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Abstract

Based on the notions of spectrum sensitivities, proposed by us earlier, we develop a novel optimization approach to deal

with robustness in the closed-loop eigenvalues for partial quadratic eigenvalue assignment problem arising in active

vibration control. A distinguished feature of this new approach is that the objective function is composed of only the

system and the closed-loop feedback matrices. It does not need an explicit knowledge of the eigenvalues and eigen-

vectors. Furthermore, the approach is applicable to both the state-feedback and derivative feedback designs. These

features make the approach viable to design an active vibration controller for practical applications to large real-life

structures. A comparative study with existing algorithms and a study on the transient response of a real-life system

demonstrate the effectiveness, superiority, and competitiveness of the proposed approach.
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Introduction

Vibrating structures, such as bridges, highways, automobiles, air and space crafts, and others, are usually modeled
by a system of second-order differential equations generated by finite element discretization of the original dis-
tributed parameter systems. Such second-order system is known as the finite element model (FEM) in the vibra-
tion literature.1–7 These structures sometimes experience dangerous vibrations caused by resonance when excited
by external forces including earthquake, gusty winds, weights of human bodies that may result in partial or
complete destruction of the structures. In practice, and very often, such vibrations are controlled by using passive
damping forces. Besides being economic to apply it, such an approach has several practical drawbacks: it is ad hoc
in nature and is able to control only localized vibrations. On the other hand, the technique of active vibration
control (AVC) is scientifically based and can control vibrations globally in a structure if properly implemented.8–13

The most important aspect of the AVC implementation is to effectively and efficiently compute the feedback
forces needed to control the measured unwanted vibrations, caused by the resonant frequencies.
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Recently, a mathematically elegant approach that reassigns a few resonant eigenvalues to suitably chosen ones
while keeping the other large number of them and the associated eigenvectors unchanged has been proposed. This
latter approach is known to have the no-spill over property, and the problem of computing the feedback matrices
to reassign the unwanted eigenvalues in this way is called partial quadratic eigenvalue problem (PQEVAP). The
approach works exclusively in the second-order setting itself and is capable of taking advantages of computa-
tionally exploitable inherit structural properties of FEM, such as definiteness, sparsity, bandness, etc. which are
assets in large-scale computational settings. Typically, the mass and stiffness matrices are symmetric, the mass
matrix is positive diagonal, and the stiffness matrix is three-diagonal and positive definite or semidefinite. The
most attractive feature of this approach is that the no-spill over property is guaranteed by means of a mathe-
matical theory. This is in sharp contrast with the standard and obvious solution approach of the PQEVAP by
transforming a second-order control system to a standard linear state-space. By doing so, one can clearly make
use of the existing excellent numerical methods for eigenvalue assignment problems.14 However, in this case one
needs to deal with a system of dimensions twice that of the original model, which then becomes computationally
prohibitive even with a moderate-size model. Note that the FEM models that arise from practical applications,
especially in aerospace and space engineering, and power systems control, could be very large, possibly of multi-
million degree of freedom, and computational methods for such large-scale matrix computations are not well
developed.15 More importantly, by transforming to a standard state-space linear system, all the exploitable
properties of the FEM, as stated above, will be completely destroyed. By transforming it to a generalized
state-space system,15 the symmetry can be preserved but not the definiteness. Furthermore, such generalized
transformations give rise to descriptor control problems, and the numerical methods for such control problems,
especially for singular and nearly singular and large-scale systems, do not virtually exist.14

