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Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with
applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations
of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical
expression for the cumulant generating function of the number of eigenvalues IN (x) smaller than x ∈ R+, from
which all cumulants of IN (x) and the rate function �x(k) controlling its large-deviation probability Prob[IN (x) =
kN ] � e−N�x (k) follow. Explicit results for the mean value and the variance of IN (x), its rate function, and its third
cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement.
The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101
(2016)] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.
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I. INTRODUCTION

In the past few decades, we have experienced an explo-
sion of available information—the so-called Big Data era.
Problems in modern data analysis usually involve a large
number of variables and observations, posing new challenges
in the processing of data. This high dimensionality of the
dataset typically occurs in climate studies, genetics, biomedical
imaging, and economics [1].

Suppose one performsP measurements ofN variables char-
acterizing a system. For instance, the variables could be assets
in a stock market or a collection of climate observables, while
the measurements of all variables could be simultaneously
performed for P different times. The collected data can be
organized in an N × P matrix ξ , with the element ξij providing
the measurement j of the variable i. The N × N sample covari-
ance matrix M of the dataset is built from the product M = ξξT

and it encodes all possible correlations among the variables.
The covariance matrix is at the core of multivariate statistical
analysis, with applications in dimensional reduction methods
and classifying procedures, such as principal component [2]
and linear discriminant analyses [3], respectively.

Generally speaking, it is reasonable to expect that in many
natural phenomena, each variable is significantly correlated
with only a few others, giving rise to sparse covariance
matrices, whose main feature is the presence of a large amount
of entries that are very small or even zero. In this context, an im-
portant example is the problem of inferring, from the empirical
covariance matrix, the causal influences among the individual
components of a system. This is typically the case, for instance,
in the experimental reconstruction of the interactions between
the elements of biological systems, such as cellular signaling
networks [4], gene regulatory networks [5], and ecological

association networks [6,7]. Besides that, performing numerical
tasks with large covariance matrices, where all entries are
strictly nonzero, is computationally very expensive, and, in
this case, one usually resorts to regularization techniques in
order to bring the matrix into a sparse form [8].

Since the pioneering work of Wishart [9], random matrix
theory has been playing a pivotal role in multivariate statistics
[10]. Essentially, results derived from random matrix models
serve as important benchmarks through which comparisons
with real data can be made. The simplest null model for the
covariance matrix M consists in assuming that the entries of
ξ are independent Gaussian random variables. In this case,
the joint distribution of the eigenvalues of M is analytically
known, which forms the starting point to employ the Coulomb
gas technique [11–13] and derive a wealth of quantitative infor-
mation about the eigenvalue statistics of the covariance random
matrix [14–17], including a detailed account of the typical and
atypical fluctuations of its eigenvalues [16]. Unfortunately,
apart from the averaged spectral density [18], much less is
known about the eigenvalue statistics of sparse covariance
matrices. The main reason lies in the absence of an analytical
expression for the joint distribution of eigenvalues, which
hampers the application of the Coulomb gas approach. This is a
general problem in ensembles of diluted random matrices, and,
although novel approaches have helped us to push forward the
understanding of the eigenvalue statistical properties in these
ensembles [18–27], from an analytical viewpoint we still have
a long way to go when compared to classical ensembles of
random matrices.

In this work, we develop an analytical approach to quantify
the eigenvalue fluctuations of sparse covariance random matri-
ces. By relying on a recent technique [28], based on the replica
method of disordered systems [29], we derive an analytical
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expression for the large-N behavior of the cumulant generating
function of the number of eigenvalues IN (x) smaller than
a certain threshold x ∈ R+. This function gives access to
all cumulants of the random variable IN (x) as well as to
its large-deviation probability, providing a full picture of the
eigenvalue fluctuations for this class of random matrices. From
the numerical solution of our analytical equations, we present
explicit results for the mean and the variance of IN (x), its third
cumulant, and its rate function governing the large-deviation
probability. We show that, similarly to the atypical eigenvalue
fluctuations of the adjacency matrix of random graphs [30],
the rate function of IN (x) is asymmetric around its mini-
mum, which characterizes an unbalanced contribution of rare
samples responsible for increasing or decreasing IN (x) with
respect to its typical value. The exactness of our theoretical
findings is fully supported by direct diagonalization of finite
random matrices.

In the next section, we define the ensemble of sparse
Wishart matrices and the main quantity we consider in order
to study eigenvalue fluctuations. In Sec. III we present explicit
results derived from our theoretical approach, while in the final
section we discuss some final remarks. All technical details
are concentrated in two appendixes. Appendix A explains all
steps involved in the derivation of the cumulant generating
function of IN (x). In that appendix, we also discuss some
mathematical subtleties regarding the representation of IN (x)
in terms of the complex logarithm. In Appendix B, we describe
the algorithmic approach employed to solve numerically the
main analytical equations obtained from the theory.

