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Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used to
establish a solution to the temperature-jump problem in the rarefied gas dynamics Held. Kinetic mod-
els derived from the linearized Boltzmann t-(]H:llic:l] are used to formulate the Pre sblem in the one gas
case and for a binary gas mixture. The gas-surface interaction is deseribed by the Cercignani-Lampis
kernel, which is written in terms of two accommodation coetlicients. The solution is found to be very
accurate and fast. Numerical results are presented not only for the temperature-jump coetlicient
but also for the density and temperature profiles. In particular, the effect of both accommodation
coetlicients on the temperature-jump coetlicient is analyvzed.
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1. Introduction. The increased interest in research fields related to the devel-
opment of technologies associated with micro-electro-mechanical systems (MENS)
[1, flow applications [3] has brought attention to
the rarefied gas dynamics field [4, 5, 6]. In fact, for these microsystems, where the
characteristic li‘l]g[l] of the sy stenn is of the order of a mean-free })u[l], and the eas
flow is in the transition regime, the Boltzmann equation [7] has to be used in order

2] as well as other micro- and nano

to describe correctly the state of the gas. In this case the Knudsen number (Knj,
defined as the ratio of the molecular mean-free path to a characteristic size, is close
to the unity.

For a gas in a moderate state of rarefaction (Kn < 0.1), however, in order to
take into account the rarefaction effects by using simpler models, it is usual to use
the contimuun mechanics equations to define the problem of interest, along with the
velocity-slip and temperature-jump boundary conditions [3, 4, 5, 6, 7]. In particular,
for the case of evaluating the temperature distribution in a rarefied gas restricted hy a
solid surface, the temperature-jump boundary condition is used to take imto account
the noted difference (proportional to the gradient of the temperature in the normal
direction to the wall} between the temperature of the wall and the temperature of
the gas near to the wall. In this way, the temperature- ilunp boundary condition is
defined in terms of the temperature-jump coeflicient [7, 8, 9].

Although the temperature-jump coeflicient may ln‘ evaluated by solving either
the Boltzmann equation or model equations {derived from the Bolztmann equation
with simplified collision operators) [4, 10] it is usual to find its definition, as 111\1-1\'1\11
by Maxwell, written in terms of the accommodation coeflicient of the gas [3]. This
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approach is, according to the literature [11], just an estimation, since it is based on
the assmmption that the distribution function does not vary in the Knudsen layer.
[n fact, such an approach has been shown [11] to underestimate the value of the
temnperature-jump coeflicient.

On the other hand, surface effects play a very important role in the analysis of
the temperature in microscales, and so particular attention has to be given to the
definition of the boundary conditions and to the choice of appropriate kernels to
describe the gas-surface interaction [12, 13, 14].

[n this work, we present a complete derivation of the solution of the temperature-
jumnp problem for the one gas case (based on the S-model [15]) and a binary gas
mixture (based on the MeCormack model [l(i] J. The solution is developed in terms of
an analytical version of the discrete-ordinates method (the ADO method ) [17]. In fact,
the temperature-jump problem has been studied over the vears, and previous results
on this problem, based on numerical approaches, can be found in the literature [4, 6,
18, 19, 20, 21, 22, 23, 24]. The ADO method, which has been successfully applied to
derive unified solutions for a wide class of problems in the rarefied gas dynamics field
[25, 26, 27, 28], has been also applied to evaluate the temperature-jump coeflicient
[29, 30, 31, 32]. In particular, the ADO solution has been shown to be accurate and
fast, in comparison with numerical based approaches.

Here, in addition to complete the class of problems solved by the ADO method,
based on the kinetic S-model of the linearized Boltzmann equation [28], and to estab-
lish the relation between this formulation and its extension to the binary mixture case
based on the MeCormack model [32], we include, for the temperature-jump problem,
a special treatment for the gas-surface interaction: the Cercignani Lampis kernel [12].
[n fact, considering the significance of the surface effect analysis on microflow appli-
cations and the good results obtained by the application of the ADO method to the
solution of problems in this field, this kernel has been included in the treatiment of
channel problems by the ADO method [33, 34]. Differently from the commonly used
Maxwell boundary condition [10], the Cercignani-Lampis kernel is defined in terms
of two accommodation coeflicients such that a better physical representation of the
surface effects is allowed. In this work, a complete study of the dependence of the
temnperature-jump coeflicient on different kinetic models as well as on the gas-surface
interaction kernel is then carried out.

[n this way, we develop in sections 2 and 3 the basic formulation for the one gas
case, and we describe its ADO solution in section 4. We detail the MeCormack model
for a binary gas mixture in sections b and 6. In section 7 we present the discrete-
ordinates solution for the mixture. We discuss camputational aspects and mumnerical
results in section & before presenting some concluding comments in section 9.

2. A model equation: The one gas case. To start this work, we follow
Williams [10] and consider the steady-state nonlinear Boltzmann equation written, in
a general form, as

(1) vV, fle.v) = J{f f)

where f(r.v) is the gas atom space and velocity distribution function {f and " are
associated with, respectively, before and after collision distributions) and J is the
collision operator [10]. For the cases weakly far from the equilibrium, it is customary
to write [ as

(2) flrov)y = fo(v)[1 + hir,v)].
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where i is a perturbation caused, by the presence of the walls, to the absolute
Maxwellian fi(v),

2 Y, PR
2g=Aow e mo/(2k1h).

(3 fo(v) = nga(Ag,

Here [ is the Boltzmann constant, 1§ is a reference temperature, mg is the mass, and
ng is the equilibrinm density of the gas. In this way, if we substitute (2} into (1) and
use, along with properties of the collision operator [9], some physical considerations,
we obtain, for the dimensionless velocity variable

(4) c = v|(m/2kTy)] /2

the linearized Boltzmann equation written in terms of the perturbation function h as

ey e g »
/ / / e hiy.dVF(cd C‘.:Hlf"_il_tlfifilf"f_‘.
o —OD S —DD S —D0 .

c. ) which are

Do ;o
cym—(y,c) +ch(y.c)=em™
Loy '

Here, in addition to the three components of the velocity vector (c,. ¢, .

expressed in dimensionless units, we consider the dimensionless (written in terms of

a mean-free path [} spatial variable y > 0, and
(6] £ = r:rﬁn..:'-’;ﬁf,

where o is the collision diameter of the gas particles (in the rigid-sphere approxima-
tion .

For rigid spheres, the scattering kernel F(c' : ¢) can be expanded in terms of Leg-
endre functions [36]. However, even if we consider a truncated form of this expansion,
the problem of solving the resulting approxim: mn m of the linearized Boltzmann equa-
tion is still difficult from a numerical point of view [35]. For this reason, keeping in
mind mathematical properties [7], one seeks to approximate the true kernel by phys-
ically meaningful approximations that can be more easily handled by analytical tools
and numerical algorithims. In this way, the resulting equations are known as “model
(kinetic) equations.” Here we follow Siewert [33] and express the kernel, in (5}, such
that two of the well-known constant collision frequency models of the rarefied gas
dyvnamics are represented:

Fry 4 \ 2 g fang a fon = Py
(Ta) F(d:e)=1+2(c.c)+(2/3)(d” —3/2)(c* —3/2) + BM(c : ¢)
witl

s , ¢ e v i |

(Th) ,‘lJ'rf._t‘.Z‘.'J c) = fl 1__.'“..0;.0'][.{_; = -'I_.-":_)':II:_{"} —

where the case 3 = 0 defines the well-known BGK model equation [37] and the case
3 = 1 defines the S-model equation [15]. We note that, for both constant collision
frequency models we use in this work, if we choose a mean-free path based on the

viscosity to evaluate (6), we obtain [28, 35

(8) e=¢g,=L.
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On the other hand, if we use a mean-free path based on thermal conductivity to
evaluate (6). we get, respectively, for the BGK and the S-model

(9) e=g=1 and =g =23/2

Taking into account the values listed in (8) and (9] we see that the evaluation of =,/
for the case of the S-model leads to a correct value for the Prandtl munber (equal to
2/3). This aspect is considered an advantage of that model in comparison with the
BGK model.