A basic solution of the original PQEVAP that meets with the above practical requirements is originally pro-
posed by Datta et al.,16 in the single input case and then subsequently generalized to the multi-input cases by
Datta et al.17 and Ram and Elhay.18 For practical effectiveness, it is not enough just to compute a pair of feedback
matrices, but they should be computed in such a way that they have norms as small as possible and the closed-
loop eigenvalues are as insensitive as possible to small perturbations to the data.19–22 Minimization of feedback
norms leads to economic design while the minimization of the closed-loop eigenvalue sensitivity ensures numerical
robustness in the control design. While the former is straightforward,19,20 the later poses a difficult computational
task, because the major part of the closed-loop eigenvector matrix consists of the large number of eigenvalues and
eigenvectors which are not known to the users. In order to overcome these computational difficulties, we propose
a novel minimization approach to deal with the robustness issue. It is based on the notions of spectrum sensitivity,
introduced earlier by the authors. The distinguished feature of this approach is that the objective function is
formulated in such a way that it does not require explicit knowledge of the eigenvalues and eigenvectors. It is
composed of only the closed-loop feedback matrices. The gradient formulas are then computed also in terms of
the feedback matrices. This feature makes it possible to design robust controllers in a practical way. In this paper,
we propose a new optimization algorithm for RPQEVAP for which the objective function is formulated in terms
of the closed-loop mass, stiffness, and damping matrices, thus computation of this function and of the associated
gradient formula can be performed without explicitly knowing the closed-loop eigenvectors. This objective func-
tion depends upon several spectrum sensitivity results which exhibit these eigenvalue sensitivity relations with the
closed-loop feedback matrices. The required gradient formulas are derived in the paper in terms of the closed-loop
feedback matrices. These new optimization algorithms are obtained for both cases of the state feedback and
state-derivative feedback. Numerical examples, both with small and large order matrices, are performed and an
experiment to study the transient response of a real-life system is carried out to demonstrate the effectiveness of
the proposed approach in both cases of state and velocity feedback. A comparative study with other existing
algorithms shows that the robustness achieved by the proposed algorithms is comparable to, and, in some cases,
is better than that achieved by algorithms which aim at minimizing the condition number of the closed-loop
eigenvector matrix.

Preliminary concepts on second-order systems and the partial quadratic eigenvalue

assignment problems (PQEVAPs)

A vibrating structure modeled by a system matrix second-order differential equations has the form

Mx
::
tð Þ þ Cx

:
tð Þ þKx tð Þ ¼ 0 (1)
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whereM; C, and K are, respectively, the mass, damping, and stiffness matrices, each of them of order n, and xðtÞ is
the displacement vector. Since this model is often generated by using finite element techniques, it is known as the

FEM. The matrices often have special structures

M ¼ MT � 0; C ¼ CT; K ¼ KT�0 (2)

in which the superscript T denotes the matrix transpose operator. Dynamics of such a system are governed by the

eigenvalues and eigenvectors of the associated quadratic matrix eigenvalue problem

Q kkð Þyk ¼ 0; k ¼ 1; 2 . . .; 2n (3)

with the pencil

Q kð Þ ¼ k2Mþ kCþK (4)

The details on the quadratic eigenvalue problem can be found in Datta.15 Suppose a control force of the form

f tð Þ ¼ Bu tð Þ (5)

where B is an n�m control matrix and uðtÞ is a control vector of order m, applied to the model to control the

unwanted vibrations caused by resonances. Thus, we have the control model

Mx
::
tð Þ þ Cx

:
tð Þ þKx tð Þ ¼ Bu tð Þ (6)

Assuming that the state and the velocity vectors xðtÞ and _xðtÞ are known, let us take

u tð Þ ¼ Fs x
:
tð Þ þGsx tð Þ (7)

where Fs and Gs are two unknown velocity and state feedback matrices. Many times the state vector xðtÞ is not
explicitly known, but the velocity vector _xðtÞ and the acceleration vector €xðtÞ can rather be estimated. In such case,

it is more practical to assume that

u tð Þ ¼ Fd x
:
tð Þ þGd x

::
tð Þ (8)

Here, the unknown feedback matrices Fd and Gd are named, respectively, velocity and acceleration feedback

matrices. The control laws defined by equations (7) and (8) are, respectively, called the state feedback and the

derivative feedback laws. Given then these expressions of the control inputs, the respective closed-loop systems

can be written as

Mx
::
tð Þ þ C� BFsð Þ x: tð Þ þ K� BGsð Þx tð Þ ¼ 0 (9)

M� BGdð Þ x:: tð Þ þ C� BFdð Þ x: tð Þ þKx tð Þ ¼ 0 (10)

PQEVAP and robustness

The PQEVAP is to assign a few eigenvalues of Q kð Þ, say, k1; . . .; kp; p� 2n, which are believed to cause resonances

in a vibrating structure, to suitably chosen numbers l1; . . .; lp by computing the two feedback matrices Fs and Gs

for the state feedback case, and Fd and Gd for the derivative feedback case, while leaving the other eigenvalues and

the associated eigenvectors unchanged.
In the multi-input case, if there exists a feedback pair, then there are infinitely many.
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The problems of choosing the feedback matrices with the property that they have minimum feedback norms

and that the closed-loop eigenvector matrix is well conditioned are, respectively, called minimum norm and robust

PQEVAPs, denoted by MNPQEVAP and RPQEVAP.