II. RANDOM MATRIX MODEL AND THE
GENERAL SETTING

As we are interested in the ensemble of sparse or diluted
Wishart matrices, we need to decide a way to introduce dilution
in the Gaussian or classical Wishart ensemble. We proceed
as follows: we consider rectangular N × P matrices ξ whose
entries are independent and identically distributed random
variables drawn from the distribution

p(ξiμ) = d

N
Pξ (ξiμ) +

(
1 − d

N

)
δ(ξiμ), (1)

where Pξ (ξ ) is the probability density for the nonzero entries
of ξ . From a graph viewpoint [31], the random matrix ξ

corresponds to the adjacency matrix of a weighted Poissonian
bipartite random graph with two types of nodes [18]: i-nodes,
associated with the row index of ξ , and μ-nodes, associated
with the column index of ξ . The total number of nodes isN + P

and the average degree of the μ-nodes is d, while c = αd is
the average degree of the i-nodes, with α = P/N . Now we
introduce the ensemble of N × N symmetric diluted Wishart
random matrices, in which the entries Mij of a given covariance
random matrix M are obtained from

Mij = 1

d

P∑
μ=1

ξiμξjμ. (2)

Defining λ1, . . . ,λN as the N positive eigenvalues of M,
we are interested here in the statistics of the random variable,

IN (x) =
N∑

α=1

�(x − λα), (3)

which counts the number of eigenvalues smaller than a
threshold x ∈ R+ (� is the Heaviside function). The main
goal here is to study the cumulants of IN (x) and the rate
function controlling its large-deviation probability. For the
random matrix model defined by Eqs. (1) and (2), the main
difficulty in pursuing an analytical study of the fluctuations
of IN (x) lies in the absence of an invariance property of
the ensemble and the corresponding unknown analytical form
of the joint distribution of eigenvalues [32]. Therefore, the
analytical method of [16] is simply inapplicable. In spite of
that, one may still hope to derive analytical results for the
statistics of IN (x), provided one finds an explicit link between
IN (x) and the random matrix M. Such a link is obtained by
using the representation of the Heaviside function in terms
of the discontinuity of the principal value of the complex
logarithm,

IN (x) = 1

2πi
lim

ε→0+

N∑
α=1

[Ln(λα − xε) − Ln(λα − xε)], (4)

where xε = x − iε, and (· · · ) denotes the complex conjugate.
The above identity is the starting point to study the statistics

ofIN (x). The cumulant generating function ofIN (x) is defined
as

Fx(y) = − lim
N→∞

1

N
Ln〈e−yIN (x)〉M , (5)

in which 〈· · · 〉M is the ensemble average with the distribution
of the random matrix M. The 
-cumulant of IN (x), defined as

κ
(x) =
〈
I


N (x)
〉c
M

N
(6)

in terms of the connected correlation 〈· · · 〉c, is obtained from
Fx(y) according to

κ
(x) = (−1)
+1 ∂
Fx(y)

∂y


∣∣∣∣
y=0

. (7)

Invoking the Gärtner-Ellis theorem [33], the probability of
having kN eigenvalues smaller than x behaves asymptotically
for large N as

Prob[IN (x) = kN ] � e−N�x (k), (8)

where the rate function �x(k) is obtained from Fx(y) by the
Legendre transform:

−�x(k) = inf
y∈R

[ky − Fx(y)]. (9)

Thus, all cumulants of IN (x) and its large-deviation probabil-
ity follow from the analytical expression for Fx(y), presented
in the next section.

III. RESULTS

The exponential form of Fx(y) [see Eq. (5)], when com-
bined with the identity (4), is suitable for the application of the
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replica approach in order to calculate the ensemble average
and the limit N → ∞ in Eq. (5). We thoroughly explain all
steps of such a calculation in Appendix A, while here we only
present the final outcome, namely the analytical expression for
the cumulant generating function:

Fx(y) = A
∫

dd� wρ()wk(�) exp

[
− iy

2π
Ln

(
 + 1

�

 + 1
�

)]

− αLn

{∫
dσ wσ (σ ) exp

[
− iy

2π
Ln

(
1 + σ

1 + σ

)]}

−Ln

{ ∞∑

=0

A



!