To complete the formulation of the temperature-jump problem, we write the
boundary condition in terms of the Cercignani-Lampis kernel [12, 33],

(10a)

S T

0, ep, 0,0, = / / ] f.'[:ll,({l_.—{::lr,{i :]Hi:f':_,—f'i{,fi a5 Caf 2 O :]tl(':_il(’f_:d{ilr,

A e : : :

where
:_){:i
(10b) ]?[:{'TI_,{’:I,{”_, L By G ) 1= __;_f_,.“{fl . {._I_'-]Igl-:{.»‘” ce,)T(C, < cs)
' i ' T (2 — Oy ) - !
with
. . . (1—a¢)z—x)?
(10c) T(T2)= vxp{—[,_)i—'_]}
a2 —ag)

and
; : (1 —a,)V22 —2]2] ~[2(1 —a,)"?|22
(10d) -‘w'li.z':z'lzvxl){_[. r ] } "{ \ ik .
3 ; 3 J [aT fae

For computational purposes, we write

(1la) Io(w) = In(w)e ™™,

where [o(w) is the modified Bessel function,

(11b) In(w) = % /H L

Differently from the usual case of Maxwell boundary condition [10] defined in terms
of one accommodation coefficient o, where it is assumed that some fraction a of the
particles are reflected diffusely and the rest {1 — a) is reflected specularly, we can
see in (10a) to (10d) that the Cercignani—Lampis kernel is defined in terms of two
accommodation coeflicients: a; < [0,2) the accommodation coeflicient of tangential
momentum and a,, € [0, 1) the accommodation coeflicient of energy corresponding
to the normal component of velocity. The use of more than one accommodation
coeflicient allows a better physical representation of the gas-surface interaction. In
the case of the Cercignani Lampis kernel, that is the case, according to the literature,
mainly for roughness surfaces [24].

still, to complete the definition of the temperature-jump problem, we have to
specify the behavior of the solution at infinity. We impose the Welander condition [§]

(12) lim iJ"'[_';,r} =K,
y—oo dy
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where K is known and here the temperature perturbation is given, in terms of f as

0] . e X o 2N e X S :{
(13) T(y)=gm " / / ] e™" h(y,cp,cy, ) ({ = — 3) de,de,de..
£ S oo S —oo S —nc =

[n solving the temperature-jump problem, in addition to the temperature pertur-
bation already defined, another quantity we seek to compute is the density perturba-
tion

(14) N(y) = n~3/2 j / ] e="h (y.cp. 0., )de,dey,de,.
—no J—oo S —xc

By looking at the above definitions. (13) and (14). we see that we do not need to
obtain the complete distribution £, but only some related integrals (mmoments), to
compute those quantities. In this way, in what follows, we develop a procedure in
order to get simpler problems, in terms of those moments, for which we will develop
a solution with the ADO method.

3. A vector formulation—the S-model. In order to develop simpler formula-
tions to evaluate the quantities of interest, we multiply (5) first by

1

P S T
|:_' 15 ) b ':"..- c,) = _‘.\—I_(_.,.‘I't’ |
and, in a second step by
: : R S5 SET-
(16) Ga(Cp,C) = — [\{'_‘f_ + {2 — e (ex+e)

and, in both cases. we integrate over all ¢, and ¢.. such that, if we define

T
(17} oy, &) = ] / Ol cyas] L Oy O Jed e de
— D J —DO
F—
(18] haly, &) = / / @alCy.C2) L Cy. € Jdegdd
LY [
and mtroduce the new notation & = ¢, we find that
(19)
& =
E—hi(y.&) +chi(y.&) == / (€ ﬁi'[m|'i£"-£ﬁi'f=|'inr- &)+ k12(& &) ha(y, € ::I]da:-'
dy J —o0
and
~
{i[. . = --JJ. F Pa ‘.';a’ \ . P ;._.l I.'JJ. ’ ;._.l \ . .-;_." & "JJ. F ;_,.l \ 1;.
Sy w2y, &) tehaly.§) = ¢ g N ol &)y & )+ foald JSlhe(y.8 )] dE .
. g
with
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The same procedure, initiated in (15 and (16}, is applied to the boundary con-
dition, (10a), to define the components fiy and fio at the boundary, which are written
in the form

Juts
(26) hi(0,8) = j hy(0, =€) f(£,€)dg
and
s
(27) ha(0,8) = (1 —n,jﬁ/ ha(0, =€) f(€,8)de’,

for £, &€ (0. >) and

24

gt . W - S
AT - [(1 —a,)l/2e — & : 21 — )2
i) f— 1,_\}) — . .
T

£
(28) 1l ) = N
[ iy

&g
S 1S

In this way, we let H{#. &) be the vector with components iy (y, &) and ho(y, &)
and rewrite (19) to (28) in a more appropriate matrix form as

o e ,
(29) E;'EH(;;,&} +cH{y.&) = 3/ DENK(E . & H(y. £ )de

—

for 4 = 0 and & € {(—o0, o0). Here we note (21) to (25) and the definitions of

— - hyly, &)
(30) Hy.&) = { !I'E:':: “;j }
2 H.S)
and
I VR r1(E,8) R2(€.8)
(31) KAE EV— | o oy g %
(&, E) Raald

In regard to the boundary condition. we write

J=ts
(32) Hr;n,a)=A/ H(0, &g .e)de’,



Downloaded 08/02/13 to 143.54.226.90. Redistribution subject to SIAM license or copyright; see http://Awww.siam.org/journals/ojsa.php

THE TEMPERATURE-TUMP PROBLENM 2155

with

Pp— | 0
(33 = 5 E
* { d A |: { [:1 —ag)” :|

for £, &€ (0,00).
Finally, we also use the vector notation to express, respectively, the temperature
and density perturbations, given in (13} and {14}, in the form

) 2 e £2_1/2 T
(34) 1I'(y) = —{/ { = | } Hi{y. &)(&)de
and
| T acc
(35) Niy) = { 0 } / Hiy.&e0(£)de.

We now proceed to develop a discrete-ordinates solution for the vector problem.
n what follows we chose to assume the S-model case (7 = 1), to which the expression
for the kernel and the development of the solution are more general. Much simpler
expressions can be found for the BGK model, and the work of Barichello and Siewert
[29] can be used to follow that derivation.

4. A discrete-ordinates solution (I). We now seek for a discrete-ordinates

solution of the problem defined by (29) and {32) and the condition given by (12). In
this sense, the analvtical discrete-ordinates method we use in this work, the ADO
method [17], is based on a half-range quadrature scheme, and so as a first step we
write (29) in the form

(36)
" {j H " -H . X  { ;__,. \ K.;_.l & H ;__.l % K ;__,: ;H ;__.l. 1;__.1
%E .8 +en(y.g) =« wg .-'[ &,y L)+ —& . )Ry, —£ .]]' S
« S
and we seek solutions of (36) of the form
(37) H(y.) = ®(v.&) e ¥V,

where the separation constants v and the elementary (2 x 1 vector) solutions @ are
to be determined. Substituting (37) into (36) we find that

e w
(38) s —&)P(r,&) = i'f./] DENK(E, 6P (v &)+ K(—&,6)@(v, —&)]dg’

i
and
(30)
(aY)
4
F \ F \ £ty gt . YR . i \ . Iy i)
v+ &)P(v, &) = ev / SENK(E, )@ (v, )+ K(—&. &) P(r, —&")]de.

Here we note, since

F \ o \ - ! \
(40) K(,-¢) = K(=¢,¢),
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(41) B(v.&) = B(—v.—£).

Continuing our development, we add and subtract (38) and (39}, one from the
other, to find that

(42} = | Vi)~ S(ETPE . EV (1. E)dE | = AV (1. &)
= S
and
A 7 Vs ] e N KT 1 i ! R T 1 t
43) Uw,§) =z |V(ré - WENK(E . V(&) — K(—&.6V(v.& )|de
ey A
where
(44) U, &)= d(v.&)+ D, —£),
(45) V&) =@(v.&) — (v, —£),
and
(16) A= 1/

Still, we note that the separation constants v oceur in {(+) pairs, and

P
e \ L e \ - ] \ L | \ - ! Y
PLE 8} == | (KL () HK(—E,8)] =[K(E 8 —~ K= )]
S
~ .
£ Flly S =l S0 - 7 AN =il N - 0 \ .
(47) —/ (") [K(€,€") — K(=¢,&)][K(E", &) + K(=¢",£)]d¢".
[ “

At this point, we introduce a half-range quadrature scheme, in [0, 20), defined by
N nodes {£,.} and weights {wy. }, and rewrite (42) and (43) evaluated at the quadrature
points as

N

(48) =5 Vgrg@j—i wr(Er )P (&, &)V (v, &k) | = A V(5. &)
=i k=1

and

I\-l”:]

N

Ul &) = 7" {Vu:_f»_j,a,; ) — E wir (&) K& £V vy &) — K( =&, &)V (. &)

St
k=1

for i = 1,2,...,N. Once we solve our eigenvalue problem, defined by (48}, we have
the elementary solutions from

|
(50) P(v;.&) =5 [U'ff-’_,f-i'.i )+ Vi & :i']
and

|
FE T Fi RN SRS
(51} @f._f{;, &)= 5 [Uf._ff_,‘é_. | V s, _J].
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In (48) to (5l
(h1) express 2N x 1 vectors,

Here it may be important to make a comment in regard to the eigenvalue problem
defined in (42). In applying the ADO method we have found, for different model
equations and for different classes of problems, specific eigenvalue problems. In most
of those cases the problem is much simpler and expressed in a much more concise
form than in the case of this work. Even the case of diagonal + rank one type matrix

can be mentioned [17, 38]. In fact, for the specific derivation presented above, some

} we use the subseript j to label the eigenvalues. For each j, (50} and

properties of the kernel can also be used to derive a simpler eigenvalue problem, as
shown by Scherer [39]. We chose, however, to keep the derivation as it is, in order to
establish more close connections and analogies with the mixtures case we will present
later on in this text.