Notations

In order to state the solutions of these problems in the next section, let us introduce the following notations:

• K1 ¼ diag
a1 b1

�b1 a1

" #
; . . . ;

al bl

�bl al

" #
; k2lþ1; . . . ; kp

 !
, in which kk ¼ conj kkþ1ð Þ ¼ ak þ ibk; k ¼ 1; . . .; 2l and

k2lþ1; . . .; kp 2 R. It is a real representation of the eigenvalues that must be reassigned.

• �K1 ¼ diag
�a1 �b1

��b1 �a1

" #
; . . . ;

�al �bl

��bl �al

" #
; l2�lþ1; . . . ; lp

 !
, in which lk ¼ conj lkþ1

� � ¼ �ak þ i�bk; k ¼ 1; . . .; 2�l

and l2�lþ1; . . .; lp 2 R. It is a real representation of the new eigenvalues.

• Y1 ¼ <e y1
� � =m y1

� � � � � <e yl
� � =m yl

� �
y2lþ1 � � � yp

h i
. It is a real representation of the eigenvectors

that must be reassigned.

Note that l and �l are not necessarily equal, that is the cardinality of the complex eigenvalues of the spectrum

part to be assigned does not need to equal that of the reassigned part.

The PQEVAP and robustness solutions

In this section, we first state a known parametric solution to PQEVAP and then propose a new optimization

approach to study its robustness.

A solution to PQEVAP

• Construction of Fs and Gs: Let arbitrary Cs 2 Rm�p and Zs 2 Rp�p be the solution of the Sylvester equation 23

KT
1Z

T
s � ZT

s
�K1 ¼ �YT

1BCs (11)

If Zs is invertible, and

Us ¼ CsZ
�T
s (12)

then it has been shown in Cai et al.22 that

Fs ¼ UsY
T
1M; Gs ¼ UsðK1Y

T
1Mþ YT

1CÞ (13)

• Construction of Fd andGd: Assume that 0 62 spec K1ð Þ, and let Cd 2 Rm�p and Zd be the solution of the Sylvester

equation

KT
1Z

T
d � ZT

d
�K1 ¼ �KT

1Y
T
1BCd (14)

If Zd is invertible, and

Ud ¼ Cd ZT
d
�K1

� ��1
(15)
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then it has been shown in Zhang et al.24 that

Fd ¼ UdK
T
1Y

T
1M; Gd ¼ �UdY

T
1K (16)

Spectrum sensitivity

We define now eight sensitivities related to the perturbations of the sum and the product of the eigenvalues with

respect to changes in the system matrices M; C, and K as follows

SPKs ¼
@
Y

kcs
@K

¼ det K� BGsð Þ
det M

K� BGsð Þ�T (17)

SPMs ¼
@
Y

kcs
@M

¼ � det K� BGsð Þ
det M

M�T (18)

SRCs ¼
@
X

kcs
@C

¼ �M�T (19)

SRMs ¼
@
X

kcs
@M

¼ �M�T C� BFsð ÞTM�T (20)

SPKd ¼
@
Y

kcd
@K

¼ det K

det M� BGdð ÞK
�T (21)

SPMd ¼
@
Y

kcd
@M

¼ � det K

det M� BGdð Þ M� BGdð Þ�T (22)

SRCd ¼
@
X

kcd
@C

¼ � M� BGdð Þ�T (23)

SRMd ¼
@
X

kcd
@M

¼ � M� BGdð Þ�T C� BGdð ÞT M� BGdð Þ�T (24)

In the above formulas on the sensitivities, the subscripts s and d stand, respectively, for the state feedback and

the derivative feedback, and kcs and kcd stand for the respective closed-loop eigenvalues.

Robustness with spectrum sensitivity. Based on the concepts of eigenvalue sensitivities stated above, we now propose

to study the robustness issue in PQEVAP by minimizing the following parametric objective functions which are

composed of only the closed-loop system and feedback matrices. Each term of the objective functions is intimately

related to spectrum sensitivities as justified below.
Minimize

fs Csð Þ ¼ 1

2
w1sjj K� BGsð Þ�Tjj2F þ

1

2
w2sjjM�T C� BFsð ÞTM�Tjj2F (25)