∫ ( 
∏
s=1

d�swk(�s)

)

× exp

[
iy

2π
Wε(�1, . . . ,�
)

]}
. (10)

The weight Wε(�1, . . . ,�
) in the above equation is given by

Wε(�1, . . . ,�
) =

∑

s=1

Ln

(
�s

�s

)
− Ln

(∑

s=1 �s − xε∑

s=1 �s − xε

)
,

(11)

while wρ(), wk(�), and wσ (σ ) are the distributions of the
complex variables , �, and σ . These distributions solve the
following set of self-consistency equations:

wρ() = 1

N1

∞∑

=0

e−AA



!

∫ ( 
∏
s=1

d�swk(�s)

)

× exp

[
iy

2π
Wε(�1, . . . ,�
)

]
δ

(
− 1∑


s=1 �s − xε

)
,

(12)

wσ (σ ) =
∞∑

k=0

e−ddk

k!

∫ ( k∏

=1

d
wρ(
)dξ
Pξ (ξ
)

)

× δ

(
σ − 1

d

k∑

=1

ξ 2

 


)
, (13)

wk(�) =
∫

dξ Pξ (ξ )
∫

dσ wσ (σ )δ

[
� − ξ 2

d(1 + σ )

]
. (14)

The constant factors N1 and A, appearing in Eqs. (10) and
(12), are defined as follows:

N1 =
∞∑


=0

e−AA



!

∫ ( 
∏
s=1

d�swk(�s)

)

× exp

[
iy

2π
Wε(�1, . . . ,�
)

]
, (15)

A = αd∫
dσ wσ (σ ) exp

[− iy

2π
Ln
(

1+σ
1+σ

)] . (16)

Equation (10) is the main analytical result of our work, since it
provides the exact cumulant generating function of IN (x) for
the sparse Wishart ensemble in the limit N → ∞, from which
the rate function and the behavior of all cumulants readily

follow. Notice that Fx(y) depends on the distributions wρ(),
wk(�), and wσ (σ ) through the solution of Eqs. (12)–(14), for
which there is no closed, analytical form in the general case.
Hence we must solve Eqs. (12)–(14) numerically, which can be
done very efficiently using the weighted population dynamics
algorithm. All steps of this numerical method are carefully
discussed in Appendix B. We point out that the limit ε → 0+
is implicitly assumed in Eqs. (10)–(16).

Equation (10) can be interpreted as a combination of
effective moments or cumulant generating functions of the
following random variables:

I1(,�) ≡ i

2π
Ln

(
1
�

+ 

1
�

+ 

)
, (17)

I2(σ ) ≡ i

2π
Ln

(
1 + σ

1 + σ

)
, (18)

I3({�s}
s=1) ≡ i

2π
Wε(�1, . . . ,�
). (19)

From Eq. (10), we note that the dependence of Fx(y) on y

is explicit, as the generating parameter, and implicit, since the
measures wρ , wk , and wσ also depend on y through the saddle-
point Eqs. (12)–(14). However, it can be shown that, for the
first two cumulants, the implicit derivative is not needed and
one readily obtains

κ1(x) = −αd〈I1(,�)〉 + 〈I3
({�s}
s=1

)〉
+ α〈I2(σ )〉, (20)

κ2(x) = αd
〈
I2

1 (,�)
〉

− [〈I2
3

({�s}
s=1

)〉− 〈I3
({�s}
s=1

)〉2]
− α
[〈
I2

2 (σ )
〉− 〈I2(σ )〉2

]
, (21)

in which the brackets 〈· · · 〉denote the average over the complex
random variables , �, and σ with their corresponding
distributions evaluated at y = 0. This average is calculated
through the population dynamics method, as explained in
Appendix B. Although we do not derive here the analytical
equations for higher-order cumulants, in principle one can
study their large-N behavior by computing numerically the
derivatives of Eq. (10) with respect to y.

Let us now present explicit numerical results obtained from
our theoretical approach. Although our equations are valid for
arbitrary α = P/N , here we limit ourselves to the regime α >

1, in which the covariance random matrix is nonsingular and,
consequently, more relevant for practical applications. For the
sake of simplicity, we present results only for the case Pξ (ξ ) =
δ(ξ − 1).

