feature in the current keyframe a match is searched in the set Ni. And from each match

found, a new point is created by the triangulation. However, only those map points that

have parallax, scale consistency and positive depth in both keyframes are accepted on the

map. Then, once the new map points have been created, each one of them is projected

in the keyframes of Ni and its correspondences are searched, similarly to the tracking

process. Later, the current keyframe wKi, the keyframes in the set Ni and the map points

seen by those keyframes are optimized by local bundle adjustment. Finally for each map

point, the normal ni, the scale invariance distances dmini and dmaxi are recomputed.

Additionally, in order to maintain a compact reconstruction, ORB-SLAM attempts

to detect redundant keyframes and delete them. In Ni, those keyframes whose 90% of

their map points have been seen in at least other three keyframes in the same scale are

discarded. This process is beneficial for the complexity time of global bundle adjustment

which depends of the number of keyframes.

Loop Closure Process

The loop closing procedure takes the last keyframe wKi processed by the mapping

procedure to attempts to detect and close loops. Initially si is computed, which represents

the similarity between the bag of words vector of keyframe wKi and all its neighbours

in the covisibility graph. Then, the lowest score is retained in smin and queries to the

recognition database (place recognition) are performed. In the recognition database, those

keyframes that are directly connected to wKi or whose scores are lower than smin are

discarded as loop candidate. To accept a keyframe as a loop candidate, the loop closure

procedure must detect consecutively three loop candidates that share at least one keyframe

in the covisibility graph.

The correspondences between features associated to map points in the current

keyframe and the loop candidate keyframes are computed. Then, RANSAC iterations

(HORN, 1987) are performed between each loop candidate keyframe wKl and the current

keyframe wKi, trying to find the similarity transformation Sil with seven degrees of free-

dom (3 rotations, 3 translations and 1 scale factor) which informs the error accumulated in

the loop. If a similarity transformation with enough inliers is found, it is optimized and a

search of more correspondences between features associated to map points are performed.
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Finally, if Sil is supported by enough inliers the loop candidate keyframe is accepted.

Once the loop is closed, it is necessary to update the map. Then, duplicate map

points are replaced by the map point that was seen more times; the new edges that con-

nects the loop closure are inserted in the covisibility graph; the current keyframe pose
wTi is corrected with the similarity transformation Sil and the graph is aligned by prop-

agation of this correction over all neighbours of wKi. Later, the map points seen in the

loop keyframe wKl and its neighbours are projected into wKi and its neighbours. Next,

the matches are searched as in the tracking procedure and those that were inliers in the

computation of Sil are fused. In the covisibility graph, new edges are created between

the loop keyframe and the keyframes involved in the fusion. To correct the loop error, a

global bundle adjustment is performed on the essential graph (STRASDAT; MONTIEL;

DAVISON, 2010). Finally, each map point is transformed according to the correction of

one of the keyframes that observes it.
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3 MAP POINT OPTIMIZATION IN KEYFRAME-BASED SLAM

In the following, we introduce our approach that uses a covisibility graph (STUMM;

MEI; LACROIX, 2013) and an algorithm of information fusion (PIZZOLI; FORSTER;

SCARAMUZZA, 2014) in order to maintain a refined map in keyframe-based monocular

SLAM process.

3.1 Map Representation

Our map is represented as a set of map points, keyframes and an undirected

weighted graph known as covisibility graph, where each node is a keyframe wKi and

an edge between two keyframes exists if they share at least θ common map points. The

map point wpj corresponds to an ORB feature, which represents a textured planar patch

in the world whose position has been triangulated from different views. Each map point

stores its 3D position in the world coordinate system wXj ∈ R3 and the viewing direction

nj ∈ R3; the maximum dmax and minimum dmin distances at which it can be observed, ac-

cording to the scale invariance limits of the ORB features; and an ORB descriptor Dj . On

the other hand, each keyframe stores all ORB features extracted in the frame; the camera

pose wTi ∈ SE(3), which is a rigid body transformation that maps the map points from

the world to the camera coordinates system and the intrinsic parameters of the camera P

∈ R3×3.

3.2 Probabilistic Depth Sensor

To create a map in the SLAM process, the robot collects information and builds a

representation of the environment where it is located. In keyframe-based SLAM, cameras

are commonly used to get such information by performing depth measurements through

the captured images. These measurements are always subject to errors called noise and

there may also be seemingly random measurements that are caused by photometric incon-

sistency. In this way, when the task is to create an accurate map of the environment from

such noisy measurements, a probabilistic approach is necessary. Thus, we model each

depth measurement d obtained by the sensor as a distribution that mixes a good measure-

ment model with the bad one as in the work performed by Forster et al. (FORSTER; PIZ-
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ZOLI; SCARAMUZZA, 2014). The good measurement is normally distributed around

the true depth d̂ whereas the bad one is uniformly distributed in all possible depth loca-

tions in the interval [dmin, dmax] which is known to contain the true depth. In this way,

our mixture model distribution is defined as:

p
(
d | d̂, ρ

)
= ρN

(
d | d̂, τ 2

)
︸ ︷︷ ︸
Normal Distribution

+ (1− ρ) U (d | dmin, dmax)︸ ︷︷ ︸
Uniform Distribution

, (3.1)

where d is the depth measurement, the parameter ρmeasure the purity of the measurement

(inlier probability) and τ 2 is the variance of a good measurement, which can be computed

geometrically by assuming a fixed variance of one pixel in the image plane defined by the

relative position of the cameras that produced the measurement (PIZZOLI; FORSTER;

SCARAMUZZA, 2014).