The case of derivative feedback is similar.
Minimize

fd Cdð Þ ¼ 1

2
w1dk M� BGdð Þ�Tk2F þ

1

2
w2djj M� BGdð Þ�T C� BFdð ÞT M� BGdð Þ�Tjj2F (26)
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Note that the first term of equation (25) is related to equations (17) and (18), which concern the sensitivities of the

product of the closed-loop eigenvalues with respect to changes in the stiffness and mass matrices. Similarly, the second

term of equation (25) relates to the sensitivities of the sum of the closed-loop eigenvalues with respect to damping and

mass matrices through equations (19) and (48). Thus, minimization of equation (25) is related to the minimization of

the sensitivities of closed-loop eigenvalues. Similar remarks apply to expression (26). The weights w1s; w2s; w1d, and

w2d can be chosen by the designer to avoid dominance in the minimization problems (25) or (26).
In order to minimize equations (25) and (26), the corresponding gradient functions must be computed. In the

following, we show how to do so by stating two propositions. The interested readers are referred to the proof in

Appendix 1.

Computations of gradient formulae and the associated robust feedback algorithms

Gradient formula for state-feedback objective function

Proposition 1: Suppose that U; V are the solutions of the following Sylvester equations

�K1U� UKT
1 ¼ �Z�T

s PcBCZ�T
s (27)

�K1V� VKT
1 ¼ �Z�T

s QHBCZ�T
s (28)

and Zs is the same as in equation (11).
Then, the gradient rCs

fs is given by

rCs
fs ¼ 1

2
Z�T
s QH� PcÞ þ 1

2
ð�Vþ UÞYT

1

�� �
B

� �T

(29)

where

H ¼ w1s K� BGsð Þ�1 K� BGsð Þ�T K� BGsð Þ�1 (30)

c ¼ w2sM
�2 C� BFsð ÞTM�2 (31)

P ¼ YT
1M (32)

Q ¼ K1Y
T
1Mþ YT

1C (33)

Robust state-feedback algorithm. Based on the gradient formula obtained above, we now state the following algo-

rithm for robust feedback computation in the state-feedback case as SFRPQEVAP.

Algorithm 1. Robust state-feedback algorithm
Input: The matrices K; C; M; K1; �K1;Y1; the maximum number of iterations maxiter; the tolerance �
Output: The feedback matrices Fs; Gs

1 Step 1: Set k¼ 1 and choose Cð1Þ
s ¼ ½c1. . .cp� 2 Rm�p;

2 Step 2: Compute Zs; Fs; Gs; using equations (9) to (11);
3 Step 3: Compute rCs

f ðkÞ using equations (27) to (33);
4 Step 4: If jjrCs

fðkÞjjF � � or k¼maxiter, stop. Otherwise, set k ( kþ 1 and compute a new Cðkþ1Þ
s using a

gradient-based technique—BFGS,
Levenberg–Marquardt or other; other, return to Step 2.

Gradient formula for derivative feedback objective function

Proposition 2: Suppose that U; V are the solutions of the following Sylvester equations

�K1U� UKT
1 ¼ �Z�T

d PcBCZ�T
d (34)
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�K1V� VKT
1 ¼ �Z�T

d QHBCZ�T
d (35)

and Zd be the same as in equation (14).
Then, the gradient rCd

fd, equation (26) is given by

rCd
fd ¼ 1

2
Z�T
d QH� PcÞ þ 1

2
ð�Vþ UÞYT

1

�� �
B

� �T

(36)

where

H ¼ w1d M� BGdð Þ�1 M� BGdð Þ�T M� BGdð Þ�1 þ w2d

� M� BGdð Þ�1 C� BFdð Þ M� BGdð Þ�1 M� BGdð Þ�T C� BFdð ÞT
h

� M� BGdð Þ�T M� BGdð Þ�1 þ M� BGdð Þ�1 M� BGdð Þ�T C� BFdð ÞT

� M� BGdð Þ�T M� BGdð Þ�1 C� BFdð Þ M� BGdð Þ�1
i

(37)

c ¼ w2d M� BGdð Þ�1 M� BGdð Þ�T C� BFdð ÞT M� BGdð Þ�T M� BGdð Þ�1
h

� (38)

P ¼ �YT
1K (39)

Q ¼ KT
1Y

T
1M (40)

Robust derivative-feedback algorithm

An algorithm for robust feedback computation is now stated below for a solution of RPQEVAP in the derivative

feedback case.