Continuing, we consider (50} and (51) along with (46), we take the positive
root v;, and we write the general discrete-ordinates solution to (29) as

2N
(52) H(y. +£&) = E :[‘_-1}@[},‘?_‘:&& Jo Ve Vi 4 B;®(v;, F& :,“_q:-._.-y_;]‘
a=1
for i = 1.2,....1 V. Here the arbitrary constants are to be determined from the

boundary condition and the imposed condition at infinity. Before doing that, however,
we note that the eigenvalue problem vields two separation constants, say vy and s,
that become unbounded. Because of this, we rewrite the general solution as

|.-|:{::|
2N
H(y +&) = H'(y. £&) + > _[A;®(v;. £&)e Y5/ + B;® (1), 7&)e¥/ 7],
_j::'\
i = 1.2 LN, where we then introduced, in (53], four linear independent exact

solutions of (29). In other words,
(54) H'(y.&) = A/ H + Ao Ho (&) + BiHs (&) + BoHy (£,

where, for the S-model,

| . &2 —1/2 o £

H - | | Hi- S T NS
0 | 0

and

(56a) Hi(y.&)=yG &)+ Fi(&)

with

(56h) C‘:||i~£:| =

and

(56¢) Fi(&) = ——Gy(&).
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n fact, in the process of finding the Hy solution, once that (56b ] is an exact solution
of (29), we can follow analogous procedure as the one proposed by Siewert [32], and
we substitute (hba) into (29) to find that

| o
(57) Fi(&) = ——¢G (&) + SENK(E . EF (£de.

D

The form of the mhomogeneous term. in (57). as well as the the form of K{£'.&)
sugeest that we look for solutions of the form

(58) F (&)=Y Pul&)Fa,

where Fy , are constant vectors and P, (&) are orthogonal polynomials given by
(59 Pa&)y=1., Pi&)=¢. Po&)=&"—1/2, and Py(&)=¢&(&? —3/2).

Thus, if we first substitute (58} into (57), and then we multiply the equation by
DEVPRE), for B = 0,1,2,3, to finally integrate over all £, we obtain an algebraic
systemn (with & equations and rank 6)

3 . 3
(60 Z Jlr)(ll::é::lFL“ = ——1&:(1‘ |I::3::| R / {_‘[:5’-’ :]K[:é-’,.f’:] Z 1'”“[:3:-’ ::|F|_“11£’-*,

a0 = J e a—0
for which a solution can be found explicitly, as the one given in (hba).

So, at this point we can g¢o back to the issue of determining, in (53}, the 4N
arbitrary constants, such that our discrete-ordinates solution will be completely es
tablished. 'To start, if we consider the way that the solution is required to diverge
at infinity, we take B; = 0 for j = 3.4...., 2N. In addition, when considering the
Welander condition, given by (12) (and noting (34)). we find that

(6G1) By = K.

Still. we note that the solution Hy. (55). satisfies the homogeneous boundary condition
given by (32}, and so the A, coeflicient cannot be determined from that equation.
However, following previous works [29, 40] we can impose on our solution an additional
normalization condition

(62) lim [_\- () + 17 _.r;:]] =10

oo

from where we get that

|(r{| 13 = —A |-
In this way, we rewrite the general solution. (53), for i = 1.2.....] V. as
|(r1|

2N
Hiy. +&) = AsGi(+&) + By Ha (&) + KHy(y. +6) + Y A;®(v;, 48 )e v,

4=3
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To determine the remaining 2N arbitrary constants, we substitute (64) into the
discrete-ordinates version of the boundary condition given by (32)

N
(65) H(0.&) =AY wie " H(0, —&)f (. &),
k=1
for g =1,2; .04 V. We then obtain the following 2N x 2N linear algebraic system:
2N N
A2CHE) + BiC3(&) + D Aj0 @4 (1) = D wif (60 &) A D (1))
4=3 k=1
N
(66) — K33 wnf (&, &) A B (=&) — B (&)
k=1

where the components of the vectors @ (v;] and @ _(v;) are given by (50) and (51},

N
(67) Ccl&) = Z wief (Ex, E)AR* (=€) — R* (&),
k=1
and
N
(68) 2(&) = H5(&) — E Wi f (&, &) A Hy (=)

k=1
Here R*(&) is a 2N x | vector where each 2 x 1 component is
(69) R(g) = —G,(¢)
for G (&) defined in (56b); A* is a 2N x 2N block diagonal matrix

(70) A =1liug{A,A,...,A,A}

with A given in (33); H3 (&) and B*(&) are 2N x 1 vectors where each 2 1 component

is, respectively, defined in (55) and (56¢). In addition, f{&,.&) is defined in {28).
Considering now the quantities we want to evaluate, we substitute (53} into the

discrete-ordinates version of (34) and (35) to write the temperature perturbation

2N

IT | | Jl”\"J'l | == JI[";}I + 12 + ‘-),:: Z l,r |::1‘_-"’:_.-"-'/-"i J‘“I'l I\H.frl
4=3

and the density perturbation

2N
(72) N(y)=—Ky— Ay + Z A; (e gz WMo ().

j=3

where M| and My are, respectively, the components of the vector given by

ol ]

N .

F— oy, \ —1/2 g2 £ LT 1‘_) 1 P \ P \

(73) M) =m '-—; wpe 5 { =k Lo } [@(v;.80) + Dy, —Er)].
=1
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Still, if we look now at the linear component of the temperature perturbation expres-

sion
(74) I"(y) = Ky + Ay

we can define another quantity of interest, which relates the temperature perturbation
at the wall with the gradient of the temperature, the temperature-jump coeflicient ¢,

Fa b
R s d ...
(75H) 1 D) = L_‘—J' )

'1.";" y=u
such that

To be clear. we note that the normalization constant introduced in (62} does
not affect the temperature-jump coeflicient or the temperature perturbation. In fact,
another choice of that constant would change only the density perturbation by the
addition of a constant factor [30].

5. The McCormack model and a mixture of gases. In regard to a binary
gas mixture, in this work we base our discussion on the MeCormack model, as in-
troduced by MeCormack [16], following an appropriate notation proposed by Siewert
[32]. In this way, to derive the balance equation, we consider the functions h,(x, v) for
the two types of particles (o = 1 and 2) which denote perturbations from Maxwellian
distributions for each species,

(77} falty' o v) = fao(vI[1+ haly*, v]].

where

(78) Jao(V) =na(Aa /7)) e Aot N, = ma/ (2K15).
Here, again, k is the Boltzmann constant, m,, is the mass, n, is the equilibriun
density of the ath species, 15 is a reference temperature, y* is the spatial variable,
and the vector v, with magnitude », is the particle velocity with components v, v,
and »,. It is found [16] that the balance equation is of the form
s o e Coe . P
(79 Cy—ha(y". c] + warahaly . c) = wayalalh Lhot(ytoe), a=1.2,

oyt
where ¢, with magnitude ¢ and components ¢, ¢,. and c.. is now a dimensionless
velocity variable. In obtaining (79), we followed Siewert [32] and expressed the di-
mensionless variable ¢ differently in the two equations: for the case a = 1 we defined
¢ = wyv, and, analogously. for the case a = 2 we defined ¢ = wyv, where

O \ Iy, r )
(80 Wy = [J}.'“__.-’ |:_:_)JII|'J|[||_:|] L2 n=1.2.
Still, in (79), the 4, are to be defined later, and the collision operator is written as

2
= hal(yt .V Kso(c ¢ _:H1{"?,_11{"1”1{"’___,

Lo ho}y*.e) =
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with the kernels expressed, in a general form, as [32]

(82)

Kpo=K) (<, c)+ K (d,0) + KS) (<, 0) + KA (C,e), a,8=1,2.
To avoid a heavy notation in the middle of the text, explicit expressions for each of
the components in (82) are listed in Appendix A.
As in the one gas case, in (h), we introduce a dimensionless spatial variable
y = y*/ly. where now I is the mean-free path suggested by Sharipov and Kalempa
[41], based on viscosity, defined as

P g
(83) R il

ﬁ“}l‘

- (2;\-1;.)"”2
(84) g =

e m

and

RN e Y F

(85) m =
Ty T

In regard to (81}, we continne to follow Sharipov and Kalempa [11] and Siewert [32]
and express the viscosity of the mixture in terms of the pressures I, and the collision
frequencies =, as

&
(86) p=—
Y1
where
£ Oy Jf)('\: "l}(\:
(87) -
Py 1+ no
Jr | \[ﬂ2 — f_z;:'J :'f_,":,'];
(88a) T = .'-1'. :
Js + Vi g
and
\Jr |‘I'-‘3 " Ii.l_,] .f.:'.[,.llj
(88h) Y= ———
* % s Lak)
\Ill + v 4
In addition.
TSI (3] (4) (3)
(89a) R e o i
pes (3) 1) (3
(89b) Ty = w5 — vy + v |'

Again, we used above some definitions listed in Appendix A.
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At this point, we introduce [32]

(90) Oa = YaWalo

or, more explicitly,

ny/+ne/
L) —+ To

[‘j | ) OTa = Ya

such that, in the next section, we rewrite (79), in order to specifically define the
temperature-jump problem based on the MeCormack model, that we want to solve in
this work, including the Cercignani Lampis kernel.

