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ABSTRACT

Efficiently exploiting thread-level parallelism has been challenging for software devel-

opers. As many parallel applications do not scale with the number of cores, blindly

increasing the number of threads may not produce the best results in performance or

energy. However, the task of rightly choosing the ideal amount of threads is not straight-

forward: many variables are involved (e.g. off-chip bus saturation and overhead of data-

synchronization), which will change according to different aspects of the system at hand

(e.g., input set, micro-architecture) and even during execution.

To address this complex scenario, this thesis presents Aurora. It is capable of automat-

ically finding, at run-time and with minimum overhead, the optimal number of threads

for each parallel region of the application and re-adapt in cases the behavior of a region

changes during execution. Aurora works with OpenMP and is completely transparent

to both designer and end-user: given an OpenMP application binary, Aurora optimizes

it without any code transformation or recompilation. By executing fifteen well-known

benchmarks on four multi-core processors, Aurora improves the trade-off between per-

formance and energy by up to: 98% over the standard OpenMP execution; 86% over the

built-in feature of OpenMP that dynamically adjusts the number of threads; and 91% over

a feedback-driven threading emulation.

Keywords: Parallel computing. energy and performance optimization. software tuning.

OpenMP.





Aurora: Otimização Transparente de Aplicações OpenMP

RESUMO

A exploração eficiente do paralelismo no nível de threads tem sido um desafio para os

desenvolvedores de softwares. Como muitas aplicações não escalam com o número de

núcleos, aumentar cegamente o número de threads pode não produzir os melhores resul-

tados em desempenho ou energia. No entanto, a tarefa de escolher corretamente o número

ideal de threads não é simples: muitas variáveis estão envolvidas (por exemplo, saturação

do barramento off-chip e sobrecarga de sincronização de dados), que mudam de acordo

com diferentes aspectos do sistema (por exemplo, conjunto de entrada, micro-arquitetura)

e mesmo durante a execução da aplicação.

Para abordar esse complexo cenário, esta tese apresenta Aurora. Ela é capaz de encontrar

automaticamente, em tempo de execução e com o mínimo de sobrecarga, o número ideal

de threads para cada região paralela da aplicação e se readaptar nos casos em que o com-

portamento de uma região muda durante a execução. Aurora trabalha com o OpenMP e é

completamente transparente tanto para o programador quanto para o usuário final: dado

um binário de uma aplicação OpenMP, Aurora o otimiza sem nenhuma transformação

ou recompilação de código. Através da execução de quinze benchmarks conhecidos em

quatro processadores multi-core, mostramos que Aurora melhora o trade-off entre desem-

penho e energia em até: 98% sobre a execução padrão do OpenMP; 86% sobre o recurso

interno do OpenMP que ajusta dinamicamente o número de threads; e 91% quando com-

parado a uma emulação do feedback-driven threading.

Palavras-chave: Computação paralela, otimização de desempenho e energia, software

tuning, OpenMP.
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1 INTRODUCTION

With the increasing complexity of parallel applications, which require more com-

puting power, energy consumption has became an important issue. On the one hand, the

power consumption of High-Performance Computing (HPC) systems in 2020 will require

200 MW, according to the Advanced Scientific Computing Research from the U.S. De-

partment of Energy 1. On the other hand, general-purpose processors are being pulled

back by the limits of the Thermal Design Power (TDP), while most of the embedded

devices are mobile and heavily dependent on battery (e.g., smartphones, tablets, etc.).

Therefore, the primary objective when designing and executing parallel applications is

not to merely improve performance but to do so with minimal impact on energy con-

sumption.

Performance improvements can be achieved by exploiting Instruction-Level Par-

allelism (ILP) or Thread-Level Paralellism (TLP). In the former, independent instructions

of a single program are simultaneously executed, usually on a superscalar processor, as

long as there are functional units available. However, typical instruction streams have

only a limited amount of parallelism (WALL, 1991), resulting in considerable efforts to

design a micro-architecture that will bring only marginal performance gains with very sig-

nificant area/power overhead. Even if one considers a perfect processor, ILP exploitation

will reach an upper bound (OLUKOTUN; HAMMOND, 2005).

Hence, to continue increasing performance and to provide a better use of the ex-

tra available transistors, modern designs have started to exploit TLP more aggressively.

In such case, multiple processors simultaneously execute parts of the same program, ex-

changing data at runtime through shared variables or message passing. In the former, all

threads share the same memory region, while in the latter, each process has its private

memory, and the communication occurs by send/receive primitives (even though they

are also implemented using a shared memory context when the data exchange is done

intra-chip (CHANDRAMOWLISHWARAN; KNOBE; VUDUC, 2010)). Therefore, re-

gardless of the processor or communication model, data exchange is usually done through

memory regions that are more distant from the processor (e.g., L3 cache and main mem-

ory) and have higher delay and power consumption when compared to memories that are

closer to it (e.g., register, L1, and L2 caches).

Even though execution time shall decrease because of TLP exploitation, energy

will not necessarily follow the same trend, since many other variables are involved:
1http://science.energy.gov/ascr/research/scidac/exascale-challenges/
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• Memories that are more distant from the processor will be more accessed for syn-

chronization and data exchange, increasing energy related to dynamic power (which

increases as there is more activity in the circuitry).

• An application that was parallelized will usually execute more instructions than

its sequential counterpart. Moreover, even considering an ideal scenario (where

processors are put on standby with no power consumption), the sum of the execution

times of all threads executing on all cores tends to be be larger than if the application

was sequentially executed on only one core. In consequence, the resulting energy

from static power (directly proportional to how long each hardware component is

turned on) consumed by the cores will also be larger. There are few exceptions

to this rule, such as non-deterministic algorithms, where an execution of a parallel

application may execute fewer instructions than its sequential counterpart.

• The memory system (which involves caches and main memory) will be turned on

for a shorter time (the total execution time of the applications), which will decrease

the energy resultant from the static power.

Therefore, cores tend to consume more energy from both dynamic and static

power; while memories will usually spend more dynamic power (and hence energy), but

also tends to save static power, which is very significant (VOGELSANG, 2010). On top

of that, neither performance nor energy improvements resultant from TLP exploitation are

linear, and sometimes they do not scale as the number of threads increases, which means

that in many cases the maximum number of threads will not offer the best results. There

are several reasons for this lack of scalability: instruction issue-width saturation, which af-

fects the performance of CPU-Bound applications that are running on Simultaneous Mul-

tithreading (SMT) architectures; off-chip bus saturation, which limits the performance of

applications whose threads operate on large amounts of data; data synchronization, which

limits the scalability of applications that have many synchronization points; and concur-

rent shared memory accesses, which affects the applications with high communication

demands among the threads (LEVY et al., 1996; RAASCH; REINHARDT, 2003; SULE-

MAN; QURESHI; PATT, 2008; JOAO et al., 2012; SUBRAMANIAN et al., 2013). They

all will be discussed in more details later in this thesis.

Considering the aforementioned scenario, choosing the right number of threads

to a given application will offer opportunities to improve performance and increase the

energy efficiency. However, such task is extremely difficult: besides the huge number of
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variables involved, many of them will change according to different aspects of the system

at hand and are only possible to be defined at runtime, such as:

• Input set: As shown in Figure 1.1(a), different levels of performance improvements

for the LULESH benchmark (KARLIN; KEASLER; NEELY, 2013) (also used as

examples in the next two items) over its single-threaded version are reached with

a different number of threads (x-axis). However, these levels vary according to the

input set (small or medium). While the best number of threads is 12 for the medium

input set, the ideal number for the small set is 11.

• Metric evaluated: As Figure 1.1(b) shows, the best performance is reached with

12 threads, while 6 threads bring the lowest energy consumption, and 9 presents

the best trade-off between both metrics (represented by the Energy-Delay Product

(EDP)).

• Processor architecture: Figure 1.1(c) shows that the best EDP improvements of

the parallel application on a 32-core system are when it executes with 11 threads.

However, the best choice for a 24-core system is 9 threads.

Figure 1.1: Appropriate number of threads (x-axis) considering the improvements over
sequential version (y-axis)
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• Parallel regions: many applications are divided into several parallel regions, in

which each of these regions may have a distinct ideal number of threads, since

their behavior may vary as the application executes. As an example, Figure 1.1(d)

shows the behavior of four parallel regions from the Poisson Equation benchmark

(QUINN, 2004) when running on a 24-core system. One can note that each parallel

region is better executed with a different number of threads.

1.1 Contributions

Considering the scenario discussed in the previous section, this thesis makes the

following contributions:

• Conduct a comprehensive study of the opportunities for parallel computing re-

garding the most popular Parallel Programming Interfaces (PPIs) (POSIX Threads

(PThreads), Open Multi-Processing (OpenMP), and Message Passing Interface (MPI))

and platforms of embedded and general-purpose processors. In such study, com-

parisons regarding performance, energy consumption, EDP, and the influence of

the static power of the processor on the total energy consumption are discussed.

• Develop a library to automatically adapt the number of threads for OpenMP ap-

plications. Such library has the goal to improve the execution of applications im-

plemented with OpenMP regarding different metrics, such as performance, energy

consumption, and EDP.

• Through mathematical correlation, present the bottlenecks that affect the scalability

of OpenMP applications. That is, discuss the causes related to hardware and soft-

ware that explain why selecting the maximum number of available threads will not

necessarily lead to the best possible result.

• Incorporate the developed library into the OpenMP Application Programming In-

terface (API) library (libgomp) to provide an approach that improves OpenMP ap-

plications with no modifications in the source code nor code recompilation.

1.2 Organization of this thesis

This thesis is organized as follows:
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Chapter 2 presents the fundamental concepts used in this work. First, an overview

about parallel computing and multicore architectures is presented. Second, a study re-

garding the issues that affect the scalability of parallel applications is described. Then,

the design space exploration regarding the estimation and adaptation of the behavior of a

parallel execution is discussed. Finally, the metrics of interest that will be used to compare

and evaluate our mechanisms are discussed.

Chapter 3 discusses the related work. It is divided into three subsections: First,

the studies that explore the opportunities of parallelism exploitation on embedded and

general-purpose processors are discussed. In addition, this section discusses the studies

that compare the parallel programming interfaces used in this thesis. Second, the studies

that performs the optimization of parallel applications regarding the adaptation of the ex-

ecution environment are discussed. Finally, the contributions of this thesis are compared

to the related work.

In Chapter 4, the study regarding the parallelism exploitation of different com-

munication models and platforms (embedded and General-Purpose Processors (GPPs)) is

presented. First, the comparison of different PPIs considering different evaluation met-

rics, such as performance, energy consumption, and energy-delay product, is presented.

Also, this section discusses the influence of the static power of the processor in the total

energy consumption. Finally, we present the importance of proposing a mechanism for

the OpenMP parallel programming interface.

Chapter 5 presents the main contributions of this thesis: the mechanisms to auto-

matically and transparently improve OpenMP applications. The two proposed approaches

are presented: first, the library to automatically improve OpenMP applications, with code

transformation and recompilation; and second, the transparent mechanism that optimize

OpenMP applications without user influence. Then, the two mechanisms are evaluated

and compared to different well-know techniques from the related work.

Chapter 6 concludes the conducted work in this thesis. It also discusses some of

the most promising future works envisioned at this time.
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2 FUNDAMENTAL CONCEPTS

This chapter presents the fundamental concepts for understanding the remaining

of the work. First, the concepts of parallel programming, as well as the communication

models and parallel programming interfaces used in this work are presented. Also, this

section highlights the main characteristics of the multicore architectures regarding the

parallelism exploitation. Second, the issues that affect the scalability of parallel applica-

tions are discussed. Then, the techniques used to address the design and space exploration

of parallel computing are presented. Finally, the metrics that will be used for comparison

and validation of our methodology are presented.

2.1 Parallel Computing in Software

Parallel programming is defined as the division of tasks of an application that

can be executed concurrently aiming to reduce their total execution time (RAUBER;

RüNGER, 2013). It has been widely used in the development of scientific applications

that require a large computing power, such as weather forecasting calculations, DNA

sequences and genome calculation. In addition, with the popularization of multicore ar-

chitectures, the general-purpose applications (graphic editors, web servers, etc.) have also

taken advantage of parallel programming.
The main goal of parallel computing is to use multiple processing units for solving

problems in less time (FOSTER, 1995). The key for parallel computing is the possibil-

ity to exploit concurrency on a given application by decomposing a problem into sub-

problems that can be executed at the same time. As a simple example, suppose that part

of an application involves computing the summation of a large set of values. In a sequen-

tial execution, all the values are added together in only one core, sequentially, as depicted

in Figure 2.1(a). On the other hand, with the parallel computing, the data set can be parti-

tioned, and the summations computed simultaneously, each on a different processor (C0,

C1, C2, and C3, in Figure 2.1(b)). Then, the partial sums are combined to get the final

answer.

2.1.1 Communication Models

Parallel computing exploits the use of multiple processing units to execute parts of

the same program simultaneously. Thus, there is cooperation between the processors that
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Figure 2.1: Example of parallel computing
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execute concurrently. However, for this cooperation to occur, processors should exchange

information at runtime. In multicore processors, this can be done through shared variables

or message passing (RAUBER; RüNGER, 2013):
Shared variable is based on the existence of an address space in the memory that

can be accessed by all processors. It is widely used when parallelism is exploited at the

level of the thread since they share the same memory address space. In this model (Figure

2.6), the threads can have private variables (the thread has exclusive access) and shared

variables (all the threads have access). When the threads need to exchange information

between them, they use shared variables located in memory regions that are accessed by

all threads (shared memory). Each parallel programming interface provides synchroniza-

tion operations to control the access to shared variables, avoiding race conditions.
Message Passing is used in environments where memory space is distributed

and/or where processes do not share the same memory address space. Therefore, com-

munication occurs using send/receive operations which can be point-to-point or collective

ones. In the first (Figure 2.2(b)), data exchange is done between pairs of processes. In the

latter, more than two processes are communicating (Figure 2.2(c)).

Figure 2.2: Communication Models
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2.1.2 Parallel Programming Interfaces

The development of applications that can exploit the full potential parallelism of

multiprocessor architectures depends on many specific aspects of their organization, in-

cluding the size, structure and hierarchy of the memory. Operating Systems provide trans-

parency concerning the allocation and scheduling of different processes across the various

cores. However, when it comes to TLP exploitation, which involves the division of the

application into threads or processes, the responsibility is of the programmer. There-

fore, Parallel Programming Interface (PPI)s make the extraction of the parallelism easier,

fast, and less error prone. Several parallel programming interfaces are used nowadays, in

which the most common are OpenMP, PThreads, MPI, Threading Building Block (TBB),

Cilk plus, Charm, among others.

OpenMP is a PPI for shared memory in C/C++ and FORTRAN that consists of

a set of compiler directives, library functions, and environment variables (CHAPMAN;

JOST; PAS, 2007). Parallelism is exploited through the insertion of directives in the

sequential code that inform the compiler how and which parts of the code should be

executed in parallel. The synchronization can be implicit (implied barrier at the end of a

parallel region), or explicit (synchronization constructs) to the programmer. By default,

whenever there is a synchronization point, OpenMP threads enter in a hybrid state (Spin-

lock and Sleep), i.e., they access the shared memory repeatedly until the number of spins

of the busy-wait loop is achieved (Spin-lock); and then, they enter into a sleep state until

the end of synchronization (CHAPMAN; JOST; PAS, 2007). The amount of time that

each thread waits actively before waiting passively without consuming CPU power may

vary according to the wait policy that gives the number of spins of the busy-wait loop

(e.g., the standard value when omp wait policy is set to being active is 30 billion iterations)

(OPENMP, 2013).

PThreads is a standard PPI for C/C++, where functions allow fine adjustment in

the grain size of the workload. Thus, the creation/termination of the threads, the workload

distribution and the control of execution are defined by the programmer (BUTENHOF,

1997). PThreads synchronization is done by blocking threads with mutexes, which are

inserted in the code by the programmer. In this case, threads lose the processor and wait

on standby until the end of the synchronization, when they are rescheduled for execution

(TANENBAUM, 2007).

Cilk Plus is integrated with a C/C++ compiler and extends the language with the

addition of keywords by the programmer indicating where parallelism is allowed. Cilk
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Plus enables programmers to concentrate on structuring programs to expose parallelism

and exploit locality. Thus, runtime system has the responsibility of scheduling the com-

putation to run efficiently on a given platform. In addition, it takes care of details like

load balancing, synchronization, and communication protocols (MCCOOL; REINDERS;

ROBISON, 2012).

TBB is a library that supports parallelism based on a tasking model and can be

used with any compiler ISO C++. TBB requires the use of function objects to specify

blocks of code to run in parallel, which relies on templates and generic programming.

The synchronization between threads is done by mutual exclusion, in which the threads in

this state perform busy-waiting until the end of synchronization (MCCOOL; REINDERS;

ROBISON, 2012).

MPI is a standard message passing library for C/C++ and FORTRAN that imple-

ments optimization to provide communication in shared memory environments (GROPP;

LUSK; SKJELLUM, 1999). MPI is like PThreads regarding the explicit exploitation of

parallelism. Currently, it is divided into three norms. In MPI-1, all processes are created

at the beginning of the execution and the number of processes does not change through-

out program execution. In MPI-2, processes are created at runtime, and the number of

processes can change during the execution. In MPI-3, the updates include the exten-

sion of collective operations to include nonblocking versions and extensions to the one-

sided operations. Communication between MPI processes occurs through send/receive

operations (point-to-point or collective ones), which are likewise explicitly handled by

the programmers. When MPI programs are executed on shared memory architectures,

message transmissions can be done as shared memory accesses, in which messages are

broken into fragments that are pushed and popped in First-In-First-Out (FIFO) queues of

each MPI process (CHANDRAMOWLISHWARAN; KNOBE; VUDUC, 2010)(BUONO

et al., 2014).

2.1.3 Multicore Architectures

Multicore architectures have multiple processing units (cores) and a memory sys-

tem that enables communication between the cores. Each core is an independent logical

processor with its resources, such as functional units, pipeline execution, registers, among

others. The memory system consists of private memories that are closer to the processor

and only accessible by a single processor; and shared memories, that are more distant
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from the processor and can be accessed by multiple processors (HENNESSY; PATTER-

SON, 2003). Figure 2.3 shows an example of a multicore architecture with four cores

(C0, C1, C2, and C3) and its private (L1 and L2 caches) and shared memories (L3 cache

and main memory).

Multicore processors can exploit TLP. In this case, multiple processors simulta-

neously execute parts of the same program, exchanging data at runtime through shared

variables or message passing (as discussed in Section 2.1). Regardless of the processor

or communication model, data exchange is done through load/store instructions in shared

memory regions. As Figure 2.3 shows, these regions are more distant from the proces-

sor (e.g., L3 cache and main memory), and have a higher delay and power consumption

when compared to memories that are closer to it (e.g., register, L1, and L2 caches) (KO-

RTHIKANTI; AGHA, 2010).

Among the challenges faced in the design of multicore architectures, one of the

most important is related to the data access on parallel applications. When a private

data is accessed, its location is migrated to the private cache of a core, since no other

processor will use the same variable. On the other hand, a shared data is replicated in

multiple caches, since other processors can access it to communicate. Therefore, while

sharing data improves concurrency between multiple processors, it also introduces the

cache coherence problem: when a processor writes on any shared data, the information

stored in other caches become invalid. To solve this problem, cache coherence protocols

are used.

Cache coherence protocols are classified into two classes: directory based and

snooping (PATTERSON; HENNESSY, 2013). In the former, a centralized directory

maintains the state of each block in different caches. When an entry will be modified,

Figure 2.3: Basic structure of a multicore architecture with four cores
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Main Memory
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Source: The Author
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the directory is responsible for either updating or invalidating the other caches with that

entry. In the snooping protocol, rather than keeping the state of sharing block in a single

directory, each cache that has a copy of the data can track the sharing status of the block.

Thus, all the processors observe memory operations and take proper action to update or

invalidate the local cache content if needed.

Cache blocks are classified into states, which the number of states depends on

the protocol. For instance, directory based and snooping protocols are simple three-state

protocols in which each block is classified into modified, shared, and invalid (they are

often called as MSI - modified, shared, and invalid - protocol). When a cache block

is in the modified state, it has been updated in the private cache, and cannot be in any

other cache. The shared state indicates that the block in the private cache is potentially

shared, and the cache block is invalid when a block contains no valid data. Based on the

MSI protocol, extensions have been created by adding additional states. There are two

common extensions: MESI, which adds the state "exclusive" to the MSI to indicate when

a cache block is resident only in a single cache but is clean; and MOESI, which adds the

"state-owned" to the MESI protocol to indicate that the associated block is owned by a

particular cache and out-of-date in memory (HENNESSY; PATTERSON, 2003).

When developing parallel applications, the software developer does not need to

know about all details of cache coherence. However, knowing how the data exchange is

performed at the hardware level can help the programmer to make better decisions during

the development of parallel applications.

2.2 Scalability of Parallel Applications

Many works have associated the fact that selecting the maximum number of avail-

able threads (the common choice for most software developers (LEE et al., 2010)) will not

necessarily lead to the best possible performance. The causes are related to hardware or

software: saturation of functional units in SMT processors (LEVY et al., 1996; RAASCH;

REINHARDT, 2003), off-chip bus saturation (SULEMAN; QURESHI; PATT, 2008; SUB-

RAMANIAN et al., 2013), overhead of data synchronization among threads (SULEMAN;

QURESHI; PATT, 2008; LEE et al., 2010; JOAO et al., 2012), and number of shared

memory accesses (SUBRAMANIAN et al., 2013).

To measure (through correlation) their real influence, we have executed 4 bench-

marks from our set (and used them as examples for the next subsections) on a 12-core
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Table 2.1: Pearson correlation between the scalability issues and each benchmark

Hotspot FFT MG N-body

Small
Input

Issue-width saturation -0.91 -0.71 -0.81 -0.82
Off-chip bus saturation -0.51 -0.98 -0.76 0.46
Shared memory accesses -0.52 -0.43 -0.90 0.80
Data-Synchronization -0.54 -0.50 -0.59 0.97

Medium
Input

Issue-width saturation -0.92 -0.71 -0.79 -0.78
Off-chip bus saturation -0.52 -0.97 -0.88 0.39
Shared memory accesses -0.54 -0.75 -0.96 0.81
Data-Synchronization -0.64 -0.53 -0.78 0.96

Source: The Author

machine with SMT support. Each one of them has one limiting characteristic that stands

out (i.e. it is the main reason for the application’s lack of scalability), as shown in Ta-

ble 2.1. The benchmark Hotspot (HS) saturates the issue-width; fast Fourier transform

(FFT), the off-chip bus; MG, the shared memory accesses; and N-body (NB) saturates

data-synchronization. To analyze each of the scalability issues, we considered the Pear-

son Correlation (BENESTY et al., 2009). It takes a range of values from +1 to -1: the

stronger the "r" linear association between two variables, the closer the value will be to

either +1 or -1 (r ≥ 0.9 or r ≤ −0.9 mean a very strong correlation), depending on

whether the association is directly proportional or inversely proportional.

We briefly discuss these bottlenecks next and revisit them in Section 5.2 to show

how the approach proposed in this thesis deals with them.

2.2.1 Issue-width Saturation

By allowing many threads to run simultaneously on a core, the probability of hav-

ing more independent instructions, and thus filling the Functional Units (FUs), greatly

increases. Nonetheless, although SMT can potentially maximize the functional unit us-

age and increase the performance of applications with low ILP, it can lead to the opposite

behavior if an individual thread presents enough ILP to issue instructions to all or most of

the core’s FUs. Then, mapping an additional thread to the same core may lead to resource

conflicts and functional unit contention, degrading performance.

Figure 2.4 shows the performance improvements and the number of idle cycles

(i.e. cycles without instruction issued) for the Hotspot application. When increasing the

number of threads from 12 to 13, two threads will be mapped to the same physical core,
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Figure 2.4: Scalability Behavior: Issue-width saturation
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so SMT usage starts. Since the application presents high ILP, performance degrades for

both two threads on that core (the number of idle cycles increases), becoming the new

critical path of that parallel region, as both threads will delay the execution of the entire

region. As a result, overall performance decreases.

2.2.2 Off-chip Bus Saturation

Many parallel applications operate on huge amounts of data that are private to each

thread and have to be constantly fetched from the main memory. In this scenario, the off-

chip bus that connects memory and processor plays a decisive role in thread scalability: as

each thread computes on different data blocks, the demand for off-chip bus increases with

the number of threads. However, the bus bandwidth is limited by the number of I/O pins,

which does not increase according to the number of cores (HAM et al., 2013). Therefore,

when the off-chip bus saturates, no further improvements are achieved by increasing the

number of threads (SULEMAN; QURESHI; PATT, 2008).

In the FFT execution, as the number of threads increases, execution time and en-

ergy consumption reduce until the off-chip bus becomes completely saturated (100% of

utilization), as shown in Figure 2.5. In this example, from this point on (4 threads), in-

creasing the number of threads does not provide performance improvements, as the bus

cannot deliver all the requested data. There might be an increase in energy consumption

as well since many hardware components will stay active while the cores are not being

properly fed with data.
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Figure 2.5: Scalability Behavior: Off-chip saturation
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2.2.3 Shared Memory Accesses

Threads communicate by accessing data that are located in shared memory re-

gions, which are usually more distant from the processor (e.g., L3 cache and main mem-

ory) and have a higher delay and power consumption when compared to memories that

are closer to the processor (e.g., registers, L1, and L2 caches). Therefore, the number of

shared memory accesses may also become a bottleneck.

Figure 2.6 presents this behavior for the MG benchmark. The number of accesses

to the L3 cache (the only cache level shared among the cores in the target processor) is

shown in the primary y-axis, while the secondary y-axis shows the execution time nor-

malized with respect to the sequential execution. As one can note, when the application

Figure 2.6: Scalability Behavior: Shared memory accesses
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Figure 2.7: Scalability Behavior: Data-synchronization
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executes with more than four threads, the performance is highly influenced by the in-

creased number of L3 cache accesses.

2.2.4 Data-Synchronization

Synchronization operations are used to ensure data integrity during the execution

of a parallel application. In this case, critical sections are implemented to guarantee that

only one thread will execute a given region of code at once, and therefore data will cor-

rectly synchronize. In this way, all code inside a critical section must be executed sequen-

tially. Therefore, when the number of threads increases, more threads must be serialized

inside the critical sections, also increasing the synchronization time (Figure 2.7(a)) and

potentially affecting the execution time and energy consumption of the whole application.

Figure 2.7(b) shows this behavior for the n-body benchmark: while it executes

with 4 threads or less, the performance gains within the parallel region reduces the execu-

tion time and energy consumption, even if the time spent in the critical region increases

(Figure 2.7(a)). However, from this point on, the time the threads spend synchronizing

overcomes the speedup achieved in the parallel region.

2.3 Design Space Exploration

The Design Space Exploration (DSE) is used to tune the configurable parameters,

and it generally consists of a multi-objective optimization problem. The DSE problem

consists of exploring a large design space consisting of several parameters that must be
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Figure 2.8: Design space exploration process
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tuned to find the best trade-offs in terms of the selected figures of merit, also called as

metrics, such as energy, performance, EDP, etc. (PALERMO; SILVANO; ZACCARIA,

2008). Figure 2.8 shows a schematic illustration of the DSE process. Firstly, the input

data that should be evaluated are provided to the DSE. These values are calculated through

any classification model, such as neural network, linear regression, mathematical model,

among other models. Then, the output of the DSE phase are the results containing the

best trade-offs between the values and metrics.

The DSE phase can be performed in different moments of the application execu-

tion. In this work, we consider that it can be performed using offline or online information

provided by the processor architecture; and with or with no adaptation of the parallel ap-

plication at runtime:

Offline information with no runtime decision and adaptation: In this approach,

the DSE is fully realized before the application execution. It comprises prediction models

which use a variety of statistical models to analyze current and historical values of the tar-

get architecture and applications to make predictions about the future. However, the data

obtained by the prediction are used only to decide the best configuration to run an appli-

cation. Therefore, there is no decision-making and adaptation of the parallel application

at runtime. A predictive model consists of four basic steps, as Figure 2.9 shows. In the

first step, data from the architecture and applications are collected to generate the model.

Then, a statistical model is formulated by applying some method (i.e., linear regression

or a neural network) over the collected data. After, predictions are made for the new input

data. In the last step, additional data are used to validate the model.

Figure 2.9: Offline information with no runtime decision and adaptation
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Figure 2.10: Offline information with runtime decision and adaptation
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Offline information with runtime decision and adaptation: This approach dif-

fers from the last one in the sense that the information obtained from the prediction model

are used to take decisions and adapt the parallel application at runtime. Figure 2.10 il-

lustrates this approach, which works as follows: (i) the model is created using static

information provided from the architecture and applications; (ii) during the application

execution, data related to its behavior are extracted; (iii) then, these data are used as input

to the previously model created in (i); (iv) finally, the result of this computation is used

to adapt the execution environment. The main limitation of this approach is the need of

rerun the statistical model whenever there are changes in the execution environment, such

as application characteristics, microarchitecture, and metric evaluated.