Algorithm 2. Robust derivative-feedback algorithm
Input: The matrices K; C; M; K1; �K1;Y1; the maximum number of iterations maxiter; the tolerance �
Output: The feedback matrices Fd; Gd

1 Step 1: Set k¼ 1 and choose Cð1Þ
d ¼ ½c1. . .cp� 2 Rm�p;

2 Step 2: Compute Zd, Fd, Gd, using equations (12) to (14);
3 Step 3: Compute rCd

fðkÞ using equations (34) to (40);
4 Step 4: If jjrCd

fðkÞjjF � � or k¼maxiter, stop. Otherwise, set k ( kþ 1 and compute a new Cðkþ1Þ
d using a

gradient-based technique as BFGS,
Levenberg–Marquardt, or other; return to Step 2;

A Remark on Computational Complexity Algorithms 1 and 2: The computational complexity of the proposed

algorithms is dominated mainly by the matrix inversions and products necessary to compute the matrices H and c
which are used in gradient calculation for the feedbacks. Thus, the algorithms are Oðn3Þ, and therefore efficient.

Also, note that both the algorithms can be implemented with the help of only a small number of eigenvalues and

eigenvectors that need to be replaced.

Numerical experiments and comparisons

In this section, we present the results of the proposed method, comparing them with those of other existing

methods. Specifically, the following methods are considered for our comparisons:

(I) Proposed Robust State Feedback method (Method I—Algorithm 1);
(II) Proposed Robust Derivative Feedback (Method II—Algorithm 2);
(III) The method of Cai et al.22 (Method III);
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(IV) The method of Wang25 (Method IV);
(V) The method of Bai et al.21 (Method V).

In the first two experiments, the matrices M; C and K are perturbed by the following quantities

jjDMjjF � 0:0001jjMjjF; jjDCjjF � 0:0001jjCjjF; jjDKjjF � 0:0001jjKjjF

Let kcj and ~k
c

j stand for the jth closed-loop eigenvalue of the unperturbed and the perturbed system, respec-

tively. Then, we define

Den ¼
X2n
j¼1

kcj � ~k
c

j

	 
2" #1
2

(41)

This quantity is the deviation of the perturbed closed-loop eigenvalues from the unperturbed ones

Rss ¼ jjFjj2F þ jjGjj2F
jjFmnjj2F þ jjGmnjj2F

(42)

is the relative change to minimum norm feedbacks. jjFmnjjF and jjGmnjjF stand for the minimum feedback norms as

computed in the paper of Brahma and Datta.19

Experiment I: Random example

In this experiment, we consider a random example of order 5 from MATLAB gallery (“randcorr”, n)

M ¼

1 0:020074 0:16178 �0:00084629 �0:039004

0:020074 1 0:25089 0:090954 0:14549

0:16178 0:25089 1 �0:13847 0:0026833

�0:00084629 0:090954 �0:13847 1 �0:13832

�0:039004 0:14549 0:0026833 �0:13832 1

2
666666664

3
777777775

C ¼

1 �0:044725 �0:093248 �0:16885 0:18645

�0:044725 1 0:05047 0:38706 �0:29389

�0:093248 0:05047 1 0:0028751 �0:086355

�0:16885 0:38706 0:0028751 1 0:034282

0:18645 �0:29389 �0:086355 0:034282 1

2
666666664

3
777777775

K ¼

1 �0:63971 �0:16469 0:042341 �0:50555

�0:63971 1 0:19923 0:072314 0:49672

�0:16469 0:19923 1 0:64109 �0:24001

0:042341 0:072314 0:64109 1 �0:403

�0:50555 0:49672 �0:24001 �0:403 1

2
666666664

3
777777775
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B ¼

0:3971 0:9226

0:1576 0:4583

0:7275 0:7742

0:9719 0:3286

0:1564 0:3638

2
666666664

3
777777775

The eigenvalues �0:2551	1:3772i are reassigned to �1; �2, respectively. The weights w1s and w2s are set to be
1 for Method I.

The results in Table 1 show that j2ðYcÞ is comparable for all the four methods, while the other significant
measures of robustness, namely fðCsÞ; Den and Rss are much better with the Method I than with the others.