In Fig. 1 we illustrate the behavior of the first two cumulants
of IN (x) and compare the outcome of our theory with direct
diagonalization of finite random matrices. Since the diluted
Wishart ensemble is characterized by two parameters (α,d),
we have chosen in Fig. 1 the values (α,d) = (2,1) and (α,d) =
(2,2), as the spectral density displays rather distinct features
for these two pairs of values: while in the first case the
continuous part of the spectrum is bathed in multiple Dirac
δ peaks, in the second case the contribution of the discrete
eigenvalues is less important. The existence of δ peaks is
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(a) α = 2 andd = 1.
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FIG. 1. The first and second cumulants of IN (x) as functions of x

for different values of α and d . The solid lines are obtained from the
solution of Eqs. (12)–(14) using the weighted population dynamics
method with L = 107 and ε = 10−8 (see Appendix B). The black
curve is the mean value of IN (x), whereas the red curve gives the
variance of IN (x). The markers correspond to results coming from
numerical diagonalization of an ensemble with 104 sparse Wishart
matrices of dimension N = 1000. The insets display the average
spectral density ρ(λ) for each pair of model parameters.

a typical feature in the spectral properties of sparse random
matrices [18,19,22]. The peaks are commonly located at the
eigenvalues of isolated, disconnected trees that appear for small
average degrees of the associated random graph model [34].
As clearly shown in Fig. 1(a), the presence of δ peaks in the
spectrum manifests itself as discontinuities in the behavior
of the first two cumulants, similarly to the analogous results
derived for the adjacency matrix of random graphs [30,35].

To further inspect the validity of our theory, we have also
compared the third cumulant of IN (x), derived from Eq. (10),
with direct diagonalization. In this case, we need to take into
account the explicit and implicit dependences of the cumulant
generating function with respect to y. Instead of trying to
derive a set of self-consistency equations for the derivatives
of the distributions wρ , wσ , and wk , we have opted to evaluate
the third derivative of Fx(y) by finite differences, using the
algorithm presented in [36]. In Fig. 2 we show the behavior of
the third cumulant κ3(x) for (α,d) = (2,1). Apart from small
fluctuations, the agreement between our theoretical approach
and numerical diagonalization is very good.
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x

3(
x)

FIG. 2. The third cumulant of IN (x) as a function of x for
(α,d) = (2,1). The solid line has been obtained by evaluating the
cumulant generating function Fx(y) from Eq. (10) at seven points
of y, followed by a finite-differences calculation of the third-order
derivative of Fx(y). These results have been computed through the
weighted population dynamics algorithm withL = 106 and ε = 10−8.
Moreover, each estimate of Fx(y) has been averaged 100 times
in order to reduce its fluctuations and improve the accuracy of
the finite-differences calculation. The markers correspond to results
coming from numerical diagonalization of an ensemble with 106

sparse Wishart matrices of dimension N = 300.

Let us now turn our attention to the behavior of the rate
function �x(k). Figure 3 illustrates the rate function for
x = 1.01 and the same combinations of model parameters
as discussed in Fig. 1: (α,d) = (2,1) and (α,d) = (2,2). The
outcome of our theory is compared with direct diagonalization
of finite random matrices, showing an excellent agreement in
the range of values of k that can be probed through numerical
diagonalization. Indeed, the probability of observing IN (x) =
kN decays exponentially with N , which promptly hinders
any attempt to explore a sizable interval of k for large N ,
as one needs to diagonalize an unfeasible number of finite
random matrices. This remarkable limitation of numerical
diagonalization procedures further illustrates the importance
of our theory, since we can virtually determine the rate function
�x(k) for any value of 0 � k � 1.

As can be noted in Fig. 3, the function �x(k) is asymmetric
around its minimum, whose value of k coincides with the
first cumulant of IN (x), calculated from Eq. (20). Such an
asymmetric feature is strikingly distinct from the symmetry of
the analogous rate function in the classical Wishart ensemble
[16]. This seems to be a general property of sparse random
matrix ensembles [30], essentially due to the presence of Dirac
δ peaks in their spectral density [34]. Concerning Fig. 3(a), we
conclude that random matrix samples that increase IN (x) are
more likely, since the rate function grows slowly for k larger
than its typical value. This is due to the presence of a Dirac δ

peak with a large weight precisely at x = 1, as clearly shown
by the discontinuous behavior of κ1(x) at x = 1 [see Fig. 1(a)].
One expects that the weights of the discrete contributions to
the spectral density decrease exponentially with the average
degree d [34], which results in a more symmetric rate function
for larger values of d. This picture is consistent with the results
in Figs. 1 and 3.
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FIG. 3. The rate function of the fraction of eigenvalues k inside
the interval (−∞,x] for x = 1.01 and two pairs of parameters charac-
terizing the sparse Wishart ensemble. The solid black line is derived
from the solution of Eqs. (12)–(14) using the weighted population
dynamics method with L = 106 and ε = 10−8 (see Appendix B). The
markers are results obtained from numerical diagonalization of an
ensemble with 106 sparse Wishart matrices of dimensions N = 25
(brown), N = 50 (orange), and N = 100 (yellow).