Online information with no runtime decision and adaptation: The approaches

of this class are those that consider the current behavior of the microarchitecture proces-

sor when the application is being compiled. Thus, the model verifies characteristics of

the microarchitecture and the application to help the compiler for generating optimized

code for such environment. However, there is no adaptation of the parallel application at

runtime.

Online information with runtime decision and adaptation: Differently from

the last approach, in this class, the models consider information obtained at runtime to

make decisions and adjust the application execution. In this case, different characteristics

of the application that are only known at runtime, such as the length of the input are con-

sidered. Moreover, the adaptation using dynamic information is essential for applications

with variable behavior, in which the workload changes constantly; and with many parallel

regions, in which each of them has different behavior.
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2.4 Metrics of Interest

2.4.1 Performance

Computer performance is defined as the total time required for the computer to

complete a task, including disk and memory accesses, operating system overhead, CPU

execution, and so on. It is measured in different ways, such as execution time, elapsed

time, response time, wall clock time, or throughput (i.e., the number of tasks completed

per unit time) (HENNESSY; PATTERSON, 2003).

The total execution time of an application is classified according to the resource

usage: CPU, user, and system time. The first is the total amount of time that the CPU

was used for processing instructions of a program or operating system. The second is the

CPU time spent in the program itself. The latter is related to the CPU time spent in the

operating system performing tasks on behalf of the program.

In parallel computing, another metric called speedup ratio is used to compare dif-

ferent applications and computer systems. It is defined in the Equation 2.1, and shows

how much a parallel application is faster than its sequential counterpart. Considering

only the performance, the greater the speedup, the better is the parallel implementation.

Speedup =
Seqtime
Partime

(2.1)

2.4.2 Power and Energy Consumption

Two main components constitute the power used by a Complementary Metal–Oxi-

de–Semiconductor (CMOS) integrated circuit: dynamic and static (KAXIRAS; MARTONOSI,

2008). The first is the power consumed while the inputs are active, with capacitance

charging and discharging, being directly proportional to the circuit switching activity,

given by Equation 2.2.

Pdynamic = CV 2Af (2.2)

Capacitance (C) depends on the wire lengths of on-chips structures. The designers

in several ways can influence this metric. For instance, building two smaller cores on-

chip, rather than one large, is likely to reduce average wire lengths, since most wires will

interconnect units within a single core.
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Supply Voltage (V or Vdd ) is the main voltage to power the integrated circuit.

Because of its direct quadratic influence on dynamic power, supply voltage has a higher

importance on power-aware design.

Activity factor (A) refers to the ratio between the number of switching gates in

a clock period over the total number of gates (OKLOBDZIJA; KRISHNAMURTHY,

2006).

Clock frequency (f ) has a fundamental impact on power dissipation because it

indirectly influences supply voltage: higher clock frequencies will require a higher supply

voltage. Thus, the combined portion of supply voltage and clock frequency in the dynamic

power equation has a cubic impact on total power dissipation.

While dynamic power dissipation represents the predominant factor in CMOS

power consumption, static power has been increasingly prominent in recent technologies

(KAXIRAS; MARTONOSI, 2008). The static power essentially consists of the power

used when the hardware component is turned on and is determined by Equation 2.3, where

the supply voltage is V; and the total current flowing through the device is Istatic.

Pstatic = IstaticxV (2.3)

Energy, in joules, is the integral of total power consumed (P) over the time (T),

given by Equation 2.4.

Energy =

∫ T

0

Pi (2.4)

Nowadays, the energy consumption of a computing system can be estimated or

measured. The former makes use of models to estimate the energy by using hardware-

or OS-provided metrics. There are two essential steps to carry out this task: the selection

of the model input parameters (e.g., CPU load, memory usage, and disk utilization) and

the identification of a tool to train and test it. Although estimation models have several

features, they can be inaccurate, and their scope is determined by the underlying system

architecture (BODE, 2013; LI et al., 2013).

The energy measurement of a computing system can be done by external or inter-

nal tools. In the first, an external power meter is used to measure the energy consumption

of anything plugged into it. The most commons external measurement devices are Watt’s

Up Pro Power Metter1 and the PowerMon 2 (BEDARD et al., 2010). On the other hand,

1Available online at: https://www.wattsupmeters.com/secure/index.php
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to get energy consumption through internal tools, the measurements require direct low-

level hardware reads and a special library to perform these reads. The special library

varies according to the processor architecture. For Intel processors, the Running Aver-

age Power Limit (RAPL) interface provides a set of hardware counters to get energy and

power consumption, available since the SandyBridge microarchitecture (ROTEM et al.,

2012). As for AMD processors, the energy measurements occurs via Application Power

Management (APM), introduced in the Buldozer family (HACKENBERG et al., 2013a).

As the authors show in (HäHNEL et al., 2012), (HACKENBERG et al., 2013b), and

(VENKATESH; KANDALLA; PANDA, 2013), RAPL from Intel and APM from AMD

are widely used to provide energy consumption with good accuracy.

2.4.3 Energy-Delay Product

When performance is being evaluated, the designer aims to reduce the execution

time without any concerns on energy consumption. The same is true when the goal is to

reduce energy consumption. However, according to their niche, companies of general-

purpose processors may give more importance to performance, while the embedded ones

to energy. In this case, the energy-delay product metric proposed by Gonzalez and

Horowitz (1996) may be useful since it correlates performance (delay) and energy into

a unique value, as shown in Equation 2.5. EDP offers equal weight to either energy or

performance degradation. If either energy or delay increase, the EDP will increase. Thus,

lower EDP values are desirable.

EDP = EnergyxT ime (2.5)

This metric is widely used to evaluate different environments, such as in (BLEM;

MENON; SANKARALINGAM, 2013) and (TIWARI et al., 2015), since it allows, in a

unique value, to analyze the relationship between energy and performance. For example,

let us consider two scenarios: (i) an application spends 10 Joules of energy and executes

in 100 seconds; (ii) an application executes in 50 seconds, but spends 40 Joules of energy.

The scenario (i) has EDP of 1000 while the second one has EDP of 2000. This shows

that, although the first scenario i is twice slower than scenario ii, it has the best EDP.

Considering the original EDP proposal, the authors (BLEM; MENON; SANKA-

RALINGAM, 2013) have suggested an alternative metric by adding an exponent x on

delay (EDP = Energy∗Delayx). In this way, it is possible to change the weight of delay
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(performance) towards energy, which would reflect the importance given to performance

considering the application field.

2.4.4 Resource Efficiency

Resource efficiency is here defined as the best possible use of the processors, con-

sidering the sequential execution of the application on a single core as a baseline. For ex-

ample, a program that is split into four threads/processes may be faster and less efficient

than one split into only two threads/processes. In this case, each of the four processors

was used less (e.g., they spent more time waiting for synchronization) during program

execution than each of the two processors. This can be extrapolated to energy or EDP.

The resource efficiency is given by Equation 2.6, where RSeq corresponds to the

resource usage of the processors when executing the sequential version of the application.

RPar is the same as the previous, but for each thread of the parallel version, and NT is the

number of the threads/processes that are executing the application.

Ref =
RSeq∑NT
i=0RPar

(2.6)
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3 RELATED WORK

In this Chapter, the related work comprising this thesis will be discussed. As

already mentioned in Chapter 1, the main contribution of this thesis is an automatic and

transparent approach for improving OpenMP applications regarding different metrics. For

that, two main steps were followed:

1. A comprehensive study of the opportunities for parallel computing regarding the

parallel programming interfaces widely used nowadays. Section 3.1 presents the

related work regarding this study.

2. A study of the approaches used to improve the performance, energy, or EDP of

parallel applications. Thus, the related work regarding such approaches is discussed

in Section 3.2.

Finally, the approach proposed in this thesis is compared to the related work in

Section 3.2.3, highlighting its main contributions.

3.1 Possibility of Parallel Computing Exploitation

Here, the most representative works that evaluate performance and/or energy con-

sumption of embedded and general-purpose processors are discussed. They are listed in

chronological order.

3.1.1 Parallel Computing on Embedded and General-Purpose Processors

3.1.1.1 Performance Evaluation

A few number of works have evaluated the performance of parallel computing

in embedded and general-purpose systems. A comparison between a single-core and

a dual-core AMD Opteron processor is presented in (PASE; ECKL, 2005). The authors

measure the performance of both processors with the High Performance LINPACK (HPL)

benchmark and show that the dual-core processor is up to 60% faster than the single-core.

They also evaluated the memory latency and throughput, showing that the dual-core has

a throughput of 10% greater than single-core processor.
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The work developed in (HANAWA et al., 2009) compares the performance of

three Symmetric Multiprocessing cores for embedded systems with a General-Purpose

Processor (GPP). Different sequential and OpenMP applications from MiBench suite,

MediaBench, and NAS Parallel Benchmarks were used. The results show that embedded

processors have larger synchronization cost and slower memory performance than GPPs

to improve the synchronization performance.

The authors in (OU et al., 2012) analyzed both energy- and cost-efficiency of clus-

ters based on ARM and x86 workstations. The results show that the performance per Watt

ratio of the ARM cluster against the Intel workstation varies according to the benchmark.

As an example, for database operations (update, insert, delete, and full table scan), this

ratio is up to 9.5 times while it is only 1.21 times in video transcoding application. The

authors concluded that, although more ARM processors are necessary to provide sim-

ilar performance as an Intel workstation, ARM-based data centers are advantageous in

computationally lightweight applications.

The work developed in (FASIKU et al., 2014) presents a performance comparison

between an AMD and Intel dual-core processors. The Standard Performance Evaluation

Corporation (SPEC) CPU2006 benchmark suite was used to measure the performance of

both the processors. Experimental results show that the Intel dual-core is about 6.62%

faster than the AMD processor. Moreover, the authors have compared the throughput of

both processors, in which it was 1.06 times higher in the Intel processor. According to

the authors, Intel was better because it has faster core-to-core communication, dynamic

cache sharing between cores and smaller size of L2 cache when compared to the AMD

processor.

3.1.1.2 Energy Consumption Evaluation

Considering only sequential benchmarks running on a single processor, the au-

thors in (BLEM; MENON; SANKARALINGAM, 2013) compared the impact of differ-

ent microarchitectures and Instruction Set Architecture (ISA)s on performance, power,

energy, and EDP for both general-purpose and embedded systems. A significant number

of experiments were performed, evaluating the number of executed instructions and pro-

cessor cycles, average instruction length, the amount of memory accesses, and execution

time. The authors demonstrated that there is a significant difference between processors

implementing ISAs: while the Cortex-A9 is more energy-efficiency, the Intel Core i7 is
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the most efficient when it comes to execution time. These results, however, are mainly

dependent on the microarchitecture than the ISA itself.

The authors in (STANISIC et al., 2013) present a performance and energy com-

parison between x86 systems and embedded platforms. They show that an HPC system

using ARM Dual Cortex-A9 processors require less energy than the one composed of Intel

Xeon X5550 processor to run the LINPACK, CoreMark, and StockFish benchmarks. In

the same way, the authors in (RAJOVIC et al., 2013) show that although performance and

energy consumption suggest that mobile processors are becoming ready for HPC, there

are limitations which should be addressed. These limitations include lack of Error Cor-

rection Code (ECC) protection, slow interconnection, 32-bit address space, and inferior

thermal package.

The authors in (JARUS et al., 2013) evaluate the performance and energy of HPC

platforms based on Intel, AMD, and ARM processors. They used different benchmark

suites, such as CoreMark, LINPACK, and High-Performance LINPACK. The results show

that when the execution time matters, it is always better to choose performance-efficient

CPUs, such as Intel Xeon E7 or Core i7 processors. On the other hand, the energy con-

sumption of low-power processors (Intel Atom, AMD Fusion, and ARM Cortex-A9) is, in

some cases, up to 12 times lower than that of the evaluated high-performance processors.

In (RAJOVIC et al., 2014), the authors present Tibidabo, an experimental HPC

cluster built with ARM processors. Simulations show that a logical cluster of 16 ARM

Cortex-A15 cores would increase the energy efficiency of the original cluster composed

of Intel Corte i7 processors by 8.7 times. The authors in (PADOIN et al., 2014) compared

the performance and energy of low-power and high-performance processors considering

parallel benchmarks. They show that, in most cases, the ARM big.LITTLE presents

better performance/energy trade-off compared to Intel Sandy Bridge-EP to execute the

same applications.

An examination of the effects of TLP exploitation on mobile applications is pre-

sented in (FELLOWS, 2014). They compared the ARM Cortex-A15 with the Intel Core-

i5 processor, using performance and EDP as metrics. They consider parallel benchmarks

written with OpenMP and Intel TBB. By assessing memory-bound benchmarks, they

have shown that Intel is four times better in performance and almost two times better in

EDP. For CPU-Bound benchmarks, this difference decreases: Intel has the performance

of fewer than three times better, and EDP of about 1.5 times better than the ARM.
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The work in (DUKAN; KOVARI; KATONA, 2014) evaluates different CPUs to

determine the strength of the current Mini PC market conditions: an ARM-based proces-

sor, an Intel Celeron, and an AMD processor. The results show that the ARM proces-

sors are preferred when energy consumption is considered; even though performance is

slightly lower than the x86/64 rivals. Comparing only the x86/64 architecture processors,

Intel consumed less energy than the AMD processor; however, their performance is very

similar. The results also show that Intel is slightly faster in floating point calculations

when compared to the other two processors.

The authors in (RAJOVIC et al., 2016) present the first HPC system built with

commodities (SoCs, memories, and network interfaces) from the embedded domain, called

the Mont-Blanc prototype. This project has the objective of build a large HPC system

based on embedded technology, to provide an alternative HPC system with low energy

consumption. The system is composed of 1080 nodes made of Samsung Exynos 5250

SoCs. The authors compare the Mont-Blanc prototype with MareNostrum III, a contem-

porary supercomputer. The experiments show that when running MPI applications, the

Mont-Blanc prototype spends 9% less energy than the MareNostrum III, with a slow-

down of 3.5 times. Moreover, the authors show that when both platforms target the same

execution time, the Mont-Blanc prototype can reduce the energy consumption by up to

12.5%.

3.1.2 Parallel Computing with different Parallel Programming Interfaces

3.1.2.1 Performance Evaluation

The authors in (MALLÓN et al., 2009) evaluate the performance of MPI, Unified

Parallel C (UPC), and OpenMP in multicore architectures through a subset of the NAS

Parallel Benchmark. Executions were performed in an environment with hybrid memory

(distributed and shared memory) and only shared memory. The results show that for the

hybrid memory environment, MPI has the best overall performance compared to the UPC

due to the better use of the cache memory. When considering the shared memory envi-

ronment, although communication between the OpenMP threads occurs through shared

variables, MPI and UPC performed better in some cases, due to the better use of the cache

memory.

The work developed in (WAHLÉN, 2010) shows that the performance of a paral-

lel application is highly influenced by its characteristics and the PPI used. The authors
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discuss the performance of PThreads, OpenMP, and Cilk++ when executing iterative and

recursive applications on a dual Quad-Core AMD Opteron. For iterative applications,

PThreads got better speedup over its sequential counterpart (6.05 with 8 threads), while

OpenMP and Cilk++ had similar results (5.60 and 5.79 respectively). On the other hand,

for recursive applications, Cilk++ was better.

Considering only embedded processors, the authors in (LEE et al., 2011) evaluate

TLP exploitation on a Dual-core ARM Cortex-A9. They consider two parallel programs

implemented with OpenMP. Results show speedups of up to 111% with two threads over

the sequential version. A comparative study of OpenMP, PThreads, and Cilk++ through

the parallelization of a method for determining similarities between histograms is pre-

sented in (LORENZON et al., 2011). Executions were performed on an Intel Quad-core

processor and showed that PThreads obtained the best performance, due to the fine-tuning

during the distribution of workload.

The authors in (CAO et al., 2013) analyze the performance scalability of OpenMP,

Intel TBB, and Cilk++. Fifteen parallel applications from different domains were exe-

cuted on a 32-core system. Results show that most of the OpenMP applications didn’t

scale linearly with 32 threads. Among the reasons for the poor performance, the authors

state that the scheduling strategy provided by the runtime system can negatively impact

the performance.

The authors in (HUA; YANG, 2013) present a performance analysis of OpenMP

and MPI through the execution of the Newton’s iteration, a nonlinear algorithm. The au-

thors used the Intel VTune Performance Analyzer tools, Intel Thread Checker and Intel

Thread Profiler to analyze the behavior of these parallel programming interfaces. The

results show that the use of OpenMP for shared memory systems can lead to good per-

formance results, while the MPI has a favorable performance for parallel executions in

distributed memory systems.

Salehian et al. (SALEHIAN; LIU; YAN, 2017) present a performance evaluation

of different threading programming models. The study considers the following program-

ming models: OpenMP, Intel Cilk Plus, and C++11. Ten benchmarks were implemented

and classified into two different classes: simple computation kernels and applications

from the Rodinia benchmark (CHE et al., 2009). The experiments were performed on a

dual-processor Intel Xeon E5-2699v3 with a total of 36 cores. The authors conclude that

the execution time is different for each programming model because of the strategies of

workload balancing and the overhead of the scheduling and loop distribution. Moreover,

the experiments showed that work-stealing has better performance for data-parallelism;
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while tasking outperforms data-parallelism when there is dependency in different parallel

loop phases.

3.1.2.2 Energy Evaluation

The study performed in (LIVELY et al., 2011) explores the energy and perfor-

mance of different scientific applications. The experiment is focused on comparing MPI

with hybrid programming (MPI/OpenMP) through two applications from the NAS Paral-

lel benchmarks. The results show that for the execution of up to 16 cores, MPI applica-

tions obtained the lowest energy consumption and the best performance gains. As for the

execution in 32 cores, the hybrid implementation (MPI/OpenMP) achieved better energy

and performance gains. The authors also evaluated the use of CPU Frequency Scaling. In

such case, the scenario that showed the lowest energy consumption was not the same that

provided the best performance.

The authors in (BALLADINI et al., 2011) analyze the influence of OpenMP and

MPI on the energy consumption and the behavior of systems at different clock frequencies

of CPUs. Four applications from the NAS Parallel Benchmark, written using OpenMP

and MPI were executed on a dual socket Intel Xeon dual core. The results show that the

execution time, energy efficiency, and maximum power spent depend not only on the kind

of application but also on its implementation in a programming model.

The performance and energy consumption of OpenMP implementations are stud-

ied in (ZECENA et al., 2012). Three traditional sorting algorithms are considered, such

as odd-even, shell sort, and quick sort. The first two algorithms were implemented it-

eratively with parallel loops. On the other hand, the quicksort algorithm, which has the

recursion as its main characteristic, was written with parallel tasks. The experiments were

performed on a Quad-Core AMD Opteron processor. The results show that the quicksort

achieved the best results of performance and energy savings. Additionally, the authors

found that energy savings can be better when the granularity of the work to be assigned

to each thread is correctly selected.

The authors in (PORTERFIELD et al., 2013) analyze factors that can influence the

energy consumption of OpenMP applications compiled with Intel C++ Compiler (ICC)

and GNU Compiler Collection (GCC). Through hardware performance counters present

in the microarchitecture Intel Sandybridge, the authors measured the energy consumption

of a variety of OpenMP programs. The evaluation revealed variations in energy consump-

tion depending on the algorithm, its compiler optimization level, the number of threads
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and the chip temperature. In most applications, the increasing in the number of threads

allowed better performance, but with a substantial increase in energy consumption.

The study performed in (WANG; SCHMIDL; MÜLLER, 2015) investigates the

energy consumption of parallel applications implemented with OpenMP on the Intel

Haswell processor. The authors consider two benchmark classes: compute-bound, which

is CPU-intensive; and memory-bound, represented by the Stream application. Consider-

ing that OpenMP applications can have imbalanced load, the authors evaluate different

runtime configurations of OMP_WAIT_POLICE (i.e. time spent on a busy-waiting state):

passive and active waiting. The results show that when the threads are put into a sleep

state (passive waiting) instead of the active waiting state, it is possible to save energy

without losing performance.

The authors in (LIMA et al., 2017) explores the performance and energy consump-

tion of the OpenMP runtime system when executing on a NUMA platform. The study

considers three different kernels from the dense linear algebra: Cholesky, LU, and QR

matrix factorization. The authors compared the following runtime systems: LibGOMP,

LibOMP, LibKOMP, and XKAAPI; on a machine composed of four NUMA nodes with a

total of 96 cores. The results show that small algorithmic and runtime improvements may

allow performance gains and energy reductions, when compared to a baseline without

improvements.

3.1.3 Discussion

Table 3.1 presents a comparison of the environment and metrics evaluated in the

extensive study performed in this thesis to the contributions discussed in this section.

The internal rows of the "Execution Environment" detail the number of variables that the

authors are considering in their work. For example, the row "distinct microarchitectures"

presents the number of microarchitectures which the authors are evaluating. As it can be

observed in the "TLP Exploitation" row, our work targets mainly multicore processors

involving Embedded and General-Purpose Systems, rather than HPC systems, as it has

already been extensively done in (OU et al., 2012; JARUS et al., 2013; STANISIC et

al., 2013; RAJOVIC et al., 2013; FELLOWS, 2014; RAJOVIC et al., 2014; DUKAN;

KOVARI; KATONA, 2014; PADOIN et al., 2014).

Few works investigate multicore for embedded systems, and they do so in a very

limited environment and/or restricted number of metrics. In (HANAWA et al., 2009),
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Table 3.1: Comparison of our contributions with the related work

Work Execution environment Evaluated metrics

Diff. comm.
models-PPIs

Diff.
micro. ES GPPs TLP Perf. Energy EDP

Impact of
delay on
the EDP

Influence of
static power
of the proc.

(HANAWA et al., 2009) 3 4 x
(LEE et al., 2011) 1 2 x
(BALLADINI et al., 2011) 2-2 1 4 x x
(OU et al., 2012) 2 1 1 4 x x
(PORTERFIELD et al., 2013) 2-2 1 16 x x
(BLEM; MENON; SANKARALINGAM, 2013) 4 3 1 1 x x x x
(JARUS et al., 2013)
(STANISIC et al., 2013)
(RAJOVIC et al., 2013)
(RAJOVIC et al., 2014)

2 1 1 >=16 x x

(DUKAN; KOVARI; KATONA, 2014) 3 3 4 x x
(FELLOWS, 2014) 2 1 1 4 x x x
(PADOIN et al., 2014) 2 2 1 8 x x
(WANG; SCHMIDL; MÜLLER, 2015) 1 36 x x
(RAJOVIC et al., 2016) 1 1 >=96 x x
(LIMA et al., 2017) 1 96 x x
(SALEHIAN; LIU; YAN, 2017) 1 36 x

This Thesis - Chapter 4 2-4 5 3 2 8 x x x x x

Source: The Author

(LEE et al., 2011), and (SALEHIAN; LIU; YAN, 2017), only performance is evaluated;

while in (BALLADINI et al., 2011) and (PORTERFIELD et al., 2013), communication

models are studied on GPPs only. Even though the authors in (BLEM; MENON; SAN-

KARALINGAM, 2013) perform an extensive evaluation of performance, energy, and

EDP and consider different microarchitectures and ISAs, they evaluate only sequential

applications.

Therefore, as it can be observed in Table 3.1, the study developed and presented

in Chapter 4 extends the works above by looking for optimal points considering perfor-

mance, energy consumption (with various levels of static power) and EDP; and executing

a large range of applications with various communication models on a number of proces-

sors from different families and organizations.

3.2 Performance and Energy Optimization of Parallel Applications

In this section, the most representative approaches used to improve the perfor-

mance and energy of parallel applications by defining the ideal number of threads are

discussed considering the following:

1. Adaptability, with respect to the number of threads (i.e., when adaptation happens

and whether it is continuous or not).
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2. Transparency, which involves the need for special tools or compilers, programmer

influence and/or changes in the source or binary codes.

First, Subsection 3.2.1 presents the studies that comprise the approaches where

the definition of the ideal number of threads to execute a parallel application is performed

before the application execution, that is, the approaches that use prediction models. In

this case, there is no adaptation of the parallel execution at runtime. Then, Subsection

3.2.2 discusses the studies that perform adaptation at runtime and/or are transparent to the

programmer/end user. Finally, Subsection 3.2.3 highlights the contributions of this thesis.

3.2.1 Approaches with No Runtime Adaptation and No Transparency to the User

In 2001 and 2002, Taylor et al. (TAYLOR et al., 2001; TAYLOR et al., 2002)

propose a model that uses analytical models to predict the performance of three parallel

applications from the NAS Parallel Benchmark (BT, LU, and SP). The model consists

of performance coupling, which quantifies the interaction between adjacent kernels in

a parallel application, giving more accuracy to the model. Results were validated on a

machine with 80 processors, showing that the higher the performance coupling, the better

the model accuracy.

In (IPEK et al., 2005), the authors have refined and adapted a multilayer neural

network to predict performance results for the parallel application SMG2000 on two dif-

ferent high-performance platforms (IBM BlueGene and Intel Itanium 2). The proposed

model predicts performance within 5% - 7% error across a large multidimensional pa-

rameter space. However, there is a large overhead due to the time required to gather each

data point in the training set. An extended version of the work was published in (SINGH

et al., 2007), where two benchmarks were added: a semi-coarsening multigrid solver and

LINPACK.

To reduce the overhead of the performance prediction model, the authors in (YANG;

MA; MUELLER, 2005) propose an approach that uses partial executions of an application

to predict its behavior. The idea is to predict the overall execution time of a large-scale ap-

plication through the execution of a short test drive of the application. Two benchmarks

from the ASCI Purple suite were used to validate the model on ten different multicore

platforms. The results show that the proposed approach can predict the performance with

an accuracy of up to 97% or higher. Moreover, in the best case, it adds an overhead of

only 1% on the total execution time.
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The authors in (BARNES et al., 2008) explore the use of multivariate regression to

predict the performance of a larger number of processors through training data obtained

from a smaller number of processors. They propose three techniques: one that applies

a multivariate regression over the execution time from the training step to predict the

performance of a larger number of processors; and other two techniques that refine this

approach by using a pre-processor information to handling computation and communica-

tion separately. The proposed model was validated running seven benchmarks from the

NAS Parallel Benchmark, and Sweep3d on the Atlas cluster with 1152 four-way AMD

Opteron nodes. Results show a prediction error between 6.2% and 17.3%.

A framework for the automatic construction of performance skeletons to pre-

dict performance on distributed environments is presented in (SODHI; SUBHLOK; XU,

2008). The approach captures the execution behavior of an application and automatically

generates a skeleton of a program that reflects its entirely behavior. The approach was

validated through the execution of six applications from the NAS Parallel Benchmarks

on a cluster of 10 Intel Xeon dual CPU. Results show that the automatically generated

performance skeletons can predict application performance with an average error around

8%.

The work developed in (SHARKAWI et al., 2009) proposes a methodology to pre-

dict the performance of HPC applications running on different architectures. The method

uses data obtained from the executions on the base machine to predict the performance of

other four systems (IBM JS22, p570, x3550 and x3650). Basically, benchmarks are ex-

ecuted on the base machine to get application performance metrics, which are correlated

with data from the target platform through a genetic algorithm. After that, a model is

generated to make the performance projection on the target platform. The model was val-

idated through the execution of the SPEC CFP2006 benchmark suite on the base machine

and the target platforms. Results show an average error of 7.2% when the performance is

predicted to the same system where the data were collected, and an average error of up

12.8% for different ISAs.

The authors in (BHATTACHARJEE; MARTONOSI, 2009) propose a thread crit-

icality predictor for parallel applications. The idea is to predict the slowest thread of an

application, disable this thread or adjust the frequency of the processor, and then redis-

tribute the workload among the remaining threads. The approach was validated on an

ARM-based-in-order (32 cores) simulator running benchmarks from the SPLASH-2 and

PARSEC suite. Results show that the approach can improve the performance of up to
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31.8% and reduce the energy by 15% on average, compared to the execution without the

approach.

Artificial neural networks (ANNs) were used in (TIWARI et al., 2012) to predict

the power and energy usage for memory and CPU when executing certain HPC com-

putational kernels. These ANNs are trained using empirical data gathered on the target

architecture. The approach was validated running three distinct computational kernels

(matrix multiplication, stencil, and LU factorization) on an Intel Xeon E5530 (which has

2 quad-core processors). The results show that, once the networks are trained, they can

predict the performance, power and energy consumption for the CPU and memory with a

maximum error of 5.5%.