6. A binary gas mixture. Taking into account the development presented in
the previous section, our starting point is now, analogously to the one gas case, (5),
the kinetic equation for the McCormack model written as

d
(92) ¢y 5-la(y,€) + oaha(y,€) = dalafhi; ho}(y,c)
oy

for y = 0, the dimensionless variable {measured in terms of the mean-free path {;),
., given in (90), and the collision operator defined in (82} and in Appendix A. For
defining the temperature-jump problem, we supplement {92) with boundary condition,
written in terms of the Cercignani-—Lampis kernel as

(93)

S8 see B
-' . . Y — . ! J \ { S R v dA J S
ha(Dieqy—oyi0s) = / / ] J’.‘-t[_ll,f_l_,f“, ___',IJF?QI,_{_I_,{H,{_: DOy, —Cy, O )dd de de -

A0 J—na o —xc

for e, > 0, all ¢, c,, and a = 1,2. Here

(Uda)
a./
R B e, 2¢, qoofid ssene BF s Yot s o
Ri(c 656, fitgCyta) = — 7o =Tales P &)Sale, f cy)Talce, @ cg);
Tlpalial & — ”fcl,]
. . o . [(1 —apa)z — 2]?
(94b) lo(x:2)=exp| ——F+7+—|,
Hl’t'ul_n—J T ”f.t't']
; , , , (1 —a,e)' 22 —2]2] =
(94c) Sa(z:2)= nxp{—[' = ] a
{I?:(L

and ]"ﬁ.'.r.'\z:] is defined as in (1la). In addition. a;, are the tangential momentimn
accommodation coeflicients for each species a (o = 1,2), and a,, are the normal
accommodation coeflicients for each species o (a = 1,2). The formulation of the
temperature-jump problem will be complete with the use of the condition, at infinity,
on the temperature perturbation, as we show later on in this text.

In addition to the temperature perturbation

] ) e.w e= e.w .2 :{
(95) T.(y) = T_};—-‘wi / / ] e ° haly,cz,0y,6:) (02 — —)) de,deyde,
= —oo J —oo J —oc =
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we seek to compute also the density perturbation

("”i.‘] -"\-c'c[:."f:] =m / / / g 'u["f Cg {.H‘{.-1,.]"1{..I"'1{._t."1{..':'

Since we do not have to compute the complete distribution fi, as we did for the
one gas case, we develop a simpler formulation, by multiplying successively (92) by
(15) and (16} and defining

(97 Gon 10U, & ]—/ / dilcises) gyt &6 )desde;

and

(98] Goalt, &) —] / dalce e ) haly, e, &, 0. )degde,

for a = 1,2. We then obtain four coupled equations, which we write in a matrix form,
for the components of Gy, &) given h_\ (977 and (98},

(99) gf)—G(_ 1.E)+ X2G(y. &) = E/ SEVK (€. 6)G(y. £)de!
oy g

with

(100) ¥ =diag{oy,01,02,0,}

and (&) given in (21}, In regard to (99), we list the elements k; (£, &) of the (matrix)
kernel K_.u[\\, L&) In Appnmhx B.

l'o establish the matrix form of the boundary condition, once more, we use the
projections defined by (15) and (16} along with (97) and (98) to obtain, from (93],

O
(101) G(0.&) = D/ F(& 6)G(0,—&)de", £ >0,

where

(102) D = diag {1,(1 — az1)?, 1, (1 — az)?}

and

) F(¢',€) = diag {/1(£',€), [1(€,€), [2(€ ,€), f2(€.6)}.

Here
2¢ (1—a,)Y ~:'_;.*‘3 i [N Trie L2 e

(104) _f'wif,’-a;l:lm[ [(1 = an ¢ ] {1 an1) \,\}
Anl [1P°%] (g

and
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Onee we solve the vector problem, we can compute the density and the temper-
ature perturbations, respectively, given by

o N
(106) Naoly) = / V(€)g2a—1(y.£)dE, a =12
o —xD
and
. 2 ofi™ =
(107)  Taly) == / 0(€) | (€ = 5 ) g20m1(.6) + g2a(.6)| dE, @ =1,2,
: JY Z

and we write, in this new notation, the condition imposed to the behavior of the
solution at infinity [32]

1
(108) lim ;—Tf.:;;) = 1"{{ 1 } ;

y—oo dy 1

Here K is considered known and T, (y) are the components of the vector T{y).
[ the next section we develop a discrete-ordinates solution for the problem defined
by (99) to (108).

7. A discrete-ordinates solution (II). When seeking (4 x 1} solutions of (99)
in the form

f l“'jl G 'U{,' o @ff/él ‘\—_!.f,a'.u

we follow the same steps described in section 4, when dealing with the one gas case.
Then we do not repeat it here, but we write the eigenvalue problem relevant to this

case:
N
(110) { lg:f ) |:22V'{_'j/_j &) — Z Wit (&P &L &V (.68 ,I:| = A\ V(v &)
k=1
with
N
b |:Vrl';f.f_3- 55 — Z Wy {_‘[:{J‘. :][K_u [f,,f &; :]V'[:H_r—, &)
=
(111) K (=& &)V (v, & ']}
fori=1,2,....] V. Here

(112) P(£.€) = (£/€)B[Km(£. &)+ Kn(—€.8)2 + T [K (€', &) — K (=€ ,€))]

O
- ] P(E")E/ENBIKM(E" €) + Ku(=€" &) B[Km (¢ ,€") — Kn(-¢€,€"))dg".
(A

We are also able to get the elementary solutions

(113) D(r;. &) = (1/2) {Uu:j v, &)+ Vu::f.»_,,-,a,-j:u]
and
(1143 D1y —&)
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to write the general solution of the problem given by (99) as

AN
(115) Gy, +&) = Z[,-lj@.:_’u,,-,iaj Yo ¥/ 4 ] 3D (v, FE; jh.\-‘*'-’"”-i]

i=1

As noted in the one gas case, and as usual for conservative problems as these in
the rarefied gas dynamics, we find again some unbounded separation constants: in
this case the munber is three. So, we rewrite the previous equation as

AN

(116) Gy . +£&) =G " (y. £&) + Z[;'l_}@u:ju_,,-, +&)e ¥/ B;®(v;, F& j:u.\-"-""’-f]
J=4

forid =l N, where

(117) G y.&) = A1G + AsGo + A:Ga + B1GL(E)

+B[yH (&) + Fi(&)] + Bs[yHa(&) + Fa(g)]

with the exact solutions of (99) given by [32]

1 0
(118) Gi=|o| G=|7]
L o] o |
& —1/2 ré
.'11']'. C1 .-;-. . 1 z 1 C‘ .';'. o 1'
§ 4) x3l&) = 2 1) Al xyl&) = -

Considering, in addition, the functions

H, &) = and Hs(&) =
with
s ‘ ) Y I i Y | .." ‘_) P i Y P i Y
(121) r=(mi/ma)" cp = (ny/n), c=(nz/n)., and n=mn+ns,

we can then find functions F(£) and Fs (&) such that
(122) G:ly. &) =yH (&) + Fi{&) and Gely.&) = yHa (&) + Falé)

complete the set of exact solutions we are looking for. In general,

s
(123) Fs(é)= <% Hn"-.é.-"f’/ W(ENVK (€ EFg(&')de,

o =D
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and, as we did previously in section 4, we write
(124) Fg(&) = E Po(€)Fg,a
=i

to find the components of the vectors Fg , required in {124). Here the linear algebraic
systemn with 16 equations, defined to find those components, is rank deficient (rank
12). Since equations (120) are solutions of (99), we can write [32]

(125) Fa(&) =UzlP (&) + Vals(€),

where now the constant vectors Ugz and V3 are solutions of the (rank 8) linear systems

=

(126)  I-APU - C1V, = [‘;f-g_..--m ) —(a/o)) —(afos) —(afo: ZJ] :
_ _ T

(127) I-D | Vi — B|U| = [ — ey /o) 0 —(c1/o2) H]

and

(128) [n 01 1I]U| _0.

for 7= 1. In addition,

;
(120)  I-ADU2=CiVa = [~ (c2/or) —(cafon) (arfo2) —(cafos)]

.
(130) (I-D})V, —BiU; = [ —(ezfor) 0 —(cafoa) “]
and

(131) [n 0 1 H]ngn,

for 3= 2. Here (128} and (131) were made part of the linear system to guarantee a
unique solution. Still, in the above expressions I is the identity matrix, the superscript
1" denotes transpose operation, and

o X0 o X
(132) AT = 2/ / L (ENVDEV K\ (E.6)P(£) P (&)dE dE,
o —DOC S —DD
A~
(133) B, = l'f-l,.-"'i*ﬁi'] / DEVD(EVK a (8. E)P1(E ) P5(€)dE dg,
—0D00 4 —D3
o e
F4E 40 " , Fad N N T \ £y PRy '
e =2 [ e OPEIP©E s
—Da J —DD
and

"
£ .'i'/ / DE VD (EVK 3 (6.6 Py (£ Pa(£)de de.
— D — D



Downloaded 08/02/13 to 143.54.226.90. Redistribution subject to SIAM license or copyright; see hitp://www.siam.org/journals/ojsa.php

THE TEMPERATURE-TUMP PROBLENM 2167

However, (132) to (135) can be evaluated, by means of the quadrature scheme, such
that we rewrite them (using notation listed in the appendix) in a final form

(1)
riye

(27

(136) A =

—(1/2m% (2/5)8 (720 (2/5)m
o . 0 0 {0 0
(137) Bl = C e (2) e e (6) i1 oy (2 ey ey
(s/2)n57  (2/5)ny, —(1/2)ns  (2/5)53
0 0 0 0

1] 0]
(138) - L 0
1] 1]
4] 4] J
and
(3/5)3, 0 | 0
; : ; 0 { 0]
[1}”] DI = o e (8) 7 .
[J -'l':IF,?-‘E_ | { [{, D) )’-‘_) {0
{ 1] 1] 1] 1] J

Thus, looking back to (116}, the general discrete-ordinates solution for {99) can
be written as
AN
(140) G(y,+&:) = G*(y,£&) + Y A;®(v;, +&)e ¥/,

taking into account that it is not allowed to diverge exponentially as ¥ tends to infinity.