IV. CONCLUSION

We have discussed here a theoretical approach to study the
eigenvalue fluctuations of sparse Wishart random matrices,
in which the members of the random matrix ensemble are
covariance matrices with a large amount of zero entries. Such
a class of random matrices is of fundamental importance in
various techniques to process large datasets in multivariate
statistics. The main outcome of our work is an analytical
expression [see Eq. (10)] for the N → ∞ behavior of the
cumulant generating function of the number of eigenvalues
IN (x) within the interval (−∞,x]. This analytical formula
is the main source of quantitative information about the
fluctuations ofIN (x). In fact, we have presented explicit results
for the mean and the variance of IN (x), its rate function
characterizing the probability of rare events, and the third-order
cumulant of IN (x).

Similarly to previous results for the adjacency matrix of
random graphs [30], the rate function controlling the large-
deviation probability of IN (x) is asymmetric in the case of the

sparse Wishart ensemble. This feature is particularly evident
in the regime of high sparseness, where δ peaks due to isolated
clusters in the associated random graph are abundant in the
spectral density. It is reasonable to expect that the existence
of Dirac δ peaks with large weights, at which a large number
of eigenvalues accumulates, strongly influences the typical and
rare fluctuations ofIN (x), being responsible for the asymmetry
of the rate function. It would be interesting to further explore
this issue by explicitly disentangling the contributions to the
rate function coming from the discrete and continuous parts of
the spectral density [37].

Finally, the present work further reinforces the exactness of
the powerful method designed in [30]. To test the validity of
our analytical results, we have carefully compared them with
numerical diagonalization of large random matrices, and the
agreement between these two independent approaches is very
good. This further corroborates our theoretical method, in spite
of its lack of a full mathematical rigor (see Appendix A).
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APPENDIX A: DERIVATION OF THE CUMULANT
GENERATING FUNCTION

The number of eigenvalues IN (x) within the unbounded
interval (−∞,x], defined in Eq. (3), can be rewritten using an
identity for the Heaviside function [30,35],

IN (x) = lim
ε→0+

1

2πi

N∑
α=1

[Ln(λα + iε − x) − Ln(λα − iε − x)],

(A1)

where Ln(· · · ) corresponds to the principal branch of the
complex logarithm. One of the central formulas in applying
spin-glass techniques to random matrix theory is the following
result for the multidimensional Fresnel integral:

Z(xε) =
∫ ( N∏

i=1

dyi

)
exp

[
− i

2
yT · (xεI − M) y

]

= (2π )N/2 exp

[
−1

2

N∑
i=1

Ln(λi − xε) + i
Nπ

4

]
, (A2)

where xε = x − iε, yT = (y1, . . . ,yN ), and I is the N × N

identity matrix. In the complex plane, neither the exponential
nor the logarithm are injective functions. While this is not
a problem when studying the spectral density, some initial
caution is warranted when considering the statistics of IN (x).
Being naive with these multivalued functions in the complex
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FIG. 4. The shifted index number IN (x) for a single realization of
an N × N random matrix. The function IN (x) counts the number of
eigenvalues smaller than x. Here we show a comparison between two
representations of IN (x): Eq. (A3) (solid orange line) and Eq. (A1)
(solid blue line). The vertical gray lines denote the positions of each
one of the eigenvalues {λα}20

α=1.

plane, Eq. (A1) can be written as follows:

IN (x) = lim
ε→0+

1

πi

[
LnZ(xε) − LnZ(xε) + Nπi

2

]
, (A3)

with (· · · ) denoting complex conjugation.
Clearly, expression (A3) does not provide the correct result

for IN (x), given precisely by Eq. (A1). This situation is
illustrated in Fig. 4, where we compare the outcomes of
Eqs. (A3) and (A1) for a single random matrix of size N = 20.
Thus, Eq. (A3) is unfit to count the number of eigenvalues for
a single realization of M. The reason is that we have naively
folded in the sum appearing in Eq. (A1) as products inside the
logarithms in Eq. (A3), without any regard of the multivalued
character of the complex logarithm. In other words, we have
assumed that the complex logarithm fulfills the same standard
properties as the logarithm of a real variable.