The work developed in (BASMADJIAN; MEER, 2012) presents a methodology

for estimating the dynamic power consumption of multi-core processors. The proposed

mathematical model considers different components, such as chip-level (frequency and

voltage), inter-die communication (active cores and dies involved in the communica-

tion/computation), and die-level (cores and off-chip caches). The authors also consider

the impact of DVFS on the energy consumption. Two synthetic benchmarks were ex-

ecuted on Intel and AMD multicore processors to validate the approach. Results show

that the model provides an accuracy within a maximum error of 5% when predicting the

energy consumption of a parallel application.

The authors in (CABRERA et al., 2013) propose an analytical model to predict

the energy consumption for the High-Performance LINPACK running on HPC systems.

The proposed approach is based on the performance model presented in (CHOU et al.,

2007). The authors added to this model new parameters regarding the energy required to

perform communication and computation. The energy model was validated on a cluster

with 24 nodes, each one containing an Intel Xeon dual-core. Results show that the model

predicted the energy with 1% of error in the best case. However, it achieved an error of

67% in the worst case.

In (SONG; BARKER; KERBYSON, 2013), the authors present a unified perfor-

mance and power model for the Nek-Bone mini-application using a combination of em-

pirical analysis and micro-benchmarking. The approach considers the impact of computa-

tion and communication, and quantitatively predict their impact on both performance and

energy consumption. The model was validated on a cluster with 64 nodes, each one with

a dual-socket AMD Opteron processor. The results show that the model provides perfor-

mance and energy prediction with a maximum error of 5% when predicting the behavior

for up to 1024 cores.
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Considering HPC applications, a model for software estimation of power con-

sumption in an HPC environment is proposed in (WITKOWSKI et al., 2013). The authors

use multivariate linear regression to find out the hardware data with high correlation with

power consumption and to build the model. Several benchmarks were used to train and

validate the model, such as Abinit, NAMD, Intel LINPACK, HMMER, among others, on

three distinct machines: a dual-core Intel Xeon 3.0 GHz; a quad-core Intel Xeon 2.33

GHz; and a dual-core AMD Opteron 2.2 GHz. Results show that the proposed model

can predict the power consumption of HPC applications with a maximum error of up to

7.88%.

An energy prediction mechanism for OpenMP applications using a Random For-

est Modeling (RFM) approach in compilers is proposed in (BENEDICT et al., 2015).

The approach is expressed in five steps: (1) an analyzer entity does an initial analysis of

OpenMP applications regarding parallelism and code regions. (2) The optimizer entity

finds the optimal energy solution for the identified code regions considering performance

concerns. (3) The optimizer entity prepares a list of the best configurations and submits

them to the prediction mechanism. (4) The energy consumption and performance for each

configuration are predicted by using the RFM. (5) Finally, the predicted results are sent

to the optimizer entity, where it would provide the best solution. The proposed approach

was validated running different OpenMP applications (NAS benchmarks, matrix multipli-

cations, n-body simulations, and stencil applications) on four Intel Xeon E5-4560, each

offering 8 cores. From the experiments, the authors observed that RFM predicted the

applications almost accurately with R2 (coefficient of determination) of 0.998 in the best

case (the closer to 1, the better), and 0.814 in the worst case.

DwarfCode, a performance prediction for hybrid applications, is proposed in (ZHANG;

CHENG; SUBHLOK, 2016). It uses computation and communication traces to predict

the performance of MPI-OpenMP and MPI-ACC applications. DwarfCode captures these

traces and generates a shorter benchmark of the entire application which mimics its be-

havior. Then, this shorter benchmark is executed on the target platform to predict the

application’s performance. The model was validated running the NAS parallel bench-

marks on three clusters, each with a different number of nodes. Results show that the

approach can predict the performance of MPI applications with an error rate lower than

10% for computing and communication-intensive applications.

A prediction framework that matches executions signatures for performance pre-

dictions of HPC applications using a single small-scale application execution is proposed

in (JAYAKUMAR; MURALI; VADHIYAR, 2015). The framework extracts execution



55

signatures of applications and performs automatic phase identification of different appli-

cation phases. Then, these signatures are matched with the execution profiles of reference

kernels stored in a database and used to predict the performance of the application phases

during execution time. To validate the prediction framework, three large-scale real sci-

entific applications (GTC, Sweep3d, and SMG2000) were executed on an 800-core het-

erogeneous cluster and a 3600-core cluster. The results achieved show that the proposed

framework can predict the energy consumption with errors in the range 0.4-18.7%.

A technique to predict the number of threads and DVFS level that offers the best

performance and energy consumption for parallel applications is proposed in (SENSI,

2016). The idea is to execute the program using few configurations and then, predict the

behavior of the other settings through multiple linear regression. The proposed technique

was validated by executing the PARSEC benchmark on a machine with 24 cores and 13

possible CPU frequency levels. The results show that performance and power consump-

tion can be predicted with an average of 96% of accuracy by executing only 1% of the

total possible configurations.

3.2.2 Approaches with Runtime Adaptation and/or Transparency to the User

Thread Reinforcer (PUSUKURI; GUPTA; BHUYAN, 2011) is an example of

work that presents a certain level of transparency to the user, but cannot adjust the num-

ber of threads dynamically, at run-time. It consists of a framework that runs in two steps:

(i) the application binary is executed multiple times with a different number of threads

for a short period (e.g., 100 ms), while Thread Reinforcer searches for the appropriate

configuration. (ii) Once this configuration is found, the application is fully re-executed

with the number of threads defined in the first step. By executing the application binary

already compiled, Thread Reinforcer is a particular case that keeps binary compatibility.

However, it works well only for applications that have a short initialization period - thus

introducing a small overhead -, and it considers that all parallel regions of an application

have the same behavior.

The approaches proposed in (JUNG et al., 2005) and (SULEMAN; QURESHI;

PATT, 2008) already present some adaptability through the definition of the number of

threads at runtime. (JUNG et al., 2005) present performance models for generating adap-

tive parallel code for SMT architectures. In their work, an analysis is applied during

compile time to filter parallel loops in OpenMP in which the overhead from the thread
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management (creation/termination, workload distribution, and synchronization) is higher

than its own workload. Then, at run-time, the master thread uses the compilation time

analysis to dynamically estimate whether it should use the SMT feature of the processor

or not. This approach is also dependent on a compiler and can only be applied for SMT

processors.

Suleman et al. propose the feedback-driven threading (FDT) framework (SULE-

MAN; QURESHI; PATT, 2008), which can adapt the number of threads considering con-

tention for locks and memory bandwidth. The framework consists of a specific compiler

that samples a portion of parallel regions of an application implemented with OpenMP,

insert instructions at the entry and exit of the critical section, and executes it sequentially

to analyze synchronization and communication points. It then uses this analysis to esti-

mate the optimal number of threads for the given parallel region. The application is exe-

cuted with the estimated number of threads and cannot re-adapt at runtime. Furthermore,

FDT considers that all threads are homogeneous and ignores fundamental hardware char-

acteristics that are highly correlated to the parallel application behavior: FDT assumes

that bandwidth requirement increases linearly with the number of threads, ignoring cache

contention and data-sharing between the threads. Moreover, FDT does not consider the

effects of the SMT feature (discussed in Section 2.2), by assuming that only one thread

executes per core.

More adaptive solutions, which consider run-time and continuous adaptation, in-

clude (CURTIS-MAURY et al., 2006; CURTIS-MAURY et al., 2008; LEE et al., 2010;

CHADHA; MAHLKE; NARAYANASAMY, 2012; RAMAN et al., 2012; PORTER-

FIELD et al., 2013; ALESSI et al., 2015). However, these solutions either rely on hard-

ware/OS support, or special compiler and need for recompilation or a previous off-line

analysis, as discussed next.

In (CURTIS-MAURY et al., 2006), Curtis-Maury et al. propose a framework

for nearly optimal on-line adaptation of multithreaded code for low-power and high-

performance execution. The approach has an off-line phase in which data from hardware

counters are collected, and profiles of parallel execution are analyzed. Then, at runtime,

the framework uses the information obtained in the off-line phase to adapt the number of

threads and achieve optimal performance or energy consumption. A solution proposed by

Curtis-Maury et al. is ACTOR (CURTIS-MAURY et al., 2008), a system that dynami-

cally changes the number of threads to improve energy efficiency. ACTOR is divided into

three steps: (i) artificial neural networks (ANNs) are trained off-line to model the relation-

ship between performance counter events and the resulting performance with a different
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number of threads; (ii) at runtime, the derived ANN models are used to predict the perfor-

mance of parallel regions that were previously identified by the programmer with special

function calls from the ACTOR library; (iii) the parallel regions are executed with the

predicted number of threads. Although the number of threads is predicted at runtime in

(CURTIS-MAURY et al., 2006) and (CURTIS-MAURY et al., 2008), an off-line phase is

required before the execution of each parallel application. Therefore, if either the input

set or processor is changed, the off-line analysis must be re-executed, which significantly

increases the total execution time of the entire framework.

Thread Tailor (LEE et al., 2010) is a framework that dynamically adjusts the num-

ber of threads to optimize system efficiencies, such as cache and memory space. The

approach works as follows: (i) programmers create a parallel application that uses a high

number of threads; (ii) the binary created is profiled off-line to collect statistics regarding

the number of threads, communication, and synchronization to form a communication

graph; (iii) at runtime, a dynamic compiler takes a quick snapshot of the system state

to determine how many free resources are available and to decide the optimum number

of threads; (iv) based on that information, the dynamic compiler generates code for the

new threads, intercepts future calls to thread creations, and redirects them to the new

threads. However, as Thread Tailor works for PThreads and MPI, it requires huge effort

from the programmer to develop a parallel application that is able to use a high number of

threads/processes, since the developer must explicitly implement thread/process manage-

ment (creation/termination), workload distribution, synchronization and communication

points between threads/processes.

LIMO (CHADHA; MAHLKE; NARAYANASAMY, 2012) is a dynamic system

that monitors the application at run-time, being able to adapt the execution accordingly.

However, this solution requires hardware modifications to determine the working set size

of a thread, as well as additional operating system support for detecting threads that block

due to busy-wait (spin loop). Consequently, it cannot be applied to any existent commer-

cial microarchitecture. Also, LIMO relies on compiler support to insert special system

calls and to modify loop bodies. Therefore, applications need to be recompiled to take

advantage of LIMO functionalities.

Parcae (RAMAN et al., 2012) is a framework that comprises a compiler and run-

time system to optimize the overall system performance. The compiler (Nona) iden-

tifies parallelizable regions in a sequential program and applies multiple parallelizing

transforms (data-parallel with critical sections and a pipeline transform) to each region.

When the application is executing, the Parcae run-time system (Decima monitor and the
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Morta executor) monitors the program performance and system events to determine the

best configuration for the parallel application. However, Parcae relies on system sup-

port (compiler, monitor, and executor) to modify sequential applications at compilation

and execution time. Therefore, if there are any changes in the environment (input set or

microarchitecture), the application need to be recompiled.

Porterfield et al., (PORTERFIELD et al., 2013) propose an adaptive run-time sys-

tem that automatically adjusts the number of threads based on on-line measurements of

system resource usage. The approach extends Qthreads (a parallel library (WHEELER;

MURPHY; THAIN, 2008)) to be used with MAESTRO, a dynamic runtime library for

power and concurrency adaptation of parallel applications (PORTERFIELD; FOWLER;

NEYER, 2008). However, it is dependent on ROSE source-to-source compiler (QUIN-

LAN; LIAO, 2011) to obtain OpenMP directives and map the functions and data struc-

tures to the Qthreads library. OpenMPE (ALESSI et al., 2015) is an extension designed

for energy management of OpenMP applications, in which the programmers expose en-

ergy saving opportunities through the insertion of directives in OpenMP codes. However,

it works only for the Insieme compiler and runtime system from the Insieme Project

(JORDAN et al., 2012).

Shafik et al. (SHAFIK et al., 2015a) propose an adaptive and scalable energy min-

imization model for OpenMP programs, which comprises two steps: (i) code annotations

are inserted by the programmer in the sequential and parallel parts of the code to enable

energy minimization with specified performance requirements; (ii) the runtime system

reads these performance requirements and uses this information to guide the energy min-

imization. The same method, but aiming to improve lifetime reliability through balanced

thermal controls while meeting a given power budget, was presented in (SHAFIK et al.,

2015b). All of these works need code recompilation.

More transparent approaches, which do not need support from special compilers,

include (SRIDHARAN; GUPTA; SOHI, 2013), (SRIDHARAN; GUPTA; SOHI, 2014).

In (SRIDHARAN; GUPTA; SOHI, 2013), ParallelismDial (PD), a model that automat-

ically tunes a program’s performance to the underlying system is proposed. It monitors

the system efficiency, regulates the degree of parallelism, and continuously adapts the

execution through a heuristic to an optimum point of operation. The heuristic used to

find the best degree of parallelism is based on the hill-climbing search algorithm, which

works as follows: (i) the parallel region runs with only one thread to establish a sequential

measure; (ii) the same region is executed with three degrees of parallelism (low, medium,



59

and high); (iii) the search is refined to the best interval and continues until the optimum

point be reached.

In (SRIDHARAN; GUPTA; SOHI, 2014), ParallelismDial was extended to Varuna

system. It comprises two components: (i) an analytical engine which continuously mon-

itors changes in the system using hardware performance counters, models the execution

behavior, and determines the optimum degree of parallelism; and (ii) a manager that au-

tomatically regulates the execution to match the degree of parallelism determined by the

analytical engine. PD and Varuna comprise a monitor system that intercepts thread and

task creation from PThreads, TBB, and Prometheus libraries, and create a pool of tasks to

optimize their degree of parallelism. However, to do so efficiently, PD and Varuna create

a large number of fine-grained tasks. Consequently, it requires more effort from the pro-

grammer, that is, the programmer is required to create as many threads as possible, each

one with the lowest possible workload. Because of this intrinsic characteristic, PD and

Varuna focus on recursive applications that are mostly concentrated on big-data. Besides

that, they cannot optimize OpenMP applications due to limitations of the system (virtual

tasks) used to control parallelism (ADYA et al., 2002).

3.2.3 Context of this Thesis

Table 3.2 compares the approaches proposed in this thesis (LAANT and Aurora) to

previous works. The column run-time adaptation indicates the approaches able to select

the ideal number of threads as the parallel application executes. However, once the tech-

nique converged to a given number of threads, this number will not change anymore. On

the other hand, continuous adaptation refers to those works that can readjust the number

of threads during application execution according to variations in its workload or environ-

ment system. The column no special compiler/tools presents the approaches that do not

need any specific compiler or tool to generate special parallel code (i.e. use different tools

from the traditional programming framework that usually involves a C/C++ compiler and

a parallel API). The column no programmer influence contains the approaches that do not

demand any changes in the source code by the software developer. Binary compatibility

refers to the techniques that can be used without any need for code recompilation at all:

the existent binary code as is can take advantage of the approach. The column PPI shows

the parallel libraries supported by each referred work. Finally, Diverse metrics refers to

works that can optimize more than one metric.
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Table 3.2: Comparison of LAANT and Aurora with the related work

Proposal Adaptability Transparency PPIs
Diverse
Metrics

Run-time Continuous
No special

compilers/tools
No programmer

Influence
Binary

Compatibility
Thread Reinf. (PUSUKURI; GUPTA; BHUYAN, 2011) x x OMP, PT
(JUNG et al., 2005) x x OMP-FT
FDT (SULEMAN; QURESHI; PATT, 2008) x x OMP x
(CURTIS-MAURY et al., 2006) x x x OMP-FT x
LIMO (CHADHA; MAHLKE; NARAYANASAMY, 2012) x x x OMP, PT x
Parcae (RAMAN et al., 2012) x x x Seq.
Porterfield et al. (PORTERFIELD et al., 2013) x x x OMP
ACTOR (CURTIS-MAURY et al., 2008) x x OMP x
Thread Tailor (LEE et al., 2010) x x PT, MPI
OpenMPE (ALESSI et al., 2015) x x OMP x
(SHAFIK et al., 2015a) (SHAFIK et al., 2015b) x x x OMP
ParallelismDial (SRIDHARAN; GUPTA; SOHI, 2013) x x x TBB, PM
Varuna (SRIDHARAN; GUPTA; SOHI, 2014) x x x PT, TBB x
LAANT - Chapter 5.1 x x x OMP x
Aurora - Chapter 5.2 x x x x x OMP x

PT: PThreads; OMP: OpenMP; Seq: Sequential Code; PM: Prometheus; FT: FORTRAN

Source: The Author

LAANT comprises the first effort to develop a mechanism that is entirely trans-

parent to the user and adaptive: a library that provides adaptation at run-time and con-

tinuously of each parallel region with no need of special compilers and tools. Different

from the mechanisms developed by Shafik et al. (SHAFIK et al., 2015a)(SHAFIK et

al., 2015b), LAANT is able to optimize each parallel region for different metrics, such

as performance, energy, and EDP. Because it is a library, LAANT relies on programmer

influence and it does not present binary compatibility, which means that the application

must be recompiled in order to receive the LAANT functions. LAANT is presented in

Section 5.1.

As depicted in Table 3.2, no approach discussed covers all the needed character-

istics so it could be considered completely transparent and adaptive. On the other hand,

Aurora can find the ideal number of threads as the application is being executed, and

continuously adjusts the number of threads if there are changes in the workload or the en-

vironment system. Also, it works with any C/C++ compiler and OpenMP and can target

its optimization mechanism to different metrics and systems: embedded, GPPs, and HPC.

More important, the software developer does not need to make any changes in the source

code that is already parallelized with OpenMP or even recompile it. Any existent binary

code that uses OpenMP can take advantage from Aurora. For that, the programmer only

has to enable Aurora and its optimization metric through the use of one environment vari-

able in the Linux Operating System. However, because of this high level of transparency,

Aurora is limited to OpenMP applications. Section 5.2 presents Aurora and its validation.
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4 POSSIBILITY OF PARALLEL COMPUTING EXPLOITATION

Thread-level parallelism exploitation is being widely used to make the best use

of hardware resources and improve performance. However, as discussed in Chapter 1,

energy consumption has become an important issue. Therefore, the objective when de-

signing parallel applications is not to simply improve performance but to do so with a

minimal impact on energy consumption. In order to speed up the development process

of parallel applications and make it as transparent as possible to the programmer, differ-

ent PPIs are used (e.g. OpenMP, PThreads, or MPI). However, each one of these has

different characteristics with respect to the management (i.e. creation and finalization of

threads/processes), workload distribution, synchronization, and communication.

Considering the aforementioned scenario, the first step of this thesis performs a

comprehensive study of the opportunities for parallel computing regarding the most com-

mon parallel programming interfaces that exploit parallelism through shared variables

(OpenMP and PThreads) or message passing (MPI-1 and MPI-2). Fourteen applications,

classified according to their communication demands, were parallelized and executed on

different embedded and general-purpose processors. Several metrics were used to eval-

uate the parallel programming interfaces and multicore processors, such as performance,

energy, EDP, and the influence of the processor’s static power on the total energy con-

sumption. Finally, we present a comparison between the parallel programming interfaces

regarding their use to implement the popular benchmarks. Such comparison shows the

importance of optimizing OpenMP applications and justifies its choice as the focus of

this work.

The remainder of this Chapter is organized as follows. First, the methodology used

is discussed, i.e., the multicore architectures, benchmark suite, communication models

and parallel programming interfaces, setup, and how the energy consumption was calcu-

lated. Then, the results are discussed. Finally, we present the conclusions of this study,

and discuss the importance of the OpenMP for the parallel computing in the last section.

4.1 Methodology

4.1.1 Benchmarks

In order to study the characteristics of each PPI regarding the thread/process man-

agement and synchronization/communication, fourteen parallel benchmarks were imple-
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Table 4.1: Main characteristics of the benchmarks

Benchmarks
Operations to exchange data

(total per no of threads/processes) Input size
2 3 4 8

HC

Game of Life 414 621 1079 1625 4096 × 4096
Gauss-Seidel 20004 20006 20008 20016 2048 × 2048
Gram-Schmidt 3009277 4604284 6385952 12472634 2048 × 2048
Jacobi 4004 6006 8008 16016 2048 × 2048
Odd-even sort 300004 450006 600008 1200016 150000
Turing ring 16000 24000 32000 64000 2048 × 2048

LC

Calc. of the PI number 4 6 8 16 4 billions
DFT 4 6 8 16 32368
Dijkstra 4 6 8 16 2048 × 2048
Dot-product 4 6 8 16 15 billions
Harmonic series 8 12 16 32 100000
Integral-quadrature 4 6 8 16 1 billion
Matrix multiplication 4 6 8 16 2048 × 2048
Similarity of histograms 4 6 8 16 1920 × 1080

Source: The Author

mented and parallelized in C language and classified into two classes: High Communica-

tion (HC) and Low Communication (LC). For this, it was considered the amount of com-

munication (i.e., data exchange), the synchronization operations needed to ensure data

transfer correctness (mutex, barriers), and operations to create/finalize threads/processes.

Table 4.1 quantifies the communication rate for each benchmark (it also shows their input

sizes), considering 2, 3, 4 and 8 threads/processes, obtained by using the Intel Pin Tool

(LUK et al., 2005). HC programs have several data dependencies that must be addressed

at runtime to ensure correctness of the results. Consequently, they demand large amounts

of communication among threads/processes, as it is shown in 4.1a. On the other hand, LC

programs present little communication among threads/processes, because they are needed

only to distribute the workload and to join the final result (as it is shown in Figure 4.1b)).

Since the way a parallel application is written may influence its behavior during

execution, we have followed the guidelines indicated by (FOSTER, 1995), (BUTENHOF,

1997), (GROPP; LUSK; SKJELLUM, 1999), and (CHAPMAN; JOST; PAS, 2007). The

OpenMP implementations were parallelized using parallel loops, splitting the number of

loops iterations (for) among threads. As discussed in (CHAPMAN; JOST; PAS, 2007),

this approach is ideal for applications that compute on uni- and bi- dimension structures,

which is the case. Loop parallelism can be exploited by using different scheduling types

that distribute the iterations to threads (static, guided, and dynamic) with different gran-

ularities (number of iterations assigned to each thread as the threads request them). As

demonstrated in (LORENZON; CERA; BECK, 2015b), the static scheduler with coarse

granularity presents the best results for the same benchmark set used in this study and,
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Figure 4.1: Behavior of benchmarks

- Computation Phases

- Communication and

Synchronization

b) Low Communication

Execution Time

0

1

2

3

T
h

r
e
a

d
s
/P

r
o

c
e
s
s
e
s

T
h

r
e
a

d
s
/P

r
o

c
e
s
s
e
s

a) High Communication

Execution Time

0

1

2

3

Source: The Author

therefore, this scheduling mechanism is used here. On the other hand, as indicated by

(FOSTER, 1995), (BUTENHOF, 1997), and (GROPP; LUSK; SKJELLUM, 1999), the

approach using parallel tasks was utilized in PThreads and MPI implementations. In

such cases, the loops iterations were distributed based on the best workload balancing

between threads/processes. Moreover, the communication between MPI processes was

implemented by using non-blocking operations, to provide better performance, as showed

in (HOEFLER; LUMSDAINE; REHM, 2007).

4.1.2 Multicore Architectures

4.1.2.1 General-Purpose Processors

Core2Quad: The Intel Core2Quad is an implementation of the x86-64 ISA. In

this study, the 45 nm Core2Quad Q8400 was used, which has 4 CPU cores running at

2.66 GHz, and a TDP of 95 W. It uses the Intel Core microarchitecture targeted mainly

to desktop and server domains. It is a highly complex superscalar processor, which uses

several techniques to improve ILP: memory disambiguation; speculative execution with

advanced prefetchers; and a smart cache mechanism that provides flexible performance

for both single and multithreaded applications1. As Figure 4.2(a) shows, the memory

system is organized as follows: each core has a private 32 kB instruction and 32 kB data

L1 caches. There are two L2 caches of 2 MB (4 MB in total), each of them shared between

clusters of two cores. The platform has 4 GB of main memory, which is the only memory

region accessible by all the cores.

Xeon: The Intel Xeon is also an x86-64 processor. The version used in this work is

a 45 nm dual processor Xeon E5405. Each processor has 4 CPU cores (so there are 8 cores

1Available at: http://www.intel.com/technology/architecture/coremicro
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Figure 4.2: Memory organization of each processor used in this work

C C C C

L1 L1 L1 L1

L2 L2

RAM

(a) Intel Core2Quad and Xeon

C C

L1 L1

RAM

L2 L2

(b) Intel Atom

C C C C

L1 L1 L1 L1

L2

RAM

(c) ARM Cortex-A9/A8

Source: The Author

in total), running at 2.0 GHz, with a TDP of 80 W. It also uses the Core microarchitecture;

however, unlike Core2Quad, Xeon processor E5 family is designed for industry-leading

performance and maximum energy efficiency, since it is widely employed in HPC sys-

tems. The memory organization is similar to the Core2Quad (Figure 4.2(a)): each core

has a private 32 kB instruction and 32 kB data L1 caches. There are two L2 caches of 6

MB (12 MB in total), each of them shared between clusters of two cores. The platform

has 8 GB of RAM, which is the only memory region accessible by all the cores.

4.1.2.2 Embedded Processors

Atom: The Intel Atom is also an x86-64 processor, but targeted to embedded

systems. In this study, the 32 nm Atom N2600 was used, which has 2 CPU cores (4

threads by using Hyper-Threading support) running at 1.6 GHz, a TDP of 3.5 W. It uses

the Saltwell microarchitecture, designed for portable devices with low power consump-

tion. Since the main characteristic of x86 processors is the backward compatibility with

the x86 instructions set, programs already compiled for these processors will run without

changes on Atom2. The memory system is organized as illustrated in Figure 4.2(b): each

core has 32 kB instruction and 24 kB data L1 caches, and a private 512 kB L2 cache. The

platform has 2 GB of RAM, which is the memory shared by all the cores.

ARM: We consider the Cortex-A9 processor. ARM is the world’s leading in the

market of embedded processors. Designed around a dual-issue out-of-order superscalar,

the Cortex-A family is optimized for low-power and high-performance applications3. The

40 nm ARM Cortex-A9 is a 32-bit processor, which implements the ARMv7 architecture

with 4 CPU cores running at 1.2 GHz and TDP of 2.5 W. The memory system is organized

2Available at: http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
3Available at: http://www.arm.com/products/processors/cortex-a/index.php.
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as illustrated in Figure 4.2(c): each core has a private 32 kB instruction and 32 kB data

L1 caches. The L2 cache of 1 MB is shared among all cores, and the platform has 1

GB of RAM. Since the ISA and microarchitecture of the Cortex-A8 and Cortex-A9 are

similar, we also investigate the behavior of A8 based on the results obtained in the A9.

The version considered is a 65 nm Cortex-A8 which has an operating frequency of 1 GHz,

a TDP of 1.8 W.

4.1.3 Execution Environment

The Performance Application Programming Interface (PAPI) (BROWNE et al.,

2000) was used to evaluate the behavior of processor and memory system without the

influence of the operating system (i.e., function calls, interruptions, etc.). By inserting

functions in the code, PAPI allows the developer to obtain the data directly from the hard-

ware counters present in modern processors. With these hardware counters, it is possible

to gather the number of completed instructions, memory accesses (data/instructions), and

the number of executed cycles to calculate performance and energy consumption.

The energy consumption was calculated using the data provided by the authors

in (BLEM; MENON; SANKARALINGAM, 2013) (for the processors) and Cacti Tool 4

(for the memory systems), as shown in Table 4.2. To estimate the total energy consump-

tion (Et), we have taken into account the energy consumed for the executed instructions

(Einst) , cache and main memory accesses (Emem), and static energy (Estatic), as given by

4Retrieved from http://www.cs.utah.edu/%7Erajeev/cacti6/

Table 4.2: Energy consumption for each component on each processor

ARM Intel
Cortex-A8 Cortex-A9 Atom Core2Quad Xeon

Processor - static power 0.17 W 0.25 W 0.484 W 4.39 W 3.696 W
L1-D static power 0.0005 W 0.0005 W 0.00026 W 0.0027 W 0.0027 W
L1-I static power 0.0005 W 0.0005 W 0.00032 W 0.0027 W 0.0027 W
L2 - static power 0.0258 W 0.0258 W 0.0096 W 0.0912 W 0.1758 W
RAM - static power 0.12 W 0.12 W 0.149 W 0.36 W 0.72 W
Energy per instruction 0.266 nJ 0.237 nJ 0.391 Nj 0.795 nJ 0.774 nJ
L1-D - energy/access 0.017 nJ 0.017 nJ 0.013 nJ 0.176 nJ 0.176 nJ
L1-I - energy/access 0.017 nJ 0.017 nJ 0.015 nJ 0.176 nJ 0.176 nJ
L2 - energy/access 0.296 nJ 0.296 nJ 0.117 nJ 1.870 nJ 3.093 nJ
RAM - energy/access 2.77 nJ 2.77 nJ 3.94 nJ 15.6 nJ 24.6 nJ

Source: The Author
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Equation 4.1.