Experiment II: An example of oil rig

For this experiment, the matrices M; K 2 R66�66 are obtained from Harwell–Boeing Collection BCSSTRUC126

which proposes a statically condensed oil rig model. Moreover, we set C ¼ I66�66 and BT ¼ I2�2 062�2 �I2�2½ �T.
The eigenvalues �4:7067	 5:2347i; � 5:1680	 4:2682i; �5:2067þ 4:1522i of the model are reassigned to the
positions: �6	 i; �6	 2i; �6	 3i. The weights are set as w1s ¼ 1 and w2s ¼ 1e� 008. As seen in Table 2, for
the Method I, the condition number of the matrix of closed-loop eigenvectors is smaller than that obtained by
Method V, whereas it is comparable with that of Method III. The other measures are substantially better for the
Method I than the others.

Experiment III

The matrices for this experiment were taken from Qian and Xu27

M ¼ I4�4; C ¼ diagð½0:5 0 0 0:5�Þ;

K ¼

5 �5 0 0

�5 10 �5 0

0 �5 10 �5

0 0 �5 6

2
666666664

3
777777775
; B ¼

1 0

0 1

0 0

0 0

2
666666664

3
777777775

Table 1. Comparisons of Methods in a random example.

Method fsðCsÞ j2ðYcÞ Den Rss

I 43.9483 170.3181 0.0014 1.7502

III 100.2846 116.4019 0.0012 12.9499

IV 44.7336 159.3025 0.0013 2.6302

V 389.0345 114.7821 0.0012 77.3673

Table 2. Comparison of Methods in an example of oil rig.

Method fsðCsÞ j2ðYcÞ Den Rss

I 0.2979 4.4416eþ004 0.2813 1.1355

III 0.3143 3.5915eþ004 0.2906 1.8560

IV 3.6190 6.9402eþ006 0.9580 101.8630

V 0.3524 9.0145eþ004 0.2837 3.6009
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For this experiment, the eigenvalues �0:0385	4:1362i are reassigned to �1	i, and the perturbations in the

system matrices are set as

jjDMjjF � 0:01jjMjjF; jjDCjjF � 0:01jjCjjF; jjDKjjF � 0:01jjKjjF

The weights considered in this case are w1s ¼ w2s ¼ 1 for Method I and for Method II w1d ¼ w2d ¼ 1.
As seen from the results of Table 3, the condition numbers for the eigenvector closed-loop matrix for each of

the Methods I and II are smaller than that of Method III. The quantity Den for the Method I is comparable with

that of Method III, while for Method II it is much better. Figure 1 shows the distribution of reassigned eigen-

values in both cases of the feedbacks.

Experiment IV on system response—vibration absorber of a machine

In this section, we present the results on system responses of a second-order model representing absorber of a

machine, taken from Beards.28 The matrices M; C, K, and B are given by

M ¼ I3�3; C ¼ 0

K ¼

2 0 �0:6

0 2 �2

�0:6 �2 2:68

2
66664

3
77775; B ¼

1 0

0 0

0 �1

2
66664

3
77775

Re
-1.1 -1.08 -1.06 -1.04 -1.02 -1 -0.98 -0.96 -0.94 -0.92 -0.9

Im

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 1. Distribution of the reassigned eigenvalues in Experiment III with state feedback (red) and derivative feedback (black), under
linear perturbation in systems matrices of 1%.

Table 3. Condition number and eigenvalue perturbation for the control design in Experiment III.

Method j2ðYcÞ Den

I 21.1073 0.2332

II 46.3772 0.0560

III 72.8761 0.2248
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The natural frequencies of the system are 	2:1108i; 	1:4142i; 	0:4737i. Now, an external excitation of the
form fðtÞ ¼ 0:1sinð2:1108tÞ is applied to the system. It is clear that the eigenpair 	2:1108i will cause resonance.
This eigenpair is then reassigned to �1	i to control the vibration due to the resonance and the feedback matrices
are computed using Algorithms 1 and 2. The system responses then are determined for the open-loop system and
for the closed-loop system using the Algorithm 1 (Method I), Algorithm 2 (Method II), and Method V. These
system responses are displayed in Figure 2. It is seen that the oscillations due to resonance (Figure 2(a)) are well
controlled by applying feedback control forces in both cases (Figure 2(b) and (c)). Finally, we study the closed-
loop steady-state system response in a long term—after 450 s from initial time—for Algorithms 1 and 2 and
Method V under a perturbation of þ10% and –10%, respectively, in matrices M and K. The results are displayed
in Figure 3. In Figure 3(a) the horizontal displacement (red lines) and the torsional tilt (green lines) under
perturbations—dashed lines for the closed-loop system determined by Method I are displayed. The corresponding
results for the closed-loop system obtained by Method II are displayed in Figure 3(b), and the results for the
Method V are displayed in Figure 3(c). Despite the phase difference in the three responses, all the Methods were
able to achieve the control of resonance under severe perturbations in the matrices M and K, and thus confirming
that they deliver good robustness.
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Figure 2. A study of controlling resonant vibrations on vertical (blue lines) and horizontal (red lines) displacements and torsional tilt
(green lines) by Methods I, II, and V: (a) Open-loop, (b) closed-loop with Method I, (c) closed-loop with Method II, and (d) closed-loop
with Method V.
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Experiment V: Comparison of the proposed algorithms with a genetic algorithm (GA)