Although Eq. (A3) is unsuitable to count the number of
eigenvalues, it is the appropriate starting point to compute
the ensemble average using the replica approach. It is thus a
relevant question whether the above procedure leads to correct
results for the statistics of the index. As we show in the paper,
our method does yield correct results when comparing the
final analytical expressions for the rate function and for the
cumulants of IN (x) with numerical diagonalization, which
shows that Eq. (A3) correctly encodes the statistical properties
of the index. We have some hint as to why this naive procedure
works: we call it the folding-unfolding mechanism. After
going from Eq. (A1) to Eq. (A3), one derives an effective
theory using the replica method, which essentially consists
of decoupling sites by coupling replicas [29]. This theory
can then be unfolded by factorizing over the sites through
the introduction of a suitable order parameter, restoring the
correct scaling of the moments of IN (x) with respect to N .
The noninjective nature of the logarithm in the complex plane
seems irrelevant for the statistical properties of IN (x), which
implies that we can be careless about the actual prescription
used to represent the multidimensional Gaussian integral.

Let us now proceed to the analytical computation of the
cumulant generating function. By substituting Eq. (A3) in
Eq. (5), the cumulant generating function can be expressed
as follows:

Fx(y) = y

2
− lim

N→∞
lim

ε→0+

1

N
Ln〈[Z(xε)]

iy

π [Z(xε)]−
iy

π 〉M ,

(A4)

with 〈· · · 〉M denoting the ensemble average over the distribu-
tion of M [see Eqs. (1) and (2)]. To calculate Fx(y) for large
N , we use the replica method in the form of the identity

Fx(y) = y

2
− lim

N→∞
lim

ε→0+
lim

n±→± iy

π

1

N
LnQN (n±,xε), (A5)

where we have introduced the object

QN (n±,xε) = 〈[Z(xε)]n+[Z(xε)]n−〉M . (A6)

Initially, the exponents n± are assumed to be positive integers.
After the ensemble average in the above equation has been
calculated for N → ∞, we perform the replica limit n± →
± iy

π
and make an analytical continuation of n± to the imaginary

axis.
Using the Fresnel integral representation of Eq. (A2), we

write QN (n±,xε) as follows:

QN (n±,xε) =
∫ ( n+∏

a=1

d za

n−∏
a=1

d ya

)

× exp

[
− ixε

2

n+∑
a=1

N∑
i=1

z2
ia + ixε

2

n−∑
a=1

N∑
i=1

y2
ia

]

×
〈

exp

⎡
⎣ i

2

N∑
i,j=1

Mij (z
i
· z

j
− y

i
· y

j
)

⎤
⎦〉

M

,

(A7)

in which za ≡ (z1a, . . . zNa), ya ≡ (y1a, . . . yNa), z
i
=

(zi1, . . . ,zin+ ), and y
i
= (yi1, . . . ,yin− ), with i,j = 1, . . . ,N .

Equation (A7) holds in general for a real symmetric matrix M.
After computing the ensemble average in Eq. (A7) with the
distribution of M, defined by Eqs. (1) and (2), and introducing
the order-parameter function

ρ(z,y) = 1

N

N∑
i=1

δ(z − z
i
)δ(y − y

i
), (A8)

the quantity QN (n±,xε) can be expressed as a path integral
over two functions, ρ(z,y) and k(z,y), defined on the replica
space (z,y) ∈ Rn+ × Rn− ,

QN (n±,xε) =
∫

D[ρ,k]e−NS[ρ,k], (A9)

where the action reads

S[ρ,k] ≡ − i

∫
dz dy k(z,y)ρ(z,y)

− Ln

[∫
dz dy exp

(
− ixε

2
z2+ ixε

2
y2−ik(z,y)

)]

− αLn
∫

D[m,L]e
i
2 (m2−L2)M(m,L|ρ) (A10)
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with

M(m,L|ρ) ≡
∞∑

k=0

e−ddk

k!

∫ ( k∏

=1

dz


dy



ρ(z



,y



)dξ
Pξ (ξ
)

)

× δ

(
m− 1√

d

k∑

=1

ξ
z


)
δ

(
L− 1√

d

k∑

=1

ξ
y



)
.

(A11)

The quantity k(z,y) is the function conjugate to the order
parameter ρ(z,y). The next step consists in evaluating the path
integral by applying the saddle-point method, which captures

the leading contribution to the integral in the limit N → ∞.
Plugging Eq. (A9) in Eq. (A5) and taking the limit N → ∞,
we obtain

Fx(y) = y

2
+ lim

ε→0+
lim

n±→± iy

π

S0[ρ,k], (A12)

whereS0[ρ,k] is the action S[ρ,k] evaluated at its saddle point,
at which the functions ρ(z,y) and k(z,y) obey the stationary
equations:

δS[ρ,k]

δρ(z,y)
= δS[ρ,k]

δk(z,y)
= 0. (A13)

After some straightforward algebra, the saddle-point equations
take the following form:

k(z,y) = iαd

∫
dξ Pξ (ξ )

∫
D[m,L]e

i
2 (m2−L2)M(m − ξz/

√
d,L − ξy/

√
d
∣∣ρ)∫

D[m,L]e
i
2 (m2−L2)M(m,L|ρ)

, (A14)

ρ(z,y) = exp
[− ixε

2 z2 + ixε

2 y2 − ik(z,y)
]

∫
dz dy exp

[− ixε

2 x2 + ixε

2 y2 − ik(z,y)
] . (A15)

The replica limit n± → ± iy

π
in the saddle-point equations and

in the expression (A12) will be dealt with by assuming that
ρ(z,y) and k(z,y) are replica symmetric (RS) in the subspaces
Rn± .