Et = Einst + Emem + Estatic (4.1)

To find the energy consumed by the instructions, Equation 4.2 was used, where

Iexe is the number of executed instructions multiplied by the average energy spent by

each one of them (Eperinst).

Einst = Iexe ∗ Eperinst (4.2)

The energy consumption for the memory system was obtained with Equation 4.3,

where (L1DCacc × EL1DC) is the energy spent by accessing the L1 data cache memory;

(L1ICacc × EL1IC) is the same, but for the L1 instruction cache; (L2acc × EL2) is for the

L2 cache; and (L2miss × Emain) is the energy spent by the main memory accesses.

Emem = (L1DCacc×EL1DC)+ (L1ICacc×EL1IC)+ (L2acc×EL2)+ (L2miss×Emain)

(4.3)

The static consumption of all components is given by Equation 4.4. As static

power is consumed while the circuit is powered, it must be considered during all execu-

tion time: (#Cycles) of application divided by the operating frequency (Freq). We have

considered the static consumption of the processor (SCPU ), L1 data (SL1DC) and instruc-

tion (SL1IC) caches, L2 cache (SL2), and main memory (SMAIN ).

Estatic =

(
#Cycles

Freq

)
× (SCPU + SL1DC + SL1IC + SL2 + SMAIN) (4.4)

4.1.4 Setup

The results presented in the next section consider an average of ten executions,

with a standard deviation of less than 1% for each benchmark. Their input sizes are

described in Table 4.1. The programs were split into 2, 3, 4 and 8 threads/processes.

Although most of the processors used in this work support only four threads, and are

not commercially available in an 8-core configuration, it is possible to approximate the

results by using the following approach: as an example, let us consider that we have two
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threads executing on one core only. These threads have synchronization points and when

one thread gets there, it must wait for the other one; and so on as long as there still are

synchronization points. What it is done is to gather data of each thread executing on

the core in between two synchronization points (which involves number of instructions,

memory access, execution time etc.). This behavior would be the same as if the two

threads would be executing on two different cores, since the cores are homogeneous (i.e.:

have the same organization and, therefore, the same ILP exploitation capabilities). There

may have context switches between both threads as they are executing, but they are not

considered for the calculations (in the same way other services of the operating system are

not considered). Therefore, at the end of execution, we have all the data of each thread

for each part of code in between synchronization points. We can calculate the energy

consumption because we have the number of executed instructions, memory accesses and

so on; and we can infer the performance since we have the execution time of each part of

code of each thread in between two synchronization points. For each part, we consider as

execution time the one presented by the slowest thread (which simulates the behavior of

one waiting for another if they were actually executing on two cores). This approach can

be easily extrapolated to a larger number of threads.

The compiler used was the GCC-4.7.3 without optimization flags, to minimize the

influence of the compiler on the PPIs. The following distributions were used: OpenMPI

1.6, OpenMP 3.0, and PThreads/POSIX.1-2008, running on the Linux Debian operating

system.

It is important to highlight that the results discussed here are restricted to this

chapter due to the following reasons:

• The benchmark set was developed and classified with the only purpose to evalu-

ate each PPI regarding the thread/process management, workload distribution, and

synchronization/communication;

• The versions of libraries, compilers, and tools used here have been updated since

the experiments were performed;

• When this study was performed, we did not have access to processors that provide

energy consumption directly from the hardware counters.
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4.2 Results

4.2.1 Performance and Energy Consumption

Figures 4.3 - 4.9 show the results of performance (in seconds) and energy (in

Joules) of each processor and number of threads/processes ("1" means sequential execu-

tion) for the two benchmark classes (High and Low communication). Figures 4.3 and 4.7

show raw numbers, where the x-axis of each chart is the energy consumption, and the

y-axis is the execution time. Figures 4.4 and 4.8 demonstrate the fraction of energy con-

sumed by each hardware component with respect to the total energy. Static and dynamic

(S and D) energy for the processor and memory are considered. Also, Figures 4.5 and 4.9

present the normalized performance and energy using the processor with the best results

as the baseline. The results are discussed in detail in the next sub-sections, considering

both classes of programs separately.

4.2.1.1 High-Communication Programs

Figure 4.3 shows the performance and energy consumption for each processor

running a different number of threads/processes. Each chart analyzes a different parallel

programming interface. Considering the performance, regardless the PPI used, all the pro-

cessors performed better when exploiting a TLP of 8, and Core2Quad processor achieved

the lowest execution time. Comparing the best case of each processor, Core2Quad is 4.32

times faster than Atom; 5.73 times faster than Cortex-A9; 6.87 times faster than Cortex-

A8; and 1.34 times faster than Xeon. Considering only the embedded processors, Atom

performed better, being 1.32 and 1.59 times faster than Cortex-A9 and A8, respectively.

When the energy consumption matters, embedded processors spend less energy

than GPPs, and the A9 is the most efficient one. Considering the lowest energy con-

sumption in each processor: A9 consumed 25% less energy than Atom; 8% less than

A8; 61% less than Core2Quad; and 69% less energy than Xeon. In the most significant

case, this difference is even greater: A9 consumed 55% less energy than Atom; 63% less

than A8; 81% less than Core2Quad; and 84% less than Xeon. Moreover, the processors

have different behaviors according to the PPI used: if the HC programs are parallelized

using OpenMP, it is better to use the ARM Cortex-A9 exploiting a TLP of 8. In such

case, the energy consumed is 35% lower than the best result in the Atom; and 5%, 64%

and 73% lower than the A8, Core2Quad and Xeon, respectively. In another situation,
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Figure 4.3: Performance (seconds) and energy consumption (joules) results for High-
Communication programs
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when HC programs are parallelized using PThreads, MPI-1, or MPI-2, the lowest energy

consumption is achieved by executing the sequential versions of the benchmarks on the

Cortex-A9. Therefore, when it comes to energy and these interfaces, it is better to use one

core only—even if there are more available.

In this application class, in which there are many accesses to the shared memory

because of data exchange, the processor’s performance and energy are highly influenced

by the communication model (Figure 4.3). For shared variables (OpenMP and PThreads),

there are significant performance improvements, even though it does not increase in the

same ratio as the TLP exploitation increases (i.e. when the number of threads is equal to

2, the execution time of a parallel version is greater than the half of its sequential version,

and so on). In addition, parallel applications have similar energy consumption when one

compares to their sequential counterparts in most cases. On the other hand, when using

message passing (MPI-1 and MPI-2), even though there are performance gains, execution

time decreases at a slower rate as the TLP increases, when compared to applications

implemented using OpenMP and PThreads. The performance gains are limited by the

excessive number of send/receive operations performed by communication, becoming
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Figure 4.4: Fraction of energy consumed by each hardware component (MEM: Memory;
CPU: Processor; D: Dynamic; S: Static) for HC applications
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Source: The Author

a bottleneck. As a result of this poor performance improvements, energy consumption

increases, compared to the sequential version, in all cases.

As there is no optimal combination of processor and number of threads/processes

that offer at the same time the best performance with the lowest energy consumption, one

must choose which metric is the most significant. In this way, the Pareto front is used

in the charts. As Figure 4.3 shows, it varies according to the PPI: in the OpenMP, there

is only one combination offering the lowest energy consumption (Cortex-A9 executing 8

threads) and one with the best performance (Core2Quad, also running 8 threads). When

other PPIs are used, the number of combinations is greater than three. Another interest-

ing fact is that while we have few points when it comes to shared memory based PPIs

(OpenMP and PThreads), the Pareto Front is composed of several points when it comes

MPI (Message Passing), increasing the complexity of finding the best trade-off in energy

and performance.

Moreover, there are cases in which it is possible to reduce the energy consumption

maintaining similar performance when embedded processors are chosen instead of GPPs.

In the most significant case, it is possible to save 76% in energy by executing OpenMP

HC programs on the Cortex-A9 with 8 threads instead of on the Xeon with 2 threads. On

the other hand, if one chooses general-purpose instead of embedded processors aiming

to reduce execution time, there is no single option available that will not result in huge

increases in energy consumption. For instance, executing PThreads HC Applications with
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Figure 4.5: Results normalized to Core2Quad (performance) and A9 (energy) - HC Pro-
grams
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8 threads on the Core2Quad instead of their OpenMP versions on the Cortex-A9 reduces

execution time by 83%. However, it will increase the energy consumption by a factor of

3 times (304%).

In order to discuss how the processor and memory system influence each commu-

nication model and how they synchronize, let us first consider the programs that exchange

data through shared variables. In OpenMP (Figure 4.4(a)), threads come into a busy-

waiting state, accessing the shared memory repeatedly until the end of synchronization

(CHAPMAN; JOST; PAS, 2007). This synchronization mechanism does not incur signif-

icant performance overhead, so all processors have similar behavior as TLP exploitation

increases (as can be seen in Figure 4.5(a), the performance gap between the processors

remains similar).

When it comes to energy, however, only in ARM processors the energy is re-

duced. For instance, while Cortex-A9 executing 8 threads saved almost 15% of energy

and performed 6.15 times better than its sequential counterpart; on the Core2Quad, the

energy increased 19% with similar performance improvements. This is because the en-

ergy consumed due to the extra executed instructions and accesses to the shared memory

for the busy-waiting during synchronization have less influence in the ARM processors
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Figure 4.6: Overhead to execute context switching on each processor
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than in the Intel ones (Figure 4.5(a)). While in the ARM processors these accesses were

performed in the L2 cache, in the Intel processors they occurred in the main memory.

For PThreads, (Figure 4.3(b)) the context switching imposed by the mutex in-

fluenced more the performance in ARM processors than Intel ones. As more TLP is

exploited, the performance gap between these two processors increases (Figure 4.5(a)).

In order to understand this behavior, lmbench (a suite to measure system performance)

(MCVOY; STAELIN, 1996) was used to measure the impact of context switching on

each processor. Figure 4.6(a) shows the latency of each context switching (logarithmic

scale) considering processes with different parameters (which influences execution time,

data size, etc), and level of TLP exploitation. One can note that context switching (saving

and restoring the contents of the register file etc.) was slower on the ARM processors

in all cases. This happens because the average latency to access the memory system is

greater on the ARM than Intel processors, as shown in Figure 4.6(b). On the other hand,

as PThreads access less the memory system during synchronization, the energy difference

between all the processors remains almost the same as TLP exploitation increases (Figure

4.5(b)). This means that for HC programs parallelized using PThreads, a more robust

processor is the best choice, since it provides considerable performance improvements at

the same price in the energy consumption. For instance, when TLP exploitation increases

from 1 to 8, the performance difference between Core2Quad and Cortex-A9 increases

33% (4.88 to 6.52 times), while the energy gap remains the same.

In MPI-1 and MPI-2, the amount of send/receive operations performed by each

processor to exchange data impacted in different ways the performance and energy con-

sumption. Intel processors performed better than ARM ones, but spending more energy

in most cases. As the number of processes increases, the performance gains are lower

in ARM processors, increasing the performance difference between them and Intel ones
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(Figure 4.5(a)), and influencing the energy consumption. In such cases, as more TLP is

exploited, the energy difference between ARM and Intel decreases (Figure 4.5(b)); and

in the execution of 8 processes Atom got to a point where it consumed less energy than

ARM processors. This scenario worsens when the processors are executing MPI-2 (Fig-

ure 4.3(d)), where the performance gains as TLP exploitation increases is even lower in

ARM processors. The reason for this is that dynamic process creation adds an overhead

in the runtime in terms of executed instructions, mainly due to the communication using

intercoms, which affects more ARM processors than Intel (CERA et al., 2006).

4.2.1.2 Low-Communication Programs

For LC programs, the performance and energy consumption for each communi-

cation model are very similar. In this way, results are separated only by communication

model: shared variables and message passing (Figure 4.7). As the applications are more

CPU-bound, the impact of characteristics of each communication model on the memory

system is reduced, highlighting the importance of the microarchitecture and operating fre-

quency. In most cases, the overall performance increases in a similar ratio as more TLP

is exploited (i.e., when the TLP exploitation is equal to 2, the execution time of parallel

version is almost the half of sequential time, and so on). However, when the number

of threads/processes is 8, performance gains are impacted by the overhead of managing

the parallelization (e.g., creation/termination of threads or processes), which is greater

in message passing implementations, since the cost to manage processes is greater than

threads (TANENBAUM, 2007).

Figure 4.7: Performance (seconds) and energy consumption (joules) results for Low-
Communication programs
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Figure 4.8: Fraction of energy consumed by each component - LC Applications
(MEM:Memory; CPU: Processor; D: Dynamic; S: Static)
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All the processors perform better when they are running 8 threads/processes, and

the Core2Quad continues offering the lowest execution time. Considering the best re-

sult of each processor, the performance difference between Intel processors is similar as

observed for HC programs (Core2Quad is 1.37 times faster than Xeon; 4.32 times than

Atom), while the performance gap between Intel and ARM diminishes in almost 13%.

For instance, the difference between Core2Quad and Cortex-A9 decreases from 5.73 to

5.04 times; and from 6.87 to 6.04 times in relation to the Cortex-A8.

Unlike the HC programs, the higher the TLP exploited, the lower will be the en-

ergy consumption for all the processors regardless of the communication model. In this

way, all the processors consumed less energy when executing 8 threads/processes, and

in the overall Cortex-A9 is the best choice. When one compares embedded and general-

purpose processors, the energy difference between them increases as more TLP is ex-

ploited (Figure 4.9(b)). When the number of threads increases, the memory system is

more stressed and, therefore, spends more energy in Intel processors. As this class of

applications has lower communication rate than the HC programs, it happens in a smaller

proportion. Also, the performance difference between general-purpose and embedded

processors decreases in almost 10% compared to the HC programs (e.g., 69% to 63% in

the gap between A9 and Xeon).

In cases where the developer is looking for the best trade-off between energy and

performance, there is no optimal choice. The same happens to HC programs (even though

with more points and variations). As Figure 4.7(a) shows, the Pareto front consists of

three points in the results for shared variables. Two of them are the best choice for energy

(Cortex-A9 with 8 threads) and performance (Core2Quad with 8 threads/processes). The

other one (Atom running 8 threads) is the point that improves performance over the best

choice in energy with minimal impact on it. On the other hand, if the designer aims to
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Figure 4.9: Results normalized to Core2Quad (performance) and A9 (energy) - LC Pro-
grams
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reduce the energy consumption maintaining similar execution time to the best possible,

there is no satisfactory option available. For message passing (Figure 4.7(b)), the Pareto

front consists of only two points: one is the best energy possible (Cortex-A9); while the

other is the lowest execution time (Core2Quad). This means that for this communication

model, no option can improve a metric without causing a major impact on another. For in-

stance, if the programmer wants to improve performance with minimal impact on energy,

it will reduce the execution time by only 8%, increasing energy by a factor of 15%.
There are cases in which it is possible to use embedded instead of general-purpose

processors to reduce the total energy consumption with little performance degradation. In

the most significant case, energy can be reduced by 70% with minimal influence on per-

formance, if a given LC program exploits a TLP of 4 or 8 executing on any embedded mul-

ticore rather than executing on the Core2Quad and Xeon with 1, 2, or 3 threads/processes,

regardless of the communication model used.

4.2.2 Energy-Delay Product

As shown in the previous section, there is no optimal combination of processor

and number of threads/processes that offer at the same time the best performance with the
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Figure 4.10: Impact of exponent, x, on product EDx - sequential execution
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lowest energy consumption. Moreover, according to their niche, companies of general-

purpose processors give more importance to performance, while the embedded ones to

energy. In this case, the EDP may be useful since it correlates both metrics into a unique

value. By adding an exponent x on delay (EDP = Energy × Delayx), as the authors

in (BLEM; MENON; SANKARALINGAM, 2013) have already done (but considering

only sequential applications), it is possible to change the weight of delay (performance)

towards energy, which would reflect the importance given to performance considering the

application field.

Figures 4.10 to 4.13 show the EDP for each processor as the importance of the

delay is changed. The y-axis is the product of EDx as the exponent (x) increases in the

x-axis. Figure 4.10 shows the results of the sequential executions, while Figures 4.11,

4.12 and 4.13 present the most representatives results for the parallel versions (2 and 8

threads/processes). Following the same methodology as before, HC programs are sep-

arated by PPI, while LC programs are separated by the geometric mean of the PPIs in

each communication model. In overall, when both energy and performance are weighted

equally (i.e., when x = 1), Core2Quad is the best choice (note that lower is better).

Moreover, the difference between GPPs and embedded processors increases as the im-

portance of performance towards energy increases (i.e., when the value of x increases).

This reinforces the idea that GPPs are more focused on performance rather than energy,

corroborating the authors research in (BLEM; MENON; SANKARALINGAM, 2013).

Let us discuss the results for the sequential versions (Figure 4.10). For HC pro-

grams (Figure 4.10(a)), Cortex-A9 provides the best EDxP until x = 0.6. After that,

Core2Quad outperforms all the processors. On the other hand, for LC programs (Figure
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Figure 4.11: Impact of exponent, x, on product EDx of HC programs implemented with
shared variables
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4.10(b)), the Cortex-A9 provides the best EDxP until x = 0.1, while Atom is better

when x is greater than 0.1 and lower than 0.41. After that, Core2Quad outperforms all

the processors. Therefore, the Core2Quad is the best choice even in a significant part

where energy is more important than performance (0.41 < x < 0.99). Comparing only

the embedded processors, in programs where memory system is more accessed (HC pro-

grams), the ARM A9 processor has better EDxP than the Intel Atom for any value of x.

On the other hand, when the applications use more the processor rather than memory (LC

programs), Atom is the best choice in most cases.

As for the parallel versions (Figures 4.11, 4.12 and 4.13), in all cases they achieved

betterEDxP than their sequential counterparts, regardless the number of threads/processes

and communication model used. Let us first consider the results when the processors are

executing HC programs using shared variables. In OpenMP implementations (Figures

4.11(a) and 4.11(b)), Cortex-A9 has better EDxP than the other embedded processors,

no matter the value of x. In addition, as the number of threads increases, the more impor-

tant must be the performance (i.e. higher values for x) so the GPPs can present better EDP

than the embedded ones (see Table 4.3). For PThreads implementations, the behavior is
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Figure 4.12: Impact of exponent, x, on product EDx of HC programs implemented with
message passing
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different (Figures 4.11(c) and 4.11(d)): Cortex-A9 has the best EDP only when x < 0.36

and x < 0.19 for 2 and 8 threads respectively. After that, Atom is better until x = 0.55

and x = 0.61, for 2 and 8 threads, respectively. When x is greater than these values,

Core2Quad outperforms all the processors.

Figure 4.12 shows the results when HC programs are implemented with message

passing. Let us first discuss the MPI-1 results, where the GPPs outperforms embedded

ones at a very similar value of x as the one presented in PThreads. Considering embedded

processors only, the one that offers the best EDxP changes as the number of threads

increase, regardless the importance of x. In the execution of 2 processes, Cortex-A9 has

the best EDxP , while with 8 processes, Atom is the best choice. The reason for that has

already discussed in Section 3.2.3: as more TLP is exploited, the performance loss and

the increases in the energy consumption are more significant in ARM processors than in

the Intel ones.

When it comes to the LC programs (Figure 4.13), Core2Quad continues offer-

ing the best EDxP in most cases (mainly when performance and energy have the same

weight). Comparing only the embedded processors: when they communicate through



79

Figure 4.13: Impact of exponent, x, on product EDx of LC programs
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shared variables, Atom processor has better EDxP than ARM when x > 0.38 and

x > 0.47 for 2 and 8 threads respectively. On the other hand, for the results using message

passing, Cortex-A9 has the best EDxP in the execution with 2 processes regardless of

the performance importance. When TLP exploitation increases to 8, Atom once more out-

performs Cortex-A9 for x > 1.35. Therefore, there are specific scenarios where the best

choice is one processor or another. When the general-purpose processors are compared,

Core2Quad has better EDxP than Xeon in all cases.
Table 4.3 shows the intersection points to figure out which is the best processor in

between the intervals of x considering the charts of Figures 4.10, 4.11, 4.12 and 4.13. In

overall, when performance is the most important parameter (x > 1), it is true that GPP is

always the best choice. However, as already discussed, looking at the other side (energy),

it depends on how much energy matters for the designer.

4.2.3 Influence of Static Power Consumption of Processor

In this section, we present a study regarding the influence of the static power on the

total energy consumption of different multicore processors. First, we briefly discuss what
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Table 4.3: Intervals of x where each processor is better on the EDxP , when energy is the
most important

TLP Embedded Processors GPPs
Atom Cortex-A9 Cortex-A8 Core2Quad Xeon

HC 1 – 0.0 - 0.60 – >0.60 –
LC 1 0.10 - 0.41 0.0 - 0.10 – >0.41 –

HC
Shared Variables

Figure

OMP 2 – 0.0 - 0.77 – >0.7 –
8 – 0.0 - 0.81 – >0.81 –

PT 2 0.36 - 0.55 0.0 - 0.36 – >0.55 –
8 0.19 - 0.61 0.0 - 0.19 – >0.61 –

HC
Message Passing

Figure

MPI-1 2 – 0.0 - 0.56 – >0.56 –
8 0.0 - 0.61 – – >0.61 –

MPI-2 2 – 0.0 - 0.42 – >0.42 –
8 0.0 - 0.49 – – >0.49 –

LC
Figure

SV 2 0.37 - 0.48 – – >0.49 –
8 0.48 - 0.56 0.0 - 0.48 – >0.56 –

MP 2 – 0.0 - 0.42 – >0.42 –
8 – 0.0 - 0.49 – >0.49 –

Source: The Author

static power is and how it can affect the energy consumption of parallel applications.

Next, the methodology used in this experiment is presented, followed by a discussion

about the results achieved.

As already discussed in Section 2.4.2, there are two main components that con-

stitute the power used by a CMOS integrated circuit: dynamic and static. The former is

the power consumed while the inputs are active, with capacitance charging and discharg-

ing, being directly proportional to the circuit switching activity. The static power derives

from the length of the transistor channel as well as the doping level and gate thickness.

For instance, increasing doping levels allows higher on current for faster transitions but

cause greater leakage. Therefore, companies can tune the circuits during the manufactur-

ing process to be faster and consume more static power or vice-versa (NOSE; SAKURAI,

2000). In some cases, the static power in the processor may represent up to 40% of the

total energy consumption (NOSE; SAKURAI, 2000), (KONTORINIS et al., 2009) , and

(ESMAEILZADEH et al., 2012).

TLP exploitation in multicore systems affects dynamic and static power consump-

tion in different ways. The former will most likely increase as the number of threads

increase, since additional memory accesses and executed instructions are necessary for

synchronization and data exchange. On the other hand, memory will consume less static

power because it will be powered for a shorter period because of overall performance

improvements. However, since parallelization is not perfect, some threads distributed
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Table 4.4: Respective energy consumed per instruction and static power when changing
the importance of static power of processor

10% 20% 30% 40%

Atom Static Power (W) 0.242 0.484 0.726 0.968
Energy per Instruction (nJ) 0.448 0.391 0.335 0.276

Cortex-A9 Static Power (W) 0.125 0.250 0.375 0.500
Energy per Instruction (nJ) 0.291 0.237 0.183 0.129

Cortex-A8 Static Power (W) 0.085 0.170 0.255 0.340
Energy per Instruction (nJ) 0.338 0.266 0.195 0.124

Core2Quad Static Power (W) 2.195 4.390 6.585 8.780
Energy per Instruction (nJ) 1.267 1.126 0.985 0.845

Xeon Static Power (W) 1.848 3.696 5.544 7.392
Energy per Instruction (nJ) 1.419 1.261 1.103 0.946

Source: The Author

over the processors will take longer to execute than others. In such cases, the sum of all

amounts of static power consumed by all the processors will be larger than its sequential

counterpart.

Considering the aforementioned scenario, this section aims to investigate the in-

fluence of the static power consumption of the processor on parallel applications in mul-

ticore systems. We consider four different proportions of static power in respect to the

total power consumption of the processor obtained from (BLEM; MENON; SANKARA-

LINGAM, 2013) and CACTI 5.1 5: 10%, 20%, 30%, and 40%. Table 4.4 shows the static

power and the energy consumption per instruction when different ratios of static/dynamic

power are considered. When the proportion of static power increases in respect to the

total power consumption of the processor, dynamic (energy per executed instruction) will

decrease in the same amount; therefore, total energy consumption will always be the

same. This analysis involves power in the core only: the ratio of static/dynamic power

consumption of the memory system is not changed.

The results consider the geometric mean of each communication model, since the

behavior is very similar between the interfaces that implement them (standard deviation

lower than 1%). Figures 4.14 and 4.15 show the impact of static power for each commu-

nication model on each processor in HC and LC programs, respectively. All the charts

consider the results when the static power of the processor is fixed to 10% as baseline,

and show the impact on the total energy consumption when it is changed to 20%, 30%,

and 40%. Therefore, values lower than "1" mean that there are energy savings.

In overall, the architecture of the processors influences how the static power im-

pacts the total energy consumption. In Intel processors, increasing the importance of
5Available at: http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
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Figure 4.14: Impact on the total energy consumption when the static power of processor
varies from 10% - HC Programs
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static power will also increase energy consumption, while one can observe the opposite

behavior for ARM processors. The amount of TLP also changes the variation ratio: the

more TLP is exploited, the more significant the impact when changing the amount of

static power on the total energy consumption.As the parallelization is not perfect, the sum

of the static power consumed by all cores is larger than if it was sequentially executed.

It means that the static power consumed by the processors starts to be more important as

more TLP is exploited.

Let us first discuss the results of the Intel processors executing HC programs (Fig-

ure 4.14). In such cases, the effect of changing the proportion of static power is negligible

in most cases. To better understand that, let us consider the Table 4.5 and 4.6. The for-

mer presents the number of executed instructions by core per second. To compare only

the behavior of each PPI on each processor, Table 4.6 depicts the number of instructions

executed per second in the parallel version by its sequential counterpart, the bigger the

result, the closer it is to the behavior of its sequential version, meaning that the processor

will be executing more instructions instead of waiting for sync and data exchange.

When doing this calculation, we can note that the LC programs have bigger values

than HC programs – which means that, even though they execute less instructions per sec-

ond (Table 4.5) because of the kind of application, their parallel versions proportionally
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Table 4.5: Number of executed instructions by core per second

Comm.
Model TLP HPC Programs LC Programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared
Variables

2 837 899 749 4018 3286 432 744 620 1916 1441
3 875 893 743 3969 3197 427 747 623 1880 1428
4 887 882 735 3924 3136 432 718 598 1849 1421
8 835 840 700 3770 2973 431 717 598 1838 1394

Message
Passing

2 720 807 672 3376 2945 410 745 621 1955 1525
3 696 754 628 3347 2842 405 738 615 1932 1502
4 671 729 607 3262 2780 407 708 590 1911 1462
8 640 599 499 2759 2440 404 702 584 1892 1365

Sequential 884 905 754 3625 3342 419 733 611 1936 1541

Source: The Author

execute more instructions per second than the HC applications; which shows that they

spend less time waiting for data exchange or sync. This can be observed for the message

passing in Table 4.5 and 4.6: the higher the amount of executed processes, the higher the

load imbalance, and the smaller is the number of executed instructions per second. In

this case, static power plays an important role. When it comes to the ARM processors

executing HC programs (Figure 4.14), the results show that in all cases, increasing static

power of the processor reduces the total energy consumption. The reason for this is that

the reduction in the dynamic power consumption is greater than the increase provided by

the change in the value of the static power in the processor.
For the LC programs (Figure 4.15), the impact of changing the amount of static

power is greater than the observed for the HC programs. In addition, the same behavior

is observed regardless the communication model used. Considering the Intel processors,

the higher the TLP exploitation, the greater the impact of increasing the static power

of the processor. In the sequential version, when the static power of the processor is

changed from 10% to 40%, the total energy consumption increases almost 24% on both

Atom and Core2Quad, and 18% in the Xeon processor; while in the execution with 8

threads/processes, this difference increases even more: 35% and 38% in the Atom, when

using shared variables and message passing respectively; 28% and 30% in the Core2Quad

and Xeon respectively, regardless the communication model. As for ARM processors,

which have a high number of executed instructions per second (see Table 4.5), changing

the static power of the processor from 10% to 40% results in energy savings in all cases:

almost 8% in the Cortex-A9, and 24% in the Cortex-A8.
Analyzing the whole scenario, Intel and ARM processors have different behaviors

when the proportion of static power is changed in respect to the total power consumption.