If we use (140) to evaluate (the discrete-ordinates version) (106} and {107) and
we take the asymptotic part (the exponential terms were ignored) of the resulting
expressions, we can write

(141) Nily)= A, — Boy,
(142) Nily) = Ay — Bay,
(143) 17 (y)=As+ (c1Ba+ caBsly
and

(144) 15(y) = Az + (c1 Ba + 2 Bajy.
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But again, as in the one gas case, two of the exact solutions, (118), satisfy the
boundary condition. {(101), such that the constants A; and A cannot be determined
from that boundary condition (density perturbations are not uniquely defined). As
we did in the one gas case we make use of the condition given by (108) along with a
normalization condition, similar to (62). to write

{ 11"!' A= —A;,
and
(147) c1By + By = K.

In (147) we choose to write By in terms of By such that the general solution of the
problem given by (99) is finally written as in (140) with

G.(y.&) = AR(E) + BIGE) + Bo|[yH (&) + F1(&)] — (1 /) [yH2(E) + F2(€)]
(148) + (K/e2)|[yHa(8) + Falg))].

Here

vy
[
o]

(149 le’ ] =

vy
[
o]

Ml

The application of (140} in the discrete ordinates version of the boundary condition

.'\.
(150) G(0.&) =D wiF(&.£&)G(0. &)
k=1

results in the following linear svstem:

AN N
AsC?(&) + BICH (&) + BoCP(&) + ) A @4 (1) = D> wiF"(&..&)@_ (1)

=4 k=1
N
(151) = K{ —J!(&)+ D" Zw-,‘.Fw:;{;‘.,H{_; T (—&)
k=1
where the components of the vectors @ (v} and @ _(v;) are given by (113) and (114),

N
(152) C3e)=R'(&) - D" Z wpF* (&r,& )R (&),

k=1

N
3) C4(&) = Gi(&) — D E Wi F* (&, &G (=€)
k=1
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and
N

(154) CE’I:ja',; 1 =Kj&) -D" Zw-;‘.F & &K (&),
k=1

Here R*(£] is a 4N x | vector where each N component is of the type of (149): K;(£)
is a 4N x 1 vector defined by N components of the type

({ 155 ) K|':;£,',.:' = F|'::3: ) — '::f'|_,.":f'g ;IFgll:f,';l,
and Jj(€) is a AN x 1 vector where each N component is of the type

(156) J.1(&) = (1/c2)Fa(6).

In addition D* and F*(&,,&) are 4N x AN diagonal matrices defined, looking back to
(102) and {103}, by

(157) D* — diag{D,D ..... D}
and
(158) F*(&1,8) = diug{Fu:jg,aj:u, F(£2.6),. ... Fr.ja_\-,a;u}.

Based on the derivation above we can write the density perturbation vector (two

species) as

AN
P, 5 Az + Boy T o
(159) N®) { Az + (K/ca — (e1/c2) Ba)y } el M),

7=

where

; . : /9o .2 10 0 0 ; Y : :
(160} M, () = /2 Zu{,';‘.i‘ Sk { 0 L 0 } (D, 80) + ;. —£1)].

The components 1, (y), a = 1,2, define the temperature perturbation vector

g AN .
(161) T(y) = (As + Ky) { i } * :}Z Aj e7¥/i My (vy),
i=4
where
| 1"!._)I
o _1/2 i nps éf -1/2 1 0 0 ’ i y :
My(v;) =m—4* Z wpe =k "0 0 f,f ~1/9 1 [D(r, &) + Dy, —E1)].

[rom (161). and taking into account (143) and (144). along with definitions (for each

species) analogous to (75}, we define the temperature-jumnp coeflicient
(163) (= A3/K.

which we found to be the same for both species of the gas.
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8. Computational aspects and numerical results. To implement the ADO
solution, in order to define the quantities of interest, the first step is to define the
associated quadrature scheme. In this sense, for most of the problems in the rarefied
gas dynamies field that have been solved by this method [25, 26, 27, 28, 29, 30] the
following approach has been shown to be adequate: to map the interval of integra-
tion into the interval [0, 1] and then map the Gauss-Legendre points linearly to this
interval. In general, the expression

(164) u(&) =e™"

is the one used to map the interval [0,00) into [0,1]. After that, the eigenvalue
problem which defines the separation constants and the elementary solutions can be
formulated and solved. Next, the linear systems which define the exact solutions have
to be considered. Clontinuing. the linear algebraic system for the arbitrary constants
of the general solution is solved and then the quantities of interest are evaluated. In
this way, the algorithim is fast and easy to implement.,

The results presented in Tables 1 to 14 (which we believe to be correct for all
digits listed, plus or minus one in the last digit) were obtained with N = 60 quadrature
points for the one gas case and N = 80 quadrature points for the mixtures case (except
for a, = 0.01, where N = 120). For both cases we consider K = 1. The developed
{and not particularly optimized) Fortran code requires around four seconds to yield,
on a 4.0 GHz Pentinum 4 machine, all quantities of interest for a general mixture case.

For the one gas case we used ¢ = 2 (according to (8) and (9)). in general,
in order to obtain the numerical results shown (otherwise we added the statement
£=gp in the table). We also note the notation DS and CL for referring to the use
of, respectively, diffuse-specular and Cercignani—Lampis boundary condition. In fact,
as we have worked on trving to establish a very general and complete comparison
on results for different problems, provided by different model equations, we list in
this work some results we obtained by the ADO method, for the temperature-jump
problem, based on the BGK and S-models with diffuse-specular and Cercignani
Lampis boundary condition, which were not available.

Continuing, we note that, in Tables 8 to 11. and in the text below, we use the no-
tation a,, and a,, for the species o = 1,2, to refer to the accommodation coeflicients,
respectively, of energy and tangential momentum.

In order to generate numerical results, we consider three mixtures cases related
to the following gases: (i) Ne-Ar. (ii) He-Xe and (iii) He-Ar. as follow:

o Ne-Ar: my = 200183, mo = 39.948, and dy/dy = 1.406

case I ap = 0.849, a0 = 0916, a,,1 = 0.1, a,p =04
case [ ay =031, apo =067, a,y = 0.1, a0 =04
case [T a; = 0.849, a;p = 0.916, a,, = 0.082, a,, = 0.222

o He-Xe: my =4.0026, my = 131.30, and do/d, = 2.226
case IV ayy = 0.20, ags = 0.95. a,,y = 0.01. a,, = 0.7
case Vo oay = 0.20, ag = 095, a,y = 0.05, a,» = 0.4
case VI ay) = 0.882, apo = 1014, a4,y = 0.01, 4,0 = 0.7

o He-Ar: my = 1.0026, my = 39948, and d,/d, = 1.665
case VII  a; = 0.20, a;o = 0.916. a,,y = 0.01. a,» = 0.4
case VIII  ay = 0882, apn =091, a, =001, a,» =04
case [ X ay = 0.20, apo = 0916, ayq = 0.01, a,n = 0.222
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The data set used. and listed above. regarding the mass and diameter of the
particles, was reproduced from [32, 41, 42].

[n addition, we used experimental data for defining the values of the tangential
momentim accomimodation coeflicient: cases 11, IV, and V were formulated in terms
of data provided by Lord [43]; in cases [, 111, and VI, the value of that coefficient was
reproduced from [11], which followed the experimental work of Porodnov et al. [14].
Cases VII to [X were formulated based on the previous cases.

Since, to the best of our knowledge, experimental results for the (normal) energy
accommodation coeflicient are not available, we chose numerical values based (order
of magnitude) on the thermal accommodation coeflicient of the gases listed above.
We used, in this way, the works of Thomas [45] and Thomas and Lord [46].

The results were tabulated, for the three mixtures, in terms of the molar concen-
tration defined in terms of the first particle as

e . /12
(165) (= ——r—"—.
' ' L+ 12y /1o

In addition to provide results, which we believe were not available in the liter-
ature, for this problem, based on a more general law for describing the gas-surface
interaction, we have been able to perform many simulations from which we try to
point out some aspects, commented below.

First of all, we think that an important aspect of providing results, based on
models related to the normal energy accommodation coeflicient, which may not be
measured, is the possibility of using quantities we are able to evaluate, in connection
with a procedure for estimating parameters [47], in order to estimate that coeflicient
nmumnerically. In this sense, we include in Tables 1 to 14, in addition to the temperature-
jump coeflicient, results for temperature and density perturbations, for several values
of accommodation coeflicients, and for different values of concentration, in the mixture
cases.