3.3 Depth Bayesian Inference

The uncertainties in sensors arise not only from the imprecision and noise in the

measurements, but are also caused by the ambiguities and inconsistencies present in the

environment, and by the inability to distinguish them. Information fusion algorithms

are able to exploit redundant data to alleviate such effects. Briefly, we can define the

information fusion as the process of integrating multiple information sources to obtain

improved and useful information as accurately as possible (HORNUNG et al., 2013).

The creation of new map points is necessary to represent the new information every time

that a new keyframe is selected. In this sense, we first update the covisibility graph by

adding a new node for the new keyframe wKi and creating the covisibility edges as shown

in Figure 3.1b, where the node corresponding to keyframe wK7 is added to the covisibility

graph. Due to these updates in the covisibility graph, a vicinity is generated for this new

keyframe which we use to compute new depth measurements. Later, to infer a single depth

estimation with the higher possible accuracy we collect and combine these measurements

using information fusion, i.e, using Bayesian inference (BISHOP, 2006).
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Figure 3.1: Covisibility graph (STUMM; MEI; LACROIX, 2013) with nodes representing
keyframes and edges representing their covisibility. Image generated by the author.
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Hence, given a new keyframe wKn and a covisibility graph G, for each feature

found in the new keyframe there is a set of noisy depth measurement denoted by di for

i = 1, ..., k obtained from the triangulation of the new keyframe with k neighbours of

the covisibility graph. Furthermore, in order to simplify the problem and allow the use of

Bayesian estimation we assume that all measurements d1, ..., dk are independent. There-

fore the depth posterior is approximated by the product of the marginal probabilities:

p
(
d̂, ρ | d1, ..., dk

)
∝ p

(
d̂, ρ
)∏

k

p
(
dk | d̂, ρ

)
, (3.2)

with p(d̂, ρ) being a prior on the true depth and the inlier probability. Vogiatzis et al.

(VOGIATZIS; HERNANDEZ, 2011) prove that the posterior can be approximated by the

product of Gaussian and Beta distributions (the first for the true depth and the second

for the inlier probability), to minimize the Kullback-Leibler divergence from the true

posterior:

p
(
d̂, ρ | d1, ..., dk

)
∝ N

(
d̂ | µk, σ2

k

)
Beta (ρ | ak, bk) , (3.3)

which can be parametrized with four parameters, where the first two parameters, ak and

bk control the Beta distribution. The other two, µk and σ2
k represent the mean and the

variance of the Gaussian distribution. It leads to:

q
(
d̂, ρ | ak, bk, µk, σ2

k

)
∝ N

(
d̂ | µk, σ2

k

)
Beta (ρ | ak, bk) (3.4)

Once defined the posterior, the Bayesian estimation allows us to integrate new
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measurements in order to update the posterior to describe a new knowledge state. It is

given by:

q
(
d̂, ρ | ak, bk, µk, σ2

k

)
︸ ︷︷ ︸

Posterior

= q
(
d̂, ρ | ak−1, bk−1, µk−1, σ

2
k−1

)
︸ ︷︷ ︸

Prior

p
(
dk | d̂, ρ

)
︸ ︷︷ ︸

Likelihood

, (3.5)

using Equation 3.4 and 3.1 in Equation 3.5, moreover the definition of Gaussian and

Beta distributions, as well as the properties of the gamma function (JAYNES, 2003), we

obtain:

= q
(
d̂, ρ | ak−1, bk−1, µk−1, σ

2
k−1

)
p
(
dk | d̂, ρ

)
=
[
N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1)

]
[
ρN

(
dk | d̂, τ 2

)
+ (1− ρ) U

(
dk | dmin, dmax

)]
= ρN

(
dk | d̂, τ 2

k

)
N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1)

+ (1− ρ) U (dk)N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1)

= N
(
dk | d̂, τ 2

k

)
N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1) ρ

+ U (dk)N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1) (1− ρ)

=
ak−1

ak−1 + bk−1

N
(
dk | d̂, τ 2

k

)
N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1 + 1, bk−1)

+
bk−1

ak−1 + bk−1

U (dk)N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1 + 1)

=
ak−1

ak−1 + bk−1

N
(
dk | µk−1, τ

2
k + σ2

k−1

)
N
(
d̂ | m, s2

)
Beta (ρ | ak−1 + 1, bk−1)