In the former, regardless of the kind of application and the communication model used,
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Figure 4.15: Impact on the total energy consumption when the static power of processor
varies from 10% - LC Programs
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Table 4.6: The proportion of the number of executed instructions by core per second in
the parallel versions regarding its sequential version

Comm.
Model TLP HPC Programs LC Programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared
Variables

2 0.95 0.99 0.99 1.11 0.98 1.03 1.02 1.01 0.99 0.94
3 0.99 0.99 0.99 1.09 0.96 1.02 1.02 1.02 0.97 0.93
4 1.00 0.97 0.97 1.08 0.94 1.03 0.98 0.98 0.96 0.92
8 0.94 0.93 0.93 1.04 0.89 1.03 0.98 0.98 0.95 0.90

AVG 0.97 0.97 0.97 1.08 0.94 1.03 1.00 1.00 0.97 0.92

Message
Passing

2 0.81 0.89 0.89 0.93 0.88 0.98 1.02 1.02 1.01 0.99
3 0.79 0.83 0.83 0.92 0.85 0.97 1.01 1.01 1.00 0.97
4 0.76 0.80 0.80 0.90 0.83 0.97 0.97 0.97 0.99 0.95
8 0.72 0.66 0.66 0.76 0.73 0.96 0.96 0.96 0.98 0.89

AVG 0.77 0.79 0.79 0.88 0.82 0.97 0.99 0.99 0.99 0.95
Sequential 1 1 1 1 1 1 1 1 1 1

Source: The Author

keeping static power of the processor as low as possible saves energy in most cases, even

though at different levels. On the other hand, for ARM processors, the higher the static

power, the greater the reduction in energy consumption.
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4.3 Discussion

This Chapter performed a static exploration for optimal combinations of proces-

sors, communication models, and TLP exploitation to reach the best results in perfor-

mance, energy, and EDP. A great number of variables were considered: 5 multicore

processors with different microarchitectures and ISAs; 14 parallel benchmarks classi-

fied according to the communication rate; four parallel programming interfaces classified

into two classes of communication models; different levels of TLP exploitation; and four

different levels of static power of the processor. We demonstrated that even though there

are combinations with the best performance and the lowest energy consumption, there is

no single one that offers the best result for both at the same time. However, we found

some significant results, summarized next.
Let us first discuss performance and energy (Section 4.2.1), in which the most ro-

bust processor (Core2Quad) achieved the lowest execution time, while the embedded pro-

cessor Cortex-A9 consumed less energy in all cases. For HC applications, the PPIs mat-

ter: PThreads has shown to be the best choice for all Intel processors (GPP or embedded),

since it provides considerable performance improvements over the others at the same price

of energy consumption as the sequential version. On the other hand, when exploiting par-

allel loops, OpenMP is better for ARM processors, since the impact of the busy-waiting

mechanism is lower on these processors than on the Intel ones. In overall, MPI is the worst

choice for all the processors, presenting poor scalability: as TLP exploitation increases,

performance gains are limited by its message based communication; and energy consump-

tion increases when compared to its sequential version. It was expected that MPI would

perform worse than OpenMP and PThreads in HC applications on shared memory envi-

ronments. This behavior happens because each communication between MPI processes

involves an additional cost related to the construction/deconstruction of the message as

well the message transmission.
There are different situations when analyzing the Pareto front for all the cases.

In OpenMP applications, it contains only two points: the best result for performance

(Core2Quad running 8 threads) and the best for energy consumption (Cortex-A9, also

executing 8 threads). There is no option that will not influence considerably a metric

to improve another. For the other PPIs, there are more points to be explored, and the

impact on a metric to improve another is minimal. For instance, in MPI-1 applications

with 8 processes, it is possible to reduce the energy consumption in 15% without impact

on performance by changing processors (Core2Quad instead of Xeon).
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The scenario is different for LC benchmarks. For those, what matters is the com-

munication model rather than a specific PPI. Since they are more CPU-bound, how the

processor can exploit ILP and its operating frequency gain in importance. Regardless of

the PPI, performance increases and energy reduces as the TLP increases, resulting in bet-

ter EDP. Therefore, even though these applications scale better than HC ones, the design

space is more restricted, offering less opportunities for optimization. The Pareto front has

fewer points and alternatives to optimize a metric with minimal impact on another; and

the differences between Intel and ARM processors are subtler.

When it comes to EDxP (energy-delayxproduct, depicted in Section 4.2.2), in all

cases (no matter the processor or PPI used) the parallel versions were better than their

sequential counterparts, if one considers that performance has the same weight as energy

(x = 1); and the difference in EDP between a parallel version and its sequential coun-

terpart increases as more importance is given to performance. The Core2Quad processor

has better EDxP in this case, regardless of the communication model used or the number

of threads/processes.

In general, GPPs are always the best choice when targeting performance only.

However, looking at the other side (energy), it depends on how much energy matters to

the designer. For instance, in HC programs using PThreads, three processors have the

best EDxP according to the importance of energy: Cortex-A9 for x < 0.36; Atom for

0.36 < x < 0.55; Core2Quad for larger values of x. In some scenarios, Core2Quad is the

best choice even if energy is more important (x < 1). However, as the number of threads

increase, more importance to performance must be given (the x value must get closer to

1) so the Core2Quad still presents the best EDxP .

The PPIs influence EDP in different aspects. For OpenMP, energy consumption

in the memory system is very important, because of the busy-waiting. For PThreads, on

the other hand, a more robust processor will decrease context switching time. For the

MPI versions of the applications, as more threads execute, EDP in general worsens for

ARM processors and improves for Intel ones, since the impact of the communication on

the former is more evident.

In Section 4.2.3, we demonstrated that processors present different behaviors when

tuning the values of energy resultant from the static and dynamic power of the processor.

For Intel processors, by keeping the static power of the processor as low as possible,

more energy will be saved. In the most significant case, it is possible to save 38% of

energy if the hardware designer keeps the static power at 10% instead of 40%. On the

other hand, the opposite happens for the ARM processors, where the higher the static
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power, the lower the total energy. For instance, it is possible to save 28% of energy if the

static power represents 40% of the total energy, instead of 10%. The number of executed

threads also influences results: as more TLP is exploited, more impact it has on tuning

the static power. These results are directly related to how long the processor spends time

synchronizing and communicating. Therefore, HC applications are more susceptible to

changes in static power.

4.4 The Importance of Improving OpenMP Applications

The previous sections showed that there is an extensive design space exploration

in parallel computing regarding the choice of the configuration of PPIs and number of

threads that offer the best result for a given metric. It reinforces the needed for develop-

ing a mechanism to optimize the process of finding the best configuration for executing

parallel applications. However, the development of a single mechanism that comprises

all the PPIs discussed in this section (OpenMP, PThreads, and MPI) is not feasible due to

the way the parallelism is exploited in each one of them (thread and process management,

workload distribution, communication model, etc.). Therefore, when proposing a novel

mechanism, it needs to reach as many commercial and scientific parallel applications as

possible.
In this context, we chose to develop a mechanism that improves the parallel exe-

cution behavior for applications implemented with OpenMP. The following reasons were

taken into account:

• OpenMP consists of a set of compiler directives, library functions, and environment

variables that eases the developer burden of creating and managing threads in code.

Therefore, extracting parallelism using OpenMP usually requires less effort when

compared to other PPIs, making it more appealing to software developers (S. et al.,

2011)(AJKUNIC et al., 2012).

• OpenMP is widely used, and there are many parallel benchmarks implemented with

it, but more importantly, applications that comprise different niches and areas (Table

4.7): As an example, NAS Parallel Benchmark, SPEComp, Linpack, Parboil, Ro-

dinia, and Princeton Application Repository for Shared-Memory Computers (PAR-

SEC) are used to compare different processor architectures and systems. In the

same way, hydrobench, OpenLB, GROMACS, and LULESH are used to simulate

a wide variety of science and engineering problems.
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Table 4.7: Parallel benchmarks widely used

Benchmarks OpenMP PThreads MPI
NAS Parallel Benchmark (BAILEY et al., 1991) x x
SPEComp2001 and 2012 (ASLOT et al., 2001) x
PARSEC (BIENIA et al., 2008) x x
OpenLB (HEUVELINE; LATT, 2007) x x
Linpack (DONGARRA, 1988) x
Lonestar (KULKARNI et al., 2009) x
LULESH (KARLIN; KEASLER; NEELY, 2013) x
HydroBench (available at https://github.com/HydroBench/Hydro) x x
Rodinia (CHE et al., 2009) x
Parboil (STRATTON et al., 2012) x
Parmibench (IQBAL; LIANG; GRAHN, 2010) x
GROMACS (ABRAHAM et al., 2015) x x

Source: The Author

• OpenMP is more suitable for mechanisms in which the goal is to provide the maxi-

mum transparency as possible to the programmer, since the whole process of thread

management and workload distribution are done by functions implemented in the

OpenMP library, in opposite to other PPIs (e.g., PThreads, MPI, TBB).

• In addition to these reasons, the comprehensive study presented in this Chapter has

shown that OpenMP has remarkable results on performance, energy, and EDP re-

gardless of the processor microarchitecture and benchmarks class when compared

to the other PPIs. As an example, while PThreads has good behavior on Intel pro-

cessors and poor performance on ARM processors due to synchronization mecha-

nism, OpenMP has good results in both processors. This behavior can be observed

on Figure 4.3.
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5 OPTIMIZATION OF OPENMP APPLICATIONS

In this chapter, the main contributions of this thesis are presented, discussed, and

validated. The approaches proposed in this thesis are divided into two sections:

• Section 5.1 presents LAANT, a library to automatically adapt the number of threads

of OpenMP applications. It is capable of finding at run-time the ideal number of

threads for each parallel region of the application, learning the best number of

threads as the application executes, and resulting in significant improvements in

EDP with an almost negligible overhead. The proposed process is completely auto-

matic to the developer. It can be applied to any parallel application developed with

the OpenMP interface and compiled with GCC or G++ compilers, by annotating

code in the parallel regions, which were already identified by OpenMP directives.

LAANT can optimize the parallel regions for different metrics, such as EDP, per-

formance, energy consumption, among others. This was the first effort of this thesis

to develop a mechanism that is completely transparent to the user.

• Section 5.2 describes Aurora, an extension of LAANT. In the same way, it is a

mechanism that automatically finds, at runtime and according to a given metric de-

fined a priori by the user, the ideal number of threads for each parallel region of

any OpenMP application. Moreover, Aurora can re-adapt at the event of a change

in the behavior of a particular parallel region during program execution. Aurora

was built on top of the original OpenMP library, being completely transparent to

both designer and end-user: given an OpenMP application binary, Aurora runs on

it without any code changes. Therefore, existent OpenMP applications do not need

to be annotated, recompiled or pass through any code transformation. Such trans-

parency is achieved by redirecting the calls originally targeted for the dynamically

linked OpenMP library to Aurora. This re-targeting is configured by setting an

environment variable in the Operating System.

5.1 LAANT: A Library to Automatically Adjust the Number of Threads for OpenMP

Applications

Figure 5.1(a) shows the usual way of finding the best number of threads to run a

parallel application. The source code is compiled and executed N times with a different
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Figure 5.1: Adaptation of OpenMP Applications
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Source: The Author

number of threads, where N is the number of available cores in the processor microarchi-

tecture. After this period, the best configuration is selected, and the next executions will

be performed with the configuration found in this step. For example, if the processor has

16 cores, the application would be executed 16 times (from 1 to 16 threads) to find the

number of threads that offer the best result. However, if there is any change in the appli-

cation behavior (e.g., input set size) or the execution environment, the executions must be

performed again. Moreover, whether we consider that the applications may have different

parallel regions with distinct behaviors, the DSE exponentially increases.

Therefore, in order to cope with the challenge of selecting the best number of

threads to execute an OpenMP application, we developed LAANT. It is a library to auto-

matically adjust the number of threads for OpenMP applications. The overall organiza-

tion of LAANT is depicted in Figure 5.1(b). Given an OpenMP application, functions of

LAANT are inserted before and after parallel regions already identified by the program-

mer. Then, the application is compiled, and at runtime, LAANT automatically finds the

best number of threads to execute each parallel region.

The remainder of the Section is organized as follows. Section 5.1.1 discusses the

details regarding the LAANT implementation and its use in OpenMP applications. Sec-

ond, Section 5.1.2 presents the methodology used to evaluate LAANT. It also discusses

the results obtained when comparing LAANT to the OpenMP dynamic feature (that dy-

namically changes the number of threads as the application executes) and the standard
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way that OpenMP applications are executed (that uses the maximum number of threads

along with all the execution). Finally, Section 5.1.3 draws the final considerations.

5.1.1 LAANT Implementation

LAANT uses a heuristic based on a hill-climbing algorithm to find the optimal

number of threads for parallel regions of OpenMP applications. Each one of these regions

can be optimized for different metrics, such as performance, energy consumption, EDP,

resource usage, among others. In order to get information for calculating each metric,

LAANT uses functions provided by the OpenMP and processors. For instance, to obtain

the execution time of each parallel region, LAANT uses the omp_get_wtime() function,

provided by the OpenMP. On the other hand, energy is obtained directly from hardware

counters present in modern processors. In the case of Intel processors, the RAPL library

(HäHNEL et al., 2012) is used to get energy and power consumption of the CPU-level

components. As for AMD processors, another library could be used: Application Power

Management (HACKENBERG et al., 2013a). LAANT is divided into two parts: the first

one contains the functions provided to the developer, and the second part is the heuristic

to find the ideal number of threads for parallel regions.

5.1.1.1 Using LAANT on OpenMP Applications

LAANT consists of three main functions: initLaant, startKernel, and endKernel.

These are inserted either manually or by a script (provided by LAANT) into any OpenMP

application, whose the parallel regions were already identified by #pragmas, as shown

in line 6 of Figure 5.2.

• The initLaant function initializes the structures and variables used to control the

hill-climbing algorithm, and the libraries used to collect information from parallel

regions behavior. Thus, it is inserted at the beginning of the main function.

• The startKernel function sets the number of threads that executes each parallel re-

gion based on the current state of the hill-climbing algorithm. It is done through

the omp_set_num_threads function, provided by the OpenMP. Also, startKernel

initializes the counters for execution time, energy, and EDP of the parallel region.

This function is inserted before a parallel region, as shown in line 5 from Figure

5.2.
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Figure 5.2: Using LAANT on OpenMP Applications

1. int main ( ){

2. initLaant();

3. for(int iter=0; i<100; iter++){

4. /* Sequential region */

5. startKernel();

6. #pragma omp parallel

7. {

8. /* Parallel region */

9. }

10. endKernel();

11. }

12. }

Source: The Author

• Finally, the endKernel function is inserted after the parallel region to get its execu-

tion time, energy, and the EDP. With this information, it performs one step of the

hill-climbing algorithm to find the number of threads that will execute this parallel

region in the next iteration.

The functions startKernel and endKernel run until the ideal number of threads is

found. Once found, they run periodically to verify changes in the behavior of parallel

region, or when there are variations in its workload.

5.1.1.2 Automatically Adjusting the Number of Threads

LAANT uses a simple Finite State Machine (FSM) to implement a heuristic based

on a hill-climbing algorithm. The heuristic is divided into two phases. The main states of

the FSM are described in Figure 5.3:

• The S0 state comprises the execution of the parallel region with the number of

threads equal to the number of physical cores of the platform. If the platform has

SMT technology or it is a dual-processor machine, then the next state will be S1

or S2. Otherwise, the hill-climbing algorithm will be performed in the S3 state,

starting at the number of threads executed in this state (S0).

• If the platform has SMT technology, then in the S1 state, the parallel region run

with the number of hardware threads available.
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Figure 5.3: Main states of the FSM

S0: Execution with #threads = #total physical cores.

S1: Execution with #threads = #hardware threads available. 

S2: Execution with #threads = #physical cores in one CPU socket.

S3: Hill-climbing algorithm in the interval of threads that offers the best EDP so far. 

S0

S1

S2

S3

Cond_4

Cond_2

Cond_1
Cond_3

Cond_5
Cond_1: if ( SMT )

Cond_2: if ( !SMT && !dualProcessor )

Cond_3: if ( !SMT && dualProcessor )

Cond_4: if ( dualProcessor )

Cond_5: if ( !dualProcessor )

Source: The Author

• If the machine is a dual-processor, then in the S2 state, the parallel region is exe-

cuted with the number of threads that matches the number of physical cores of one

CPU socket.

These decisions are made based on previous knowledge: several executions and

experiments have been done on different platforms, with distinct number of physical

cores, CPU sockets and maximum number of supported threads. This information is

part of the LAANT and used only internally, and does not need to be updated by the de-

signer or user. As an example, let us consider a dual processor with six physical cores

on each CPU socket, and with SMT technology, totalizing 24 hardware threads available.

In the S0 state, it will execute 12 threads (#physical cores). In the S1 state, it will run

24 threads (#hardware threads available). As for in the S2 state, the parallel region will

be executed with 6 threads (#physical cores in one CPU socket). Once these executions

are done, in the S3 state the hill-climbing algorithm starts its execution in the interval of

threads defined as follows:

• If the application has a high degree of TLP exploitation, the number of threads that

offer the best result will be closer to the maximum number of threads available

(LEE et al., 2010). Then, the hill-climbing algorithm will be guided to a number

close to this. In such example, the search will focus on the interval between 12 and

24 threads.

• If the application has a low degree of TLP exploitation due to data synchronization

and communication between threads, the best number of threads will be closer to

the minimum number of threads (SULEMAN; QURESHI; PATT, 2008). Thus, the
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Table 5.1: Main characteristics of the benchmarks

Characteristics Benchmarks
Changes in the workload of the
parallel region at runtime Fast Fourier Transform (FFT)

More than one parallel region,
each one with a different behavior

Block tri-diagonal solver (BT),
Lower-upper gauss-seidel solver (LU),

Poisson equation (PO),
LULESH 2.0

One of more parallel regions with the
same behavior, and with no changes
in the workload at runtime

Hotspot,
Scalar penta diagonal solver (SP)

High degree of TLP exploitation
Conjugate Gradient (CG),

Discrete 3D Fast Fourier Transform (FT)

Source: The Author

hill-climbing algorithm will be applied to a number close to this minimum, wherein

the example the search will focus on the number near to 6 threads.

• Finally, if the application has a medium degree of TLP exploitation, the search

algorithm will operate between the minimum and the maximum number of threads.

In the example with 24 cores, the search will be performed on the number of threads

near to 12.

In order to avoid minimal locals and plateaus during the search, and so wrongly

converging to an incorrect number of threads, the hill-climbing algorithm uses lateral

movement. Once the number of threads that offers the best result (i.e., performance,

energy, or EDP) is found, the parallel region will execute with this number until the pe-

riodical executions to verify changes in the behavior of parallel region, or when there are

variations in its workload.

5.1.2 Evaluation and Discussion

5.1.2.1 Methodology

Nine applications already parallelized with OpenMP written in C and C++ from

assorted benchmark suites and domains were chosen. They were divided into four cate-

gories regarding the behavior characteristics of the parallel regions present on each appli-

cation, as shown in Table 5.1.
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Table 5.2: Main characteristics of the processors

Core i7 Xeon E5-2630 Xeon E5-2650
Microarchitecture Skylake Sandy Bridge Sandy Bridge
Frequency 3.4 GHz 2.3 GHz 2.0 GHz
#CPU Sockets 1 2 2
#Total Cores 4 12 16
#Hardware Threads 8 24 32
Linux Kernel 4.4.0-21 3.13.0-85 3.16.0-70

Source: The Author

The experiments were performed on three different multicore processors, each one

able to execute a different number of threads, as shown in Table 5.2. Also, each core can

execute one or two threads in hardware each. The benchmarks were executed with two

different input sets: B and C for the NAS applications; and small and medium for the

other benchmarks. The applications were compiled with GCC and G++ 5.3, using the

optimization flag −O2 and −O3 (as −O2 had better results, they are presented). The

OpenMP distribution used was version 4.0. The results presented in the next session are

an average of ten executions with a standard deviation lower than 0.5%.

When designing parallel applications, the usual is to execute with the maximum

number of hardware threads available in the system (LEE et al., 2010). Therefore, we

use this scenario as the comparison Baseline. We also ran the same benchmarks with an

OpenMP dynamic feature (OMP_Dynamic), which dynamically adjusts the number of

threads of a parallel region as the parallel region is being executed (CHAPMAN; JOST;

PAS, 2007), aiming to make the best use of system resources, such as memory and pro-

cessor. This feature is enabled by using the environment variable OMP_DYNAMIC

or through the insertion of the omp_set_dynamic() in the source code (CHAPMAN;

JOST; PAS, 2007). LAANT, on the other hand, executes its adaptation algorithm after the

parallel region and targets different optimization metrics. In this section, we present the

behavior of LAANT when the EDP is configured as optimization metric.

Figure 5.4 presents EDP results for LAANT and OMP_Dynamic for each appli-

cation, along with their geometric mean (gmean) for the entire benchmark set on the three

multicore systems. EDP is normalized considering the baseline explained in the previous

section (represented by the black line). Table 5.3 depicts the Best Number of Threads

(BNT) found by LAANT that offers the best EDP to execute each parallel regions of each

application, represented by the numbers inside the parenthesis. For instance, the appli-

cation Conjugate Gradient (CG) has two parallel regions, in which – for the Input Set B

– the optimal number of threads for the first region is eight and for the second region is
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three. In all cases, LAANT found the best number of threads to execute each parallel re-

gion. This was validated by comparing the numbers found by LAANT with an exhaustive

search using data from the execution of each parallel region with all possible numbers of

threads (from 1 to the maximum number of cores). The results are discussed in the next

subsections, considering the Baseline and the OMP_Dynamic separately.

5.1.2.2 LAANT versus Baseline

Comparing to the Baseline and considering the geometric mean (gmean) of the

entire benchmark set, LAANT can reduce the EDP in up to 29% on the 24-core system

running the small input set (Figure 5.4(a)). The smallest gains are achieved in the 32-core

system running the medium input set (Figure 5.4(b)) –, and, even in this case, LAANT

presents 15% of EDP reductions.

LAANT automatically detects changes in the workload of the parallel region and

correctly finds the appropriate number of threads to run this region. For instance, when

the workload of the FFT application changes at runtime, the number of threads that offers

the best EDP also changes. Let us consider the FFT execution with a medium input set

on the 24-core system (Table 5.3). On its first parallel region execution, the best EDP

is initially achieved by executing 20 threads. However, as the workload of this parallel

region increases, the synchronization and communication between threads also increase,

saturating the shared resources (SULEMAN; QURESHI; PATT, 2008). Therefore, the

ideal number of threads end up reducing to 12, and then 6, when it finally stabilizes (as

shown in Table 5.3). LAANT detects these workload changes and adjusts the number of

threads, which provides 31% of EDP reductions.

In applications with more than one parallel region, LAANT finds the ideal num-

ber of threads to execute each one of them. For instance, let us consider the execution

of LULESH with the small input set on the 32-core system. LULESH has three parallel

regions (Table 5.3), in which the first region is better executed with 14 threads. How-

ever, the regions 2 and 3 present the best EDP with 10 and 16 threads, respectively. By

finding these numbers at runtime, LAANT reduced the EDP by 49%. The same behavior

happens with Block Tri-diagonal solver (BT), Poisson, and Lower-Upper Gauss-Seidel

solver (LU) applications, but at different EDP improvement ratios.

Table 5.3 also presents the percentage of time and energy (α and β, respectively)

that LAANT spent in the search for the best number of threads relative to its total time

and energy – this we call the overhead for using LAANT. The lowest overhead occurs in
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Figure 5.4: Relative EDP of LAANT and OMP_Dynamic compared to the baseline (black
line)
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applications that possess only one parallel region, such as Scalar Penta-diagonal solver

(SP) and Hotspot. For example, the overhead for the Hotspot application on the 24-core

system was of only 0.1% of the total time and energy. This happens because the search

algorithm used to find the best number of threads (12) can do so at only four steps: by

running with 12, 24, 6 and 10 threads. Besides the low overhead, LAANT also provided

huge EDP reductions, such as 61% when executing the SP with the small input set on the

24-core system.

The highest overhead presented by LAANT was in applications which the best

EDP is achieved with either the maximum number of threads or a number near it, such as

discrete 3D fast Fourier Transform (FT) and CG (Table 5.3). For the FT application with

the medium input set (C) on the 32-core system, LAANT increased the execution time

by 8.1% and energy by 1.6%. This happens because the execution of each parallel region

with a lower number of threads during the search results in increased execution time

and energy consumption for the whole application. For instance, to find that 32 threads

provided the best EDP for FT, the parallel regions were executed with 16, 32, 8, 24, 28,

30, and 31 threads. Although this is the worst case for LAANT, this unnecessary overhead

can be reduced by enhancing the search algorithm to minimize the training overhead on

applications of high degree of TLP.
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5.1.2.3 LAANT versus OMP_Dynamic

LAANT outperforms the OpenMP dynamic feature in the great majority of cases

(Figure 5.4). On average of the entire benchmark set with the medium input size, LAANT

has 21% of EDP gains on the 8-core system; 44% on the 24-core system; and 32% on the

32-core system.

While LAANT has EDP improvements for applications in which the parallel re-

gions are executed many times, the OpenMP dynamic feature has its worst results, in-

creasing the gap between both. The applications with this behavior are SP, Hotspot and

Poisson, wherein each parallel region is executed more than a hundred thousand times

(e.g., 156000 times in Poisson). For example, LAANT has EDP gains of up to 82%

when compared to the OMP_Dynamic on the execution of Poisson on the 24-core sys-

tem (Figure 5.4(b)). This happens because when the number of threads is changed by

the OMP_Dynamic, the workload must be redistributed to all threads again since it is

performed as the parallel region executes. Therefore, the greater the number of parallel

regions, the greater the overhead for redistributing the workload among the threads inside

these regions. This will increase the difference in EDP between OMP_Dynamic and

LAANT, since the latter does not suffer from this overhead. Also because of that, if one

compares OMP_Dynamic with the baseline (OpenMP without dynamic adaptation), in

some cases the average EDP increases.

A significant characteristic of the OMP_Dynamic was observed when running

the LULESH application, in which it was unable to terminate the execution correctly.

In such application, the variables inside the parallel region are allocated based on the

number of threads that initialize those regions. Therefore, as the OpenMP dynamic feature

changes the number of threads during the execution of the parallel region, it will allow

a thread to access an address that was not allocated, causing an error in the execution.

Besides correctly finishing the LULESH execution, LAANT reached huge EDP gains (up

to 49%) over the baseline regardless the processor used.

Finally, the only cases when OMP_Dynamic had similar behavior as LAANT

are with applications (FT, CG) where the ideal number of threads is near to the maximum.

This is because the overhead of the OMP_Dynamic is reduced, since the behavior of

the parallel regions of those applications have negligible changes during execution.
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Table 5.3: Best number of threads (BNT) to execute each parallel region and LAANT
overhead

Bench. Input
Set

8-Core System 24-Core System 32-Core System
BNT Time α-% Energy β-% BNT Time α-% Energy β-% BNT Time α-% Energy β-%

FFT S 6,3,2 47.6s 0.9 1620J 1.5 20,12,6 39.9s 0.7 2743J 1.7 32,12,10 40.7s 0.4 3693J 0.7
M 6,3,2 96.6s 0.7 3307J 1.6 20,12,6 72.6s 0.7 5423J 1.7 32,12,10 82,5s 0.5 7164J 0.8

BT S 8,8,
2,2,8 44.4s 0.2 2504J 0.1

24,24,
4,4,24 28.5s 0.5 3424J 0.2

28,32,
16,8,23 21.8s 0.64 3544J 0.20

M 8,8,
2,2,8 188.7s 0.1 10892J 0.1

24,4,
4,4,24 121.3s 0,5 14256J 0.2

32,32,
32,32,32 81.9s 2.1 14367J 0.2

LU S 8,8 34.8s 0.5 2210J 0.4 12,24 20.8s 0.4 2614J 0.1 16,32 17.1s 3.6 2712J 0.1
M 4,4 256.8s 1.3 12465J 1.2 12,24 83.8s 0.7 10797J 0.3 16,32 56.2s 0.8 9853J 0.3

LULESH S 8,4,8 9.7s 0.3 635J 0.23 10,6,6 15.3s 0.2 1507J 0.2 14,10,16 13.7s 0.4 1687J 0.3
M 4,4,8 77.3s 0,1 5327J 0.2 11,8,6 92.9s 0.3 9580J 0.2 15,12,16 77.9s 0.3 10143J 0.3

PO S 4,4 19.0s 0.3 982J 0.1 12,24 13.0s 0.4 1676J 0.2 16,32 10.7s 0.4 1536J 0.3
M 4,4 73.8s 0.3 4563J 0.2 12,24 31.4s 0.3 3825J 0.2 16,16 25.3s 0.4 3722J 0.3

SP S 2 50.9s 0.1 2600J 0.2 10 34.3s 0.2 3787J 0.1 16 19.6s 0.2 3658J 0.1
M 2 253.5s 0.1 11874J 0.2 6 194.1s 0.3 15614J 0.2 9 108.6s 0.4 16134J 0.1

HS S 3 20.8s 0.10 1281J 0.04 12 17.3s 0.1 1938 0.1 16 13.4s 0.1 1804J 0.1
M 3 51.3s 0.2 3196J 0.1 12 44.1s 0.1 4916J 0.1 16 36.1s 0.1 4867J 0.1

CG S 8,3 15.9s 0.2 897J 0.1 24,23 11.9s 2.1 1445J 1.0 32,32 8.3s 1.9 1518J 0.9
M 8,7 43.7s 0.4 2440J 0.2 24,23 30.8s 5.1 3791J 1.4 32,32 22.6s 6.0 4089J 3.0

FT S 2,4,8 10.1s 5.2 559J 1.0 24,24,23 6.5s 5.5 845J 1.5 32,32, 32 5.6s 9.7 848J 3.4
M 2,8,7 43.8s 0.6 2599J 0.1 24,24,24 29.1s 5.8 3862J 1.3 32,32,32 19.9s 8.1 3763J 1.6

Geometric Mean 0.3 0.2 0.5 0.3 0.6 0.3

Source: The Author

5.1.3 Discussion

This section presented LAANT, a library capable of automatically adjusting the

number of threads to optimize the application for a given metric. Specifically, we defined

LAANT to use EDP as optimization metric since it correlates energy and performance in a

unique value. LAANT applies a hill climbing algorithm for training while the application

is running, which results in an almost negligible overhead for most of the applications.