[n regard to the one gas case, based on the experience with previous analysis for
other classes of problems [Ec\:], the fact of getting results for the BGK and S-model
in agreement, in general, in one or two digits (for a choice of the mean-free path),
was, in fact, used as a way of having some confidence in our program. In addition,
we confirm previous observation [32] that both models lead to the same value for
the temperature-jump coeflicient but slightly different values for the temperature and
density perturbation; we also simulate {considering n; = 0, n, = 0 or m; = m» and
dy = dy) the one gas case, from the McCormack model, and the results agree perfectly
with the S-model, as observed previously [32].

Having used the ADOQ method, which is an analytical approach to the spatial
variable, to deal with the temperature-jump problem for a wide class of model equa-
tions, in the one gas case, with Cercignani Lampis and Maxwell boundary condition,
and having compared with available results [48] based on the linearized Boltzimann
equation (LBE), we can say that in general the evaluation of this coeflicient is not
sensitive to the model equation to be used (see Table 7); comparisons between results
(see Tables 1 to 5) obtained by the S-model and the LBE show agreement in one to
two digits.

We generate results, showed in Tables 2 to 4. for a small value of a,. which
is, in general, hard to obtain accurately or even very much time consuming, from
numerical approaches, but is consistent, in order of magnitude, with experimental
values available for the total enerey accommodation coeflicient. 1t is noted that the
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TanLe 1
The temperature-jump coefficient (.

o BGK-DS SDS(z—c,)  SDS LBE-DS[31]
0.1 Z.145012(1)  3.21752(1) Z.11501(1) 2.1310(1)
0.2 1.034747(1)  155212(1) 1.03475(1) 1.0251(1)

0.3 6.630514 9.94577 6.63051 6.5396
0.4 4.760333 714050 4.76033 4.6745
0.5 3.620125 544369 3.62912 3.5485
0.6 2867615 4.30142 286761 2.70922
0.7 2.317534 3.47630 2.31753 2.24'74
0.5 1.890741 2.84961 1894974 1.8349
0.9 1.570264 2.35540 157026 L5108
1.0 1.302716 195407 1.30272 12486
TapLe 2

The temperature-jump coefficient (., oy = 0.25.

iy, BGK-CL  S-CLis = &,) S-CL S-CL[24]  LBE-CL[48]
0.01  9.75601 1.46340(1) 49.75601

0.25  5.73950 8.6G8426 ! 50 3.634 5.7318
0.5 3.834176 576263 3.84176 5.763 3.7707
0.75 272408 4.08612 2.72408 4.087 2.6655

L.O 2.00553 3.00830 2.00553 3.009 1.9609

temperature-juinp coeflicient is very sensitive to the normal energy accommodation
coeflicient. In fact, from the cases shown in Figures 1 and 2, it is clear that the
temnperature-jump coeflicient depends on both accommodation coefficients (the same
is observed for the mixtures cases later on) and the significant variation occurs mainly
when o, and a; are lower than 0.5, In these cases, in comparison with the results
shown in Table 1 based on the Maxwell boundary condition, we see great increase in
the jump values.

In Tables 12 to 14, we present results for the temperature-jump coeflicient for the
mixtures cases | to [X described previously in this section. We included the cases of
concentration equal to one (127 = 1 and 1y = 0) and equal to zero () = 0 and ny = 1),
which reproduce exactly the results obtained for the one gas case (respectively, gas 1
and gas 2) and that may show how mixing a very small quantity of a different species
can produce significant change in the jump coeflficient. In fact, as observed for the case
of Maxwell boundary conditions [32, 42, in Table 13, we note a small decrease on the
value of the coeflicient when we simulate the one gas case (species one). It seemns that
the (bigger) molecular mass ratio can be a reason for noticing this behavior; however,
the same (decreasing) behavior is observed in Table 14, for the case VIII, and then,
based on comparisons with cases VII and IX, one can also see for the same mixture
the influence of the accommodation coeflicients. However, one has to remember that
the real values for a,, are unknown, and it has to be considered as a limitation for
more specific conclusions.

Finally, in Figures 3 to 6, we tried to analyze the influence of each one of the
accommodation coeflicients, for the mixtures cases. based on cases | to VI It really
shows that the temperature-junp coeflicient depends on both accommodation coeffi-
cients and mainly on the value of a,,. In addition. from Figures 4 and 6, the influence
of the mass ratio in the magnitude order of the jump coeflicient can be seen.
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TaprLE 3

The temperature-jump coefficient {, oy = 0.5.

[=5
= [ BGK-CL S-CL(s =&5) 5-CL S-CL[24] LBE-CL[44]
o 0.01 5.66914 8501 5.66914
% 0.25  3.88593 5.82890 388593 5.828 3.8606
I 0.5 2. 78041 L17061 2.78041 4.170 2.T282
g 0.75  2.05839 3.08759 2.05839 3.088 2.0010
5 1.0 1.55658 2.33487 155658 2.335 L5015
%
=
=
=
=
w
3 TapLe 4
% The temperature-jump coefficient {, oy = 1.0.
=
§' a, BGK-CL S-CLis =55 S-CL S-CL[24] LBE-CL[4%]
= 0.01  4.20852 6.31278 4.20852
- 0.25  3.04475 4.56713 3.04475 4.567 3.0524
= 0.5 2.25090 3.37635 2.25090 3.376 2.2161
= 0.75  1.70032 255048 1.70032 2.551 L6514
ED 1.0 1.30272 1.95407 1.30272 1.954 1.2486
=
[=8
=]
S
—_
=]
o
=
] .
= TapLe !
- Temperature T(y) and density N(y) perturbations, o = 0.5.
2
Wl R =-1s BGR-DS[30] LBE-DS[31]
2 Yy Tiy) Tiy) Niy) Tiy) Niy) Tiy) Niy)
E 0.0 4.37396 291597 3.07437 2.91597 3.07437 2.9250 -3.1153
=y 0.1 472063 4.92495 3.22570 3.35355 318042 3.31664 3.2342 33647
z 0.2 494416 5.12484 3.42167 3.52047 3.36278 3.48323 3.4238 35257
= 0.3 513250 5.20421 358700 3.67966 3.52167 3.62047 3.5831 -3.6654
g 0.4 530131 5.44717 3.73615 3.81653 3.66754 3.76478 3.7268 -3.7944
= 0.5 545733 5.HR0GhH 3.87478 3.94514 3.80489 3.80310 3.8605 -3.9167
% 0.6 5.60422 5.72479 4.00614 4.06814 3.93615 4.01653 3.9874 —4.0345
= 0.7 5.74424 5.85449 4.13216 4. 18706 4.06283 4.13633 4.1093 —4.1491
é 0.8 hH.BTHRQ 5.98001 4.25410 4.30291 4.18593 4.25334 4.2275 —4.2612
: 0.9 6.00921 £.10220 4.37281 4.41637 4.30614 4.36814 4.3428 —4.3715
8 1.0 6.13600 6.22170 4. 48894 4.52793 4.42400 4.48113 4.4558 —4.4802
3 2.0 7.20393 7.33511 5.57466 5.58012 5.52028 5.55674 5.5196 -5.5251
o~ 3.0 8.36200 8.38367 6.60474 6.61081 6.57466 6G.58012
E,_" 4.0 9.39637 9.40840 T.61737 7.62010 7.59758 7.60560
) 5.0 1L04152(1) -1.04221(1) 8.62318 8.62448 8.61013 8.61476
= 6.0 1.14260(1) —1.14302(1) 9.62601 9.62665 9.61737 9.62011
= 7.0 1.24325(1) —1.24350(1) 1.06274(1) -1.06278(1) 1.06217(1) -1.06234(1)
[as] 5.0 1.34365(1) —1.34380(1) 1.16282(1) —1.16284(1) 1.16243(1) -1.16254(1)
g 9.0 1.44390(1) —1.44400(1) 1.2628G6(1) —1.26287(1) 1.26260(1) —1.26267(1)
2 10.0 1.54406(1) -1.54412(1) 1.36288(1) —1.36289(1) 1.36271(1) -1.36275(1)
g 2000 2.54436(1) -2.54436(1) 2.36291(1) -2.36291(1) 2.36291(1) -2.36291(1)
=
o
g
=
=
=]
]
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TapLE 6

Temperature T(y) and density N(y) perturbations, oy = 0.5, a, = 0.5.