+
bk−1

ak−1 + bk−1

U (dk)N
(
d̂ | µk−1, σ

2
k−1

)
Beta (ρ | ak−1, bk−1 + 1)

=
ak−1

ak−1 + bk−1

N
(
dk | µk−1, τ

2
k + σ2

k−1

)
q
(
d̂, ρ | ak−1 + 1, bk−1,m, s

2
)

+
bk−1

ak−1 + bk−1

U (dk) q
(
d̂, ρ | ak−1, bk−1 + 1, µk−1, σ

2
k−1

)
= c1q

(
d̂, ρ | ak−1 + 1, bk−1,m, s

2
)

+ c2q
(
d̂, ρ | ak−1, bk−1 + 1, µk−1, σ

2
k−1

)
(3.6)

with:

c1 =
ak−1

ak−1 + bk−1

N (dk | µk−1, τ
2
k + σ2

k−1) (3.7)

c2 =
bk−1

ak−1 + bk−1

U(dk | dmin, dmax) (3.8)

where c1 and c2 can be calculated from the information known in a previous step. Fur-
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thermorem and s2 represent the new mean and variance obtained from the product of two

Gaussian functions and are given by:

m =
σ2
k−1dk + τ 2

kµk−1

τ 2
k + σ2

k−1

, (3.9)

s2 =
τ 2
kσ

2
k−1

τ 2
k + σ2

k−1

, (3.10)

In Equation 3.6, we can observe that ak and bk can be thought of as probabilistic

counters of how many inlier and outlier measurements have occurred during the lifetime

of the map point. Finally, using Equation 3.6 and matching the first and second moments

of the Gaussian and Beta distributions (JAYNES, 2003), we can obtain the new posterior

parameters ak, bk, µk, σ2
k, from the old parameters ak−1, bk−1, µk−1, σ2

k−1, and the new

measurement dk. Therefore, the first and second moments with regard to d̂ is given by:

µk = c1m+ c2µk−1 (3.11)

σ2
k = c1

(
s2 +m2

)
+ c2

(
σ2
k−1 + µ2

k−1

)
− µ2

k (3.12)

In the same way the first and second moments with regard to ρ is given by:

ak
ak + bk

= c1
ak−1 + 1

ak−1 + bk−1 + 1
+ c2

ak−1

ak−1 + bk−1 + 1
(3.13)

ak (ak + 1)

(ak + bk) (ak + bk + 1)
= c1

(ak−1 + 1) (ak−1 + 2)

(ak−1 + bk−1 + 1) (ak−1 + bk−1 + 2)

+ c2
ak−1 (ak−1 + 1)

(ak−1 + bk−1 + 1) (ak−1 + bk−1 + 2)
(3.14)

Finally, solving the system of equations formed by Equation 3.13 and 3.14, we

obtained the new posterior parameters ak and bk:

ak =
v1 (v2 − v1)

v2
1 − v2

(3.15)
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bk = ak
(1− v1)

v1

(3.16)

with:

v1 = c1
ak−1 + 1

ak−1 + bk−1 + 1
+ c2

ak−1

ak−1 + bk−1 + 1
(3.17)

v2 = c1
(ak−1 + 1) (ak−1 + 2)

(ak−1 + bk−1 + 1) (ak−1 + bk−1 + 2)

+ c2
ak−1 (ak−1 + 1)

(ak−1 + bk−1 + 1) (ak−1 + bk−1 + 2)
(3.18)

3.4 Map Optimization

To maintain a refined map, we need a method to detect and reject outliers and

obsolete information on all observations made on the new keyframe. Firstly, we define

as obsolete information those map points that through the time do not contribute to the

SLAM process. In this way, we have considered obsolete information those map points

which have not been observed in at least three keyframes because they can be informa-

tion not trusted due they are not continuously observables. Furthermore, this ensure that

more than one measurement has been used in estimating the depth posterior distribution.

Secondly, in order to identify outliers we use only the information contained in the depth

posterior distribution. Our approach takes into account the amount of inlier measurements

that have occurred and the amount of information gained. In this sense, given the depth

posterior for all observations in the new keyframe we assign a state for each of them using

the conditional defined as:

S(qk) =


Converged, if ak

ak+bk
> ηi and σ2 < σ2

∗

Diverged, if ak−1
ak+bk−2

< ηo

Update, otherwise,

(3.19)

where qk represent the depth posterior distribution defined in Equation 3.4, σ∗ is the

gained information threshold, whereas ηi and ηo are the inlier and outlier threshold, re-

spectively. In Equation 3.19 we can observe that there are three possible outcomes. First,
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if the mode of the beta distribution is less than ηo then we conclude that the depth esti-

mation has failed to converge due to unreliable measurements. Therefore this map point

is removed from the map. Second, if the mean of the beta distribution is bigger than ηi

and the variance of the normal distribution is less than σ2
∗ then we assume that the depth

has converged to a good estimate and this map point remains stable, otherwise it waits for

new measurements to be integrated.