In this section, we compare the proposed algorithms with a GA which is believed to give a global solution to an

optimization problem but which is heuristic in nature. The results are displayed in Table 4. Here the superscripts s,

d, and GA stand for the respective quantities in cases of state feedback, derivative feedback, and GA. All these

three algorithms are applied to the three examples in “Experiment I: Random example,” “Experiment II: An

example of oil rig,” and “Experiment III” subsections. It is seen that the results of our algorithm are very close or

same as those obtained by GA for Experiment I and Experiment III.

Experiment VI: A study of eigenvector condition number reduction

In this experiment, we evaluate the capability of Algorithm 1 in reducing the closed-loop eigenvector condition

number and compare it with the results obtained by Method V. It is to be noted that Method V is designed to
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Figure 3. Deviations of the steady-state time domain responses in for horizontal displacement (red lines) and torsional tilt (green
lines) under resonant excitation in unperturbed (continuous) and perturbed (dashed) closed-loop system: (a) Method I, (b) Method II,
and (c) Method V.
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minimize the condition number of the closed-loop eigenvector matrix. Here we consider the example from Ram
and Elhay18 and Bai et al.21 with matrices

M ¼ In; C ¼ 0; K ¼

2 �1 0 � � � 0 0

�1 2 �1 � � � 0 0

0 �1 2 � � � 0 0

..

. ..
. . .

. ..
. ..

. ..
.

0 0 � � � �1 2 �1

0 0 � � � 0 �1 1

2
666666666664

3
777777777775
; B ¼

Im

0

" #

where n¼ 40 and m¼ 3. The four eigenvalues with smallest absolute value are reassigned to
k2k�1 ¼ �kþ ffiffiffiffiffiffiffiffiffiffiffiffi�10k

p
; k2k ¼ conjðk2k�1Þ, k¼ 1, 2. The weights are chosen as w1s ¼ 0:1 and w2s ¼ 1 for Method

I. For the sake of comparison, the initial value of Cs for both methods is taken as

C0 ¼
1 1 1 0

0 1 1 1

1 0 1 0

2
664

3
775

We then compute the reduction on the condition number for the methods

Dj2 YCð Þ% ¼ 100
j02 � j2

j02
(43)

as well as the quantity Den. The results are displayed in Table 5. We observe that, although Method I does not
explicitly take into account the condition number in the formulation of the cost function, it gives a reasonable
improvement on the condition number after its application, with a slightly favorable result for the Method V.
However, the quantity Den is better in Method I than in Method V for perturbations of 1% in both the matrices K
and M.

Table 4. Comparison of the proposed gradient-based Algorithms 1 and 2 against the meta-heuristic GA optimization.

fsðC
Þ fdðC
Þ jjFI � FGAjj2 jjGI �GGAjj2 jjFII � FGAjj2 jjGII �GGAjj2

5.1
I 43:9483

GA 43:9487
– 0.0056 0.0410 – –

5.2
I 0:2979

GA 0:2963
– 0.6917 3.6533 – –

5.3
I 16:6393

GA 16:6451

2:1972

2:1972
0.1062 0.0077 0.0560 0.0097

GA: genetic algorithm.

Table 5. Reduction for the condition number and deviation of the eigenvalues for Experiment VI.

Method Dj2ðYCÞ% Den

I 49.05% 0.0412

V 63.57% 0.0451
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Summary and conclusions

A practical aspect of the design of a controller is to ensure robustness in the closed-loop eigenvalues.

Mathematically, this is equivalent to minimizing the condition number of the closed-loop eigenvector matrix.