BGR-CL S5-CLis = ep) S-CL
y Tiy) Ny) T(y) Ny T(y) N(y)
0.0 210157 256038 3.15236 3.85407 210157 2.56938
0.1 2.34143 2.71400 346214 4.02100 2.38212 2.72494
0.2 251598 2.83371 3.67398 415056 2.57076 2.84749
0.3 267076 2.94749 3.85614 4.27124 2.73298 2.96295
0.4 2.81423 3.05829 4.02135 4.38743 2.880054 3.07492
0.5 295014 3.16724 4.17520 4.50085 3.01854 318477
0.6 3.08054 3.27492 4.32081 4.61238 3.14976 3.29315
0.7 3.20674 3.38167 446011 4.72251 3.27590 340045
0.8  3.32960 3.48770 4.5944 1 4.83155 3.39810 350691
0.9 344976 3.59315 4.72464 4.93973 3.51717 3.61267
1.0 3.56767 3.09812 4.85151 5.04718 3.63369 3.71786
2.0 467538 4.73195 6.01307 6.09793 4.72288 4.75046
3.0 572288 575046 7.08432 7.12570 5.75467 5.76525
4.0  6.74708 6.76147 8.12062 8.14220 6.76804 6.77248
5.0  T.76037 7.76G823 9.14056 9.15235 7.7T7418 T.NT61T
6.0  8.76804 8.77248 L.O1520(1) LOL5ST(1) 877716 8.77810
7.0 9.77261 0.77519 L11589(1) L11628(1)  9.773867 0.77912
8.0 1.07754(1) LO7769(1) 1L.21631(1) L21654(1)  1.07795(1) LO7797(1)
9.0 1.177v2(1) LIT7T81(1) 1.31657(1) 1.31671(1) 1.17799(1) 1.17800(1)
10,0 1.27783(1) 1.27788(1) LA1674(1) LAIGR3(1)  1.27801(1) 1.27802(1)
20,0 2.27804(1) 22T804(1)  241705(1) 2A1T05(1)  2.27804(1) 2.27804(1)

TapLe 7

The temperature-jump coefficient {, o = 0.5 with Mazwell boundary condition.
J 2 b

Model

BGK

Williams

Rigid-sphere

]

LS
3.629125 [30]
3.435960[30]
2.476180[30]
5443688
3.620125
3.5485[31]
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TapLe 8

B8

Density and temperature perturbations for the mizture Ne-Ar, €' = 0.3, a;1 = 0.31, a,1 = 0.10,

azz = 0.67, ayza = 040, { = 5.609842.

Y

Nily)

Naly)

T (y)

Toiy)

0.0
0.1
0.2
0.3
0.4

6.004582
6.0093327
6.114674
6.147316
6.187790
6.234186
6.28520606
6.340156
6.398206
6.458012
6.521875
7.225736
7.990690
8.77h655
9.567645
1.036200(1)
L115695(1)
L195190(1)
1.274662(1)
1.354108(1)
2.147838(1)

5.020045
5. 196695
5.343053
5.482370
5617862
5.750740
5.881600
6.010827
6.138620
6265184
6.390621
7.600364
8.758042
0. 889628
1.100422(1)
1.210921(1)
1.320832(1)
1.430375(1)
1.539684(1)
LG6A8842(1)
2.738018(1)

5.003068
5.221407
5.381062
24230
68380
786684
5.910838
6031871
6. 150460
6.267077
65.352064
7.ATH400
8.529533
9558614
LOSTGAL(1)
L158TGA(1)
1.259490( 1)
1.359967(1)
1. AGO285(1)
1.56049G9(1)
2.560067(1)

A B S

3625896
1.100402
4.408179
1.664051
1.880534
5004294
5.283771
5.461415
5.629586
5. TROOY]
5.943908
7.273053
8.421366
0.498200
1.054113(1)
1.156635(1)
1.258170(1)
1.359130(1)
1.459745(1)
1.560145(1)
2.560058(1)

TapLe 9

Density and temperature perturbations for the mizture Ne-Ar,

azz = 0.67, ayzz = 040, { = 8.594219.

y

Nily)

Naly)

T (y)

Toiy)

0.0

8.750733
8. 783852
H.835794
H.B9TRA0
8966726
9.040610
9.118298
9,198955
09.281972
9.366800
9.453352
036126(1)

593117(1)
G835235(1)
TTT263(1)
2.605096(1)

L
1
13
L.
1.:
1
L
L
L

7.120369
7.506333
7.786932
8.033746
8. 260064
8.471952
R.67T2914
8.865234
9.050521
0.229063
0.404472
L.O98TO7(1)
1.242872(1)
1.381496(1)
1517507 (1)
L.652151(1)
L.786030(1)
L919461 (1)
2.052622(1)
2.185615(1)
3.513052(1)

7000958
7.450028
7.700797
7022874
8.114582
8.291754
8458194
50616208
8.TETT01
8.013578
0054812
1.031358(1)
1.143514(1)
1.249962(1)
1.353609(1)
1.455762(1)
L.A57073(1)
1.657891(1)
58410(1)
1.858746(1)
2.850404(1)

5.242827
6.084367
6.5387750
6.982114
7.312956
T.600055
T.85T802
8090910
8.305339
H.504716
8.601742
1L.O18410(1)
L.138000(1)
L247343(1)
1.352266(1)
L455032(1)
L.556658(1)
L657646(1)
1.758262(1)
L.858654(1)
2.850402(1)

C'= 0.8, az1 = 0.31, a1 = 0.10,
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Tapre 10
Density and temperature perturbations for the mizture He-Xe, € = 0.3, a;1 = 0.20, a1 = 0.05,
azz = 0,95, ayz = 040, { =9.208216.

Y Nily) Naly) T1(y) Taly)
0.0 9. 850661 6.752228 N.842005 4550386
0.1 9.879711 6.953128 9. 10807H 5.171764
0.2 9.907475 7.131582 Q. 204006 5.587051
0.3 9940046 7.306519 9.454962 5.936198
0.4 9.976171 7479783 9.601494 6.246081
0.5 L.O01510(1) T7.651818 9,.738338 6. 528768
0.6 L.005634(1) 7.822732 Q. 868 148 6.791054
0.7 L0055 | 7.092533 Q.902600 7.037259
0.8 1. 8161199 1.011283(1) 7.270349
0.9 1. 8.328707 1.022067(1) 7.492473
1.0 1.023817(1) 3495034 1.034371(1) 7.705251
20 1L _ 1.000326(1)  1.130936(1)  9.508343
3.0 ~1132934(1)  ~1.158524(1)  1.239185(1)  1.099113(1)
1.0 —1.192301(1)  ~1.290418(1)  1.336773(1)  1.231344(1)
50  —1.253117(1) -1.434063(1) 1.434089(1) 1.353987(1)
6.0 —1314884(1) -1.564032(1) 1.531607(1) 1.470376(1)
7.0 —1.377312(1) -1.690495(1) 1.620469(1) 1.582465(1)
8.0 —1.440213(1)  —1814319(1)  1.727694(1)  1.691501(1)
0.0 -1503463(1) -1.036146(1) 1.826251(1) 1.798316(1)
10,0 —1.566072(1) -2.056457(1)  1.025002(1)  1.903493(1)

20,0 -2.207846(1) -3.225069(1) 2921173(1)  2.919434(1)

TapLe 11
Density and temperature perturbations for the mizture He-Xe, € = 0.8, a;1 = 0.20, a,1 = 0.05,

ap2 = 040, = 16.699401.

azz = 0,95,

y Ni(y) Na(y) Ty (y) To(y)

0.0 L.683016(1) 1.227521(1) 1A58384(1) 8.714419

0.1 L.686467(1) 1.286386(1) 1.500194(1) 9.979183

0.2 1.690023(1) 1.332670(1) 1.528673(1) L.OT9195(1)
0.3 -1696028(1) -1.374765(1) 1.552854(1) 1.145073(1)
0.4 L.701606(1) 1.414201(1) 1.574502(1) 1.201558(1)
05 -1 1.451664(1)  1.504411(1)  1.251425(1)
0.6 1. 1.487549(1) 1.613030(1) 1.296271(1)
0.7 1. 1.522113(1) 1.630641(1) 1.337133(1)
0.8 1. L.555540(1) 1.647441(1) 1.374735(1)
0.9 L. L.58707T0(1) 1.663570(1) LA0GE00(1)
1.0 1. LG19513(1) 1.679132(1) 1.442160(1)
2.0 -1 LO00579(1)  1.815832(1)  1.688453(1)
3.0 1 2.143660(1) 1.935084(1) L.861137(1)

4.0 1.97202
5.0 2.05097
6.0 212975

2.046522(1)  2.001624(1)
2.153768(1)  2.125641(1)
(1) 2.258546(1)  2.240502(1)
7.0 -2.20831 2.080205(1) 2.361789(1)  2.319088(1)
8.0 -2.286658(1) -3.176423(1) 2464036(1) 2.456193(1)
9.0 -2364816(1) -3.370713(1) 2.565619(1)  2.560336(1)
10,0 -2442825(1) -3.563718(1) 2.666750(1) 2.663148(1)
20,0 -3219264(1) -5.471661(1) 3.669732(1) 3.669600(1)
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TaprLe 12

The temperature-jump coefficient  for the mizture Ne-Ar

with CL boundary condition.

C case |

casze 11

ase [11

0.00  3.819923
010 4.026792
020 4.220354
0.30 4427408
040 4.620807
050 4.809467
0.60 4993400
0.70 5172797
0.80 5348012
0.90 5519769
0.94 5587756
LO0  5.689301

1165162
1.624545
5.105370
5.600842
6.140500
6.700351
7.202011
7.022448
8.591219
9.314550
9.560220
1.009305(1)

&

1

B!
5

640298

&

i

i

63477
84249

001942

16410

227559

5360
30017
41419

37289
TER06G
33604

TaprLe 13

The ."e:n.:.;x:-m-"'e.".r'e:—;.-'e.'n.n.p c:c?e:j_,f.':c:-re:.‘.'.." ;,: fc?'.r' the mizture He-Xe

with C'L boundary condition.