We show that LAANT can reduce the EDP in 29%, on average, when compared to the

standard way that OpenMP applications are executed; and reduces the EDP in up to 82%

when compared to the dynamic feature of OpenMP is active.

5.2 Aurora: Seamless Optimization of OpenMP Applications

In the previous Section, a library to automatically adjust the number of threads

for OpenMP applications was presented. Although LAANT provides positive results,

it has some limitations, such as the need of code annotation and recompilation (Figure

5.5). In this way, LAANT was extended to Aurora: given an OpenMP application already

compiled, Aurora is capable of adapt the number of threads without the need for any

modifications in the source code nor code recompilation, as shown in Figure 5.5(c).
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Figure 5.5: Adaptation of OpenMP Applications
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Source: The Author

5.2.1 Integration to OpenMP

As already described in Chapter 2, parallelism in OpenMP is exploited through

the insertion of directives in the sequential code that inform the compiler how and which

parts of the application should be executed in parallel (CHAPMAN; JOST; PAS, 2007).

OpenMP provides three ways for exploiting parallelism: parallel loops, sections, and

tasks. Parallel sections and tasks are only used in very particular cases: when the pro-

grammer must distribute the workload over the threads in a similar way as PThreads,

and when the application uses recursion (i.e., sort algorithms), respectively. On the other

hand, parallel loops are used to parallelize applications that work on multidimensional

data structures (i.e., array, grid, etc.), so the loop iterations (for) can be split into mul-

tithread executions. Therefore, parallel loops are by far the most used approach (all the

aforementioned benchmark sets are implemented in this way). For now, Aurora works to

optimize parallel loops and does not influence in any way other OpenMP applications that

are parallelized using sections or tasks.

All functionalities provided by OpenMP are implemented into the libgomp, a GNU

Offloading and Multi-Processing Run-time Library. This library is dynamically linked to

applications that use OpenMP, so any modifications in its code are completely transparent

to user applications. Aurora was incorporated into this library. In order to better under-

stand how Aurora works, let us first consider Figure 5.6, which illustrates the regular way

for parallelizing an iterative application with parallel loops (CHAPMAN; JOST; PAS,
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Figure 5.6: OpenMP execution environment with the respective libgomp functions

#include <stdio.h>

#include <omp.h>

void main(){

for(int i=0; i<N; i++){

#pragma omp parallel

{

#pragma omp for

for(int j=0; j<M; j++)

//parallel loop

}  

}

}

initialize_env()

gomp_parallel_start()

gomp_resolve_num_threads()

…

team_destructor()

gomp_parallel_end()

gomp_loop_init()

Source: The Author

2007) and the respective main functions implemented by libgomp. When the program

starts executing, the initialize_env() function is called, which is responsible for initial-

izing all the environment variables used by OpenMP during the application execution.

When the program reaches the directive #pragma omp parallel (used to indicate a par-

allel region), functions to create and define the number of threads (gomp_resolve_num_-

threads()) are called. Within the parallel region, the directive #pragma omp for indicates

the loop that must be parallelized. At the end of the parallel region, the function gomp_-

parallel_end() joins the threads and finalizes the parallel region environment. Finally,

when the application ends, team_destructor() concludes the entire OpenMP environment.

Aurora functionalities were split into four functions (discussed in details next).

They were incorporated into the libgomp functions previously mentioned. Algorithm 1

depicts the modifications done in the source code of each function in order to support

Aurora functions. libgomp also has another function called gomp_loop_init(), which was

not modified as its job is to distribute the workload between the already defined threads.

auroraInitEnv() is responsible for recognizing the Aurora optimization target de-

fined by the environment variable (OMP_AURORA) and for initializing the necessary

data structures, libraries, and variables used to control the search algorithm (described

in Section 5.2.2). The pseudocode of this function can be seen in Algorithm 2. auro-

raInitEnv is called from the original initialize_env() only if Aurora optimization is en-

abled, as presented in Lines 3-7 in Algorithm 1. If OMP_AURORA is not defined, the

OpenMP execution follows its standard behavior.

auroraResolveNumThreads() sets the number of threads that execute each par-

allel region based on the current state of the search algorithm. Also, it initializes the
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counters for collecting data from the execution environment of the current parallel region.

Algorithm 3 depicts the pseudocode of this function: if the parallel region is a new region,

the search algorithm will start the search from the initial state (S0) and with the number

of threads defined either by the environment variable AURORA_START or by 2, that is

the standard value used by Aurora. Also, if the search algorithm is in the END state, the

best number of threads (bnt) found to execute a parallel region is returned. Otherwise,

the actual number of threads (ant) is returned. auroraResolveNumThreads is called by

the gomp_parallel_start()1 when Aurora is active, replacing the original gomp_resolve_-

num_threads() function, as depicted in Algorithm 1.
auroraEndParallelRegion() is executed after the parallel region to get its execu-

tion time, energy, or EDP, depending on the optimization metric defined by the user. Ex-
1GOMP_parallel_start is also namely as GOMP_parallel

Algorithm 1 OpenMP functions that were modified to integrate Aurora optimization

1: function INITIALIZE_ENV(void)
2: Initialization of OpenMP environment (variables, CPU affinity, wait policy, etc.)
3: if OMP_AURORA is defined then
4: aurora_metric← get the value defined by the user in OMP_AURORA
5: aurora_start_search← get the value defined by the user in AURORA_START
6: auroraInitEnv(aurora_metric, aurora_start_search)
7: end if
8: end function

9: function GOMP_PARALLEL_START(∗fn, ∗data, num_threads)
10: ptrToRegion← gets pointer to fn address region
11: if Aurora is Enabled then
12: num_threads← auroraResolveNumThreads(ptrToRegion)
13: else
14: num_threads← gomp_resolve_num_threads(num_threads, 0)
15: end if
16: gomp_team_start(fn, data, num_threads, 0, gomp_new_team(num_threads))
17: end function

18: function GOMP_PARALLEL_END(void)
19: if OMP_AURORA is defined then
20: auroraEndParallelRegion();
21: end if
22: finalize parallel region environment
23: gomp_team_end()
24: end function

25: function TEAM_DESTRUCTOR(void)
26: if OMP_AURORA is defined then
27: auroradestructEnv();
28: end if
29: pthread_key_delete(gomp_thread_destructor)
30: end function

Source: The Author
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Algorithm 2 Initialization of Aurora Environment

1: function AURORAINITENV(metric, startSearch)
2: numCores← get the total number of cores through sysconf
3: threadStartSearch← get the number of threads defined to start the search
4: Initialize hardware counters to get the parallel region behavior
5: for i in maxNumberOfParallelRegions do
6: Initialize the variables used to monitor/control the parallel region i
7: i.e., startSearch, metric, actualstate
8: end for
9: end function

Source: The Author

ecution time is extracted by the omp_get_wtime() function, provided by OpenMP, while

energy is obtained directly from the hardware counters present in modern processors. In

the case of Intel processors, the RAPL library is used to get energy and power consump-

tion of CPU-level components (HäHNEL et al., 2012), while the APM library is used

for AMD processors (HACKENBERG et al., 2013a). Such functions and libraries were

incorporated to Aurora, being totally transparent to the user. That is, there is no need to

make any modifications in the Operating System (package installation, kernel recompila-

tion, etc.) to use them.

Using either one of the objectives of execution time, energy, or EDP, auroraEnd-

ParallelRegion() performs one step of the search algorithm (which is explained in the next

sub-section) and, according to this algorithm, it defines the number of threads that will be

used for the execution of this parallel region in the next iteration. auroraEndParallelRe-

gion() is implemented inside gomp_parallel_end() function, and it is called when Aurora

is active, as depicted in Algorithm 1.

Algorithm 3 Setting up the number of threads

1: function AURORARESOLVENUMTHREADS(ptrToRegion)
2: idR← get the id of the parallel region from ptrToRegion
3: if idR is a newRegion then
4: auroraKernel[idR].state← S0
5: end if
6: switch auroraKernel[idR].state do
7: start monitoring the parallel region behavior
8: case END
9: return auroraKernel[idR].bnt

10: case Default
11: return auroraKernel[idR].ant
12: end function

Source: The Author
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auroraDestructEnv() concludes and destroys Aurora environment at the end of

application execution, when Aurora is active (Algorithm 1. It was implemented inside

team_destructor() OpenMP function.

To use Aurora, the user simply has to replace the original OpenMP libgomp with

Aurora’s libgomp. This new library includes all original OpenMP functionalities plus the

new functions of Aurora. When the environment variable OMP_AURORA is set in the

Linux Operating System, the thread management system of Aurora is used instead of the

original OpenMP functions. This environment variable can be configured to the following

values (and, therefore, optimization metrics): performance, energy, or EDP. If the variable

is not set, Aurora will not influence the execution of that OpenMP application (i.e., the

application executes with the original OpenMP functions). In this way, any existing binary

code can benefit from Aurora without any modifications or need for recompilation.

5.2.2 Search Algorithm

The heuristic used by Aurora improves the one used by LAANT, and it is divided

into two phases. The first one investigates the scalability of the parallel region and reduces

the size of the space exploration, exponentially increasing the number of threads (i.e., 2,

4, 8, 16, ...) while there are potential improvements (cases S0, S1, and S2 in Algorithm

4, Figure 5.7, and Table 5.4). The second phase performs a based hill-climbing algorithm

in the interval of threads defined in the first phase (cases S2, S3, and S4). As the search

algorithm implemented by Aurora learns towards the best number of threads as the appli-

cation executes, all the computation done during this step is not wasted (i.e., it is used for

Figure 5.7: States and transitions of the search algorithm

������������	

Table 5.4: States of the search algorithm
State Operation
S0 Execution with the initial number of threads.
S1 Double the number of threads.

S2
Compare the results achieved in S0 and S1, and exponentially increases
the number of threads while either there are improvements or when the
max number of hardware threads is met. Then, state changes to S3.

S3
Search the ideal number of threads in the interval of candidates defined
in S2. When there are only two candidates, state changes to S4.

S4 Define the best number of threads and performs lateral movement.
END Aurora begins to monitor the behavior of the parallel region.
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Algorithm 4 Search algorithm implemented by Aurora
1: function SEARCHALGORITHM()
2: if state != END then
3: result← get time, energy, or EDP according to the target metric
4: switch state do
5: case S0:
6: lastNT ← actualNT ← threadStartSearch;
7: state← S1;

8: case S1:
9: bestResult← result;
10: bestNT ← actualNT ;
11: actualNT ← actualNT × 2;
12: state← S2;

13: case S2:
14: step← lastNT

2
;

15: if result ≤ bestResult then
16: bestResult← result;
17: bestNT ← actualNT ;
18: if actualNT × 2 ≤ numCores then
19: lt← actualNT ;
20: actualNT ← bestNT × 2;
21: else
22: actualNT -= step;
23: state← S3;
24: end if
25: else
26: if bestNT == numCores

2
then

27: actualNT -= step;
28: else
29: actualNT += step;
30: end if
31: state← S3;
32: end if
33: case S3:
34: if result ≤ bestResult then
35: bestNT ← actualNT ;
36: bestResult← result;
37: end if
38: step← step

2
;

39: actualNT += step;
40: if step == 1 then
41: state← S4;
42: end if
43: case S4:
44: if result ≤ bestResult then
45: bestNT ← actualNT ;
46: end if
47: Performs lateral movement to avoid minimum locals
48: state← END;

49: else
50: if workloadV ariation == true then
51: run Aurora search algorithm again
52: end if
53: end if
54: end function

the application), reducing the overhead of Aurora. Basically, the search algorithm works

as follows (Algorithm 4):

The search starts by the S0 state (line 5), where the initial number of threads and

the actual number of threads is defined. Then, the parallel region is executed with the

initial number of threads (e.g., 2 threads) and the state changes to S1. In S1 (line 8), the

best result so far is updated with the result obtained by the execution with the number

of threads defined in S0, the number of threads is doubled, and state changes to S2. In
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S2 (line 13), the measured metric (time, energy, or EDP) is evaluated, and the number of

threads will continue to double either while the measured result keeps improving or until

the execution reaches the maximum number of hardware threads available (lines 15-25).

When the condition to stop increasing threads is met, the state changes to S3. Once in

S3 (line 33), Aurora knows the interval of potential candidates for the ideal number of

threads, which is in the range between the last number of threads executed and the best

number of threads found so far. Then, the algorithm starts the second phase.

To better understand the second phase, let us consider that the interval of potential

candidates lies in the range of 8 and 16 threads. Then, the algorithm searches for the

best number of threads in this range. It will start executing with 12 threads (the average

amount between 8 and 16) and then compares to the best result so far to decide the next

range (which will be between 8-12 or 12-16). This process is repeated until the best

number of threads is found (state S4). At this point, to avoid minimal locals and plateaus

during the search, and so wrongly converging to an incorrect number of threads, Aurora

uses lateral movement (line 47). When Aurora converges to the best number of threads

for a particular parallel region, it begins to monitor the behavior of such region. If there

is any change in the workload, which in this work we consider a variation of 30%, the

search algorithm starts its execution again.

5.2.3 Methodology

5.2.3.1 Benchmarks

In order to evaluate the Aurora behavior, some applications were added to the

benchmark set used to evaluate LAANT (Section 5.1). In this way, Fifteen applications

written in C/C++ and already parallelized with OpenMP from assorted benchmarks suites

were classified according to the scalability issues discussed in Section 2.2. The bench-

marks used were:

• Seven kernels from the NAS Parallel Benchmark (BAILEY et al., 1991). NAS

is a suite originally developed by NASA that comprises applications derived from

computational fluid dynamic: BT, CG, FT, LU, Multi-Grid on a sequence of meshes

(MG), SP, and Unstructured Adaptive mesh (UA). As the original version of NAS

is written in FORTRAN, we consider the OpenMP-C version developed by the

authors in (SEO; JO; LEE, 2011).
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Table 5.5: Pearson correlation between the scalability issues and each benchmark

NB FFT ST UA JA SP HS SC PO HPCG MG BT LU CG FT

Small
Input

Issue-width sat. -0.82 -0.71 -0.56 -0.92 -0.80 -0.80 -0.91 -0.80 -0.84 -0.65 -0.81 -0.75 -0.87 -0.91 -0.90
Off-chip bus sat. 0.46 -0.98 -0.90 -0.84 -0.57 -0.71 -0.51 -0.82 -0.56 -0.94 -0.76 -0.79 -0.80 -0.82 -0.68
Shared mem. acc. 0.80 -0.43 -0.71 -0.78 0.52 -0.83 -0.52 -0.91 0.71 -0.86 -0.90 -0.91 -0.96 -0.85 -0.78
Data-synchr. 0.97 -0.50 -0.61 -0.49 0.92 0.95 -0.54 -0.54 0.94 -0.24 -0.59 -0.64 -0.61 -0.61 -0.82

Medium
Input

Issue-width sat. -0.78 -0.71 -0.63 -0.73 -0.69 -0.82 -0.92 -0.76 -0.83 -0.74 -0.79 -0.73 -0.90 -0.94 -0.91
Off-chip bus sat. 0.39 -0.97 -0.95 -0.85 -0.90 -0.62 -0.52 -0.86 -0.46 -0.94 -0.88 -0.79 -0.65 -0.82 -0.76
Shared mem. acc. 0.81 -0.75 -0.73 -0.94 0.82 -0.90 -0.54 -0.96 -0.94 -0.86 -0.96 -0.92 0.09 0.70 -0.86
Data-synchr. 0.96 -0.53 -0.38 -0.74 -0.48 -0.11 -0.64 -0.68 -0.67 -0.70 -0.78 -0.61 -0.18 -0.64 -0.77

Source: The Author

• Two applications from the Rodinia Benchmark Suite (CHE et al., 2009): Hotspot

(HS), which iteratively solves a series of differential equations; and Streamcluster

(SC), a dense linear algebra algorithm for data mining.

• Six applications from different domains: N-body (NB) - computes a simulation of

a dynamical system of particles (BHATT et al., 1992); FFT - calculates the discrete

Fourier transform of a given sequence (PETERSEN; ARBENZ, 2004); STREAM

(ST) - measures sustainable memory bandwidth (MCCALPIN, 1995); Jacobi (JA)

method iteration - computes the solutions of a diagonally dominant system of lin-

ear equations (QUINN, 2004). Poisson (PO) - computes an approximate solution to

the Poisson equation in a rectangular region (QUINN, 2004); and the High Perfor-

mance Conjugate Gradient (HPCG) benchmark, a stand-alone code that measures

the performance of basic operations (i.e., sparse matrix multiplication, vector up-

dates, etc.) (DONGARRA; HEROUX; LUSZCZEK, 2015).

Two different input sets for each benchmark were considered: small and medium.

Table 5.5 depicts the Pearson correlation between each scalability issue (discussed in

Section 2.2) and the application behavior. As can be observed, the chosen applications

do not scale for different reasons, according to Section 2.2. All the data used for the

scalability analysis was obtained directly from hardware, as follows: the off-chip bus

utilization was accessed using Intel Performance Counter Monitor (PCM) (WILLHALM;

DEMENTIEV; FAY, 2017); the time that threads spend synchronizing was obtained from

the Intel Parallel Studio; and the number of cycles with no instruction issue and the shared

memory accesses were collected with PAPI (BROWNE et al., 2000);

As one can note in Figure 5.8, the chosen benchmarks also cover a wide range

of different TLP behaviors (normalized with respect to the maximum number of threads

in each processor), which varies from the NB (lowest TLP available, where only 10% of

the execution is performed in parallel when the 32-core system is considered) to the FT
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Figure 5.8: TLP Available for each benchmark - normalized wrt the maximum number of
threads in each processor
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Source: The Author

benchmark (highest TLP available, in which more than 95% of the application is executed

in parallel). We measured TLP as defined by the authors in (BLAKE et al., 2010): the

average amount of concurrency exhibited by the program during its execution when at

least one core is active, and it is expressed in Equation 5.1. ci is the fraction of time that

i cores are concurrently running different threads, n is the number of cores, and 1− c0 is

the non-idle time fraction. The closer this value is to 1.0 (normalized to the total number

of cores available), the more TLP is available (BLAKE et al., 2010).

TLP =

∑n
i=1 cii

1− c0
(5.1)

5.2.3.2 Execution Environment

The experiments were performed on four different multicore processors (Table

5.6). We used the Ubuntu Operating System with Kernel v. 4.4.0 in all the machines.

The CPU frequency was configured to adjust according to the workload application, us-

ing ondemand as Dynamic Voltage and Frequency Scaling (DVFS) governor, which is

the standard governor used in most Linux versions. We compiled the applications with

gcc/g++ 6.3, using the optimization flag -O3, and the OpenMP distribution version 4.0.

The results presented in the next session are the average of ten executions with a standard

deviation lower than 0.5%.
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Table 5.6: Main characteristics of each processor

Intel Core Intel Xeon
i5-4460 i7-6700 E5-2630 E5-2640

Microarch. Haswell Skylake Sandy Bridge Ivy Bridge
# Cores 4 4 2x6 2x8
# Threads 4 8 24 32
CPU Freq 3.2 GHz 3.4 GHz 2.3 GHz 2.0 GHz
L1 Cache 4x32 KB 4x32 KB 12x32 KB 16x32 KB
L2 Cache 4x256 KB 4x256 KB 12x256 KB 16x256 KB
L3 Cache 6 MB 8 MB 30 MB 40 MB
RAM 16 GB 32 GB 32 GB 64 GB

Source: The Author

We evaluated Aurora in four different scenarios:

• Baseline: the application executes with the maximum number of threads available

in the system;

• OMP_Dynamic: a built-in feature of OpenMP that dynamically adjusts the number

of threads of each parallel region, aiming to make the best use of system resources,

such as memory and processor. This feature is enabled by using the environment

variable OMP_DYNAMIC or through the insertion of the omp_set_dynamic() in

the source code (CHAPMAN; JOST; PAS, 2007);

• Feedback-driven threading (FDT): is the most popular framework and therefore

is widely used for comparisons with new approaches. In it, the number of threads

is defined based on the contention for locks and memory bandwidth (as discussed

in Section 3.2). We have faithfully implemented FDT mechanism in C language

and inserted their functions into the OpenMP codes, as defined by (SULEMAN;

QURESHI; PATT, 2008).

• Oracle solution: the execution of each parallel region with the optimal number of

threads for each metric, without the cost of the learning curve. The optimal number

of threads was obtained through an exhaustive execution of each parallel region of

each application with 1 to n threads, where n is the maximum number supported by

hardware.
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5.2.4 Results

5.2.4.1 Performance, Energy, and EDP

Figures 5.9, 5.14, and 5.15 present the results for the entire benchmark set, along

with their geometric mean (Gmean) considering the four multicore systems. Figure 5.9

compares Aurora to the baseline (represented by the black line), while Figures 5.14 and

5.15 compare Aurora to OMP_Dynamic and FDT framework, respectively (also repre-

sented by a black line). Results are normalized according to the baseline, OMP_Dynamic,

or FDT, and presented regarding performance, energy consumption, and EDP, depend-

ing on the optimization metric used by Aurora. As an example, Figure 5.9(c) shows the

energy savings achieved by Aurora over the baseline when set to reduce the energy con-

sumption. Moreover, Appendix A depicts the results for all the experiments discussed in

this section.

Aurora versus Baseline: as observed in Figure 5.9, in most cases Aurora shows

improvements regarding any metric. On the other hand, if one considers the geometric

mean (Gmean bars in each figure) in any scenario, Aurora is always better (in very spe-

cific scenarios where the design space exploration is limited, it presents similar results as

the baseline). Considering its best case compared to the baseline, the execution time was

reduced by 16% with the medium input set executing on the 32-core system. The best

scenario for energy consumption and EDP is the small input set on the 32-core system:

energy is reduced by 34%, and EDP is improved by 47%. When considering the over-

all geometric mean (entire benchmark set and all processors), Aurora provided 10% of

performance improvements, 20% of energy reductions, and 28% of EDP improvements.

Aurora versus OMP_Dynamic: considering the best case for each metric regard-

ing the geometric mean (Gmean) in Figure 5.14, Aurora reduced the execution time by

26% (medium input on the 4-core machine), energy consumption by 24% (medium input

on the 32-core system) and EDP by 38% (small input on the 4-core system). In the over-

all geometric mean, Aurora was 11% faster, saved 17% of energy, and improved EDP by

32%.

Aurora versus FDT: as observed in Figure 5.15, Aurora outperforms FDT in all

cases regarding any metric and processor. In the best case of Aurora for each metric

regarding the geometric mean (Gmean), Aurora reduced the execution time and energy

consumption by 34%, and EDP by 56% (small input set on the 24-core machine). When
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Figure 5.9: Aurora vs Baseline: lower than 1.0 means that Aurora is better than the
baseline
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Source: The Author

considering the overall geometric mean, Aurora provided 26% of performance improve-

ments, 25% of energy reductions, and 45% of EDP improvements.

Tables 5.7 depicts the number of threads that offers the best result to execute all

parallel regions of each application for each optimization metric (performance, energy,

and EDP), which we call this scenario as Oracle. As an example, let us consider the FFT

application that has two parallel regions, in which when optimized for performance - for

the medium input set (M) on the 8-core system – the optimal number of threads for the

first region is eight and for the second region is two. One can note that depending on

the input set, the optimal number of threads for each parallel region may vary, which is

the case of the JA application when optimized for EDP running on the 32-core system.

When changing the input set from small to medium, the workload of the parallel region

changes, increasing its TLP. In this case, the number of threads that offer the best EDP for

this region is now 6 instead of 15. In all cases, Aurora found the best number of threads.

The same behavior is observed when the optimization metric changes, which is

the case of the ST benchmark running on the 32-cores system. When Aurora is set to

optimize performance, 12 threads offer the best result. On the other hand, the lowest

energy consumption is reached with only four threads and the best EDP with six threads.
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5.2.4.2 Handling Scalability

As a result of its run-time analysis, the search algorithm used by Aurora can detect

the point in which the number of threads saturates any metric. As the first example, the

off-chip bus saturation is considered (as discussed in Section 2.2). For instance, consider

the execution of HPCG benchmark. This benchmark has four parallel regions that are

mostly better executed with a different number of threads (Table 5.7). Let us discuss the

behavior of the second parallel region considering the EDP, in which the optimal execu-

tion is with 12 threads, when executing with medium input on the 24-core system. Figure

5.10 shows that when this region is executed with more than 12 threads, the off-chip bus

saturates (100% of utilization), and no further EDP improvements can be achieved by

increasing the number of threads. By using its continuous monitoring and avoiding this

saturation, Aurora was able to reduce the EDP of the whole application by 15% (Figure

5.9(f)). The very same behavior can be observed in FFT and ST (regardless of the input

set) and JA for the medium input set (Table 5.5) but at different improvement ratios.

In applications with high communication demands among the threads, there is an

optimal point in which the overhead imposed by the shared memory accesses does not

overcome the gains achieved by the parallelism exploitation, as discussed in Section 2.2.

Aurora detected this point for all benchmarks in this class: SC, MG, and BT; LU (with

small input); PO, UA, and SP (with medium input) (Table 5.5). As an example, let us

consider the SP benchmark running on the 24-core system. This application has thirteen

parallel regions, in which each one is better executed with a different number of threads.

Figure 5.11 shows that when the number of shared memory accesses performed by all

threads in the first parallel region starts to increase (after six threads - primary y-axis),

no further improvements in the EDP of the application can be achieved (secondary y-

axis). As shown in the same Figure and in the Table 5.7, Aurora found the best number

Figure 5.10: Behavior of the 2nd parallel region of HPCG
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Figure 5.11: Behavior of the 1st parallel region of SP
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of threads to execute this parallel region, providing EDP gains of 58% when set to this

target (Figure 5.9(f)).

Aurora will similarly detect the point that the synchronization time overlaps the

gains provided by TLP exploitation. This behavior can be observed in some benchmarks,

such as n-body (NB) with small or medium input, Jacobi(JA) and SP with small input

set (Table 5.5). In these benchmarks, the higher the number of threads, the greater the

time spent synchronizing, which can worsen the application result, as already discussed

in Section 2.2. As a specific example of this behavior, we consider the n-body benchmark

with the medium input set executing on the 32-core system (Figure 5.12). When increas-

ing the number of threads from 1 to 3, the performance is improved. However, from this

point on, the time that the threads spend synchronizing overcomes the gains achieved by

the parallelism exploitation (Figure 5.12), increasing the energy consumption and EDP

of the whole application. As demonstrated in Table 5.7, by selecting the best number of

threads and avoiding the increase in the number of threads, Aurora reduced the execution

time by 79%, energy by 89%, and EDP by 98%.

Aurora also converges to the best number of threads for applications that are neg-

atively influenced by the issue-width saturation, such as Hotspot (HS), FT, and CG with

Figure 5.12: N-body execution on the 32-core system
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Figure 5.13: Hotspot behavior on the 24-core system
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any input set; and UA and PO with the small input (Table 5.5). To discuss this behavior,

let us consider the Hotspot benchmark with the medium input set executing on the 24-core

system, in which the number of threads that provide the best EDP is 12 (see Table 5.7).

As Figure 5.13 shows, when increasing the number of threads from 12 to 13, the number

of cycles that the threads spend without issuing any instruction abruptly increases (Figure

5.13(b)), decreasing performance and increasing energy consumption (Figure 5.13(a)).

Once more, by avoiding the excessive increment in the number of threads, Aurora in-

creased performance by 21% and reduced EDP and energy by 44% and 25%, respectively

(Figure 5.9), when set to these targets.
Finally, as discussed in Section 2.2, it is important to note that there are cases in

which the characteristic that influences the thread scalability changes according to the

input set (Table 5.5). As a specific example, let us consider JA application. When it is

executed with the small input, the time that the threads spend synchronizing limits the

application scalability, while in the medium input the operations in a larger amount of

data saturate the off-chip bus.