1. Replica symmetric Ansatz

Even though it is possible to express Eq. (A10) solely in
terms of the order-parameter function ρ(z,y), in the following
derivation we introduce, for the sake of clarity, a replica sym-
metric Ansatz for each function k(z,y),ρ(z,y), andM(m,L|ρ).
As shown in previous works dealing with the spectral prop-
erties of random graphs [18,19,30], the parametrization of
the order parameter in terms of a superposition of Gaussian
functions leads to exact results. Thus, with a modest amount
of foresight, we propose the Ansätze

M(m,L|ρ) =
∫

dσ wσ (σ )

[
n+∏
a=1

exp
(
i

m2
a

2σ

)
√

2πiσ

]

×
[

n−∏
a=1

exp
(− i

L2
a

2σ

)
√−2πiσ

]
, (A16)

ρ(z,y) =
∫

dwρ()

[
n+∏
a=1

exp
(
i

z2
a

2

)
√

2πi

]

×
⎡
⎣ n−∏

a=1

exp
(− i

y2
a

2

)
√

−2πi

⎤
⎦, (A17)

k(z,y) = iA
∫

d� wk(�)

[
n+∏
a=1

√
�

2πi
exp

(
i�

z2
a

2

)]

×
⎡
⎣ n−∏

a=1

√
�

−2πi
exp

(
−i�

y2
a

2

)⎤⎦. (A18)

It is important to keep track of the normalization factors,
which is why we have written them explicitly in the above
equations. We also assume that the distributions wρ(),wk(),
and wσ (σ ) are normalized. Equations (A16)–(A18) remain
invariant under the interchange of replica indexes within
each subspace. Inserting the above Gaussian assumptions in
Eqs. (A11), (A14), and (A15), and performing the replica
limit n± → ± iy

π
, one arrives at the set of self-consistent

Eqs. (12)–(14). The expression for the cumulant generating
function, explicitly shown in Eq. (10), is derived by substituting
Eqs. (A16)–(A18) in Eq. (A12) and then taking the limit
n± → ± iy

π
.

The limit ε → 0+ is implicit in Eq. (10) as well as in the self-
consistent Eqs. (12)–(14). From a mathematical viewpoint, this
limit corresponds to recovering a Dirac δ distribution from a
Cauchy distribution [18,19]. However, as we will see below,
choosing a small value of ε is enough to obtain excellent
numerical results, and the actual limit does not need to be
taken.

APPENDIX B: WEIGHTED POPULATION
DYNAMICS

To solve numerically Eqs. (12)–(14), we use the weighted
population dynamics algorithm, whose main idea has been
put forward in [30]. This numerical approach consists in
representing each density wρ(), wk(�), and wσ (σ ) by a large
collection or population containing L random variables, which
are updated according to the algorithm explained below. After
a sufficient number of updating steps, the empirical distribution
of each population converges to a fixed-point distribution
that solves its corresponding self-consistent equation. The
calculation of averages involving wρ(), wk(�), and wσ (σ )
is performed by taking the arithmetic mean with the corre-
sponding population of random variables.
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Thus, by choosing a large value of L, the unknown distri-
butions of Eqs. (12)–(14) are parametrized as follows:

wρ() ↔ {(α)}Lα=1,

wk(�) ↔ {�(α)}Lα=1,

wσ (σ ) ↔ {σ (α)}Lα=1.

Once one has set up initial values for the three populations
{(α),�(α),σ (α)}Lα=1, one performs the following steps at a
single iteration of the algorithm:

(i) Estimate the constant A, defined in Eq. (16), as follows:

αd

A � 1

L

L∑
α=1

exp

[
− iy

2π
Ln

(
1 + σ (α)

1 + σ (α)

)]
.

(ii) Draw a random number 
 ∼ Poisson(A) and select
the variables {�(αs )}
s=1 uniformly and randomly from the
population {�(α)}Lα=1.