Note that the mean of the beta distribution is used to evaluate convergence while

the mode of the same distribution is used to evaluate divergence. However, the mean could

also be used to evaluate the divergence but this value tends to extremes (0 or 1) rapidly as

the parameters of the posterior are updated through Equation 3.5. Due to this behaviour

we choose to use the mode, allowing to maintain the map points for more time waiting

for new measurements to be integrated. Finally, to deal with repetitive information, the

map point is searched in the neighbouring keyframes. If a match is found, it is added to

the map using the method explained in the previous section and once again the criteria of

(3.19) is applied.
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4 EXPERIMENTS

The proposed method is evaluated using the TUM RGB-D benchmark (STURM et

al., 2012). The benchmark contains 39 sequences that was captured by a Microsoft Kinect

sensor. Each sequence contains both the color and depth images in full sensor resolution

(640x480) at video frame rate (30 Hz), and an accurate ground truth for camera motion

that was provided by a motion capture system with eight high-speed tracking cameras

(100 Hz). We have selected 11 sequences, which are also used in other works (MUR-

ARTAL; MONTIEL; TARDOS, 2015), (ENGEL; SCHOPS; CREMERS, 2014). For in-

stance, some samples of the processed sequences can be seen in Figures 4.1, 4.2 and 4.3.

Our experiments are performed on a desktop computer with Ubuntu 14.04, equipped with

Intel Core 2 Quad processor and 4GB of RAM memory. The keyframe-based monocular

SLAM system and our method are implemented in C++. The values for the parameters

of our method are established as in the work of Vogiatzis et al. (VOGIATZIS; HERNAN-

DEZ, 2011):

Table 4.1: The values for the parameters of our method.

Parameter value
a0 10
b0 10
µ0 d̄
σ0 (dmax − dmin)

ηi 0.70
ηo 0.05
σ2

∗
(dmax−dmin)

1000

In the next sections we integrate quantitative results to evaluate the resulting map;

and in order to allow a quantitative comparison between trajectories obtained and ground

truths, we computed two error metrics as proposed in (STURM et al., 2012): the relative

pose error and the absolute keyframe trajectory error. Finally to compare our results, we

executed the original ORB-SLAM system over the same sequences.
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4.1 Removing outliers

To evaluate the resulting map, we used a quantitative metric such as the map size.

Table 4.2 provides a summary of the ORB-SLAM performance with and without our

proposed method on the 11 sequences. This table shows the number of keyframes and

map points, the relative and the absolute error with respect to the trajectory which will

be discussed later. In Table 4.2 we can observe the comparison of the resulting maps

obtained by ORB SLAM with and without our proposed method, where we can see that

in all sequences our approach manages to reduce a percentage of the amount estimated by

the original ORB SLAM system.

Additionally, we performed 10 separate experiments for fr3_long_office, fr2_desk

and fr2_desk_person sequences. In Figure 4.1, we can observe the first sequence where

the camera moves along a large round through a household and office scene with textures

and structures. Furthermore, the end of the trajectory overlaps with the beginning so that

there is a large loop closure. In the second sequence shown in Figure 4.2, the camera

moves around two tables that includes a typical office scene with two desks, a computer

monitor, keyboard, phone, chairs, etc. Finally, the third sequence shown in Figure 4.3 is

similar to the second, where additionally a person is sitting at a desk, moves and interacts

with some of the objects (screen, phone, etc) during the recording. This sequence is

intended to verify the robustness of a SLAM system against dynamic objects and people,

but it can also be used for differencing maps and finding changes in the scene. In this way,

Table 4.3, 4.4 and 4.5 show the results of experiments performed in these environments.

Table 4.2: Quantitative evaluations for 11 sequences from the TUM benchmark (STURM
et al., 2012). From left to right, the columns show the dataset name, their length and length
of filming. The number of keyframes, map points and their percentages of reduction,
respectively. The root mean square error (RMSE) of absolute keyframe trajectory (ATE)
and the relative pose (RPE) in terms of translation.

Dataset Duration [s] Length [m] Keyframes Points ATE[m] RPE[m]
ORB Ours % ORB Ours % ORB Ours ORB Ours

1 fr1_desk 23.40 9.263 63 60 4.76 3236 2785 13.93 0.0144 0.0141 0.0338 0.0243
2 fr1_xyz 30.09 7.112 31 25 19.35 1740 1408 19.08 0.0092 0.0083 0.0402 0.1257
3 fr3_str_tex_far 31.55 5.884 25 23 8.00 1911 1698 11.14 0.0088 0.0076 0.0972 0.0702
4 fr3_walk_halfsph 35.81 7.686 45 36 20.00 1433 1035 27.77 0.0164 0.0159 0.2690 0.1783
5 fr3_str_tex_near 36.91 5.050 49 43 12.24 3188 2969 6.86 0.0114 0.0110 0.0317 0.0401
6 fr3_sit_halfsph 37.15 6.503 76 69 9.21 2570 2096 18.44 0.2342 0.0100 0.2349 0.1129
7 fr3_nstr_tex_near 56.48 13.456 67 62 7.46 4542 4032 11.22 0.0138 0.0132 0.0607 0.0854
8 fr3_long_office 87.09 21.455 198 170 14.14 10175 8250 18.91 0.0102 0.0142 0.1569 0.1580
9 fr2_desk 99.36 18.880 177 149 15.81 7288 5914 18.85 0.0083 0.0170 0.0931 0.0889