C case [V case case VI
0.00 2600002 3805644 2.694548
0.10 4.9805493 5.930889 3.502355
0.20 6.918308 T.66G5855 4.242706
0.30 8703196 0. 208216 4.776130
0.40 1.043710(1) LOGa6110(1)  5.253175
0.50 1.218908(1) 1.200149(1)  5.70846G3
0.60 1.401600(1) 1.355138(1)  6.165612
0.70 1596817 1) L508366(1)  6.641839
(.50 1.806406(1) L.669940(1)  7.139433
.90 2.004926(1) 1.816252(1)  7.558874
0.94 2.041581(1) 1.835065(1)  7.560751
1.00 L.775163(1) L.577430(1) 6407679

TaprLe 14

The temperature-jump coefficient { for the mizture He-Ar

with CL boundary condition.

c case VI case VIII case IX
0.00 3810023 3823200 1763177
0.10 1.830295 1.049216 5.771355
0.20 5.002419 1.287304 6.820256
0.30 7.054171 4.539084 7.953144
0.40 8.305739 1.811649 1.031862(1)
0.50 9.680300 5.101938 1.047218(1)
0.60 1.120361(1) 5418278 1.188326(1)
0.70 1.286814(1)  5.760482 1.348900(1)
0.80 1.476387(1)  6.118533 1.520249(1)
0.90 LEGE506(1)  6.431606 1.600730(1)
0.94 1.731059(1)  6.503639 1.746012(1)
1.00 1.775163(1)  6.407678 1.775163(1)

S8

-1
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a: accommodation coefficient of

the tangential momentum = 0.2

b: accommaodation coefficient of |
|the tangential momentum = 0.5

E
O
E
g : ;
¢ 53 ¢: accommadation coefficient of
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9. Concluding comments. An analytical version of the discrete-ordinates
method was used to develop a solution for the temperature-jump problem in rarefied
egas dynamics, modeled by the S-model and the McCormack model. for the one gas
and binary gas mixture cases, respectively. The gas-surface interaction was described
by the Cercignani-Lampis boundary condition. The dependence of jump coefficient
on both accommodation coefficients was shown, which points out the importance of
special attention to the description of the gas-surface interaction. The evaluation of
the jump coeflicient for a binary mixture of gases shows more significant difference
from the one gas case for a great mass ratio. Once more the discrete-ordinates solution
was found to be very precise.

Appendix A. Basic definitions.
In (82},

(A1) KU, e) =1+ {21 -8 —n¥(d? —5/2)}¢ - c,
(A2) K?(d,c) = (2/3)[1 — 2r*n{](¢? —3/2)(c? — 3/2),
(A.3) K®(d,c) = 2my[(c - ¢)® — (1/3)°c?,

(A4) K{'(d,c)=[(4/5)8.(¢° -5 Ml (A —5/2) ¢
(A5) K (c,c)=r{2n{}) + ;;'ii[:'ﬁiﬁr’g —

(A.6) K<, c) = (4/3)rni)(d” — 3/2)(c® - 3/2),
(A7) K\ c) = 2mW[(¢ - ) — (1/3)¢° A,

(A .8) K (,c) = @/5)n)(d? —5/2)(F — 5/2)d -c,
(A9) K<, c)=1+{21—-n3] —nf

(A.10) K$)(d,c) = (2/3)[1 — 2s* s 0](¢? — 3/2)( — 3/2),
(A.11) K$)(d, ) = 2ms](c - €)? — (1/3)d >,

(A.12) K. (. c)=[(4/5)8.(% =5/ 5/2) - ¢

(A.13) K\ (<, )= s{2nS] + ni[2(d? = 5/2) + 2 = 5/2}c - c,
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(A.14) KP)(c,c) = (4/3)s*n(c? —3/2)( —3/2),
(A.15) K c) =20 (- e)? — (1/3)¢ %]
and

(A.16) K'Y, c) = (4/5)n" (@505 (> —5/2)c - c.
\ ) 1,2 ) STRILREN /4 /<)

In the definitions above it is used that

(A7) r=(mi/my)¥? and s= (mg/m;)"?
and
. s ; r? ; &2
(AL18) Pl and " =

l + s

In addition,

(4 (37 (3
=140 = 1= 2

Gl
|

(30 (3)

(A.20) L+ 759 — 59 — 315

g
I

(A21) Br=1+m% — i) — i,

(A.22) Bo=1+n55 —nsa —Ns1s

Continuing, following MeCormack and Siewert’s works [16. 32|, we write

[‘\:_)1] .f.r’l:l:!\ i —}-"J‘gll l-_\‘

(2 64 rma.g\2 ; 5
(A DR 2y 2 b, 3 Aoz an
(A.25) Vo g == ( ) e (_.Iﬂ_]\ a8 )

(A .26) v = &(—m“‘ '“‘)h@n-,\(mﬂl'.' L MEF%),

b\ mg, ma

(4) 16 pmaay2ima 10 o
FA 4y b, 3 foe 11 22
(A2T) v 5= T(—) }e,(Tﬂlﬂ_ g — §15 1)

5 N ma
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64 rmg gn2m 15m 2hmg
(A ORY o) M= o, Deoss [ 22 o = * A 11
(A28) V. g = 1__,)( ng Q. 5+ +—= )05

Mo Mg dm g 8y,

- ( ma )( )()|_1 —E!'f"-;)
:_)F}f(-\: o, o,

and
61 ¢ m Mg\ 2/2 5 1
(6] ey 3 You ! 22 11 12 13
’:"\_1__"( ) ( ) ng _£)£11 _()('\.1__)£)('\.1+_)£)('\.1
15N ma M3 2 2
Here
AT Mgt g
(A30) Mea.g =

Mo + Mg

Finally, the € functions are the Chapman-Cowling integrals [19, 50]

1/2
TI_JII\'.JIV . L2
( ) (de + dg)~.
MM, 5

We note that here dy and ds are the diameters of the two types of particles and, as
defined in the text, k is the Boltzmann constant and 7§ is a reference temperature.

I+ (=1
20i+ 1)

(A.31) 0y (=1

1 )
o, 0 (\

Appendix B. The elements of the kernel.
We follow Siewert [32] and express the components of the matrix Kyr(£',£€) in
(99) as

(B.1)

ki 1(€,€) = 1+ fi,1(€, €€+ (2/3)[1 — 2rn{}) + 2] (€ — 1/2)(€% - 1/2),
(B.2)

kia(€.€) = [(4/5)81(€2 —3/2) —nREE + (2/3)[L — 2rn)) — =] (€2 — 1/2),
(B.3) kya(€,€) = fua(€ )€€+ (A/3)r i + mil(€? — 1/2)(€2 - 1/2),
(BA)

kya(€,8) = [P0 + (4/5)n)3(€% - 3/2)IE' 6+ (2/3)2r*my's —mi'9)(€2 — 1/2),
(B.5)

ka1(£,€) = [(4/5)B(&* —3/2) — P& e + (2/3)[1 — 2r*n’Y) — wy](¢? — 1/2),
(B.6) by o(€,€) = (2/3)[1 — 20 ;;'j_'j] + (1/3)my + (4/5) 31 €€,
(B.7)

&) = lrns + (4/5)mia(€” — 3/ + (2/3)2r niz —ma)(€” — 1/2),

;o
ko 3(€.
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(B.8) ko a(€.6) = (4/5)m\ 0 ¢ 3)[4r :,q 2+ J,']

(B.9) ka1 (£,8) = fa1(£,86)EE+ (4/3)[s* ;;, + ;;','I'] —1/2)(£% — 1/2),

(B.10)
) = [ r;, )+ (4750 (€% — 3/2)1€ € + (2/3)[ 25 S — nit)|(£2 —1/2)

(B.12)
k3,a(€',€) = [(4/5)52(€% — 3/2) — m 1€ € + (2/3)[1 — 2s*n5,) — w2 (€ — 1/2)
(B.13)
kan(€,€) = [snsy + (4/5)m50 (€7 = 3/2))¢'e + (2/3)2s ny) — msh)(€* — 1/2)
(B.14) kao(€'.€) = (4/5)mOe'e + (1/3) s nl ) + i),
(B.15)
kya(€.8)= [(-1;..-".-3)\)’2(5,-"2 —3/2) —ny ;'] e+ (2/3)1 — 28 ;;;_' - xg](ff2 —1/2),
and
(B.16) kya(€,€) = (2/3)[1 — 28*ni1)] + (1/3)m2 + (4/5)8:€ €
with
(B.17)
Fia(€,€) =210 — i) —n{2E” + £ = 3) + (4/5)B1(€” — 3/2)(£* - 3/2),
(B.18)
Faa(€,6) =20t — gl - n(E* + € — 3) + (4/5)8: (6™ — 3/2)(€? - 3/2),
(B.19) f15€ ) = 2rnid + il (€7 —3/2) + €2 = 3/2
+(4/5)m(&? —3/2)(£* - 3/2)
(13.20) f31(€.6) = 2smy )y + sy [s°(€° — 3/2) + &8 — 3/
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