(iii) Using the 
 variables chosen in the previous step,
calculate the following quantities:

I =
⌊
e

iy

2π
Wε (�1,...,�
)

⌋
,

R = e
iy

2π
Wε (�1,...,�
) − I, (B1)

where . . . � is the floor function and Wε is defined in Eq. (11).
(iv) Pick up an element (α0) uniformly and randomly from

the population {(α)}Lα=1 and update its value as

(α0) → (α0) = 1∑

s=1 �(αs ) − xε

,

with rate R. Then increase the population to size L + I by
adding I extra values of (α0) to the original population.
Finally, filter the new population back to its original size by
choosing randomly L elements from the L + I available.

(v) Draw a random number k ∼ Poisson(d) and select
{(α
)}k
=1 uniformly and randomly from the population
{(α)}Lα=1. Besides that, draw independently k random num-
bers {ξ
}k
=1 from the distribution Pξ (ξ ).

�6 �4 �2 0 2 4
�5

�4

�3

�2

�1

0

1

2

y

x(
y)

Physical Solution

Unphysical Solution

FIG. 5. Population dynamics results for Fx(y) as a function of
y in the case of x = 1.01, ε = 10−8, d = 1, and α = 2. This result
has been obtained using L = 106 and 300 Monte Carlo steps. For
y > 0 there are two possible values ofFx(y), with the physical branch
corresponding to the red curve.

(vi) Pick up an element σ (α0) uniformly and randomly from
{σ (α)}Lα=1 and update its value according to

σ (α0) → σ (α0) = 1

d

k∑

=1

ξ 2

 (α
).

(vii) Draw a single random number ξ from Pξ (ξ ) and choose
a pair of elements σ (α1) and �(α0) uniformly and randomly from
{σ (α)}Lα=1 and {�(α)}Lα=1, respectively. Update �(α0) as follows:

�(α0) → �(α0) = ξ 2

d(1 + σ (α1))
.

(viii) Go back to step (i) and repeat steps (i)–(vii) until the
empirical distributions of {(α)}Lα=1, {�(α)}Lα=1, and {σ (α)}Lα=1
attain stationary profiles. We use the standard convention that a
single Monte Carlo step consists in repeating L times the steps
(i)–(vii).

For each choice of parameters α, x, d, and y, we fix
ε = 10−8 and L between 106 and 107. Such a value of ε is
sufficiently small such that the limit ε → 0+ is attained. We
have usually run the algorithm between 300 and 600 Monte
Carlo steps, which is more than sufficient to reach convergence.
In some cases, in order to further improve the accuracy of our
estimates, we have performed averages over independent runs
of the algorithm.

One of our aims consists in deriving results for the rate
function �x(k). However, from the expression (9), we are
required to find the value of y such that, for a fixed k, the
following equation is fulfilled:

k = κ1(y) ≡ ∂Fx(y)

∂y
. (B2)

Here κ1(y) corresponds to the weighted first cumulant, which
can be expressed in terms of averages of the random variables
{I
}3


=1, defined in Eqs. (17)–(19). Although it is certainly
possible to find numerically y obeying Eq. (B2), it is more
efficient to evaluate the rate function �x(k) parametrically in
y: for a given value of y, we determine the corresponding value

�6 �4 �2 0 2 4
0

1

2

3

4

y

(y
)

FIG. 6. Population dynamics results forA(y), defined by Eq. (16),
as a function of y in the case of x = 1.01, ε = 10−8, d = 1, and α = 2.
This result has been obtained using L = 106 and 300 Monte Carlo
steps.
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of k = κ1(y) using Eq. (B2). The rate function for such a value
of k is simply given by �x(k) = Fx(y) − ky.

When applying the weighted population dynamics algo-
rithm, we noted that, for positive values of y, the cumulant
generating function Fx(y) has two extrema as a functional of
the distributions, that is, we find two distinct fixed-point solu-
tions of Eqs. (12)–(14) depending on the choice of the initial
distributions. We illustrate this feature in Fig. 5, where we show
both the physical and the unphysical behavior of Fx(y) as a
function of y. The physical branch is obtained by choosing the
fixed-point solution of Eqs. (12)–(14) that yields ∂Fx (y)

∂y
� 0.

We have found that the initial conditions to obtain the physical
solution are such that Im(�) = Im() = Im(σ ) = 0.

To conclude this appendix, let us briefly comment on a
limitation of our numerical method. The factor A, given by
Eq. (16), plays the role of a rescaled average degree αd and it
is a function of y. In Fig. 6 we present population dynamics
results for A as a function of y, and, as we can see, there is a
range ofy for whichA is smaller than the percolation threshold.
In this situation, we have found that population dynamics does
not provide reliable numerical estimates for the densities, and
we had to disregard the corresponding results.
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