10 fr2_desk_person 142.08 17.044 119 106 10.92 4565 3863 15.37 0.0096 0.0080 0.0995 0.1140
11 fr2_xyz 122.74 7.029 37 29 21.62 1582 1355 14.34 0.0025 0.0024 0.0174 0.0182
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Table 4.3 and 4.4 are the results in static environments, where we can observe

that the number of map points decrease because possibly enough of these map points are

outliers, repetitive or obsolete. Furthermore, the number of keyframes also decrease due

to the fact that the ORB-SLAM system has a method which attempts to detect redundant

keyframes and delete them. This method is responsible for removing all keyframes whose

90% of their observations (map points) have been seen in at least three other keyframes in

the map, allowing the system a long life operation in the same environment and benefiting

bundle adjustment complexity. However, the real world is a dynamic environment. Thus,

Table 4.5 shows the experiments performed for a dynamic environment, where we can

observe that the results are still maintained, i.e., the number of map points and keyframes

obtained with our approach is lower than that obtained with the ORB-SLAM system. This

happens because information fusion methods manage to deal with frequent changes. In

this sense, we also have to analyse how the decrease in the size of the map affects the

accuracy of the estimated trajectory. Therefore, we present other measurement metrics.

Aditionally, Figure 4.4a and 4.4b show the resulting map for the fr3_long_office

sequence whit ORB-SLAM and our approach respectively. For other hand, Figure 4.4c

and 4.4d show the octree discretization of both approaches. In the same way Figure 4.4e

and 4.4f Figure 4.4g and 4.4h show the resulting map for the fr2_desk sequence.
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Figure 4.1: Images of the sequence fr3_long_office taken at different camera poses. Image
generated by the author.
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Figure 4.2: Images of the sequence fr2_desk taken at different camera poses. Image
generated by the author.
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Figure 4.3: Images of the sequence fr2_desk_person taken at different camera poses.
Image generated by the author.
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Table 4.3: Quantitative evaluations for 10 separate experiments on the fr3_long_office
sequence.

Test Keyframes Points ATE[m] RPE[m]

RMSE mean std RMSE mean std

ORB Ours % ORB Ours % ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours

1 198 170 14.14 10175 8250 18.91 0.0102 0.0142 0.0095 0.0127 0.0039 0.0063 0.1569 0.1580 0.1503 0.1455 0.0450 0.0615

2 190 165 13.15 9955 7881 20.83 0.0114 0.0104 0.0103 0.0093 0.0048 0.0048 0.1534 0.1547 0.1470 0.1444 0.0437 0.0555

3 184 157 14.67 9580 7794 18.64 0.0098 0.0209 0.0090 0.0178 0.0039 0.0110 0.1560 0.1487 0.1495 0.1403 0.0447 0.0493

4 187 155 17.11 9829 7634 22.33 0.0119 0.0127 0.0107 0.0113 0.0052 0.0056 0.1538 0.1563 0.1473 0.1455 0.0442 0.0571

5 186 160 13.97 9679 7620 21.27 0.0101 0.0116 0.0090 0.0106 0.0044 0.0047 0.1551 0.1556 0.1486 0.1458 0.0444 0.0544

6 189 159 15.87 9777 7652 21.73 0.0110 0.0149 0.0101 0.0136 0.0043 0.0061 0.1533 0.1513 0.1469 0.1419 0.0438 0.0523

7 210 159 24.28 8857 7640 13.74 1.0020 0.0106 0.8960 0.0093 0.4485 0.0050 0.2081 0.1571 0.1895 0.1472 0.0859 0.0549

8 187 167 10.69 9610 7973 17.03 0.0114 0.0138 0.0104 0.0121 0.0046 0.0067 0.1551 0.1567 0.1486 0.1475 0.0444 0.0531

9 182 159 12.63 9350 7880 15.72 0.0109 0.0117 0.0099 0.0106 0.0047 0.0048 0.1544 0.1524 0.1479 0.1440 0.0443 0.0499

10 190 161 15.26 9668 7864 18.65 0.0108 0.0124 0.0102 0.0109 0.0037 0.0059 0.1517 0.2023 0.1454 0.1806 0.0434 0.0912

Table 4.4: Quantitative evaluations for 10 separate experiments on the fr2_desk sequence.