5.2.4.3 Costs of the Learning Curve

Table 5.8 depicts (in percentage) how the results obtained by Aurora differs from

the Oracle solution for each application in all scenarios (benchmarks, processors, and

metrics). It also shows how the results achieved by OMP_Dynamic and FDT approaches

differ from the Oracle regarding the geometric mean (gmean) of the entire benchmark set

for each processor and metric.
Using this optimal solution, we can measure the cost of the learning curve, that

is, the overhead of our technique, which is originated from two different situations: the



115

Figure 5.14: Aurora vs OMP_Dynamic: lower than 1.0 means that Aurora is better than
OMP_Dynamic
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execution of the search algorithm itself; and the execution of a given parallel region with

a number of threads that is not the ideal, while the search algorithm is trying different pos-

sibilities to converge to the ideal number. Aurora showed high overheads in the following

situations (Table 5.8):

• The best result is achieved with either the maximum number of threads or a number

close to it, which is the case of the FT and CG benchmarks in the execution on the

24 and 32-core systems.

• The parallel region has a relatively small number of interactions but executes for a

significant time, such as HPCG;

• Applications that have short execution time (i.e., less than 10 seconds), such as MG,

in which the execution with the small input set by the Oracle solution takes only

1.45 seconds in the 32-core system.

• Applications with many parallel regions, in which most of them have a low work-

load, as in the UA benchmark. UA has 54 parallel regions, in which 44 of them take

less than 0.5 seconds to execute regardless of the four target processors.

Besides, the higher the number of hardware threads available in the system, the

greater the space exploration that the search algorithm must cover. However, even though



116

Figure 5.15: Aurora vs FDT: lower than 1.0 means that Aurora is better than FDT
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the overhead increases, it does so in small rates, as can be observed when one compares

the averages of the 24- and 32-core systems to the 4- and 8-core systems.

While Aurora defines the number of threads based on the parallel region behav-

ior, OMP_Dynamic considers the last 15 minutes of execution to define the number of

threads (CHAPMAN; JOST; PAS, 2007). It does not use any search algorithm nor con-

siders each parallel region in particular. For this reason, OMP_Dynamic presented poor

results, and, in many cases, it is worse than the baseline (average of the entire benchmark

for performance and EDP). The advantage of not being called often (and therefore po-

tentially decreasing overhead) does not overcome the fact that it is not able to get near

to the optimal number of threads. Considering the geometric mean of the entire bench-

mark set, Aurora gets much closer to the results achieved by the Oracle solution than the

OMP_Dynamic, as shown in Table 5.8.

As observed in Figure 5.15, only in particular cases, FDT can achieve similar

results than Aurora. These applications are part of the scalability issues that the FDT pro-

poses to solve, such as FFT (off-chip bus saturation) and JA (synchronization) when per-

formance is considered. On the other hand, FDT does not deal with all scalability issues,

and therefore, converges to the incorrect number of threads in many applications. More-

over, as observed in Table 5.8, FDT presents higher overhead for learning than Aurora

(geometric mean of the entire benchmark set). This behavior arises due to the following

reasons:
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• As the training phase of FDT considers the execution of each parallel region in a

single threaded mode until the standard deviation of the observed metrics (memory

bandwidth usage and synchronization time) is stable, it leads to a higher overhead

in applications that present medium and high degree of TLP. Because of this, in

many cases FDT achieves worse results than the baseline and OMP_Dynamic.

• FDT considers that all threads are homogeneous and ignores fundamental hardware

characteristics that are highly correlated to the parallel application behavior: FDT

assumes that bandwidth requirement increases linearly with the number of threads,

ignoring cache contention and data-sharing between the threads. Moreover, FDT

does not consider the effects of the SMT feature (discussed in Section 2.2), by

assuming that only one thread executes per core.

• FDT does not consider that each metric may have a different optimal number of

threads. Instead, it assumes the same number of threads for all the evaluated met-

rics, which shows to be incorrect, for reasons discussed in the previous Sections.

5.2.5 Discussion

In this subsection, we have presented Aurora, a mechanism capable of automati-

cally finding, at run-time, the optimal number of threads for each parallel region. Aurora

is completely transparent to both designer and end user: given an OpenMP application

binary, Aurora optimizes it without any code changes, transformation or recompilation,

by simply setting an environment variable in Linux OS.

We have shown that Aurora can optimize distinct OpenMP applications regarding

different metrics with an almost negligible overhead: in the most significant case, Aurora

improves performance, energy, and EDP by up to 79%, 89%, and 98%, respectively, over

the standard OpenMP execution; by up to 62%, 61%, and 86%, when compared to the

built-in feature of OpenMP that dynamically adjusts the number of threads; and by up to

81%, 72%, and 91%, over the FDT.
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Table 5.7: Number of threads found by the Oracle (exhaustive search)

Performance Energy EDP
4-Core 8-Core 24-Core 32-Core 4-Core 8-Core 24-Core 32-Core 4-Core 8-Core 24-Core 32-Core

NB S 3 4 4 3 3 3 4 3 3 3 4 3
M 4 4 4 3 3 3 3 3 4 4 4 3

FFT S 4,4 8,2 24,2 31,6 4,1 8,1 24,4 32,4 4,2 8,1 24,2 31,4
M 4,4 8,2 24,6 32,14 4,1 8,1 24,2 32,4 4,2 8,2 24,2 32,4

ST S 4 2 4 12 1 1 4 4 2 1 4 6
M 4 2 4 6 1 1 4 4 2 1 4 6

UA S 3,2,3,3
2,4,1,3
1,1,4,3
1,4,4,4
3,3,3,1
3,4,1,1
4,1,3,1
3,1,4,4
4,4,4,4
4,4,3,4
4,4,2,4
2,4,4,3
4,4,4,4
4,4,4

4,2,2,1
2,4,1,2
1,1,8,4
1,4,4,4
4,2,1,1
1,4,1,1
4,1,4,1
2,1,2,8
8,4,3,4
8,8,2,8
4,8,1,4
2,2,8,2
4,2,2,2
4,8,4

12,4,7,7
5,10,2,4
1,1,22,7
1,12,12,6
4,1,1,1
1,7,1,1
4,1,3,1
3,1,6,24
23,8,6,12
12,24,5,12
12,11,4,11
4,6,12,2
12,6,6,6
12,24,12

12,14,11,4
13,15,10,14
2,2,30,16
2,31,16,11
14,2,15,2
11,16,2,2
15,2,15,2
15,3,9,32
32,12,11,14
32,32,12,30
16,14,10,16
4,6,32,10
10,12,26,10
12,32,16

2,1,4,2
2,2,2,3
1,1,4,3
2,3,4,2
3,1,1,2
2,2,1,1
3,1,2,2
3,1,1,4
4,2,1,2
4,4,1,4
4,3,3,2
2,1,4,1
1,1,1,1
1,4,4

1,1,3,3
2,8,2,3
4,1,4,2
4,3,3,2
1,1,1,2
4,3,1,1
7,7,3,2
5,1,1,8
8,2,1,2
4,8,2,1
1,4,3,2
1,1,8,1
2,1,1,1
1,8,1

5,4,6,6
5,24,1,3
1,1,23,4
1,24,4,6
2,1,2,1
1,6,1,1
3,1,1,1
1,1,6,24
12,3,6,4
11,24,3,12
10,9,2,3
4,2,12,2
6,4,6,4
6,24,12

5,4,9,26
7,7,3,8
1,1,30,5
3,32,10,7
5,2,3,1
3,6,1,4
6,2,2,3
6,1,6,32
16,6,6,6
32,32,5,32
16,11,6,7
4,5,32,2
6,6,6,6
10,16,7

2,2,3,2
2,4,2,3
1,1,4,3
2,4,4,2
3,1,1,2
2,2,1,1
3,1,2,2
3,1,2,4
4,2,2,2
4,4,2,4
4,3,3,4
1,2,4,2
2,2,2,2
2,4,4

1,1,3,3
2,2,2,3
3,1,8,2
4,4,3,2
1,1,1,2
4,4,1,1
7,1,3,2
5,1,1,8
8,2,1,2
8,8,2,8
4,4,3,4
1,1,8,1
2,1,2,2
1,8,4

5,4,6,4
5,24,2,3
1,1,22,4
1,24,4,6
2,1,2,1
2,1,6,1
1,3,1,3
1,1,1,6
24,24,8,6
6,11,24,3
12,12,9,2
11,4,6,12
2,6,6,6
6,24,6

12,6,9,26
7,7,4,8
1,2,30,11
3,32,10,11
5,2,3,1
3,6,1,4
6,2,4,3
6,1,6,32
31,9,10,10
32,32,8,30
16,13,6,14
4,5,32,4
6,6,6,8
10,32,16

M 2,2,4,2
3,4,2,4
1,1,4,4
1,4,4,4
4,4,3,3
4,4,1,1
4,3,4,4
3,2,4,4
4,4,4,4
4,4,3,4
4,4,2,4
2,4,4,3
4,4,4,4
4,4,4

2,2,4,3
4,8,2,2
1,1,4,4
1,4,4,4
4,4,3,4
4,4,1,1
4,3,4,4
4,2,2,8
8,2,2,4
8,8,3,8
2,2,1,4
2,5,8,4
3,2,5,2
3,8,4

4,8,6,5
9,12,4,4
1,1,24,12
3,24,12,11
4,4,3,3
3,9,1,1
7,3,4,3
3,1,12,24
24,12,4,8
24,24,4,24
12,11,4,12
7,22,24,4
6,4,11,8
22,24,18

9,8,14,3
16,8,16,16
2,2,32,14
2,32,14,16
14,14,12,14
14,16,2,3
16,9,14,14
14,3,12,32
32,14,11,14
16,32,13,32
16,30,6,14
12,13,32,12
6,13,11,12
13,32,27

1,1,3,2
1,4,1,2
2,1,4,2
1,3,2,2
1,2,2,2
2,4,1,1
2,3,4,4
2,3,1,4
4,1,1,2
4,4,2,4
3,3,1,3
1,1,4,2
1,1,1,1
1,4,2

1,1,3,3
3,8,2,2
4,1,4,3
1,2,3,2
2,4,4,7
4,4,1,1
7,6,7,8
4,5,1,8
8,1,1,2
4,8,2,8
2,2,1,7
1,1,4,2
1,1,1,1
1,8,7

4,4,6,3
8,8,2,4
2,1,23,6
2,24,10,6
2,3,3,1
3,6,1,2
6,1,4,3
4,2,4,24
24,12,2,4
11,24,2,24
12,10,2,9
7,2,12,2
4,4,2,2
4,24,4

4,4,13,2
16,16,5,4
9,2,30,6
5,30,8,8
4,6,2,4
9,11,1,1
7,3,4,5
6,2,6,32
32,8,4,6
13,32,4,32
16,13,6,7
5,4,15,3
4,4,4,4
4,32,30

2,2,3,2
3,4,1,2
2,1,4,2
1,4,4,2
1,2,2,2
2,4,1,1
2,3,4,4
2,3,2,4
4,2,2,2
4,4,2,4
4,3,1,3
2,2,4,2
2,2,2,2
2,4,4

1,1,3,7
3,8,2,2
4,1,4,3
1,4,4,2
2,4,4,2
4,4,1,1
7,4,4,3
4,5,1,8
8,1,1,2
8,8,2,8
2,2,1,7
1,2,8,2
5,1,1,1
1,8,7

4,4,8,8
8,8,2,4
2,1,23,6
2,10,6,4
3,3,1,3
7,1,2,6
3,4,3,4
2,4,24,24
12,4,6,24
24,4,24,12
10,4,9,7
4,24,4,6
4,4,4,4
24,20,8

9,6,13,2
16,5,5,4
9,2,32,8
5,32,13,11
10,6,2,4
9,11,1,1
12,3,8,9
6,2,6,32
32,14,4,6
16,32,3,32
16,13,6,14
6,6,32,6
4,4,4,6
32,30,16

JA S 3 3 12 28 2 2 6 14 2 2 6 15
M 3 2 10 12 2 2 4 6 2 2 4 6

SP S 4,4,2,4
4,2,3,2
3,3,4,4
4

8,8,2,2
4,2,4,2
4,2,2,8
4

10,12,6,6
12,6,12,6
12,6,6,12
10

13,16,12,26
15,32,15,32
15,6,8,32
32

4,4,2,1
3,1,3,1
3,1,1,4
2

8,4,2,1
3,1,3,1
3,1,1,4
2

10,12,6,4
10,4,10,4
10,4,2,23
4

13,15,6,4
13,4,13,4
10,4,4,15
6

4,4,2,2
3,2,3,2
3,2,2,4
4

8,8,2,1
4,1,4,1
3,1,1,8
2

10,12,6,4
12,6,12,6
10,4,4,12
4

13,15,6,4
15,4,15,4
15,4,4,15
6

M 4,4,3,4
2,2,2,2
2,4,4,4
4

8,4,2,5
2,2,2,5
2,5,2,8
4

12,12,6,6
6,20,6,20
6,6,24,24
24

16,16,12,10
10,32,10,14
8,10,24,30
32

4,4,2,1
2,1,2,1
2,1,1,4
2

8,4,1,1
2,1,2,1
2,1,1,8
4

12,12,4,4
6,4,6,4
6,4,4,11 4

16,15,6,4
8,4,8,4
8,4,4,15 6

4,4,2,2
2,2,2,2
2,2,2,4
4

8,4,2,1
2,2,2,2
2,5,1,8
4

12,12,6,6
6,6,6,6
6,4,4,24 4

16,16,6,6
8,4,8,4
8,6,4,15 6

HS S 4 4 12 16 4 4 10 16 3 4 12 16
M 4 4 12 16 4 4 12 16 4 4 12 16

SC S 4 8 23 9 4 8 7 9 4 8 7 9
M 4 7 9 15 4 7 7 9 4 7 7 15

PO S 4,4
4,4

8,8
8,4

12,7 12,7 29,16
16,14

2,4
4,2

7,7
8,2

12,5 12,7 29,7 16,6 2,4
4,2

7,7
8,2

12,5 12,7 29,8 16,11

M 4,4
4,3

8,8
7,2

22,11
12,8

30,16
16,16

2,4
2,1

5,8
3,1

21,6 12,6 29,11
16,6

4,4
2,1

7,8
3,1

21,8 12,6 29,14
16,14

HPCG S 4,4,4,4 2,5,8,4 10,10,12,8 8,30,14,16 1,2,3,2 1,2,8,2 4,6,6,6 6,6,6,8 2,3,3,3 2,2,8,3 6,6,6,8 8,8,6,8
M —- 2,4,8,4 6,12,12,20 8,32,16,22 —- 1,3,3,2 4,8,6,6 4,8,8,6 —- 2,3,8,2 4,12,8,6 6,8,10,8

MG S 3,4,4,3
3,4,2,4
3,3

2,8,8,2
4,8,2,3
3,2

6,24,8,24
4,24,6,8
8,10

14,32,8,14
12,1,8,10
10,12

2,4,3,2
3,3,2,2
2,1

2,8,8,1
1,6,2,2
2,1

6,24,8,6
5,8,6,6
6,4

7,32,8,6
5,8,6,8
8,4

2,4,4,2
3,4,2,3
2,2

2,8,8,2
1,6,2,3
3,2

6,24,8,6
5,24,6,8
8,6

10,32,8,14
5,8,8,8 8,6

M 3,4,4,2
4,4,4,4
4,2

2,8,8,2
3,6,3,4
3,2

10,24,12,6
6,12,12,10
8,10

14,32,16,14
14,16,16,16
12,6

2,4,3,2
2,3,2,2
2,1

1,8,7,1
1,6,2,2
2,1

6,24,10,4
4,10,4,6
6,4

8,32,10,6
6,8,6,8
6,6

2,4,3,2
3,3,2,3
3,2

2,8,7,2
1,6,2,3
3,2

6,24,10,4
4,10,6,6
6,4

10,32,10,8
10,10,6,8
8,6

BT S 4,4,2,4
4,4,4,4
4

4,8,2,8
8,8,2,8
4

12,12,6,23
22,23,4,12
14

15,15,10,28
31,30,8,31
28

4,4,2,4
4,4,1,4
2

4,8,2,8
4,8,1,4
1

12,10,6,22
22,22,4,11
6

15,13,6,28
28,29,6,14
30

4,4,2,4
4,4,2,4
2

4,8,2,8
8,8,1,8
2

12,12,6,22
22,22,4,12
6

15,15,8,28
28,29,8,31
30

M 4,4,3,4
4,4,4,4
4

4,8,2,8
8,8,2,8
4

24,12,8,24
24,24,12,24
10

15,16,10,32
32,32,32,30
30

4,4,2,4
4,4,1,4
2

4,8,1,8
8,8,1,8
2

12,12,4,23
23,23,4,11
6

15,16,6,32
32,32,4,15
4

4,4,2,4
4,4,2,4
2

4,8,2,8
8,8,1,8
8

12,12,4,24
23,23,6,24
6

15,16,8,32
32,32,4,30
10

LU S 4,4,4,2
4,4,4,4
4

4,8,8,2
8,4,8,8
4

10,23,12,6
22,12,22,23
8

13,32,15,12
27,25,31,28
12

3,4,4,2
4,2,3,4
4

3,8,4,1
4,1,8,8
3

8,23,10,6
10,4,22,10
8

12,15,10,8
1,10,6,15
9

4,4,4,2
4,2,4,4
4

3,8,4,2
8,2,8,8
3

12,24,12,6
22,4,22,23
8

12,28,15,12
14,6,26,25
9

M 4,4,4,2
4,4,4,4
4

4,8,4,2
8,4,4,8
8

18,24,12,10
12,10,24,23
10

14,32,16,14
14,23,32,32
14

2,4,4,2
4,2,2,4
3

2,8,4,1
4,2,2,8
5

7,23,12,4
10,6,24,23
11

14,32,14,4
10,6,32,32
7

3,4,4,2
4,2,3,4
3

3,8,4,1
4,2,3,8
5

10,23,12,4
12,10,24,23
11

14,32,16,12
14,9,32,32
10

CG S 4,4,4,4
3,4,4

8,8,8,4
4,4,4

24,24,4,3
3,4,4

32,32,10,16
15,10,13

4,4,4,4
4,4,2

8,8,8,4
4,7,3

24,12,13,15
2,4,2

16,16,3,13
5,5,8

4,4,4,4
4,4,4

8,8,8,4
4,7,3

24,24,13,15
4,4,2

32,16,7,13
5,5,8

M 4,4,4,4
4,4,4

8,8,4,4
4,8,4

24,24,6,7
4,7,4

31,32,16,16
16,14,15

4,4,4,4
4,4,4

8,8,4,4
3,6,6

24,24,2,5
5,5,4

32,14,4,5
19,8,5

4,4,4,4
4,4,4

8,8,4,4
4,6,6

24,24,2,5
5,5,4

31,32,4,5
19,8,5

FT S 2,4,4,4
4,4,4,1

2,8,8,4
4,4,5,3

6,24,24,24
24,24,8,1

8,32,32,32
32,32,14,10

2,4,4,4
4,4,2,2

2,8,8,4
4,4,2,2

6,24,24,24
12,12,6,1

8,32,32,32
16,16,6,1

2,4,4,4
4,4,4,1

2,8,8,4
4,4,2,2

6,24,24,24
12,24,8,1

8,32,32,32
32,30,8,2

M 2,4,4,4
4,4,4,1

2,8,8,7
4,8,5,1

6,24,24,24
24,24,12,1

8,32,32,32
32,32,32,16

2,4,4,4
4,4,2,3

2,8,8,4
4,4,2,1

6,24,24,24
22,22,6,1

8,32,32,32
32,32,6,5

2,4,4,4
4,4,3,2

2,8,8,7
4,4,2,1

6,24,24,24
24,22,12,1

8,32,32,32
32,32,8,5

Source: The Author
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Table 5.8: Learning overhead (%) for Aurora, FDT, and OMP_Dynamic

Performance Energy EDP
4-Core 8-Core 24-Core 32-Core 4-Core 8-Core 24-Core 32-Core 4-Core 8-Core 24-Core 32-Core

Aurora

NB S 1.2 1.4 0.1 2.3 1.0 2.5 0.1 0.1 0.1 0.1 0.1 0.1
M 10.9 0.1 0.1 3.4 1.0 0.2 2.2 0.2 8.0 0.1 4.0 3.7

FFT S 1.6 1.9 2.0 4.9 7.1 3.8 6.0 7.0 8.8 5.8 3.5 4.8
M 2.2 2.2 3.0 1.1 4.6 4.9 12.0 9.0 6.9 7.3 12.0 8.0

ST S 0.1 0.1 3.5 0.8 0.1 0.1 0.1 7.9 0.1 0.1 0.1 2.7
M 2.2 0.1 0.1 0.4 0.1 2.5 0.1 0.1 0.1 0.1 0.1 0.1

UA S 0.9 2.8 29.3 39.7 13.4 8.7 13.2 38.2 14.4 11.8 46.3 52.0
M 0.7 1.5 16.0 18.7 1.6 6.4 3.4 34.4 2.3 8.0 19.9 29.0

JA S 0.1 0.1 0.1 20.8 0.1 4.4 0.1 0.1 0.1 0.1 0.1 13.6
M 0.1 0.1 0.1 1.2 0.1 7.3 0.1 9.6 3.6 0.1 0.1 10.7

SP S 0.7 2.4 8.0 36.6 2.2 2.4 6.5 24.3 2.9 0.7 15.0 27.0
M 0.9 4.9 2.3 7.3 2.0 4.9 5.0 12.9 2.9 6.1 7.4 21.2

HS S 0.1 0.2 4.1 6.0 0.1 3.6 0.1 4.3 1.0 2.5 0.1 0.1
M 4.6 2.3 0.9 6.3 3.2 8.0 1.8 0.1 4.4 8.3 0.1 3.6

SC S 0.1 0.1 3.5 15.3 0.1 0.1 2.6 32.0 0.5 0.1 3.3 9.9
M 0.1 0.1 0.1 0.1 2.0 0.1 1.1 5.0 1.8 0.1 2.0 0.1

PO S 1.2 0.6 3.7 5.3 3.2 1.0 0.1 0.5 4.4 1.6 3.8 5.8
M 2.0 1.2 2.4 4.0 3.1 4.7 0.1 1.7 5.2 5.9 2.5 1.6

HPCG S 0.1 1.6 0.1 5.69 3.5 3.0 3.5 20.5 3.5 4.6 3.6 27.2
M – 0.5 1.0 5.1 – 3.6 10.0 5.9 – 4.1 6.1 11.3

MG S 5.0 12.2 31.6 35.0 3.3 8.0 11.7 9.0 8.5 21.0 47.2 19.0
M 7.0 7.9 15.0 19.0 2.1 4.8 9.9 19.0 9.3 13.0 18.2 23.0

BT S 0.7 1.0 3.5 10.2 0.6 1.0 3.5 6.9 1.3 2.0 5.8 17.8
M 0.5 1.0 2.6 3.9 0.8 2.7 4.3 6.0 1.3 3.7 5.1 10.2

LU S 3.2 0.5 1.4 4.9 7.0 0.7 6.1 7.2 10.4 1.2 4.6 12.4
M 0.3 0.3 2.2 1.3 1.1 0.6 5.6 4.2 1.3 0.9 8.0 5.5

CG S 1.4 1.1 18.6 21.1 1.1 0.5 14.8 15.6 2.6 1.7 8.4 40.0
M 1.0 1.2 15.6 4.5 1.2 0.6 11.0 14.9 2.2 2.0 0.4 20.0

FT S 4.8 8.6 28.0 23.5 2.7 6.0 9.8 6.7 7.7 15.2 18.2 25.4
M 4.2 6.2 22.7 9.4 1.7 4.0 5.2 6.6 6.0 10.5 15.5 10.1

Gmean S 0.7 0.9 2.9 9.9 0.9 1.4 0.9 4.1 1.8 2.1 2.6 6.6
M 1.0 0.7 2.4 3.1 0.9 2.0 1.6 3.0 2.8 1.9 2.5 5.4

OMP_Dynamic - Gmean S 25.1 13.7 21.0 24.2 15.1 14.6 25.3 37.0 55.0 35.5 52.5 70.5
M 19.3 12.9 14.0 17.1 13.8 15.1 30.3 34.7 43.8 30.7 42.9 62.5

FDT - Gmean S 4.4 12.6 24.0 35.0 11.8 14.7 43.4 43.6 13.1 31.1 101.1 111.5
M 8.6 22.0 22.7 33.5 18.2 24.7 45.6 43.6 34.0 56.5 106.8 109.5

Source: The Author
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6 CONCLUSIONS AND FUTURE WORK

In this Ph.D. thesis, a mechanism to automatically and transparently improve the

execution of parallel applications was proposed, evaluated, and validated with respect to

well-known techniques.

In order to achieve the main objective of this work, we first performed a static

exploration for optimal combinations of processors, communication models, and TLP ex-

ploitation to reach the best results in performance, energy, and EDP, presented in Chapter

4. By considering a great number of variables (5 multicore processors; 14 parallel bench-

marks; four parallel programming interfaces; different levels of TLP exploitation; and

different levels of static power of the processor), we showed that there is no single com-

bination of all the variables that offers the best result for performance and energy at the

same time. However, we found significant results that demonstrate the large space of ex-

ploration and the needed for developing a mechanism to optimize parallel applications at

runtime.

As the development of a single mechanism that comprises all the PPIs discussed

in Chapter 4 is not feasible at this moment, due to the way the parallelism is exploited

in each one of them, we chose to develop a mechanism for OpenMP applications due to

the following reasons: parallelism exploitation with OpenMP usually requires less effort

when compared to other PPIs, making it more appealing to software developers; OpenMP

is widely used and there are many parallel benchmarks implemented with it; OpenMP is

more suitable for approaches in which the goal is to provide the maximum transparency

as possible to the programmer, as the whole process of thread management and workload

distribution are done by functions implemented in the OpenMP library, in opposite to

other PPIs (e.g., PThreads, MPI, TBB).

We first proposed LAANT, a library to automatically adapt the number of threads

of OpenMP applications. It is capable of finding at run-time the ideal number of threads

for each parallel region of the application. LAANT can be applied to any OpenMP appli-

cation that exploits parallel loops, by simply annotating code in the parallel regions. Nine

parallel applications from assorted benchmarks suites and domains, with different input

sets, were chosen. LAANT was compared to the usual way that parallel applications are

executed (Baseline) and with the OpenMP dynamic feature (OMP_Dynamic). By setting

LAANT to optimize the EDP of such applications running on three distinct multicore ar-

chitectures, we have shown that LAANT can reduce the EDP in 29%, on average when
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compared to the Baseline and in up to 82% when compared to the OMP_Dynamic. Al-

though LAANT achieves positive results, it relies on the need for code annotation and

recompilation. That is, applications already compiled with OpenMP will not be benefited

by LAANT. Besides that, LAANT is very useful in situations in which the replacement

of the OpenMP library is not desirable (e.g., when a commercial solution is available, as

Intel’s libomps). Therefore, LAANT would come to the rescue i this cases by allowing

the algorithm to build on the standard omp_set_numthreads operation.

In order to provide transparency and binary compatibility to the user, that is, alle-

viate the burden of the user’s side, LAANT was extended to Aurora. Given an OpenMP

application already compiled, Aurora is capable of adapt the number of threads without

the need for any modifications in the source code nor code recompilation. Therefore,

existent OpenMP applications do not need to be annotated, recompiled or pass through

any code transformation. Such transparency is achieved by redirecting the calls origi-

nally targeted for the dynamically linked OpenMP library to Aurora. This retargeting is

configured by simply setting an environment variable in the Operating System.

Aurora was validated executing fifteen well-known benchmarks on four distinct

multicore processors. With DVFS set to ondemand, we compared Aurora to the execution

with the maximum possible number of threads; to the OpenMP dynamic (OMP_Dynamic);

and to the well know feedback-driven threading (FDT) framework. We showed gains of

79%, 89%, 98% (performance, energy, and EDP, respectively) for the maximum num-

ber of threads; 62%, 61%, and 86% for the OpenMP dynamic; and 81%, 72%, and 91%

for FDT. To measure the cost of the learning curve to converge for the ideal number of

threads brought by its dynamic adaptation, we also compared Aurora to the Oracle solu-

tion, which comprises the execution of each parallel region with the optimal number of

threads without the cost of the learning curve. In this comparison, the average cost to

optimize performance, energy, and EDP for the whole benchmark set and processors is of

only 1.8%, 1.6%, and 2.9%, respectively.

6.1 Extending Aurora

This section discusses some of the most promising future works envisioned at this

time.
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6.1.1 Energy Optimization Techniques

Aurora can be extended in order to support energy optimization techniques, such

as the adaptation of the processor frequency (through DVFS), and the number of active

cores (through power gating). Both techniques are briefly described bellow.