The task is computationally prohibitive for the active vibration controller design of a vibrating structure modeled

by a system of second-order differential equations, because a major part of the closed-loop eigenvector matrix in

this case is not known to the users. We propose an alternative approach to this problem. The approach involves

minimizing a cost function that is composed of only the closed-loop system and feedback matrices. Therefore, its

implementation does not require the explicit knowledge of eigenvalues and eigenvectors, making the approach

practically implementable. Another distinguished feature of the approach is that it works for both state- and

velocity-feedback designs. A comparative study of the algorithms based on this proposed approach with the

existing algorithms which are especially designed to explicitly minimize the condition number of the closed-loop

eigenvector matrix shows that the algorithms are competitive and in some cases give better results. Future

research will be directed toward the development of such a strategy for partial eigenstructure assignment in a

vibrating system where not only a few eigenvalues are assigned but the associated eigenvectors need to be assigned

as well by feedback of different types.
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Appendix 1. Proof of Proposition 1

The cost function. fðCsÞ given by equation (25) can be written using matrix traces. Then, from the definition of the
gradient of a scalar function of matrices, the differential @f must contain some term of the type tr rCf

T@Csð Þ. By
differentiating equation (25) with respect to. Fs and Gs and applying trace properties such as linearity and trace of
cyclic permutations for the matrix product, one has

@fs ¼ 1

2
trðHB@Gs � cB@FsÞ þ 1

2
tr BTHT@GT

s � BTcT@FT
s Þ

�
(44)

The first term in equation (44) can be expressed as a function of @Cs. Thus, by combining equations (12) and
(13) in order to expand @Fs and @Gs, this gives

@Fs ¼ @Cs � CsZ
�T
s @ZT

s

� �
Z�T
s P (45)

@Gs ¼ @Cs � CsZ
�T
s @ZT

s

� �
Z�T
s Q (46)

The differential @ZT
s can be computed by applying a differentiation rule in equation (11)

KT
1 @Z

T
s � @ZT

s
�K1 ¼ �YT

1B@Cs (47)

Returning to equation (44) and developing the first argument of the trace term leads to

HB@Gs � cB@Fs ¼ HB@CsZ
�T
s Q�HBCsZ

�T
s @ZT

s Z
�T
s Q� cB@CsZ

�T
s Pþ cBCsZ

�T
s @ZT

s Z
�T
s P (48)
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Substituting equation (47) into equation (44) and using again the properties of the trace function yields

1

2
trðHB@Gs � cB@FsÞ ¼ 1

2
tr Z�T

s QH� PcÞB@Csð� 
þ 1

2
tr �Z�T

s QHBCsZ
�T
s @Zs þ Z�T

s PcBCsZ
�T
s @ZT

s Þ
�

(49)

Next, consider the following solution for the Sylvester equation in equation (47) 23

@ZT
s ¼

Xp�1

j¼0

Xp�1

k¼0

cjk KT
1

� �j �YT
1B@C

� �
�K1

� �k
(50)

Substituting equation (50) into equation (48), we obtain

1

2
trð�Z�T

s QHBCsZ
�T
s @ZT

s þ Z�T
s PcBCsZ

�T
s @ZT

s Þ ¼ 1

2
tr �Z�T

s QHBCsZ
�T
s

Xp�1

j¼0

Xp�1

k¼0

cjk KT
1

� �j �YT
1B@Cs

� �ð�K1Þk
"

�

þ 1

2
tr Z�T

s PcBCsZ
�T
s

Xp�1

j¼0

Xp�1

k¼0

cjk KT
1

� �j �YT
1B@Cs

� �ðK1Þk
" #

¼ 1

2
tr �

Xp�1

j¼0

Xp�1

k¼0

cjk �K1

� �k �Z�T
s PHBCsZ

�T
s @Cs

� �
KT

1

� �j
YT

1B

"
�

þ 1

2
tr
Xp�1

j¼0

Xp�1

k¼0

cjk �K1

� �k �Z�T
s PcBCsZ

�T
s @CsÞ KT

1

� �j
YT

1B
	

� ¼ 1

2
tr �Vþ Uð ÞYT

1B
�" #

(51)

Thus, from equation (48), we obtain

1

2
tr HB@Gs � cB@FsÞ ¼ 1

2
tr Z�T

s QH� PcÞ þ �Vþ Uð ÞYT
1

�� 

B@Cs

� ��
(52)

Since we have

@f ¼ tr J1@Rþ J2@Tð Þ (53)

then rMf ¼ J
T
1 .The proposition is then proved. �

The proof of Proposition 2 is fully similar to the above development, and then is omitted here.
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