Test Keyframes Points ATE[m] RPE[m]

RMSE mean std RMSE mean std

ORB Ours % ORB Ours % ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours

1 167 151 9.58 7060 5880 16.71 0.0103 0.0157 0.0091 0.0146 0.0048 0.0058 0.0461 0.1228 0.0436 0.1105 0.0150 0.0535

2 166 149 10.24 7001 5830 16.72 0.0079 0.0103 0.0068 0.0090 0.0040 0.0050 0.1262 0.1467 0.1187 0.1299 0.0428 0.0681

3 168 139 17.26 6998 5766 17.60 0.0102 0.0156 0.0085 0.0131 0.0056 0.0084 0.1070 0.1448 0.1007 0.1319 0.0363 0.0596

4 166 149 10.24 6968 5726 17.82 0.0109 0.0083 0.0094 0.0070 0.0055 0.0045 0.0809 0.1464 0.0761 0.1330 0.0274 0.0611

5 168 143 14.88 7032 5626 19.99 0.0074 0.0087 0.0066 0.0074 0.0034 0.0044 0.1277 0.0647 0.1201 0.0599 0.0434 0.0243

6 166 149 10.24 6898 5914 14.26 0.0085 0.0170 0.0075 0.0156 0.0039 0.0066 0.0996 0.0889 0.0940 0.0794 0.0329 0.0401

7 166 149 10.24 7031 5857 16.69 0.0076 0.0086 0.0067 0.0072 0.0035 0.0047 0.0967 0.1034 0.0910 0.0928 0.0327 0.0457

8 167 149 10.77 6934 5685 18.01 0.0076 0.0080 0.0068 0.0069 0.0034 0.0042 0.0962 0.1069 0.0908 0.0947 0.0316 0.0496

9 177 145 18.07 7288 5672 22.17 0.0083 0.0069 0.0073 0.0063 0.0038 0.0028 0.0931 0.1166 0.0880 0.1063 0.0304 0.0477

10 168 150 10.71 7076 6055 14.42 0.0091 0.0150 0.0080 0.0123 0.0043 0.0085 0.1063 0.1016 0.1004 0.0887 0.0350 0.0495

Table 4.5: Quantitative evaluations for 10 separate experiments on the fr2_desk_person
sequence.

Test Keyframes Points ATE[m] RPE[m]

RMSE mean std RMSE mean std

ORB Ours % ORB Ours % ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours ORB Ours

1 114 101 11.40 4564 3680 19.36 0.0084 0.0086 0.0073 0.0068 0.0041 0.0052 0.0793 0.1035 0.0610 0.0809 0.0507 0.0645

2 116 104 10.34 4632 3842 17.05 0.0092 0.0082 0.0068 0.0074 0.0061 0.0034 0.1132 0.0874 0.0882 0.0635 0.0709 0.0601

3 119 104 12.60 4717 3765 20.18 0.0103 0.0075 0.0092 0.0064 0.0047 0.0040 0.0707 0.0907 0.0520 0.0683 0.0478 0.0596

4 121 102 15.70 4677 3723 20.39 0.0100 0.0094 0.0086 0.0076 0.0052 0.0055 0.1076 0.1105 0.0622 0.0822 0.0694 0.0738

5 117 106 9.40 4650 3863 16.92 0.0121 0.0080 0.0107 0.0068 0.0056 0.0042 0.1209 0.1140 0.0959 0.0903 0.0735 0.0695

6 119 100 15.96 4643 3765 18.91 0.0084 0.0068 0.0069 0.0059 0.0047 0.0033 0.0751 0.0996 0.0563 0.0703 0.0497 0.0705

7 119 101 15.12 4656 3731 19.86 0.0092 0.0081 0.0066 0.0070 0.0065 0.0040 0.0997 0.1152 0.0746 0.0853 0.0661 0.0774

8 114 101 11.40 4479 3785 15.49 0.0102 0.0069 0.0083 0.0055 0.0059 0.0042 0.1023 0.1115 0.0751 0.0859 0.0693 0.0711

9 119 104 12.60 4663 3755 19.47 0.0085 0.0102 0.0078 0.0073 0.0033 0.0071 0.0835 0.1029 0.0649 0.0823 0.0524 0.0617

10 119 102 14.28 4600 3726 19.00 0.0100 0.8033 0.0078 0.5883 0.0062 0.5470 0.1123 0.1488 0.0880 0.1233 0.0696 0.0832
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Figure 4.4: Resulting maps for the fr3_long_office sequence an the fr2_desk_person se-
quence with ORB-SLAM (left) and our method (right) . Image generated by the author.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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4.2 Relative Pose Error

The relative pose error (RPE) measures the difference between the estimated and

the true motion. It is used to evaluate the local accuracy or the drift of a visual odometry

system over a fixed time interval ∆. To compute the RPE, the relative transformation

between consecutive poses of the estimated trajectory P and the ground truth Q are com-

pared at time step i using:

E∆
i =

(
Q−1
i Qi+∆

)−1 (
P−1
i Pi+∆

)
, (4.1)

Later, the root mean square error (RMSE) is computed over all translational com-

ponents of these errors along the sequence with time parameter ∆ equals to 1, to match

consecutive frame. It leads to:

RMSE
(
E∆

1:n

)
=

1

n

n∑
∆=1

(
1

m

m∑
i=1

∥∥T (E∆
i )
∥∥2

) 1
2

(4.2)

Where n is the number of camera poses, m is the number of individual relative

pose errors calculated from Equation 4.1 and T is the function that extracts the transla-

tional component from the transformation matrix E∆
i . This is illustrated in Figure 4.5

where we can see the relative pose error obtained in our experiments for fr3_long_office,

fr2_desk and fr2_desk_person sequences. Tables 4.3, 4.4 and 4.5 show the RPE for ten

executions with these three sequences. Additionally, we analysed these results further by

computing the error histogram shown in Figure 4.6.