6.1.1.1 Dynamic Voltage and Frequency Scaling

DVFS is a feature of the processor that allows software to adapt the clock fre-

quency and operating voltage of a processor on the fly without requiring a reset. DVFS

enables software to change System on Chip processing performance to attain low power

consumption while meeting the performance requirements 1. The main idea of the DVFS

is dynamically scaling the supply voltage of the CPU for a given frequency, so that it

operates at a minimum speed required by the specific task executed (SUEUR; HEISER,

2010). Therefore, this can yield a significant reduction in power consumption because of

the V 2 relationship shown in the Equation 6.1.

Pdynamic = CV 2Af (6.1)

Reducing the operating frequency reduces the processor performance and the power

consumption per second. Also, when reducing the voltage, the leakage current from the

CPU’s transistors decreases, making the processor most energy-efficient resulting in fur-

ther gains (ROSSI et al., 2015). However, determining the ideal frequency and voltage for

a given point of execution is not a trivial task. To make the DVFS management as trans-

parent as possible to the software developer, Operating Systems provide frameworks that

allow each CPU core to have a min/max frequency, and a governor that governs it. Gov-

ernors are kernels models that can drive CPU core frequency/voltage operating points.

Currently, the available governors are:

• Performance: the frequency of the processor is always fixed at the maximum, even

if the processor is underutilized.

• Powersave: the frequency of the processor is always fixed at the minimum allow-

able frequency.

1Available at: http://www.ti.com/lit/an/slva646/slva646.pdf
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• Userspace: allows the user, or any userspace program running to set the CPU for a

specific frequency.

• Ondemand: the frequency of the processor is adjusted as the workload behavior

within the range of frequencies allowed.

• Conservative: the frequency of the processor is adjusted based on the workload

but it is a bit more conservative than the ondemand, by adjusting the frequency

gradually.

In addition, it is possible to set the processor frequency level manually, by editing

the configurations of the CPU frequency driver2 .

6.1.1.2 Power Gating

Power gating consists of selectively powering down certain blocks in the chip

while keeping other blocks powered up. The goal of power gating is to minimize leakage

current by temporarily switching power off to blocks that are not required in the current

operating mode (KEATING et al., 2007). Power gating can be applied either at the unit-

level, reducing the power consumption of unused core functional units or at the core-level,

in which entire cores may be power gated (MADAN et al., 2011) (KAHNG et al., 2013).

Currently, power gating is mainly used in multicore processors to switch off unused cores

to reduce power consumption (OBORIL; TAHOORI, 2012).
Power gating requires the presence of a header “sleep” transistor that can set the

supply voltage of the circuit to ground level during idle times. Power gating also requires

a control logic that decides at which time power gate the circuit. Every time that the power

gating is applied, an energy overhead cost occurs due to distributing the sleep signal to

the header transistor before the circuit is turned off; and turning off the sleep signal and

driving the voltage when the circuit is powered-on again. To cope with this additional

cost, a break-even point must be considered, which is the point when the leakage energy

savings equals the energy overhead of switching the circuit on and off. Figure 6.1 depicts

an example of this scenario, in which the break-even point on the figure represents the

point in time where the cumulative leakage energy savings equals to the energy overhead

incurred by power gating. If, after the decision to power gate a unit, the unit stays idle for

a time interval that is longer than the break-even point, then power gating saves energy.

On the other hand, if the unit needs to be active again before the break-even point is

reached, then power gating incurs an energy penalty (LUNGU et al., 2009).
2Description available at: https://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq-set.html
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Figure 6.1: Break-even point

Source: (LUNGU et al., 2009)

6.1.1.3 Scenarios for Optimization

Considering the large space of exploration regarding the combination of the num-

ber of threads, processor frequency, and the active number of cores, Table 6.1 depicts the

possible scenarios.

Scenario I: it comprises the adaptation of the number of threads at runtime, as al-

ready implemented by LAANT and Aurora. In such scenario, the processor frequency can

be configured depending on the user requirements: performance, powersave, ondemand,

conservative, and userspace (Section 6.1.1.1). Once configured, the processor frequency

will not change at runtime. Also, this scenario does not consider the application of power

gating on the unused cores.

Scenario II: this scenario comprises the adaptation of the processor frequency

level at runtime. In this way, the application will start its execution with the default

number of threads (previously defined by the programmer or the number of cores available

on the platform) and this number will not change at runtime. The changes in the processor

frequency level can be applied in different ways. For example, when memory-bound

applications are being executed, the processor frequency can be reduced to save energy

with no performance loss. In such case, it could be better to set the DVFS governor

for power-saving (Section 6.1.1.1). On the other hand, when CPU-bound applications

Table 6.1: Dscription of the possible scenarios for optimization

Scenario Description
I Adaptation of the number of threads
II DVFS-Only
III Adaptation of the number of threads + DVFS
IV Adaptation of the number of threads + power gating
V Adaptation of the number of threads + DVFS + power gating

Source: The Author
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are being executed, a higher processor frequency can be better, which can be done by

setting the DVFS governor for performance (Section 6.1.1.1). There will also be cases

of applications that may fluctuate their behavior during execution. As Figure 6.2 shows,

such applications can have regions where it is best to set the processor frequency for the

minimum value and regions where the maximum frequency is the best choice. In this

case, setting the DVFS governor for ondemand (Section 6.1.1.1) may be the best choice.

Scenario III: it comprises the adaptation of the number of threads and the proces-

sor frequency level. In this case, different approaches to find the best combination that

offers the best result can be used:

a Definition of the best number of threads first, and after, the definition of the best

processor frequency;

b Definition of the processor frequency first, and then, the definition of the best num-

ber of threads; and

c Definition of the best number of threads and optimal point of processor frequency

together.

The most common technique could be the use of the approaches a and b. However,

they can lead to incorrect results. For instance, let us consider an eight-core processor

with 10 levels of processor frequency. Using the approach (a), it may be that the best

result found is the execution with 4 threads and, after that, the definition of the processor

frequency at the maximum. However, the best configuration for the application is the use

of 8 threads with the frequency set to the minimum. Therefore, to avoid this behavior, the

Figure 6.2: Processor frequency behavior when using the ondemand governor

Source: (SHAFIK et al., 2015a)
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ideal technique to be implemented must be the approach (c), where the best point of the

number of threads and processor frequency are found together.

Scenario IV: It comprises the adaptation of the number of threads together with

the power gating technique. When an OpenMP application is running, it is possible to

bind threads to specific cores (using OpenMP functions). Therefore, depending on the

application behavior, the unused cores could be turned off to save energy. As an example,

lets consider an application that has two parallel regions running on an eight-core proces-

sor: the first one is better executed with six threads while the latter executes better with

only two threads. In this way, when the application is running with six threads on six

cores, the other two cores can be turned off to save energy. The same scenario happens

in the second parallel region, where the other six cores can be turned off. In this sce-

nario, an important information must be considered before applying the power gating: the

break-even point. As Figure 6.1 shows, it represents the point in time where the cumu-

lative leakage energy savings equals to the energy incurred by power gating. If, after the

decision to power gate a core, the core stays idle for a time interval that is longer than the

break-even point, then power gating saves energy. On the other hand, if the core needs to

be active again before the break-even point is reached, then power gating incurs in some

energy penalty (LUNGU et al., 2009).

Scenario V: This last scenario considers the union of the three techniques pre-

sented previously. In this case, the mechanism is able to define the best number of threads,

the optimal point of processor frequency, and apply power gating for the cores that are

not running the application.

6.1.2 Support for Different PPIs and Heterogeneous Architectures

As early discussed in Chapter 3, the PPIs widely used nowadays correspond to

OpenMP, PThreads, Cilk++, and Intel TBB for shared memory environments; MPI for

distributed memory; and the PPIs that exploit parallelism in GPUs: CUDA, OpenACC,

and OpenCL. The same Chapter also showed that homogeneous processors have differ-

ent behavior regarding performance, energy, and EDP; and that this behavior changes

according to the PPI used, the number of threads, and the application characteristic.

However, the DSE in heterogeneous systems is much broader than in the homo-

geneous architectures that use communication through shared memory. For example, a

System on Chip that implements a Network-on-Chip (NoC) with DVFS support and runs
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OpenMP applications may have better energy efficiency when compared to a heteroge-

neous architecture with high-performance computers and GPUs running with CUDA.

Considering this scenario, Aurora can be extended in order to investigate the DSE

of all the possible solutions at runtime when different PPIs and heterogeneous architec-

tures are being considered and choose the best configuration with respect to a given op-

timization metric. In this case, it is necessary to incorporate the following functionalities

into Aurora:

• Support for different PPIs: Aurora should be able to deal with different commu-

nication models and process/thread management. For example, In the same way

that Aurora supports communication through shared variables (OpenMP), it has to

be able to deal with data exchange through message passing, without incurring in

problems with the application execution.

• Support for heterogeneous architectures: Aurora should consider that different

architectures will often require different application binaries, due to the particular-

ities of each ISA and its optimization flags. For example, if the system has a GPP

Intel Core i7 with one GPU and one Intel Co-Processor Xeon Phi, there are differ-

ent optimization flags that can be used to each device. Therefore, Aurora should be

able to deal with this situation.

6.2 Publications Regarding the Scope of this Thesis

In this subsection, the publications regarding the scope of this thesis and work

product of cooperation will be highlighted:

Exploration of parallel computing opportunities:

Conference Papers:

• On the Influence of Static Power Consumption in Multicore Embedded Systems. In:

IEEE International Symposium on Circuits and Systems - (LORENZON; CERA;

BECK, 2015a)

• The Influence of Parallel Programming Interfaces on Multicore Embedded Systems.

In: IEEE Computer Society International Conference on Computers, Software &

Applications - (LORENZON et al., 2015a)
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• Optimized Use of Parallel Programming Interfaces in Multithreaded Embedded Ar-

chitectures. In: IEEE Computer Society Annual Symposium on VLSI - (LOREN-

ZON et al., 2015b)

Journal Articles:

• Performance and Energy Evaluation of Different Multi-Threading Interfaces in Em-

bedded and General-Purpose Processors. In: Journal of Signal Processing Systems

- (LORENZON; CERA; BECK, 2015c)

• Investigating Different General-Purpose and Embedded Multicores to Achieve Op-

timal Trade-offs between Performance and Energy. In: Journal of Parallel and

Distributed Computing - (LORENZON; CERA; BECK, 2016)

Automatically adjusting OpenMP applications:

Conference Paper:

• LAANT: A Library to Automatically Optimize EDP for OpenMP Applications. In:

Design, Automation and Test in Europe (DATE) - (LORENZON; SOUZA; BECK,

2017)

Joint Cooperation:

Conference Paper:

• Adaptive and Polymorphic VLIW Processor to Optimize Fault Tolerance, Energy

Consumption, and Performance - In ACM International Conference on Computing

Frontiers 2018

• Potential Gains in EDP by Dynamically Adapting the Number of Threads for OpenMP

Applications in Embedded Systems - Brazilian Symposium on Computing Systems

Engineering(SCHWARZROCK et al., 2017)

• Improving EDP in Multi-Core Embedded Systems through Multidimensional Fre-

quency Scaling. Submitted to: IEEE International Symposium on Circuits and

Systems - (MARQUES et al., 2017)

• How Programming Languages and Paradigms Affect Performance and Energy in
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APPENDIX A — RESULTS OF AURORA EXECUTION

Figure A.1: Performance - 4-Core System
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Figure A.2: Performance - 4-Core System (Continuation)
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Figure A.3: Energy Consumption - 4-Core System
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Figure A.4: Energy Consumption - 4-Core System (Continuation)
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Figure A.5: EDP - 4-Core System
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Figure A.6: EDP - 4-Core System (Continuation)
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Figure A.7: Performance - 8-Core System
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Figure A.8: Performance - 8-Core System (Continuation)
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Figure A.9: Performance - 8-Core System (Continuation)
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Figure A.10: Energy Consumption - 8-Core System

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(a) BT - Small

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(b) BT - Medium

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(c) CG - Small

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(d) CG - Medium

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(e) FT - Small

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(f) FT - Medium

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(g) LU - Small

16500

17000

17500

18000

18500

19000

19500

20000

20500

21000

21500

22000

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(h) LU - Medium

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(i) MG - Small

1600

1700

1800

1900

2000

2100

2200

1 2 3 4 5 6 7 8 OMP_D FDT Aurora

E
n

e
rg

y
 (

J
o

u
le

s)

Configuration

(j) MG - Medium

Source: The Author



153

Figure A.11: Energy Consumption - 8-Core System (Continuation)
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Figure A.12: Energy Consumption - 8-Core System (Continuation)
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Figure A.13: EDP - 8-Core System
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Figure A.14: EDP - 8-Core System (Continuation)
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Figure A.15: EDP - 8-Core System (Continuation)
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Figure A.16: Performance - 24-Core System
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Figure A.17: Performance - 24-Core System (Continuation)
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Figure A.18: Performance - 24-Core System (Continuation)
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Figure A.19: Energy Consumption - 24-Core System
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Figure A.20: Energy Consumption - 24-Core System (Continuation)
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Figure A.21: Energy Consumption - 24-Core System (Continuation)
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Figure A.22: EDP - 24-Core System
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Figure A.23: EDP - 24-Core System (Continuation)
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Figure A.24: EDP - 24-Core System (Continuation)
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Figure A.25: Performance - 32-Core System
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Figure A.26: Performance - 32-Core System (Continuation)
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Figure A.27: Performance - 32-Core System (Continuation)
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Figure A.28: Energy Consumption - 32-Core System
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Figure A.29: Energy Consumption - 32-Core System (Continuation)
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Figure A.30: Energy Consumption - 32-Core System (Continuation)
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Figure A.31: EDP - 32-Core System
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Figure A.32: EDP - 32-Core System (Continuation)

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(a) SP - Small

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

3.E+07

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(b) SP - Medium

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

2.E+06

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(c) UA - Small

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(d) UA - Medium

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

1.E+06

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(e) PO - Small

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(f) PO - Medium

0.E+00

5.E+04

1.E+05

2.E+05

2.E+05

3.E+05

3.E+05

4.E+05

4.E+05

5.E+05

5.E+05

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(g) FFT - Small

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

2.E+06

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(h) FFT - Medium

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(i) HS - Small

0.E+00

2.E+06

4.E+06

6.E+06

8.E+06

1.E+07

1.E+07

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

O
M

P
_

D

F
D

T

A
u

ro
ra

E
D

P

Configuration

(j) HS - Medium

Source: The Author



175

Figure A.33: EDP - 32-Core System (Continuation)
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(j) HPCG - Medium

Source: The Author
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APPENDIX B — RESUMO EM PORTUGUÊS

B.1 Introdução

Com o aumento da complexidade de aplicações embarcadas que demandam maior

eficiência computacional e a chegada da computação exascale, a grande preocupação está

relacionada com a necessidade de aumentar o desempenho com o mínimo impacto pos-

sível no consumo de energia. Máquinas exascale possuirão 100 vezes mais poder de

processamento que as melhores máquinas disponíveis atualmente, com requerimentos de

energia que corresponde a energia gerada por uma usina nuclear de tamanho médio. Da

mesma forma, a maioria dos sistemas embarcados são móveis e, portanto, dependentes de

bateria. Assim, o desafio não é somente aumentar o desempenho, mas também melhorar

a eficiência energética, isto é, maximizar a quantidade de computação por joule gasto.

A melhoria no desempenho pode ser obtida através da exploração de paralelismo

no nível de instruções ou threads (ILP – Instruction Level Parallelism ou TLP – Thread

Level Parallelism). No ILP, independentes instruções de um único programa são simul-

taneamente executadas em um processador superescalar enquanto houver unidades fun-

cionais disponíveis. No entanto, os fluxos de instruções têm apenas uma quantidade lim-

itada de paralelismo, resultando em enormes esforços para projetar uma microarquitetura

que irá trazer marginal ganhos de desempenho com significativa sobrecarga no consumo

de energia e área do processador. Mesmo se considerar um processador perfeito, a explo-

ração de ILP chegará a um limite superior.

Desta forma, para continuar melhorando o desempenho e proporcionar uma mel-

hor utilização dos transistores extras disponíveis, novos projetos começaram a explorar o

paralelismo no nível de threads de forma mais agressiva. Neste caso, vários processadores

executam simultaneamente partes do mesmo programa. No entanto, esta melhoria de de-

sempenho não é linear e, por vezes, não escala com o número de threads devido a vários

fatores, tais como a sincronização de dados, comunicação entre as threads, lock con-

tention, a largura de banda do barramento de comunicação. Além disso, a sincronização

e comunicação podem aumentar o consumo de energia das aplicações paralelas, uma vez

que elas ocorrem através de regiões compartilhadas da memória. Estas regiões são mais

distantes do processador (por exemplo, memória cache L3 e compartilhada) e têm maior

consumo de energia e tempo de acesso quando comparadas a memórias que estão mais

próximas do processador (por exemplo, registradores e caches L1 e L2).
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Considerando o cenário acima, escolher o número correto de threads a ser us-

ado no desenvolvimento de aplicações paralelas pode fornecer melhorias no desempenho

e economia de energia. Por exemplo, uma aplicação pode ser executada com poucas

threads, deixando recursos de hardware inativos (por exemplo, memórias, cores e barra-

mento de comunicação). Por outro lado, esses mesmos recursos podem saturar devido

à alta taxa de comunicação e sincronização se muitas threads são criadas. Em ambas

as situações, a execução paralela será ineficiente, sendo mais lenta e consumindo mais

energia que se estivesse sendo executada com o número apropriado de threads. Mesmo

assumindo que o desenvolvedor pode decidir o número ideal de threads para executar

uma aplicação em antecipação, este número pode mudar devido diversas razões: conjunto

de entrada, mética avaliada, processador utilizado e númeo de regiões paralelas de uma

aplicação.

Para abordar esse complexo problema de escolha do número apropriado de threads

para executar uma aplicação paralela, métodos para encontrar automaticamente este número

são usados com três abordagens principais: off-line, on-line e híbrido. Em um método

off-line, o framework executa uma aplicação com um número diferente de threads de cada

vez e escolhe o número que oferece o melhor resultado. No entanto, o desenvolvedor de

software deve reexecutar o framework sempre que o conjunto de entrada e/ou processador

for alterado. Por outro lado, em métodos on-line, o framework ajusta o número de threads

em tempo execução através de informações do ambiente de execução, impondo um over-

head extra para a execução da aplicação. Por fim, métodos híbridos compreendem uma

fase off-line inicial para aprender as características da aplicação e do ambiente de exe-

cução; e uma fase on-line na qual o número de threads é ajustado dinamicamente durante

a execução da aplicação. Neste caso, as limitações são as mesmas que as encontradas no

método off-line e on-line.

B.2 Contribuições

Considerando o cenário apresentado acima, esta tese apresenta as seguintes con-

tribuições:

• Conduzir um extenso estudo ds oportunidades de computação paralela com relação

a diferentes interfaces de programação paralela e processadores de propósito geral

e embarcados.
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• Desenvolver uma biblioteca para adaptar o número de threads de aplicações OpenMP,

de maneira automática ao usuário.

• Através de correlação matemática, apresentar os gargalos que afetam a escalabili-

dade das aplicações paralelas.

• Incorporar a abordagem desenvolvida na biblioteca do OpenMP (libgomp), para

que a adaptação do número de threads ocorra de maneira transparente e automática

para o usuário.

B.3 Possibilidade de Exploração de Computação Paralela

Nesta etapa da tese, a exploração estática para combinações ideais de proces-

sadores, modelos de comunicação e exploração de TLP para alcançar os melhores re-

sultados em desempenho, energia e EDP foi realizada. Um grande número de variáveis

foi considerado: 5 processadores multicore com diferentes microarquiteturas e ISAs; 14

benchmarks paralelos classicados de acordo com a taxa de comunicação; quatro inter-

faces de programação paralela classificadas em duas classes de modelos de comunicação;

diferentes níveis de exploração de TLP; e quatro níveis diferentes de potência estática do

processador. Demonstramos que apesar de haver combinações com o melhor desempenho

e o menor consumo de energia, não existe uma única combinação que ofereça o melhor

resultado para ambos ao mesmo tempo. No entanto, encontramos alguns resultados sig-

nificativos, resumidos a seguir.

Para as aplicações com alta demanda de comunicação, a escolha da PPI é im-

portante para o resultado final: PThreads mostrou ser a melhor escolha para todos os

processadores Intel (GPP ou embarcados), pois proporciona consideráveis melhorias de

desempenho em relação aos outros ao mesmo preço do consumo de energia da versão

sequencial. Por outro lado, ao explorar laços paralelos, o OpenMP é melhor para proces-

sadores ARM, já que o impacto do mecanismo de busy-waiting é menor nesses proces-

sadores do que nos Intel. Em geral, o MPI é a pior escolha para todos os processadores,

apresentando pouca escalabilidade: à medida que a exploração de TLP aumenta, os gan-

hos de desempenho são limitados pela comunicação baseada em mensagens; e o consumo

de energia aumenta quando comparado à sua versão sequencial.

O cenário é diferente para benchmarks com baixa demanda de comunicação. Para

estes, o que importa é o modelo de comunicação, em vez de uma PPI específica. Uma vez
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que as aplicações são CPU-bound, a maneira como o processador explora o ILP e a fre-

quência de operação tem maior importância. Independentemente da PPI, o desempenho

aumenta e a energia diminui à medida que o TLP aumenta, resultando em um melhor

EDP. Portanto, mesmo que essas aplicações escalam melhor que as com alta demanda

de comunicação, o espaço de design é mais restrito, oferecendo menos oportunidades de

otimização.

Com toda a análise realizada, mostrou-se que existe um grande espaço de explo-

ração no que tende a escolha do número ótimo de threads para executar uma dada apli-

cação. No entanto, o desenvolvimento de uma única abordagem para otimizar o número

de threads envolvendo todas as PPIs estudadas neste capítulo não é factível devido a

maneira como cada uma delas gerencia a exploração do paralelismo. Desta maneira, o

OpenMP foi escolhido para receber a implementação de tal abordagem.

B.4 Otimização de Aplicações OpenMP

Duas abordagens foram propostas para realizar a otimização de aplicações imple-

mentadas com OpenMP através da busca pelo número ideal de threads para executar cada

região paralela. Elas são apresentadas nas subseções a seguir.

B.4.1 LAANT

LAANT é uma biblioteca desenvolvida para adaptar automaticamente o número de

threads das aplicações OpenMP. Ela é capaz de encontrar em tempo de execução o número

ideal de threads para cada região paralela da aplicação, aprendendo o melhor número de

threads conforme o programa é executado e resultando em melhorias significativas no

EDP com uma sobrecarga quase desprezível.

O processo proposto é completamente automático para o desenvolvedor. Ele pode

ser aplicado a qualquer aplicativo paralelo desenvolvido com a interface OpenMP, ano-

tando código nas regiões paralelas, que já foram identificadas pelas diretivas OpenMP.

LAANT pode otimizar as regiões paralelas para diferentes métricas, como EDP, desem-

penho, consumo de energia, entre outros.
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B.4.1.1 Metodologia e Avaliação

Nove aplicações já paralelizadas com OpenMP e escritas em C e C++ de um vasto

conjunto de benchmarks e domínios foram escolhidas. Os experimentos foram realizados

em três diferentes processadores multicore: Intel Core i7, Xeon E5-2630 e Xeon E5-2650.

Cada benchmark foi executado com dois conjunto de entrada: pequeno e médio. LAANT

foi comparado com duas abordagens: a maneira usual de executar aplicações paralelas,

onde o número de threads é igual ao número de núcleos do processador (chamado de

baseline); e OpenMP Dynamic, uma abordagem do próprio OpenMP que ajusta o número

de threads de uma região paralela buscando o melhor aproveitamento dos recursos com-

putacionais.

Comparando com o baseline e considerando a média geométrica de todo o con-

junto de benchmarks, LAANT reduziu o EDP em até 29% no processador com 24-cores.

O menor ganho de LAANT foi obtido no processador com 32-cores, e, mesmo neste caso,

LAANT apresentou 15% de redução no EDP.

Já na comparação com o OpenMP Dynamic, LAANT é melhor na maioria dos

casos. Na média geométrica de todo o conjunto de benchmarks, LAANT tem 21% de

ganhos de EDP no processador com 8-cores, 44% no processador com 24-cores, e 32%

no processador com 32-cores.

B.4.2 Aurora

Aurora é uma extensão de LAANT. Da mesma forma, é uma abordagem que auto-

maticamente encontra, em tempo de execução e de acordo com uma determinada métrica

definida a priori pelo usuário, o número ideal de threads para cada região paralela de qual-

quer aplicação OpenMP. Além disso, Aurora pode se readaptar no caso de uma mudança

no comportamento de uma determinada região paralela durante a execução do programa.

Aurora foi construída sobre a biblioteca original do OpenMP, sendo completa-

mente transparente para o designer e usuário final: dado um binário de aplicação OpenMP,

Aurora é executada sem nenhuma alteração de código. Portanto, as aplicações OpenMP

existentes não precisam ser anotadas, recompiladas ou passar por qualquer transformação

de código. Essa transpartência é obtida redirecionando as chamadas originalmente dire-

cionadas para a biblioteca OpenMP dinamicamente conectada ao Aurora. Esse redire-

cionamento é configurado através da definição de uma variável de ambiente no sistema

operacional.
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B.4.2.1 Metodologia e Avaliação

Quinze aplicações já paralelizadas em OpenMP, de um extenso conjunto de bench-

marks e classificadas de acordo com a característica que limita sua escalabilidade foram

consideradas. Cada aplicação foi executada com dois conjuntos de entrada: pequeno e

médio. Os experimentos foram realizados em quatro processadores multicore: Intel Core

i5-4460, Intel Core i7-6700, Intel Xeon E5-2630 e Intel Xeon E5-2640.

Aurora foi comparada com outras quatro abordagens: Baseline: a aplicação é

executada com o número máximo de threads disponíveis no sistema; OMP_Dynamic:

abordagem interna do OpenMP; Feedback-driven threading (FDT): abordagem pro-

posta por Suleman, et al. em (SULEMAN; QURESHI; PATT, 2008); e Oráculo: que

consiste da melhor solução possível para cada região paralela.

Aurora vs Baseline: na maioria dos casos, Aurora mostra melhorias em relação

a qualquer métrica. Por outro lado, se considerarmos a média geométrica em qualquer

cenário, Aurora é sempre melhor (em cenários muito específicos onde a exploração do es-

paço de design é limitada, ela apresenta resultados similares ao baseline). Considerando

seu melhor caso comparado com o baseline, o tempo de execução foi reduzido em 16%

com o conjunto de entrada média executando no sistema de 32 núcleos. O melhor cenário

para o consumo de energia e EDP foi com o conjunto de entradas pequeno no sistema de

32 núcleos: a energia é reduzida em 34% e o EDP é melhorado em 47%. Ao considerar

a média geométrica geral (todo o conjunto de referência e todos os processadores), Au-

rora forneceu 10% de melhorias de desempenho, 20% de reduções de energia e 28% de

melhorias no EDP.

Aurora vs OMP_Dynamic: Considerando o melhor caso para cada métrica con-

siderando a média geométrica, Aurora reduziu o tempo de execução em 26% (entrada

média na máquina de 4 núcleos), consumo de energia em 24% (entrada média no sistema

de 32 núcleos) e EDP em 38% (entrada pequena no sistema de 4 núcleos). Na média

geométrica geral, a Aurora foi 11% mais rápida, economizou 17% de energia e melhorou

o EDP em 32%.

Aurora vs FDT: Aurora supera o FDT em todos os casos em relação a qualquer

métrica e processador. No melhor caso da Aurora para cada métrica em relação à média

geométrica, Aurora reduziu o tempo de execução e o consumo de energia em 34%, e

o EDP em 56% (entrada pequena na máquina de 24 núcleos). Ao considerar a média

geométrica geral, Aurora forneceu 26% de melhorias de desempenho, 25% de reduções

de energia e 45% de melhorias no EDP.
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Aurora vs Oráculo: Ao considerar essa solução ótima, podemos medir o custo da

curva de aprendizado, ou seja, a sobrecarga de Aurora, que é originada de duas situações

diferentes: a execução do próprio algoritmo de busca; e a execução de uma determinada

região paralela com um número de threads que não é o ideal, enquanto o algoritmo de

busca está tentando diferentes possibilidades de convergir para o número ideal. Aurora

mostrou alto sobrecusto nas seguintes situações:

• O melhor resultado é obtido com o número máximo de threads ou um número

próximo a ele.

• A região paralela tem um número relativamente pequeno de interações, mas é exe-

cutada por um tempo significativo.

• Aplicatções com tempo de execução curto (isto é, menos de 10 segundos).

• Aplicações com muitas regiões paralelas, nas quais a maioria delas tem uma carga

de trabalho baixa.
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