Note that we measured the RPE in meters and per frame similar to earlier publi-

cation (STURM et al., 2012). Moreover, instead of the median or the standard error we

measure the RMSE, which is much more influenced by large occasional errors. On the

one hand, we compare our method with ORB-SLAM for static environments that contain

significant amounts of noise and outliers that are partially derived from occlusions and

reflections in the scene that violate the photo-consistency assumption. Table 4.3 and 4.4

show the results for these static environments, where the root mean square errors of the

RPE are computed using their published resulting trajectories (STURM et al., 2012). For

each sequence, we show the mean, the standard and the RMSE of the translational error.

It can be seen that our approach and ORB-SLAM achieve similar results in most of the

experiments and it can be verified in the histograms that are shown in Figure 4.6a, 4.6b,

4.6c and 4.6d. Furthermore, in Figure 4.5b and 4.5d, the camera trajectories estimated by
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our approach are compared to the ground truth trajectories. Similarly, in Fig 4.5a and 4.5c

those that are estimated by the original ORB-SLAM.

On the other hand, we also calculate the RMSE of the RPE for a sequence with

a dynamic environment. In Table 4.5, we compare the results between our approach and

ORB-SLAM separately. For this sequence, we also show the mean, the standard and the

RMSE of the translational error. As can be seen, our approach achieves similar visual

odometry accuracy as ORB-SLAM does. The plots in Figure 4.6e and 4.6f confirm that

the trajectory estimated by our approach and ORB-SLAM are very close to the ground

truth. In general, Table 4.2 shows the quantitative results of the RMSE for the RPE

computed in each sequence. The results obtained by our approach and ORB-SLAM are

clearly very close in both static and dynamic environments. This implies that our approach

performs similar to ORB-SLAM in terms of accuracy. Furthermore, we can conclude that

the estimated trajectory by our approach is not affected by the removal of the map points

that are considered as outliers, repetitive or obsolete information.

4.3 Absolute Keyframe Trajectory Error

In addition, we use the absolute keyframe trajectory error (ATE) which focuses

on global consistency. It is used to evaluate the performance of visual SLAM systems.

To compute the ATE, the absolute distances between the estimated keyframe trajectory P

and the ground truth Q at time step i are compared using the absolute trajectory error:

Fi = Q−1
i SPi, (4.3)

Where S is the rigid-body transformation corresponding to the least-square so-

lution to the alignment problem, which maps the estimated keyframe trajectory P onto

the ground truth Q. Similar to the RPE, the RMSE is computed over all translational

components of the relative pose error in all time instants. It leads to:

RMSE (F1:n) =

(
1

n

n∑
i=1

‖T (Fi)‖2

) 1
2

(4.4)

Where T is the function that extracts the translational component from the trans-

formation matrix Fi. This is illustrated in Figure 4.7 which shows the ground truth and all

keyframes in the map, for fr3_long_office, fr2_desk and fr2_desk_person sequences. In
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these plots, each circle represents a keyframe. On the one hand, the blue circles are those

keyframes in the estimated trajectory, which are not considered for the RMSE computa-

tion because their matches were not found onto the ground truth at the time of alignment.

On the other hand, the remaining cycles are those keyframes that were matches, there-

fore they are considered for the RMSE computation. For these circles, the filled color

represents the ATE in each keyframe.

The results for these three individual sequences are given in Table 4.3, 4.4 and

4.5. Similarly as in the previous section, we calculate the RMSE of the ATE for static and

dynamic environments. In Table 4.4 and 4.3, the results obtained by our approach and

ORB-SLAM in static environments are shown. However, it is more interesting to observe

the results in a dynamic environment. Table 4.5 shows the performance of our approach

and ORB-SLAM in the sequence with a dynamic environment. It can be observed that our

approach is not affected by changes in the environment, this is because our information

fusion algorithm constantly updates the map points. So we can say that the dynamic map

points are considered as noise that may cause the whole SLAM process to fail, therefore

they are removed.

We observe that the performance of our method is good on the three sequences.

We think that the reason is that the three sequences are sufficiently feature rich, allowing

to generate a rich map of information and therefore a good performance of our method.

For instance, if we look for the sequence fr3_long_office in Table 4.2, the results show

that the number of keyframes in the map generated by our approach is lower than the one

generated by ORB-SLAM, besides the ATE estimated by our approach is greater than

the estimated by ORB-SLAM. This is also perceived in Figure 4.7a that shows regions

with a high density of keyframes where there is possibly repeated information, outliers or

obsolete informations. While in Figure 4.7d this density decreases. In the same way, the

alignment obtained by ORB-SLAM is better than that obtained by our method.

Finally, Table 4.2 shows the quantitative results of the RMSE in meters for the

absolute keyframe trajectory computed in each sequence, where we can observed that the

RMSE produced by ORB-SLAM with our method is very close to the one produced by

the original ORB-SLAM.
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Figure 4.5: Relative Pose Error evaluation for fr3_long_office, fr2_desk and
fr2_desk_person sequences of TUM dataset (STURM et al., 2012), showing the results
obtained by ORB-SLAM without our method (left) and with our method (right). Image
generated by the author.

(a) (b)

(c) (d)

(e) (f)
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Figure 4.6: Relative Pose Error for fr3_long_office, fr2_desk and fr2_desk_person se-
quences of TUM dataset (STURM et al., 2012), showing the results obtained by ORB-
SLAM without our method (left) and with our method (right). Image generated by the
author.

(a) (b)

(c) (d)

(e) (f)
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Figure 4.7: Absolute Keyframe Trajectory Error evaluation for fr3_long_office, fr2_desk
and fr2_desk_person sequences of TUM dataset (STURM et al., 2012), showing the re-
sults obtained by ORB-SLAM without our method (left) and with our method (right).
Additionally, blue points represent those keyframes that are not considered by the align-
ment method. Image generated by the author.

(a) (b)

(c) (d)

(e) (f)
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5 FINAL REMARKS AND FUTURE WORK

In this work, we developed a new method that allows to maintain a refined map

in the keyframe-based SLAM. Our approach reduce the map size, removing map points

that can have a direct influence on the performance of the SLAM process, such as outliers

generated from poor depth estimates, or map points which have been visualized only in

some frames and over time have become obsolete. Our approach also deals with repetitive

information to maintain a good quality map and counteract the effect of the frequent

addition of features.

To achieve this, we employ a monocular keyframe-based SLAM system to build

a sparse map of the environment, and to compute a visual pose estimate within this map

for each video frame. We contribute with a novel method to detect outliers and combine

repetitive information within the map. This is achieved by combining a covisibility graph

and an algorithm based on the information fusion to build a probabilistic map. In this

sense, our approach represents the depth information of each map point as a mixture of

probability distributions and takes advantage of the keyframe neighbourhoods created in

the covisibility graph to update these probabilities, and thus maintain the highest possible

accuracy of depth estimation. Later, to guarantee a few outliers within the map and reduce

the number of redundant keyframes, a pruning policy based on the depth accuracy of the

map points is performed.

Finally, the effectiveness of our approach is shown through extensive experiments

on publicly available TUM dataset. On the one hand, the performance in static indoor

environments achieves a considerable percentage of reduction in the size of the map.

Where, these environments present structures and textures that allow to obtain a consider-

able quantity of information for the development of our method and the keyframe-based

SLAM process. On the other hand, we can see that the performance in dynamic indoor

environments is not affected by the dynamic changes and similarly as in the static, a con-

siderable percentage of reduction in the size of the map is achieved. Because our method

considers the dynamic points as outliers, therefore they are removed from the map and

they do not affect the performance of the keyframe-based SLAM process.

In summary, we showed in our experiments that a Visual SLAM system based on

keyframes can build a refined, accurate and reliable map representation of the environment

which only increases its size if the visual content of the scene changes. This is achieved

by removing repetitive, obsolete and outliers information from the map representation
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without compromise the quality of the trajectory estimate when the camera continuously

operating in the same environment. In conclusion, we contribute with a method that fa-

cilitates the use of keyframe-based SLAM by a long time within indoor environments,

guaranteeing the construction of a refined, accurate and reliable map. As a future work,

we propose to investigate the performance of our method to address problems of a collab-

orative visual SLAM system in dynamic environments using multiple cameras, where all

the cameras work together to build a global map.
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APPENDIX A — PROBABILITY AND STATISTICS

A.1 Normal Distribution

One of the most important examples of a continuous probability distribution is the

normal distribution, sometimes called the Gaussian distribution X = N (x | µ, σ2). The

density function for this distribution is given by:

N (x | µ, σ2) =
1√

2πσ2
exp

{
−(µ− x)2

2σ2

}
(A.1)

where µ and σ are the mean and the standard deviation, respectively. The first and second

moment are:

E(X) = µ (A.2)

E(X2) = σ2 + µ2 (A.3)

A.2 Beta Distribution

A random variable X = Beta(x | a, b) is said to have the beta distribution, if the

density function is:

Beta(x | a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 (??)

Γ(a+ 1) = aΓ(a) (??)

where a and b are positive. The first and second moment are:

E(X) =
a

a+ b
(A.4)

E(X2) =
a(a+ 1)

(a+ b)(a+ b+ 1)
(A.5)
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